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Abstract

Motivation: Electronic health record (EHR) data provides a new
venue to elucidate disease comorbidities and latent phenotypes for pre-
cision medicine. To fully exploit its potential, a realistic data genera-
tive process of the EHR data needs to be modelled.
Materials and Methods: We present MixEHR-S to jointly infer
specialist-disease topics from the EHR data. As the key contribu-
tion, we model the specialist assignments and ICD-coded diagnoses as
the latent topics based on patient’s underlying disease topic mixture
in a novel unified supervised hierarchical Bayesian topic model. For

1

ar
X

iv
:2

10
5.

01
23

8v
1 

 [
cs

.L
G

] 
 4

 M
ay

 2
02

1



efficient inference, we developed a closed-form collapsed variational
inference algorithm to learn the model distributions of MixEHR-S.
Results: We applied MixEHR-S to two independent large-scale EHR
databases in Quebec with three targeted applications: (1) Congenital
Heart Disease (CHD) diagnostic prediction among 154,775 patients;
(2) Chronic obstructive pulmonary disease (COPD) diagnostic pre-
diction among 73,791 patients; (3) future insulin treatment prediction
among 78,712 patients diagnosed with diabetes as a mean to assess the
disease exacerbation. In all three applications, MixEHR-S conferred
clinically meaningful latent topics among the most predictive latent
topics and achieved superior target prediction accuracy compared to
the existing methods, providing opportunities for prioritizing high-risk
patients for healthcare services.
Availability and implementation: MixEHR-S source code and
scripts of the experiments are freely available at https://github.

com/li-lab-mcgill/mixehrS

1 Introduction

With the rapid adoption of electronic health record (EHR), there is an un-
precedented opportunity to re-define medical concepts and automate disease
diagnosis process. EHR include standardized digital codes such as the In-
ternational Classification of Diseases (ICD) 9 codes, which often span over
tens of thousands of features. Traditional statistical methods are incapable
of handling the high-dimensional EHR features and therefore often require
engineering a small set of hand-crafted features. Topic models, on the other
hand, show great promise in representing the entire discrete EHR data by a
set of latent topics [4, 5, 22, 14]. In analogy to text categorization [4], we
consider the EHR history for each patient as a document, which exhibits a
mixture of memberships over a set of latent disease topics. However, existing
EHR topic modeling ignores the generative process of the clinical specialists
in diagnosing the patient. Also, most of EHR topic models are unsuper-
vised and therefore require a downstream supervised classifier to perform
prediction of a target disease.

In this paper, we present MixEHR-S as a novel unified supervised multi-
specialist Bayesian topic model. MixEHR-S stands out from the existing
methods with three key contributions. First, we explicitly model the dis-
tribution of specialists based on the patient’s latent disease topic mixture.
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Second, we infer the specialist-specific latent disease topics, which capture
the different clinical domain knowledge. Third, to predict a binary target
labels such as a disease diagnosis, we developed a Bayesian probit regression
component to form a supervised topic model. This allows us to learn a linear
classifier to predict a binary label using the topic mixture inferred for each
patient. The posterior inference of the latent disease topics for each patient’s
diagnosis in turn takes into account the predictive likelihood of the target
disease. Therefore, the topic inference step and the supervised learning step
can benefit from each other during the model training.

Using real-world large-scale EHR databases in Quebec, we demonstrated
the utility of MixEHR-S model with three targeted applications: (1) Con-
genital Heart Disease (CHD) diagnostic prediction among 154,775 patients;
(2) Chronic obstructive pulmonary disease (COPD) diagnostic prediction
among 73,791 patients; (3) future insulin treatment prediction among 78,712
patients diagnosed with diabetes. In all three applications, we observe clin-
ically meaningful latent topics among the most predictive latent topics and
achieved superior target prediction accuracy compared to the existing meth-
ods, providing opportunities for prioritizing high-risk patients and drug rec-
ommendations.

2 Related Methods

Our MixEHR-S model is related to the best-known topic model Latent Dirich-
let Allocation (LDA) [4], which has been applied to raw clinical text for medi-
cal tasks in the past [5]. However, LDA is often inadequate to model complex
diagnoses because it does not account for heterogeneous data categories. The
mutli-view topic model UPhenome could learn diseases and patient charac-
teristics with a fixed set of data types for heterogeneous medical records [22].
However, UPhenome is unable to infer specialist-diagnosis mechanisms as
presented in our MixEHR-S.

Our Bayesian approach is also related to the frequentest non-negative ma-
trix factorization (NMF) methods that were seen applications in the EHR
domain. In particular, Joshi et al. (2016) described a NMF model to identify
multiple co-occurring medical conditions using clinical notes [12]. Extend-
ing the single-view NMF framework, Gunasekar et al. (2016) proposed a
collective NMF model called SiCNMF for modeling multi–source EHR Data
[10]. Compared to the Bayesian topic modeling, these models are often less

3



interpretable because they do not model the data generative processes.
In our recent work, we described a multi-modal topic model called Mix-

EHR [14], which models different EHR data types with distinct categorical
distributions. MixEHR is an unsupervised topic model, which needs training
an additional classifier to predict a specific target label. One solution to this
problem is to use supervised latent Dirichlet allocation (sLDA) [17], which
infers latent topic distributions over documents (e.g., patients) while training
a linear regression model to predict a continuous response of the documents
(whereas we predict binary outcome with a Probit link). Along this direc-
tion, Zhang et al. (2017) proposes survival topic model, a supervised topic
model that models jointly patients’ discharge summaries and a Cox hazard
ratios on patient mortality with a limited scope [30].

Although related, compared to the aforementioned work, our approach
departs further from the recently popularized neural networks including our
own [16] on supervised classification of target clinical outcomes [25, 6, 15,
7, 21, 24]. In these models, prediction accuracy is prioritized over model
interpretability. The latter has been a challenge with the distributed repre-
sentation of the neural networks. It often requires more sophisticated and
computationally expensive techniques such as knowledge graph embedding
with the attention mechanisms as demonstrated in GRAMS [8] to improve
interpretability and mitigate over-fitting. Additionally, autoencoders [20, 26]
such as Deep Patients [20] were also applied to learn low-dimensional mani-
fold of the EHR data in an unsupervised fashion. These models often require
careful fine-tuning of a large number of network hyperparameters and have
similar interpretation challenges as the supervised neural networks.

3 Methods

3.1 MixEHR-S model generative process

We model the heterogeneous medical data using a generative topic model
illustrated in Fig. 1. For the notation below, we use boldface to denote the
vectors, capital letters for constants, and regular case for scalar variables. For
each patient j ∈ (1, . . . , D), we index his/her ICD-9 code by i ∈ {1, . . . ,Mj}
for Mj total number of ICD diagnose codes. Each ICD-9 code xij is assigned
by one of the specialists bij with index t ∈ {1, . . . , T}. Each patient is also
associated with a binary target disease label yj.
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Figure 1: MixEHR-S model overview. (a) Conceptual illustration of the
multi-specialist EHR data generative process. A diabetes patient j made
three outpatient visits to receive a total of five ICD-9 diagnosis codes i ∈
{1, . . . , 5}. Each code has its own underlying disease cause or topic zij,
which was sampled from the patient disease mixture θj. Based on the disease
cause, a specialist bij was assigned to the patient. The actual diagnosis code
xij was made by the specialist based on his expertise. (b) The plate model for
the multi-specialist EHR model. The probabilistic graphical model (PGM)
formally characterizes the data generative process. The observed variables
are the shaded nodes, including the target label yj, specialist type bij and
diagnosis code xij. The unshaded nodes are the latent variables. The details
of the variables in the graphical model are described in the main text and
summarized in Table. S1.

We assume that each patient j follows a disease topic mixture θj, which is
aK-dimensional Dirichlet distribution Dir(α) with unknown hyperparameter
α. To generate an ICD-9 code for a patient, we first sample a latent topic
zij = k from categorical distribution with rate set to θj. For vectorized
notations, we represent the discrete topic assignment zij = k by a binary
one-hot vector zij such that zijk = 1 if zij = k and zijk′ = 0∀k′ 6= k.

We then sample a specialist bij = t from a topic distribution βk ∼ Dir(ι),
which is a T -dimensional Dirichlet variable with hyperparameter ι for T
specialists. Given the topic assignment k and the specialist assignment t,
we then sample the ICD-9 code from a categorical distribution with the rate
ηkt that follows a set of V -dimensional Dirichlet distribution Dir(ζ). The
Dirichlet hyperparameters α, ι and ζ are given Gamma priors with fixed
parameters.
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To sample the target disease label yj for patient j, we first sample a
Gaussian liability variable gj ∼ N (w>z̄j, 1), where w denotes the global
regression coefficient and z̄j denotes the K-dimensional topic assignment
average over the Mj codes. We then set the target disease label yj to 1 if
gj is positive otherwise yj = 0. This is the Probit regression component of
MixEHR-S model, which can be viewed as a supervised topic model.

Formally, our data generative process starts by generating the global topic
distributions over the specialists and ICD-9 codes per specialist for each topic
as well as the topic-specific coefficients for the response variable, respectively:

βk ∼ Dir(ι), ηkt ∼ Dir(ζk), w ∼ N (0, τ−1I) (1)

We then sample the local variables, namely the topic mixtures, topic
assignments, specialist assignments, and ICD-9 codes for each patient j:

θj ∼ Dir(α), zij ∼ Cat(θj), (2)

bij ∼ Cat(βzij), xij ∼ Cat(ηzijbij) (3)

The the hyperparameters are Gamma-distributed:

α ∼ Gamma(cα, dα), ι ∼ Gamma(cι, dι), ζ ∼ Gamma(cζ , dζ) (4)

The binary label variable is sampled from a Probit distribution:

gj ∼ N (w>z̄j, 1), yj =

{
1, if gj > 0

0, if gj ≤ 0
(5)

where z̄j = 1
Mj

∑Mj

i=1 zij and zij is a K-dimensional binary one-hot vector

with topic indexed by zij set to 1 and the rest set to zeros.

3.2 Model Inference

Treating the latent variables as missing data, the complete joint likelihood
based on the proposed model (Fig. 1) is p(z,b,x,y,g,w,θ,η,β). Exploiting
conjugate property of the Dirichlet variables θ, β, and η to the respective cat-
egorical variables z, b, and x, we first analytically integrated out the Dirichlet
variables given the hyperparameters, resulting in the following marginal joint
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likelihood:

p(z,b,x,y,g,w | α, ι, ζ, τ)

=

∫
p(z,b,x,y,g,w,θ,η,β | α, ι, ζ, τ)dθdβdη

=p(z,b,x | dα, ι, ζ)p(g|z,w)p(y|g)p(w|τ) (6)

The full derivation is described in Appendix B.1. To approximate the suffi-
cient statistics that are needed for inferring the posterior distribution of the
latent variables p(z|b,x,g), we use variational inference [3]. In particular,
we maximize the Evidence Lower Bound (ELBO):

L(Θ) = Eq(z,g,w)[log p(z,g,w,b,x,y)]

− Eq(z,g,w)[log q(z,g,w)] (7)

Under the mean-field factorization, the proposed distribution of the latent
variables have the same distributions as their priors:

q(z,g,w |m,S,γ) = N (w |m,S)
∏
ijk

γ
[zij=k]
ijk

∏
j

q(gj | λj, 1) (8)

where γ̄j = 1
Mj

∑
i γij and γij is a K-dimensional vector for the K topics.

Maximizing ELBO with respect to the variational parameters is equivalent to
calculating the expectations [2]: Eq(z−(i,j),g)[ln q(zij|γ)], Eq(z,g)[ln q(w|m,S)],

and Eq(z,w)[ln q(g|m, z)]. Here z−(i,j) denotes all of the latent variables except
for variable zij.

For the Bayesian regression component of the MixEHR-S model, we posit
a truncated Gaussian distribution T N with mean λ and fixed variance for
the liability variable g:

q(gj | λj) =

{
T N+(λj, 1), if yj = 1.

T N−(λj, 1), if yj = 0.
(9)

where

λj = Eq(w)[w
>]Eq(z)[z̄j] (10)

The variational distribution of the regression coefficients w follows a multi-
variate Gaussian distribution:

q(w |m,S) = N (m,S) (11)
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where the variational parameters for q(w |m,S) can be solved by completing
the square (Appendix B.1):

S = (τI + Eq(z)[z̄
>z̄])−1, m = SEq(z)[z̄]Eq(g)[g] (12)

Importantly, the variational mean-field closed-form update for the pos-
terior topic assignment zij = k depends on both the categorical likelihood
of the ICD-9 code and the predictive likelihood of the target disease label:
p(z | y,x) ∝ p(x | z)p(y | z). Leveraging the conditional independence of
these two likelihoods, we can calculate the closed-form variational inference
update for topic k of ICD-9 code i in patient j:

γijk ∝ (αk + Eq(z−(i,j))[n
−(i,j)
jk ])

ιbij + Eq(z−(i,j))[m
−(i,j)
kbij

]

Eq(z−(i,j))[m
−(i,j)
k. ] +

∑
t ιt

ζkxij + Eq(z−(i,j))[p
−(i,j)
kbijxij

]

Eq(z−(i,j))[p
−(i,j)
kbij .

] +
∑

w ζkw

exp

{
mkEq(gj)[gj]

Mj

− 1

2M2
j

[
2
(
mkm

ᵀγj/i + Skγj/i
)

+m2
k + Skk

]}
(13)

where γj/i =
∑Mj

m 6=i γij indicates the sum of all terms except for the ith

ICD-9 code, and Sk is the kth row of the covariance matrix S. All of the
variational expectations have closed-form expression conditioned on the other
latent variables:

Eq(z−(i,j))[n
−(i,j)
jk ] =

Mj∑
i′ 6=i

γi′jk

Eq(z−(i,j))[m
−(i,j)
bijk

] =
D∑
j′ 6=j

Mj′∑
i

[bij′ = bij]γij′k

Eq(z−(i,j))[p
−(i,j)
bijxijk

] =
D∑
j′ 6=j

Mj′∑
i

[bij′ = bij, xij′ = xij]γij′k (14)

The above inference technique was originally developed only for LDA and
named as collapsed variational Bayesian with zero-order Taylor expansion
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(CVB0) [27, 1]. Here we extended the inference to more general supervised
multi-specialist topic models.

The predictive distribution of the target label y is a Bernoulli distribution
when using a Gaussian response since the natural parameter wᵀz̄ is identical
to the mean parameter:

p(y? | z̄?,y, z̄) = Bernoulli

(
y? | Φ

(
mᵀz̄?

(1 + z̄ᵀ
?Sz̄?)

1
2

))
(15)

where Φj = Φ(−λj) is the cumulative distribution function (CDF) of the
standard normal distribution, and z̄? and y? are the average topic counts
and the target disease label, respectively.

The overall inference algorithm is summarized as follows:

1. Infer topic assignments zij using Eq. (13)

2. Update sufficient statistics for the topic inference by Eq. (14)

3. Update target prediction parameters by Eq (10) and Eq (12)

4. Calculate the expectation of the target y (Appendix B.5)

5. Update the Dirichlet hyperparameters (Appendix B.4)

6. Repeat step 1-5 until little change in ELBO (default: 1e-6).

For efficient inference over large-scale EHR data, we employed a stochastic
collapsed variational inference (SCVB0) [11, 14]. The full details are de-
scribed in Appendix (Section B).

4 Data

4.1 Quebec CHD Database (154,775 patients)

In Quebec (Canada) where universal health care is provided, every resident
is assigned a unique Medicare number and all health services rendered are
systematically recorded until death. In this study, three EHR databases
were merged by the unique patient medicare numbers: (1) the physician’s
services and claims database from l983 to 2010; (2) the hospital discharge
summary database from l987 to 2010; (3) the vital status database from
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1983 to 2010. As a result, we have collected the EHR data for 154,775
patients. Demographic information including age and sex were also included
in the databases and no specific age or sex biases were observed. The study
population included patients with at least one CHD-related ICD-9 diagnosis
between 1983 and 2010, whose ICD diagnoses were made by one of the 48 CV
or non-CV specialists (e.g., cardiologist, thoracic surgeon, cardiac surgeon,
cardio-vascular and thoracic surgeon, etc). In total, there are 9373 unique
ICD-9 codes. The gold-standard labels are the binary label of CHD diagnosis
made by clinicians after careful manual auditing the patient records using
a clinician-developed rule-based algorithm. Among the 154,775 patients,
84,498 patients were diagnosed as true CHD patients (yj = 1) and the rest
are non-CHD patients (yj = 0). Therefore, if we were to only use the CHD-
related ICD-9 code to predict CHD labels, we could have only achieved an
accuracy of 54.5%.

4.2 PopHR database

The Population Health Record (PopHR) is a semantic web application for
measuring and monitoring population health and health system performance
[23]. The public health insurance provider in Quebec, Canada (Régie de
l’assurance maladie du Québec, RAMQ) provided the data on health service
use. PopHR’s current version uses an open, dynamic cohort of approxi-
mately 1.4 million people, created by capturing a 25% random sample in
the census metropolitan area of Montreal between 1998 and 2014. Follow-up
ended when people died or moved out of the region of Montreal. The admin-
istrative database includes outpatient diagnoses and procedures submitted
through billing claims to RAMQ, and procedures and diagnoses from hospi-
tal records. Drug dispensation data are available for people who have drug
insurance through RAMQ (which includes approximately half the population
and all those over 65 years of age). All data are linked through an anonymized
version of the RAMQ identification number. As a proof-of-concept, we fo-
cused on a subset of the patient cohort with two distinct target diseases as
described below.

Chronic Obstructive Pulmonary Disease (COPD) Our goal in this
application is to infer specialist-dependent COPD topics and predict the true
COPD patients. To this end, we retrieved 73,791 patients with at least one
COPD related ICD-9 code (e.g. 491x, 492x, 496x) from the physician billings
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table of the PopHR database. The gold-standard labels were assigned to pa-
tients as of their incident event (COPD diagnostic code for hospitalization or
medical billing) occurring after a minimum of two years of time at risk [29].
Among the 73,791 patients identified through ICD-9 codes, 67,380 patients
were confirmed to be the true COPD patients and the rest are non-COPD
patients. In total, there are 6,625 unique ICD-9 codes and 43 unique special-
ists.

Insulin usage among diabetes patients In this application, we aim to
infer latent topics that are predictive of whether each diabetes patient started
the insulin medication 6 months after their initial diagnosis. This is useful in
forecasting the disease exacerbation. We extracted 78,712 diabetes patients
with the ICD-9 codes 250x and continuous public drug insurance for hospi-
talization or medical billing. We set the first diabetes diagnosis of a patient
as the start of insurance coverage. We selected patients with a continuous
public drug insurance after the first diagnosis of diabetes-related code, with
continuous insurance defined as: (1) patients with at least 6 months of un-
interrupted insurance, or; (2) patients with interrupted insurance records
for which interruptions are less than 2 months. To avoid misclassifying the
first dispensation in patients with an unrecorded history of insulin, we re-
moved patients who used insulin within 6 months after the first diagnosis of
a diabetes-related code.

For the remaining patients, we only used their ICD codes observed accu-
mulatively up to the first diagnosis to predict their future drug usage. We
treated a patient as positive if he or she started to use insulin 6 months after
being diagnosed with diabetes. Among the 78,712 diabetes patients, 11,433
patients were labeled as insulin users. In order to evaluate our model on a
balanced dataset, we randomly sampled 11,433 negative patients to obtain
a perfectly balanced dataset (50% positive patients, 50% negative patients).
There are 5,477 unique ICD-9 codes and 43 specialists in the resulting bal-
anced diabetes dataset.

5 Experiments

We sought to evaluate both model interpretability and prediction accuracy
of our MixEHR-S model. Because the true topics of real dataset are not
known, we first used simulation to assess whether MixEHR-S can recapitu-
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late the ground-truth topics. We used the generative process of the proposed
model to obtain sample data. We simulated 2,500 patients, 750 ICD diag-
nosis codes and 48 specialists for the evaluation. We considered 25 topics
to model toy data with a 80/20 train-test split. For the purpose of com-
parison, we used LDA as the baseline model [4]. We ran LDA implemented
in Python package scikit-learn with default variational inference algorithm.
We evaluated disease target prediction by the receiver operating character-
istic (ROC) curve and precision-recall curve (PRC). We directly predicted
the disease target labels using MixEHR-S. For the unsupervised model LDA,
we trained a separate Bayesian logistic regression to predict labels given the
LDA-inferred patient topic mixtures. Overall, MixEHR-S achieved an excel-
lent topic recovery and outperformed LDA (Fig. S2a). Details were described
in Appendix A.2.

We then evaluated our MixEHR-S model based on the real EHR data from
Quebec CHD, PopHR-COPD, and PopHR-diabetes datasets (Section 4). As
a baseline method, we evaluated MixEHR [14], which is an unsupervised
multi-modal topic model. We also evaluated LDA and the supervised LDA
(sLDA), both of which operate on flatten ICD-9 codes as single category [4,
18]. We applied the Bayesian Logistic Regression classifier that uses the topic
mixtures inferred by MixEHR or LDA to predict labels. We also compared
our approach with supervised models including Least Absolute Shrinkage and
Selection Operator (LASSO) [28], Random Forest (RF), Gradient Boosting
(GB), and two-layer feedforward neural network (NN), which directly use
ICD-9 codes as raw features to predict CHD labels. LDA, LASSO, RF, and
GB were implemented by the Python package scikit-learn with the default
optimization algorithms. NN with two fully connected layers and 100 hidden
units per layer was implemented in PyTorch.

Additionally, we evaluated several state-of-the-art EHR-focused mod-
els including MixEHR [14], Deep Patient (DP) [20] (https://github.com/
natoromano/deep-patient) , Graph-based Attention Model (GRAM) [9]
(https://github.com/mp2893/gram), and Sparsity-inducing Collected Non-
negative Matrix Factorization (SiCNMF) [10] (https://github.com/sgunasekar/
SiCNMF) using available published codes from the corresponding GitHub
repositories.

For all three applications, we split each dataset into 70% training, 10%
validation, and 20% testing sets. For the topic models (i.e., MixEHR, LDA,
sLDA, and our MixEHR-S), we used the validation set to choose the best
number of topics based on the unsupervised perplexity (i.e., the negative
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held-out log-likelihood) on the the 10% validation patients. We evaluated on
the 20% test patients in predicting the target disease based on the area under
the ROC curves (AUROC) and precision-recall curves (AUPRC). To obtain
robust prediction estimates, we conducted 10 repeated runs with random
70%-train/10%-validation/20%-test splits and recorded the mean values and
standard deviations of AUROC and AUPRC for each model on each test
set in Table.1. The detailed model specifications and hyperparameters were
described in Appendix A.3.

6 Results

6.1 Inferring specialist-dependent topics from Quebec
CHD Dataset

We investigated the inferred 40-topic mixtures of 48 specialists that give the
lowest perplexity on the validation set (Fig. 2a) (i.e., β). As expected, we
observe high probabilities for CV specialists, such as cardiovascular and tho-
racic surgery. Based on the learned topic coefficient w, topics T31 and T8
are the two most predictive topics for CHD and are strongly associated with
cardiovascular and thoracic surgery and cardiologist, respectively. For each
topic, we chose the top five ICD-9 codes to reveal its meaning. We found a
strong connection between the inferred CHD-positive topics and the disease
pathology. In particular, topics T31, T8, and T5 contain many CHD-related
diagnosis codes such as ventricular septal defect (7454), univentricular heart
(7453), and anomalies of pulmonary valve (7460), acute conditions such as
heart failure (4289) under T5, and procedure code such as cardiac exami-
nation under T5. Moreover, all of the top ICD diagnosis codes under topic
T31 and T5 come from the CV specialists (i.e. cardiovascular and thoracic
surgery or thoracic surgeon). Also, the top ICD-9 codes under topic T15 such
as cardiac complications and cardiovascular symptoms also mostly make clin-
ical sense. Topic T30, which is weakly associated with heart related surgery,
gives less interpretable results since several of its top codes are diagnosed by
the non-CV specialists.

Interestingly, the selected negatively predictive topics are also clinically
coherent although all of them are not related to CHD as expected. For
instance, we observed a clear enrichment for cerebrovascular diseases in T2.
Topic T20 represents dental diseases. All of the top ICD-9 codes under
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Figure 2: Disease topics inferred by MixEHR-S on the CHD dataset. (a) The
inferred specialist topics. The color intensities are proportional to the inferred
probabilities of specialists under each topic and the side bar indicates the
specialist categories. The topics that are numbered are the most predictive
topics of CHD. The full specialists are illustrated in Fig. S3. (b) and (c) Top
ICD-9 codes from the five most positively predictive topics and the five most
negatively predictive topics. The side bars indicate the specialist types and
categories. (d). Linear coefficients for the 40 topics in decreasing order.
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Figure 3: Prediction accuracy of responses comparing MixEHR-S model, the
topic models (MixEHR, LDA, and sLDA), the models which directly apply on
raw ICD-9 codes (LASSO, RF, GB, and NN), and the EHR-focused models
(DP, GRAM, and SiCNMF). a-c (d-f) ROC and PR curves of all methods
on CHD, COPD, and diabetes-insulin predictions with AUROC (AUPRC)
of each method indicated as inset in each panel.

the negatively predictive topics come from non-CV practitioners. Therefore,
our inferred topics could be used as a clinically relevant departure point to
uncover more specific therapeutic information.

We then examined the disease topic mixture memberships along the pa-
tients dimension. We selected 5 patients with the highest proportions for the
top 5 most predictive topics (Fig. S4b), who we considered as high-risk CHD
patients. The majority of the top patients are indeed true CHD patients. In
contrast, most patients under the top 5 negatively predictive topics do not
have CHD labels (Fig. S4c). We then examined the 5 highest-scoring ICD-9
diagnosis codes among these patients under the five most positively predic-
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Figure 4: Disease topics inferred from the COPD and diabetes patients’ EHR
data extracted from the PopHR database. a. Specialist topics. Same as in
Figure 2, the color intensities are proportional to the probabilities of special-
ists under each topic and the side bar indicates the specialist categories. b.
Top three ICD-9 codes from the five most positively predictive topics. The
side bars indicate the specialist types. c. Linear coefficients for the 50 topics
in decreasing order. d-f. specialist topics, top ICD-9 codes per top topic,
and linear coefficients for the 6-month insulin-usage prediction among the
diabetic patients.

tive topics and the five most negatively predictive topics. As expected, the
top patients in the positively predictive topics were mostly diagnosed with
the CHD-related ICD-9 codes. In particular, most of the patients under
topic T31 have highly CHD-specific ICD-9 codes 7454, 7453 and 7471, corre-
sponding to the diagnoses of ventricular septal defect, univentricular heart,
and aortic coarctation, respectively. Some of the top patients were not con-
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firmed with CHD and may be deemed as the high-potential CHD patients.
Some of the top 50 patients under topic T31 have neither the CHD label nor
the top 5 CHD-related ICD codes. Nonetheless, these patients possess the
other top CHD-related ICD-9 codes under the topic T31 (Fig. S4d).

Table 1: Prediction performance of MixEHR-S and other methods on CHD,
COPD, and diabete-insulin predictions. The mean values and standard de-
viations (in the brackets) of AUROC and AUPRC for each model each test
set are computed on 10 randomly training and testing splits. For each appli-
cation, the highest average AUROC and AUPRC among all methods are in
bold.

Method
CHD COPD diabetes-insulin
AUROC AUPRC AUROC AUPRC AUROC AUPRC

MixEHR-S 0.8007 0.8122 0.9036 0.9774 0.7341 0.7006
(0.0263) (0.0228) (0.0290) (0.0122) (0.0469) (0.0376)

MixEHR 0.7214 0.7167 0.7621 0.8804 0.6892 0.6346
(0.0384) (0.0462) (0.0429) (0.0607) (0.0463) (0.0471)

LDA 0.6292 0.6311 0.7285 0.8318 0.5418 0.5385
(0.0327) (0.0341) (0.0362) (0.0686) (0.0210) (0.0188)

sLDA 0.7684 0.7708 0.8317 0.8665 0.5622 0.5509
(0.0258) (0.0272) (0.0362) (0.0471) (0.0124) (0.0146)

LASSO 0.6967 0.7130 0.8125 0.9382 0.5017 0.5083
(0.0381) (0.0392) (0.0431) (0.0271) (0.0109) (0.0086)

RF 0.7291 0.7012 0.7312 0.9453 0.5238 0.5044
(0.0131) (0.0155) (0.0181) (0.0093) (0.0113) (0.0081)

GB 0.6703 0.6447 0.8239 0.9164 0.5398 0.5124
(0.0107) (0.0142) (0.0154) (0.0142) (0.0220) (0.0093)

NN 0.6334 0.6409 0.6976 0.8708 0.5588 0.5620
(0.0439) (0.0504) (0.0360) (0.0557) (0.0591) (0.0475)

DP 0.6675 0.6825 0.8655 0.9634 0.6701 0.7028
(0.0305) (0.0322) (0.0206) (0.0125) (0.0256) (0.0296)

GRAM 0.7493 0.7687 0.8245 0.9239 0.7387 0.6815
(0.0346) (0.0221) (0.0168) (0.0102) (0.0438) (0.0399)

SiCNMF 0.7241 0.7313 0.8591 0.9546 0.6432 0.6283
(0.0436) (0.0387) (0.0260) (0.0168) (0.0423) (0.0368)

6.2 CHD target label prediction

Quantitatively, MixEHR-S conferred the highest AUROC (80.07%) and AUPRC
(81.22%) among all methods (Fig. 3a and d, Table.1). The LDA model that
ignore distinct specialists performed a lot worse while the supervised sLDA
model was a slightly better. MixEHR-S also outperformed the unsupervised
variant MixEHR, which achieved 72.14% AUROC and 71.67% AUPRC. Ad-
ditionally, the baseline discriminative models LASSO, RF, GB, and NN,
which directly use the raw features, also did not predict CHD outcomes as
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accurately as our MixEHR-S. This is due to their inability to model the dis-
tribution of the EHR input data. As a result, they are more sensitive to the
sparsity and noise intrinsic to the EHR data.

Compared to the above baseline models, the existing EHR-focused mod-
els demonstrated generally better prediction performance. DP conferred rel-
atively low prediction accuracy possibly due to its need to operate on exten-
sively prepossessed and filtered EHR codes. GRAM utilized the ICD-related
knowledge graph to embed ICD code, which helped achieving more accurate
prediction (74.93% AUROC and 76.87% AUPRC). Together, we attribute
the highest performance of our MixEHR-S to its simultaneous inference of
the specialist-specific topics and the predictive topic coefficients.

6.3 Modeling PopHR-COPD data

We then examined the 50-topic mixtures over the 43 specialists that we
inferred from the PopHR-COPD data (Section 4.2). As in the CHD topic
analysis above, we focused on the 5 most predictive topics of COPD by exam-
ining the specialist distribution (Fig. 4a, c). Indeed, we observe that the top
5 topics (T30, T44, T7, T49, T12) are strongly associated with pulmonology
specialist, which is closely related to the COPD diagnosis. Consistent to
the trend in the CHD analysis, the disease relevance increases as the topic’s
predictive coefficient increases (Fig. 4c; Appendix A.4). In particular, T30
is the most predictive one among all 50 topics, which exhibit the highest
probability for pulmonology specialist. Topics T7 and T12 exhibit relatively
weaker associations with pulmonology specialist and therefore weaker effect
sizes for COPD.

The top 3 ICD-9 codes under the most predictive topic T30 are all closely
related to COPD: Obstructive chronic bronchitis(4912), Chronic bronchitis
NOS (4919), and acute bronchitis (4660) (Fig. 4b). The top second and top
third topics T44 and T7 also contain multiple COPD-related codes, which
represent Chronic airway obstruction and emphysema, respectively. Overall,
10 out of the 15 top ICD-9 codes are from the pulmonology specialist type
and the rest of the codes are from general practitioner and geriatrics. This
makes sense since pulmonology specialist is more likely to make diagnosis for
these COPD-related ICD codes. Interestingly, although topics T49 and T12
are less predictive of COPD, they are strongly associated with asthma and
lung malfunction, which often manifest similar symptoms as COPD.

We then evaluated the prediction accuracy (Fig. 3b and e, Table.1).
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MixEHR-S achieves the highest AUROC of 90.36% among all methods. The
other top performing models namely DP, SiCNMF, and GRAM conferred
AUROC 86.55%, 85.91%, and 82.45%, respectively. LDA alone did not work
well with only 72.85% AUROC, possibly due to the its inability to capture
the predictive topics of COPD and its negligence of the multi-specialist ICD-9
distributions.

Compared with LDA, the unsupervised MixEHR model [14] that learns
specialist specific topics achieved higher AUROC of 76.21%. However, it still
fell a lot short on the prediction task compared to MixEHR-S. We observed
much higher accuracy by the supervised LDA (sLDA) with 83.17% AUROC.
Therefore, adding the supervised component into the model can improve
predictive performance.

The discriminative models namely LASSO, RF, GB, NN achieved a di-
verse performances ranging from the lowest 69.76% (LASSO) to 82.39%
(GB). LASSO failed to work on the raw ICD-9 codes with only 73.12% AU-
ROC, implying that it is inadequate to place only sparse constraints on the
otherwise high-dimensional, highly sparse, and highly noisy EHR code fea-
tures. Most methods achieve high AUPRC (Fig. 3e). This is partially due to
the highly unbalanced nature of dataset (approximately 92% of observations
are from positive class).

6.4 Predicting insulin usage from PopHR-Diabetes pa-
tients

Finally, we applied MixEHR-S to predict insulin usage among the over 78000
confirmed diabetes patients (Section 4.2). As the analysis above, we first
qualitatively examined most predictive topics of insulin usage (Fig. 4d,e).
Here we focused on only the top 3 topics because of the rapid decrease of the
predictive coefficients following them (Fig. 4f). The most predictive topics
T8 and T3 are asscoiated with the endocrinology and cardiology specialist
types, which have strong association with diabetes diagnosis, whereas the
top third topic T10 is connected with internal medicine and gastroenterology
(Fig. 4d; Appendix A.4).

The top ICD-9 codes under topics T8 and T3 are also highly enriched
for three diabetes codes, namely 2500 diabetes mellitus without mention of
complication, 2504 diabetes with renal manifestations, and 2509 diabetes
with unspecified complications. We observed that the two renal failure ICDs

19



under T8 with modest probability and interpreted them as renal complica-
tions of diabetes. Interestingly, topic T10 contains multiple ICD codes on
cardiovascular conditions (ischemic heart disease, heart failure), which are
diagnosed by cardiology specialists. Therefore, it is likely that topic T10
characterizes the cardiovascular complications of diabetes.

We then predicted the insulin usage outcome 6 months after the first
diagnosis of diabetes (Fig. 3c and f, Table.1). MixEHR-S achieved the highest
AUROC (73.41%) and AUPRC (70.06%) or largely on-par with GRAM and
DP, respectively. Other EHR-based models fell short. The discriminative
models LASSO, RF, GB, and NN performed quite poorly with AUROC and
AUPRC below 60%. Among the topic models, MixEHR outperforms LDA
and sLDA, confirming the benefits of learning the distribution of specialist-
specific topics. Together, with MixEHR-S, we demonstrate the advantages
of heterogeneous and and task-dependent topic modelling of the EHR data.

7 Discussion

In this study, we presented MixEHR-S as an extension of our MixEHR [14].
Compared to the existing methods, we explicitly model the specialist as-
signments and ICD-coded diagnoses as latent topics. MixEHR-S can simul-
taneously infer the distribution of an arbitrary number of patient-specialist
assignments and predict a binary disease label based on the learned dis-
ease topics. Compared to the simpler topic models, the relatively higher
model complexity of our MixEHR-S does not actually incur higher compu-
tational costs especially when modeling large-scale EHR data with up to
150,000 patients. This is attributable to our closed-form mean-field varia-
tional expectation-maximization updates and our collapsed stochastic varia-
tional inference algorithm. We demonstrated MixEHR-S through a compre-
hensive set of experiments on both simulated data and two large-scale EHR
databases with three targeted real-world applications. Consistent throughout
our experiments, MixEHR-S not only infers meaningful specialist-dependent
topics but also makes accurate prediction of disease target labels.

Besides the three applications, MixEHR-S can generalize to other EHR
data with non-randomly distributed heterogeneous data types. For example,
patients with brain disorder are more likely to have electroencephalography
data, and patients with pulmonary problems will more likely to have chest
radiograph. In other words, the specific data types observed among patients
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depend on the patient disease types.
In our future work, we will extend MixEHR-S for multi-class prediction

model. This will allow us to model more heterogeneous patient cohort with
related target diseases. EHR data are longitudinal. Our current MixEHR-
S requires aggregating patient diagnoses over time to have a single collapsed
data point to represent each patient. As one of our ongoing projects, we are
exploring dynamic topic model [13] to properly account for time-dependent
EHR data.
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A Supplementary Information

A.1 Description of variables of Graphical Model

Table S1: Description of Variables of MixEHR-S

Variable Definition
yj Response connected to patient j
xij ICD-9 code i of patient j
bij Specialist type for ICD-9 code i of patient j
zij Topic assignment for ICD code-9 i of patient j
θj Topic mixture of patient j
βk Specialist mixture given topic k
ηkt ICD-9 code mixture given topic k and specialist t
α Dirichlet hyperparamter
ι Dirichlet hyperparamter
ζk Dirichlet hyperparamter
gj Latent disease liability of patient j
w Linear coefficients
τ Precision variable of Gaussian distribution for regression coefficient w

A.2 Simulation Results

For topic modeling, we quantitatively assessed the correlation between the
inferred topics and the ground truth topics (Fig.S1). We computed the Pear-
son correlation between the inferred patient topic mixtures and the patient
topic mixture matrix. MixEHR-S achieved an excellent topic recovery and
outperformed LDA (Fig. S2a). The improvement of MixEHR-S over LDA is
attributable to explicitly modeling specialist topic distributions. In particu-
lar, LDA does not infer the specialist-patient assignments and multi-specialist
topic distribution. For the target disease prediction, MixEHR-S achieved
93.54% AUROC and 95.26% AUPRC whereas LDA obtained only 80.17%
and 66.41% AUROC and AUPRC, respectively (Fig. S2b,c). The results
therefore support the benefits of jointly modeling of multi-specialist topics
and predicting labels compared to the LDA + Logistic Regression pipeline
approach.
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Figure S1: Topic recovery comparison from simulation dataset. To assess
whether our model can recapitulate the groundtruth topics, we correlate
every inferred topic with every groundtruth topic. In particular, we correlate
the D×K inferred patient topic mixture θ̂ for D patients and K topics with
the groundtruth D×K patient topic mixture matrix. The resulting Pearson
correlation is therefore a K×K symmetric matrix. a Topic correlation using
the inferred topic mixture by MixEHR-S model. b Topic correlation using
the inferred topic mixture by LDA.

Figure S2: Evaluation of simulation data. a Correlation between true topics
and inferred topics by MixEHR-S and LDA. Response prediction evaluated
by b ROC and c PRC.
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A.3 Baseline methods

We used the validation sets of the 3 datasets to tune the number of latent
topics for topic-based models in terms of perplexity (with the chosen topic
numbers in the brackets): MixEHR (K=40, 45, and 25 for CHD, COPD,
diabetes-insulin, respectively); LDA (K=30, 35, and 20, respectively); sLDA
(K=25, 35, and 20, respectively).

We also implemented machine learning algorithms that learn raw EHR
data by using Python packages scikit-learn and PyTorch. For LASSO, we
obtained best penalty parameter for the L1 term using grid search in scikit-
learn package (https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html). We set the number of
decision trees and max depth as 300 and 3 for RF classifier. Besides, we
chose the number of boosting stages and learning rate as 300 and 0.1 for
GB model. We also implemented a two-layer fully connected neural network
(NN) with a number of hidden units set to 100 for each layer.

We compared several existing EHR-based models. As in the original
paper [20], DP was applied to reduce the dimensionality of EHR codes by
training a denoising autoencoder with defaulted 500 hidden units followed
by RF classifier from scikit-learn with 100 trees. For SiCNMF, we chose the
number of factorization rank as 20 to avoid local minima which is suggested
in the original paper.

GRAM learns the ICD-9 embedding from a 5-level taxonomy called the
Clinical Classification Software (CCS) (https://www.hcup-us.ahrq.gov/
toolssoftware/ccs/AppendixCMultiDX.txt). It then uses the ICD-9 em-
bedding to project binary patient ICD-9 code vector onto a dense low-
dimensional vector, which in turn serves as input features to a neural network
for specific classification tasks. The original GRAM links the self-attention
graph to a recurrent neural network (RNN) to do sequential diagnosis pre-
diction. Since we performed only binary predictions on each target disease
or outcome (i.e., CHD, COPD, and Diabetes-Insulin) by collapsing the time
points, there is no recurrent unit. Therefore, the RNN (with one time point)
reduced to a feedforward neural network. We use 200 attention weights and
100 embedding dimensions to represent each ICD code, and 100 one hidden
layer with 200 hidden units in the feedforward network.

A.4 Supplementary Figures
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Figure S3: The original specialist topic plot for CHD dataset with with
complete 48 specialists. Side bar shows the corresponding category for each
medical speciality.
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Figure S4: Prioritized patients by disease topic mixture from train data of CHD
dataset. a. The top 5 patients under each topic. The patients with high pro-
portions for the top positively and top negatively predictive topics are identified
as high-risk patients and low-risk patients. b. Top ICD-9 codes of the high-risk
patients. The top 5 ICD-9 codes (rows) from each topic were displayed for the
top 50 patients (columns) under each topic. c. Top ICD-9 codes of the low-risk
patients. d. The ICD-9 codes of the patients (12, 57, 15) highlighted in panel b.
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Figure S5: The original specialist topic plot for COPD patients of PopHR
database with complete 43 specialists.
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Figure S6: The original specialist topic plot for diabetes patients of PopHR
database with complete 43 specialists.
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B MixEHR-S Model Full derivation

B.1 Derivation of MixEHR-S model likelihood

The full joint-likelihood for MixEHR-S model(Fig. 1) is:

p(z,b,x,y,g,w,θ,η,β) =p(θ)p(z | θ)p(b | z,βk)p(x | b, z,ηkt)p(βk)p(ηkt)
p(y | g)p(g | z,w)p(w) (16)

where the joint-likelihood involving the response latent variables (y,g,w)
from the supervised component of MixEHR-S model is:

p(y,g,w | z, τ) =p(y | g)p(g | w, z)p(w | τ)

=p(w | τ)
D∏
j

p(yj | gj)p(gj | w, z̄j)

(
1

2π
)K/2(τ)1/2 exp(−τw

ᵀw

2
) (17)

For the unsupervised learning component of MixEHR-S model, we obtain
marginal likelihood by integrating out θ,η,β due to the conjugacy properties
of the Dirichlet and multinomial distributions:
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p(z,b,x,g) =

∫
p(θ)p(z | θ)dθ ×

∫
p(b | z,βk)p(βk)dβk ×

∫
p(x | b, z,ηkt)p(ηkt)dηkt

=p(z)p(b | z)p(x | b, z)

=
D∏
j

Γ(
∑

k αk)∏
k Γ(αk)

∏
k Γ(αk +

∑Mj

i [zij = k])

Γ(
∑

k αk +
∑Mj

i [zij = k])

×
K∏
k

Γ(
∑

t ιt)∏
t Γ(ιt)

∏
t Γ(ιt +

∑D
j

∑Mj

i [zij = k, bij = t])

Γ(
∑

t ιt +
∑D

j

∑Mj

i [zij = k, bij = t])

×
K∏
k

T∏
t

Γ(
∑

w ζkw)∏
w Γ(ζkw)

∏
w Γ(ζkw +

∑D
j

∑Mj

i [bij = t, zij = k, xij = w])

Γ(
∑

w ζkw +
∑D

j

∑Mj

i [bij = t, zij = k, xij = w])

=
D∏
j

Γ(
∑

k αk)∏
k Γ(αk)

∏
k Γ(αk + njk)

Γ(
∑

k αk + njk)

×
K∏
k

Γ(
∑

t ιt)∏
t Γ(ιt)

∏
t Γ(ιt +mtk)

Γ(
∑

t ιt +mtk)

×
K∏
k

T∏
t

Γ(
∑

w ζkw)∏
w Γ(ζkw)

∏
w Γ(ζkw + pktw)

Γ(
∑

w ζkw + pktw)
(18)

where (njk,mtk, ptwk) are the sufficient statistics.

njk =

Mj∑
i

[zij = k]

mtk =
D∑
j

Mj∑
i

[zij = k, bij = t]

ptwk =
D∑
j

Mj∑
i

[zij = k, bij = t, xij = w] (19)

We then can calculate the likelihood of unsupervised component of MixEHR-
S model given the following analytical expressions for each distribution of
(z,b,x):
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p(z) =
D∏
j

∫
Γ(
∑

k αk)∏
k Γ(αk)

K∏
k

θαk−1
jk

Mj∏
i

θ
[zij=k]
jk dθj

=
D∏
j

∫
Γ(
∑

k αk)∏
k Γ(αk)

K∏
k

θ
αk+

∑Mj
i [zij=k]−1

jk dθj

=
D∏
j

Γ(
∑

k αk)∏
k Γ(αk)

∏
k Γ(αk +

∑Mj

i [zij = k])

Γ(
∑

k αk +
∑Mj

i [zij = k])
(20)

p(b | z) =
K∏
k

∫
Γ(
∑

t ιt)∏
t Γ(ιt)

T∏
t

βιt−1
kt

D∏
j

Mj∏
i

β
[zij=k,bij=t]
kt dβk

=

∫ K∏
k

Γ(
∑

t ιt)∏
t Γ(ιt)

T∏
t

β
ιt+

∑D
j

∑Mj
i [zij=k,bij=t]−1

kt d]βk

=
K∏
k

Γ(
∑

t ιt)∏
t Γ(ιt)

∏
t Γ(ιt +

∑D
j

∑Mj

i [zij = k, bij = t])

Γ(
∑

t ιt +
∑D

j

∑Mj

i [zij = k, bij = t])
(21)

p(x | b, z) =
K∏
k

T∏
t

∫
Γ(
∑

w ζkw)∏
w Γ(ζkw)

∏
w

ηζkw−1
ktw

D∏
j

Mj∏
i

η
[bij=t,zij=k,xij=w]
ktw dηkt

=
K∏
k

T∏
t

∫
Γ(
∑

w ζkw)∏
w Γ(ζkw)

∏
w

η
ζkw+

∑D
j

∑Mj
i [bij=t,zij=k,xij=w]−1

ktw dηkt

=
K∏
k

T∏
t

Γ(
∑

w ζkw)∏
w Γ(ζkw)

∏
w Γ(ζkw +

∑D
j

∑Mj

i [bij = t, zij = k, xij = w])

Γ(
∑

w ζkw +
∑D

j

∑Mj

i [bij = t, zij = k, xij = w])

(22)

B.2 Derivation of conditional distribution zij = k

In order to derive the conditional distribution p(zij = k | z(−ij),b,x,g) which
excludes specific zij and (b,x,g), we drop the constant variables (α, ι, ζ), and
also drop terms that depend on (i, j) to get the conditional distribution:
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p(zij = k | z(−ij),b,x,g) =
p(zij, z(−ij),b,x,g)∑K
k′ p(zij, z(−ij),b,x,g)

∝p(zij, z(−ij) | α)p(b | zij, z(−ij), ι)p(x | zij, z(−ij),b, ζk)p(g | zij, z(−ij),w)

∝(αk + n
−(i,j)
jk )

ιbij +m
−(i,j)
kbij∑

t ιt +m
−(i,j)
kt

ζkxij + p
−(i,j)
kbijxij∑

w ζkw + p
−(i,j)
kbijw

× exp
{
wᵀ(

1

Mj

(
∑
i′ 6=i

zi′j + zij))gj −
1

2
wᵀ(

1

M2
j

(

Mj∑
n6=i

Mj∑
m 6=n

znjz
ᵀ
mj +

Mj∑
n6=i

diag(znj)

+

Mj∑
m6=i

zijz
ᵀ
mj +

Mj∑
n 6=i

znjz
ᵀ
ij + diag(zij)))w

}
∝(αk + n

−(i,j)
jk )

ιbij +m
−(i,j)
kbij

m
−(i,j)
k. +

∑
t ιt

ζkxij + p
−(i,j)
kbijxij

p
−(i,j)
kbij .

+
∑

w ζkw

exp
{wᵀzijgj

Mj

− 1

2M2
j

wᵀ(

Mj∑
m 6=i

zijz
ᵀ
mj +

Mj∑
n6=i

znjz
ᵀ
ij + diag(zij))w

}
(23)

where the notation −(i, j) indicates that the term (i, j) is excluded and zij
is a one-hot K-dimensional binary vector that sets the kth topic equal to 1
and remaining values equal to zero.

B.3 Derivation of collapsed variational Bayesian infer-
ence (JCVB0)

To approximate the posterior distributions, we perform variational inference
and obtain the ELBO L(Θ) in Eq. (7) by using Jensen’s inequality:

log p(x,b,y) ≥Eq(z,g,w)[log
p(z,g,w,b,x,y)

q(z,g,w)
]

=Eq(z,g,w)[log p(z,g,w,b,x,y)]− Eq(z,g,w)[log q(z,g,w)] = L(Θ)
(24)

The ELBO can be broken down using all variables in the MixEHR-
S model with their respective expectations:

11



L(Θ) = Eq(z,g,w)[log p(z,g,w,b,x,y)]− Eq(z,g,w)[log q(z,g,w)]

= Eq(z)[log p(z | α)] + Eq(z)[log p(b | z, ι)] + Eq(z)[log p(x | b, z, ζ)]

+Eq(z,g,w)[log p(g | z,w)] + Eq(w)[log p(w | τ)] + Eq(g)[log p(y | g)]

−Eq(z)[log q(z | γ)]− Eq(g)[log q(g | λ)]− Eq(w)[log q(w |m,S)] (25)

where the expectations of the above terms are:

Eq(z)[log p(z | α)] =
D∑
j

Eq(z)[log Γ(
∑
k

αk)−
∑
k

log Γ(αk)

+
∑
k

log Γ(αk +

Mj∑
i

[zij = k])− log Γ(
∑
k

αk +

Mj∑
i

[zij = k])

=
D∑
j

log Γ(
∑
k

αk)−
∑
k

log Γ(αk) +
∑
k

log Γ(αk + Eq[njk])− log Γ(
∑
k

αk + Eq[njk])

(26)

Eq(z)[log p(b | z, ι)] =
K∑
k

log Γ(
∑
t

ιt)−
∑
t

log Γ(ιt) +
∑
t

log Γ(ιt +
D∑
j

Mj∑
i

[bij = t]γijk)

− log Γ(
∑
t

ιt +
D∑
j

Mj∑
i

[bij = t]γijk)

=
K∑
k

log Γ(
∑
t

ιt)−
∑
t

log Γ(ιt) +
∑
t

log Γ(ιt + Eq[mtk])

− log Γ(
∑
t

ιt + Eq[mtk]) (27)
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Eq(z)[log p(x | b, z, ζ)] =
K∑
k

T∑
t

log Γ(
∑
w

ζkw)−
∑
w

log Γ(ζkw)

+
∑
w

log Γ(ζkw +
D∑
j

Mj∑
i

[bij = t, xij = w]γijk)

− log Γ(
∑
w

ζkw +
D∑
j

Mj∑
i

[bij = t, xij = w]γijk)

=
K∑
k

T∑
t

log Γ(
∑
w

ζkw)−
∑
w

log Γ(ζkw) +
∑
w

log Γ(ζkw + Eq[ptwk])

− log Γ(
∑
w

ζkw + Eq[ptwk]) (28)

Eq(z,g,w)[log p(g | z,w)] =
∑
j

Eq(z,g,w)[log p(gj | w, z̄j)]

=
∑
j

Eq(z,g,w)[logN (gj | wᵀz̄j, 1)]

=
D∑
j

−1

2
log 2π − 1

2
Eq(z,g,w)[(gj −wᵀz̄j)

2]

=
D∑
j

−1

2
log 2π − 1

2
Eq(z,g,w)[g

2
j − 2wᵀz̄jgj + wᵀz̄j z̄

ᵀ
jw]

=
D∑
j

−1

2
log 2π − 1

2
Eq(g)[g

2
j ] + Eq(z,g,w)[w

ᵀz̄jgj]−
1

2
Eq(z,w)[w

ᵀz̄j z̄
ᵀ
jw]

=
D∑
j

−1

2
log 2π − 1

2
Eq(g)[g

2
j ] + Eq(w)[w]ᵀEq(z)[z̄j]Eq(g)[gj]

− 1

2
Eq(w)

[
wᵀEq(z)[z̄j z̄

ᵀ
j ]w
]

(29)
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Eq(w)[log p(w | τ)] = Eq(w)[log
K∏
k

(
1

2π
)K/2(τk)

1/2 exp(−τkw
2
k

2
)]

= Eq(w)[−
K

2
log 2π +

1

2
log τk −

τkw
2
k

2
]

= −K
2

log 2π +
1

2
log τk −

τkEq(w)[w
2
k]

2

= −K
2

log 2π +
1

2
log τk −

τk(m
2
k + Skk)

2
(30)

Eq(g)[log p(y | g)] =
∑
j

Eq(g)[log p(yj | gj)] = 0 (31)

Eq(z)[log q(z | γ)] =
∑
ijk

γijk log γijk (32)

Eq(g)[log q(g | λ)] =
D∑
j

Eq(g)[log q(gj | λj)]

=
D∑
j

Eq(g)[log
{
T N+(gj;λj, 1)yjT N−(gj;λj, 1)1−yj

}
]

=
D∑
j

Eq(g)[log
{
N (gj;λj, 1)(

1

1− Φj

)yj(
1

Φj

)1−yj
}

]

=
D∑
j

Eq(g)[logN (gj;λj, 1)]−
{
yj log(1− Φj) + (1− yj) log Φj

}
=

D∑
j

−1

2
log 2π − 1

2
Eq(g)[g2

j ] + Eq(g)[gj]λj −
1

2
λ2
j

+ yj log(1− Φj) + (1− yj) log Φj (33)
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Eq(w)[log q(w |m,S)] = Eq(w)[−
K

2
log 2π −

K∑
k

(
1

2
logSkk +

(wk −mk)
2

2Skk
)]

= −K
2

log 2π − K

2
−

K∑
k

1

2
logSkk (34)

We use mean-field factorization for variational inference. For the latent
topic variable z, we posit a multinomial distribution with variational param-
eter γ:

q(z | γ) =
∏
ijk

γ
[zij=k]
ijk , log q(z | γ) =

∑
i,j,k

[zij = k] log γijk (35)

We can maximize the ELBO with respect to the variational parameter
γijk by calculating the expectation Eq(z−i,j)[ln q(zij|γ)]. The expect value of
γijk is computed over variables (z,b,x,g):

log γijk ∝ Eq(z−(i,j),g,w)[log p(zij = k | z(−ij),b,x,g)]

= Eq(z−(i,j),g,w)[log p(z,b,x,g)]

= Eq(z−(i,j),g,w)[log p(z | α) + log p(b | z, ι)
+ log p(x | z,b, ζk) + log p(g | w, z)] (36)

For the unsupervised component of MixEHR-S model, we update the first
three terms whereas ignoring the last term log p(g | w, z) in Eq. (36). The
variational update of γijk is obtained by normalizing itself and taking the
expectation of the conditional distribution in Eq. (23) (see Appendix B.2):

γijk = (αk + Eq(z−(i,j))[n
−(i,j)
jk ])

ιbij + Eq(z−(i,j))[m
−(i,j)
kbij

]

Eq(z−(i,j))[m
−(i,j)
k. ] +

∑
t ιt

ζkxij + Eq(z−(i,j))[p
−(i,j)
kbijxij

]

Eq(z−(i,j))[p
−(i,j)
kbij .

] +
∑

w ζkw
(37)

where the above expected sufficient statistics are calculated by:

Ez−(i,j) [n
−(i,j)
jk ] =

Mj∑
i′ 6=i

γi′jk (38)
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Ez−(i,j) [m
−(i,j)
bijk

] =
D∑
j′ 6=j

Mj′∑
i

[bij′ = bij]γij′k (39)

Ez−(i,j) [p
−(i,j)
bijxijk

] =
D∑
j′ 6=j

Mj′∑
i

[bij′ = bij, xij′ = xij]γij′k (40)

For the latent liability variable g, we propose a truncated Gaussian dis-
tribution as variational distribution with parameter λ:

q(gj | λj) =

{
T N+(gj;λj, 1), if yj = 1.

T N−(gj;λj, 1), if yj = 0.

∝

{
1(gj > 0) exp

{
− 1

2
g2
j + Eq(w)[w

ᵀ]Eq(z)[z̄j]gj
}
, if yj = 1.

1(gj ≤ 0) exp
{
− 1

2
g2
j + Eq(w)[w

ᵀ]Eq(z)[z̄j]gj
}
, if yj = 0.

(41)

log q(gj | z,w) = Eq(z,w)[log p(gj | z̄j,w)] + log p(yj | gj)

= yj log 1(gj > 0) + (1− yj)1(gj ≤ 0)− 1

2
g2
j + Eq(w)[w

ᵀ]Eq(z)[z̄j]gj (42)

where the update of the variational parameter λj is:

λj = Eq(w)[w
ᵀ]Eq(z)[z̄j] = mᵀγ̄j (43)

For the linear coefficients w, we propose a multivariate Gaussian distri-
bution with mean parameter m and covariance parameter S:

q(w |m,S) = N (w |m,S) (44)

log q(w |m,S) = Eq(z,g)[log p(g | z̄,w)] + log p(w | τ)]

= wᵀEq(z)[z̄j]Eq(g)[g]− 1

2
wᵀ(τI + Eq(z)[z̄

ᵀ
j z̄j])w (45)

where the expectation terms are calculated in Appendix B.5. The full-
derivation of wᵀEq(z)[z̄

ᵀ
j z̄j])w in Eq. (53). We therefore obtain the following

updates for m and S:

m = SEq(z)[z̄]Eq(g)[g], S = (τI + Eq(z)[z̄
ᵀz̄])−1 (46)
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where the expectation Eq(z)[z̄
ᵀ
j z̄j]) is derived in Eq. (52).

After we assign variational distributions for g and w, we can update
γijk using the supervised component of the MixEHR-S. Here, we take the
expectation of the predictive likelihood log p(g | w, z−(i,j), zijk = 1, zijk′ =
0∀k′ 6= k)] in Eq. (36):

Eq(z−(i,j))[log p(g | w, z−(i,j), zijk = 1, zijk′ = 0∀k′ 6= k)]

=Eq(z−(i,j),g,w)[log
( 1√

2π
exp

{
− (gj −wᵀz̄j)

2

2

}
]
)

∝Eq(z−(i,j),g,w)[w
ᵀ(

1

Mj

(
∑
i′ 6=i

zi′j + zij))gj −
1

2
wᵀ(

1

M2
j

(

Mj∑
m6=i

zijz
ᵀ
mj +

Mj∑
n6=i

znjz
ᵀ
ij + diag(zij))w]

∝
wᵀzijEq(g)[gj]

Mj

− 1

2M2
j

Eq(z−(i,j),w)

wᵀ(zij

Mj∑
m 6=i

zᵀ
mj︸ ︷︷ ︸

z>
j/i

+

Mj∑
n6=i

znj︸ ︷︷ ︸
zj/i

zᵀ
ij + diag(zij))w


=
mkEq(gj)[gj]

Mj

− 1

2M2
j

Eq(z−(i,j),w)

[
wᵀ(zijz

ᵀ
j/i + zj/iz

ᵀ
ij + diag(zij))w

]
=
mkEq(gj)[gj]

Mj

− 1

2M2
j

Eq(z−(i,j),w)

[
wkz

ᵀ
j/iw + wᵀzj/iwk + w2

k

]
=
mkEq(gj)[gj]

Mj

− 1

2M2
j

Eq(z−(i,j),w)

[
2
∑
m6=i

∑
k′

wkwk′zmjk + w2
k

]

=
mkEq(g)[gj]

Mj

− 1

2M2
j

[
2
∑
m 6=i

∑
k′

(mkmk′ + Skk′)γmjk +m2
k + Skk

]

=
mkEq(gj)[gj]

Mj

− 1

2M2
j

[
2(mkm

ᵀγj/i + Skγj/i) +m2
k + Skk

]
where γj/i indicates the sum of all terms except for the ith ICD-9 code, i.e.

γj/i =
∑Mj

m6=i γij and Sk indicates the kth row of the covariance matrix S.
The expected value of wᵀw is computed in Eq. (55).

We thus add the supervised component to γ (see Eq. (37) and Eq. (47)),
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obtaining full variational update for γijk:

γijk ∝(αk + Eq(z−(i,j))[n
−(i,j)
jk ])

ιbij + Eq(z−(i,j))[m
−(i,j)
kbij

]

Eq(z−(i,j))[m
−(i,j)
k. ] +

∑
t ιt

ζkxij + Eq(z−(i,j))[p
−(i,j)
kbijxij

]

Eq(z−(i,j))[p
−(i,j)
kbij .

] +
∑

w ζkw

exp

{
mkEq(gj)[gj]

Mj

− 1

2M2
j

[
2
(
mkm

ᵀγj/i + Skγj/i
)

+m2
k + Skk

]}
(47)

B.4 Hyperparameters update

We update the hyperparameters (α∗k, ι
∗
t , ζ

∗
wk) by maximizing the marginal

likelihood under the variational expectations via empirical Bayes fixed point
iteration method [1, 19]:

α∗k =
cα − 1 + αk

∑
j Ψ(αk + njk)−Ψ(αk)

dα +
∑

j Ψ(
∑

k αk + njk)−Ψ(
∑

k αk)
(48)

ι∗t =
cι − 1 + ιt

∑
k Ψ(ιt +mtk)−Ψ(ιt)

dι +
∑

k Ψ(
∑

t ιt +mtk)−Ψ(
∑

t ιt)
(49)

ζ∗wk =
cζ − 1 + ζwk

∑
t Ψ(ζwk + ptwk)−Ψ(ζwk)

dζ +
∑

t Ψ(
∑

w ζwk + ptwk)−Ψ(
∑

w ζwk)
(50)

where (cα, cι, cζ , dα, dιdζ) are constant values. For the experiment, we chose
the following initial value setting (1, 0.001, 2, 10, 0.01, 100).

B.5 Derivation of expectations of variational distribu-
tions

The expected value associated with the average of the topic assignments z̄j
is:

Eq(z)[z̄j] = γ̄j =
1

Mj

Mj∑
i

γij (51)
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The expectation of z̄j z̄
ᵀ
j is:

Eq(z)[z̄j z̄
ᵀ
j ] = Eq(z)




1
Mj

∑Mj

i zij1
...

1
Mj

∑Mj

i zijK

[ 1
Mj

∑Mj

i zij1 . . .
1
Mj

∑Mj

i zijK
]

= Eq(z)




1
M2

j

∑Mj

i z2
ij1 . . .

1
M2

j

∑Mj

i zij1zijK
...
. . .

...
1
M2

j

∑Mj

i zijKzij1 . . .
1
M2

j

∑Mj

i z2
ijK




=
1

M2
j

( Mj∑
i

Mj∑
i′

Eq(z)[zij]Eq(z)[z
ᵀ
i′j] +

Mj∑
i

diag(Eq(z)[zij])
)

=
1

M2
j

( Mj∑
i

Mj∑
i′

γijγ
ᵀ
i′j +

Mj∑
i

diag(γij)
)

(52)

The expected value of wᵀEq(z)[z̄j z̄
ᵀ
j ]w given the variational distribution
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q(w) is:

Eq(w)

[
wᵀEq(z)[z̄j z̄

ᵀ
j ]w
]

= Eq(w)

[w1 . . . wK
] 

1
M2

j

∑Mj

i γ2
ij1 . . .

1
M2

j

∑Mj

i γij1γijK
...
. . .

...
1
M2

j

∑Mj

i γijKγij1 . . .
1
M2

j

∑Mj

i γ2
ijK


w1

...
wK




= Eq(w)

[w1 . . . wK
]  γ̄2

j1 . . . γ̄j1γ̄jK
...
. . .

...
γ̄jK γ̄j1 . . . γ̄2

jK


w1

...
wK




= Eq(w)

[wᵀγ̄j.γ̄j1 . . .w
ᵀγ̄j.γ̄jK

] w1
...
wK




= Eq(w)

[∑
k′

wk′w
ᵀγ̄j.γ̄jk′ ]

=
∑
k′

Eq(w)

[
wk′w

ᵀ
]
γ̄j.γ̄jk′

=
∑
k′

Eq(w)

[
wk′w1

]
...

Eq(w)

[
wk′wK

]


ᵀ

γ̄j.γ̄jk′

=
∑
k′

 mk′m1 + Sk′1
...

mk′mK + Sk′K


ᵀ

γ̄j.γ̄jk′ (53)

where the γ̄j. = 1
Mj

∑
i γj is a K-dimensional vector, each scalar value γ̄jk

represents the average value of γ over ICD-9 codes for the kth topic and the
jth patient.

The expected value of latent liability variable g for each patient j is given:

Eq(g)[gj] =

{
λj + φj/(1− Φj), if yj = 1.

λj − φj/Φj, if yj = 0.
(54)

where φj = φ(−λj) is the normal density and Φj = Φ(−λj) is the cumula-
tive distribution function (CDF) of the standard normal distribution. The
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corresponding expected value for w is:

Eq(w)[w] = m, Eq(w)[w
ᵀw] = Eq(w)[

K∑
k=1

wkwk] =
K∑
k=1

m2
k + Skk (55)

B.6 Derivation of estimates for variational expecta-
tions of mixing proportions

The approximations for mixing proportions (θ, β, η) can be calculated as
follows [27]:

θ̂ =
αk + Eq(z)[nj.k]∑
k′ αk′ + Eq(z)[nj.k′ ]

(56)

β̂ =
ιt + Eq(z)[m.kt]∑
t′ ιt′ + Eq(z)[m.kt′ ]

(57)

η̂ =
ζw + Eq(z)[p.ktw]∑
w′ ζw′ + Eq(z)[p.ktw′ ]

(58)

where the expected values of sufficient statistics (nj.k,m.kt, p.ktw) are:

Eq(z)[nj.k] =

Mj∑
i

[zij = k] (59)

Eq(z)[m.kt] =
D∑
j′

Mj′∑
i

[zij′ = k, bij′ = t] (60)

Eq(z)[p.ktw] =
D∑
j′

Mj′∑
i

[zij′ = k, bij′ = t, xij′ = w] (61)

B.7 Derivation of predictive distribution

Here, we show that the predictive distribution is a Bernoulli distribution
when using a Gaussian response since the natural parameter wᵀz̄ is identical
to the mean parameter where z̄? and y? represent the new data points and the
predicted label respectively. The full derivation of the predictive distribution
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is:

p(y? | z̄?,y, z̄) =

∫ ∞
−∞

∫
p(y?,g,w | z̄?,y, z̄)dwdg

=

∫ ∞
−∞

∫
p(y? | g)p(g | w, z̄?)p(w | y, z̄)dwdg

≈
∫ ∞
−∞

∫
p(y? | g)p(g | w, z̄?)q(w)dwdg

=

∫ ∞
−∞

∫
1(g > 0)y?1((g ≤ 0)1−y?N (g | wᵀz̄?, 1)N (w |m,S)dwdg

=

{∫∞
0
N (g |mᵀz̄?, 1 + z̄ ?ᵀ Sz̄?)dg if y? = 1∫ 0

−∞N (g |mᵀz̄?, 1 + z̄ ?ᵀ Sz̄?)dg if y? = 0

=


1− Φ

(
−mᵀz̄?

(1+z̄?ᵀSz̄?)
1
2

)
if y? = 1

Φ

(
−mᵀz̄?

(1+z̄?ᵀSz̄?)
1
2

)
if y? = 0

= Φ

(
mᵀz̄?

(1 + z̄ ?ᵀ Sz̄?)
1
2

)y?(
1− Φ

(
mᵀz̄?

(1 + z̄ ?ᵀ Sz̄?)
1
2

))1−y?

= Bernoulli

(
y? | Φ

(
mᵀz̄?

(1 + z̄ ?ᵀ Sz̄?)
1
2

))
(62)
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