
Multi-Relational Graph based Heterogeneous Multi-Task
Learning in CommunityQuestion Answering

Zizheng Lin1, Haowen Ke1, Ngo-Yin Wong1, Jiaxin Bai1, Yangqiu Song1, Huan Zhao2, Junpeng Ye3
1Department of Computer Science and Engineering, HKUST, Hong Kong, China

24Paradigm Inc., Beijing, China
3Tencent Technology (SZ) Co., Ltd., Shenzhen, China

{zlinai,hkeaa,nywongac,jbai,yqsong}@cse.ust.hk,zhaohuan@4paradigm.com,jayjpye@tencent.com

ABSTRACT
Various data mining tasks have been proposed to study Community
QuestionAnswering (CQA) platforms like StackOverflow. The relat-
edness between some of these tasks provides useful learning signals
to each other via Multi-Task Learning (MTL). However, due to the
high heterogeneity of these tasks, few existing works manage to
jointly solve them in a unified framework. To tackle this challenge,
we develop a multi-relational graph based MTL model called Het-
erogeneous Multi-Task Graph Isomorphism Network (HMTGIN)
which efficiently solves heterogeneous CQA tasks. In each training
forward pass, HMTGIN embeds the input CQA forum graph by an
extension of Graph Isomorphism Network and skip connections.
The embeddings are then shared across all task-specific output
layers to compute respective losses. Moreover, two cross-task con-
straints based on the domain knowledge about tasks’ relationships
are used to regularize the joint learning. In the evaluation, the em-
beddings are shared among different task-specific output layers
to make corresponding predictions. To the best of our knowledge,
HMTGIN is the first MTL model capable of tackling CQA tasks
from the aspect of multi-relational graphs. To evaluate HMTGIN’s
effectiveness, we build a novel large-scale multi-relational graph
CQA dataset with over two million nodes from Stack Overflow.
Extensive experiments show that: (1) HMTGIN is superior to all
baselines on five tasks; (2) The proposed MTL strategy and cross-
task constraints have substantial advantages.

CCS CONCEPTS
• Information systems → Data mining.
KEYWORDS
Community Question Answering, HeterogeneousMulti-Task Learn-
ing, Multi-Relational Graph, Cross-task Constraint

ACM Reference Format:
Zizheng Lin1, Haowen Ke1, Ngo-Yin Wong1, Jiaxin Bai1, Yangqiu Song1,
Huan Zhao2, Junpeng Ye3. 2021. Multi-Relational Graph based Heteroge-
neous Multi-Task Learning in Community Question Answering. In Proceed-
ings of the 30th ACM International Conference on Information and Knowledge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482279

Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482279

1 INTRODUCTION
Community Question Answering (CQA) forums like Stack Over-
flow1 help millions of users to seek solutions or share their knowl-
edge. Various CQA tasks like duplicate question detection and
answer recommendation have been extensively studied [31]. Due
to rich interconnections between components of a CQA platform,
some CQA tasks are related to each other. For example, tag rec-
ommendation can be solved using a link prediction model and the
semantic representation of keywords reflected by this task can also
help evaluate a similar link prediction model in duplicate question
detection. Moreover, duplicate question detection would also help
personalize answer recommendation as they both evaluate text
similarities, although the latter should be formulated as a rank-
ing problem. Thus, it is natural to use Multi-Task Learning (MTL)
[5] to jointly solve different CQA tasks to obtain better overall
performance.

However, most existing MTL frameworks only consider similar
tasks [25, 48] like considering classification and regression of the
same learning features [47], or assuming that the features are dif-
ferent but label spaces are the same across tasks [16]. Regarding
heterogeneous tasks (i.e., tasks with very different properties such
as contrasting objective functions and learning features), these MTL
frameworks cannot be effective. In the case of tackling CQA tasks,
there are two major challenges for heterogeneous MTL (e.g., jointly
solve link prediction, classification, and ranking over different types
of nodes).

First, it is non-trivial to share features for heterogeneous CQA
data in the semantic space. Specifically, different entities, like users
and answers barely share similar semantic space, as they are usu-
ally connected through complicated paths in different types of
relations. It may be not sufficient for the algorithm to learn the
feature dependency, which is crucial for effectively sharing features
across tasks, directly from training feature representations. Thus, a
multi-relational graph based model should be considered to build
relationships among entities in a CQA platform.

Second, there are explicit relationships among output labels in
the label space. However, to our best knowledge, existing MTL
algorithms do not explicitly model the label relations. For example,
in CQA, a more reputable user’s answer is more likely to be ranked
higher, but the relation of preferences cannot be explicitly reflected
by the corresponding representations of users and answers. Thus,

1https://stackoverflow.com/

ar
X

iv
:2

11
0.

02
05

9v
1

 [
cs

.C
L

]
 4

 S
ep

 2
02

1

https://doi.org/10.1145/3459637.3482279
https://doi.org/10.1145/3459637.3482279

besides data-driven learning, explicit label-based constraints can be
imposed to regularize the representation learning across different
CQA tasks.

To address the aforementioned challenges, we propose a novel
MTL model named Heterogeneous Multi-Task Graph Isomorphism
Network (HMTGIN) that efficiently learns multiple heterogeneous
CQA tasks on any given CQA forum graph, despite the possibly
substantial heterogeneity of the tasks and graph. HMTGIN adopts
the hard parameter sharing mechanism [25] to improve efficiency
and reduce memory consumption. Inside HMTGIN, we design the
Multi-Relational Graph Isomorphism Network (MRGIN), a multi-
relational variant of the Graph Isomorphism Network (GIN) [41],
and employ it with skip connections [11] to learn the node embed-
dings shared across tasks. Besides learning from data, HMTGIN also
imposes cross-task constraints on tasks’ relationships to capture
the feature and label dependency across heterogeneous tasks.

Despite some existing MTL works [45, 46] or graph mining [1]
on CQA, to the best of our knowledge, no previous MTL algorithm
tackles CQA from the aspect of multi-relational graphs.

To evaluate the effectiveness of the proposed approach, we build
a novel large-scale multi-relational graph CQA dataset with over
twomillion nodes from StackOverflow.We then define five different
CQA tasks which can be categorized into link prediction, ranking,
and classification problems. Extensive experiments are conducted to
compare HMTGIN’s performance with corresponding baselines in
each task and to examine the effect of the proposedMTLmechanism
and cross-task constraints.

Our main contributions are as follows:
• We propose a novel MTL model termed HMTGIN that effi-

ciently mines any given CQA forum graph, where the graph and
tasks can have immense heterogeneity. To the best of our knowl-
edge, HMTGIN is the first MTL model that tackles CQA tasks from
the perspective of multi-relational graphs.

•We construct a novel million-scale multi-relational graph CQA
dataset from Stack Overflow.

•We perform extensive experiments of five tasks, where HMT-
GIN is shown to be superior to all baselines. Further empirical
analysis demonstrates the considerable improvements of our MTL
strategy and cross-task constraints.

Our dataset and code are publicly available at https://github.com/
HKUST-KnowComp/HMTGIN.

2 RELATEDWORK
We discuss the related work in four-fold.

2.1 Community Question Answering (CQA)
CQA platforms enable people to seek and share knowledge effec-
tively. For instance, Stack Overflow is a prominent CQA platform
about programming, where many developers actively learn from
others or share their expertise. Various CQA tasks have been exten-
sively studied [31], like post recommendation [40] and duplicate
post detection [33]. In this paper, we study five CQA tasks of the
following three types: link prediction, ranking, and classification.
Details of these tasks are in Section 3.1. Despite some existing
works about MTL for CQA [45, 46], to the best of our knowledge,
no previous MTL algorithm can solve CQA tasks from the aspect

of multi-relational graphs, and the tasks considered in previous
MTL works are relatively homogeneous. In contrast, our approach
is the first multi-relational graph based MTL model tackling highly
heterogeneous CQA tasks.

2.2 Multi-Task Learning (MTL)
MTL aims to strengthen a model’s generalizability by jointly learn-
ingmultiple related tasks [5, 25, 48]. Successful applications inmany
domains like Natural Language Processing [21, 26, 30] have veri-
fied MTL’s effectiveness. Recent MTL models usually employ deep
neural networks [21, 26]. Most of them adopt either hard parame-
ter sharing where each task shares the same hidden layers while
keeping its output layer, or soft parameter sharing where every
task has its model [25]. However, most existing MTL models only
undertake tasks with small heterogeneity [25, 48], like considering
regression and classification of identical learning features [47], or
assuming that features are different but label spaces are the same
[16]. Moreover, many existing MTL algorithms are purely data-
driven [20, 25, 48], which usually prevents them from capturing
the label dependency across tasks due to the large heterogeneity of
multi-tasks. In contrast, our MTL model efficiently performs highly
heterogeneous learning tasks, where two cross-task constraints are
imposed on tasks’ relationships to regularize the joint learning.

2.3 Graph Neural Networks
Graph Neural Networks (GNNs) typically perform graph represen-
tation learning by recursive neighborhood aggregation [38]. Many
GNN variants [19, 42] led to significant advancement in various
graph mining tasks like link prediction. Additionally, [41] con-
ducted a systematic study on GNNs’ representational power via the
connections between GNNs and Weisfeiler-Lehman (WL) graph
isomorphism test [37]. Under this framework, [41] proposes Graph
Isomorphism Network (GIN) which provably accomplishes the ut-
most discriminative power among all kinds of GNNs. Different
from the above GNNs which only consider homogeneous graphs,
several variants [6, 14, 27, 36, 39, 44, 49] have been designed for
multi-relational graphs. Although GNNs have demonstrated superb
learning abilities, few works adopt GNNs in MTL models [34, 35].
Hence, we devise an extension of GIN termed Multi-Relational
GIN as one of the main components of our MTL model to facili-
tate multi-relational graph representation learning. Besides GIN,
our framework can be easily extended to incorporate other GNN
architectures to further boost performance.

2.4 Constraint Learning
Constraint learning aims to improve a model’s performance by
incorporating domain knowledge as constraints. One popular con-
straint learning framework is the cannot-link and must-link model-
ing, where constraints are typically based on ground-truth labels [2].
Another powerful scheme is the Constrained Conditional Models
(CCM) [7] where learning is separated from the knowledge-aware
inference. Furthermore, Posterior Regularization (PR) [10] embod-
ies knowledge by a joint learning and inference method. However,
few works apply constraints on tasks’ relationships to enhance
MTL. Thus, in our MTL model, we impose cross-task constraints
on tasks’ relationships, which is shown to be effective.

https://github.com/HKUST-KnowComp/HMTGIN
https://github.com/HKUST-KnowComp/HMTGIN

Figure 1: Overview of the generic framework. 𝑘 is the dimen-
sions of initial node embeddings, andN is the set of all node
types, and 𝐷𝑖 , (𝑖 = 1, 2, ..., |N |) denote cardinalities of respec-
tive node types, and 𝑇 is the number of tasks.

3 PRELIMINARIES
In this section, we describe the tasks and frequently used nota-
tions. Figure 1 depicts the generic framework for building the
multi-relational graph from a CQA raw dataset, and how HMT-
GIN performs MTL on the built dataset.

3.1 Tasks Description
We divide all tasks into the following three types: link prediction,
ranking, and classification.

3.1.1 Link Prediction. Link prediction predicts whether an edge
exists between a given node pair, where some of the existing edges
are hidden from the input graph. Regarding CQA, link prediction
can benefit various applications like recommendations. Here are
the two link prediction tasks: (1) Tag recommendation: given a
question-tag pair, predict whether the tag belongs to that question;
(2) Duplicate question detection: given a question-question, predict
whether there is a ‘Duplicate’ type of edge. To obtain negative
examples, we randomly sample twice as many node pairs as the
existing links for each task, where no target link exists between
any of the sampled node pairs.

3.1.2 Ranking. A ranking task obtains sorts an input item list for
a user to quickly identify the desired item(s). Since many CQA
platform questions have many associated answers, generating a
personalized ranking of the answers can greatly save users’ time.
Hence, we define a task called answer recommendation as follows:
given a question with at least eight answers, provide a ranking
of all its answers such that the accepted answer has a high rank.
Each sample contains a question index, a list its associated answers’
indices, and the list positional index of the accepted answer as the
label.

3.1.3 Classification. A classification task categorizes a certain node
attribute. Since some attributes like questions’ score attribute might
reveal crucial node properties, categorization of them may help
identify important nodes. Here are the two link prediction tasks: (1)
Answer score classification: classify an answer score into one of the
integers in [0, 3], where a higher value means higher score attribute;

(2) User reputation classification: classify a user’s reputation into
one of the integers in [0, 4], where a higher value indicates higher
reputation attribute. During the data pre-processing, labels for each
target attribute are generated in advance by dividing the values
into different intervals, and the corresponding attribute is masked
in the dataset.

3.2 Notations
Following notations are used throughout the remaining paper: the
directed and labeled input multi-relational graph is denoted as
G = (V, E) with a node type mapping function 𝜙 : V → N , and
edge type mapping function𝜓 : E → R, where each node 𝑣 ∈ V
has one particular node type 𝜙 (𝑣) ∈ N , and each edge 𝑒 ∈ E has
one particular edge type𝜓 (𝑒) ∈ R, and R does not include the self-
loop edge type. Additionally, we use Multi-Layer Perceptron (MLP)
or𝑀𝐿𝑃 for a feedforward neural network with zero or more layers.
Moreover, we use 𝜎 for activation functions like RELU. In addition,
we use 𝐵𝑁 for Batch Normalization (BN) [15]. Furthermore, we use
𝑓 for sigmoid function. We also use ◦ for constructing the network
by stacking different layers.

4 METHODOLOGY
We first present MRGIN. Then we explain all task-specific output
layers. Thereafter, we explain the cross-task constraints on tasks’
relationships. Finally, we describe the whole MTL algorithm.

4.1 Multi-Relational Graph Isomorphism
Network (MRGIN)

We propose MRGIN which, together with skip connections [11],
embeds the input multi-relational graph. MRGIN is inspired by
GIN [41] that has been theoretically shown to have the maximum
discriminative power among all types of GNNs. Specifically, let𝑑 (𝑙 ′)
be the dimension of (𝑙 ′)-th MRGIN layer’s node representation. The
representation of a node 𝑣𝑖 ∈ V in (𝑙 + 1)-th MRGIN layer, denoted
as hi (𝑙+1) ∈ R𝑑

𝑙+1 , is computed as:

hi (𝑙+1) = 𝜎 (𝑙+1) ◦ 𝐵𝑁 (𝑙+1) ◦𝑀𝐿𝑃 (𝑙+1)◦

𝜎 (𝑙+1) (
∑︁
𝑟 ∈R

∑︁
𝑗 ∈N𝑟

𝑖

Wr
(𝑙+1)hj (𝑙) + (1 + 𝜖 (𝑙+1))W0

(𝑙+1)hi (𝑙)), (1)

where N𝑟
𝑖
is the set of neighbor indices of node 𝑣𝑖 under edge

type 𝑟 ∈ R, and hj (𝑙) ∈ R𝑑 (𝑙) as well as hi (𝑙) ∈ R𝑑 (𝑙) are the
representations of nodes 𝑣 𝑗 and 𝑣𝑖 respectively in 𝑙-th MRGIN layer,
and both Wr

(𝑙+1) ∈ R𝑑 (𝑙+1)×𝑑 (𝑙) and W0
(𝑙+1) ∈ R𝑑 (𝑙+1)×𝑑 (𝑙) are

type-specific transformation matrices, and 𝜖 (𝑙+1) is a scalar which
is either trainable or fixed. Updating one layer is to concurrently
evaluate Equation (1) for all nodes.

Briefly speaking, MRGIN aggregates transformed neighboring
nodes’ representations by sum pooling. Moreover, every node’s
feature vector is scaled by 1 + 𝜖 before being aggregated into its
representation in the next layer. The vector produced by the summa-
tion is then processed via a non-linear activation function, followed
by an MLP, a BN, and finally another non-linear activation func-
tion. One crucial distinction between MRGIN and GIN is that the
transformation matrices in the aggregation of MRGIN depend on

edges’ orientations and types, which enables MRGIN to exploit the
input graph’s structural and relational information.

4.2 Task-Specific Output Layers (TSOLs)
We design TSOLs for task types in Section 3.1 as follows:

4.2.1 Link Prediction. We associate each link prediction task 𝑡
with a diagonal matrix Dt ∈ R𝑘×𝑘 initialized by a standard normal
distribution, where𝑘 is the dimension of the input node embeddings
for TSOLs. Given a node pair (𝑣𝑖 , 𝑣 𝑗) for a task 𝑡 , we follow the
DisMult algorithm [43] to calculate the link prediction score 𝑆𝑖 𝑗 as
follows:

𝑆𝑖 𝑗 = h
′T
i Dth

′
j, (2)

where h′
i and h

′
j ∈ R

𝑘 is the input node embeddings for TSOLs of
𝑣𝑖 and 𝑣 𝑗 ∈ V respectively. Suppose the type of the target link in
task 𝑡 is 𝑟𝑡 , define a set of node pairs as follows:

H𝑡 = { (𝑣𝑖 , 𝑣 𝑗) | 𝑣𝑖 ∈ V, 𝑣 𝑗 ∈ V, ∃ 𝑒 ∈ 𝐸 from 𝑣𝑖 to 𝑣 𝑗 such that
𝜓 (𝑒) = 𝑟𝑡 }. (3)

Let H ′
𝑡 be the set of node pairs obtained by the negative sampling

procedure mentioned in Section 3.1 for task 𝑡 . Then task 𝑡 ’s loss 𝐿𝑡
is:

𝐿𝑡 = − 1
|H𝑡 | + |H ′

𝑡 |

∑︁
(𝑣𝑖 ,𝑣𝑗) ∈ H𝑡∪H

′
𝑡

[𝑤 · 𝑦𝑖 𝑗 · log(𝑓 (𝑆𝑖 𝑗))+

(1 − 𝑦𝑖 𝑗) · log(1 − 𝑓 (𝑆𝑖 𝑗))], (4)

where 𝑤 is the weight of positive samples (i.e., node pairs in 𝐻𝑡),
and 𝑦𝑖 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗) ∈ H𝑡 and 𝑦𝑖 𝑗 = 0 if (𝑣𝑖 , 𝑣 𝑗) ∈ H ′

𝑡 .

4.2.2 Ranking. Regarding ranking task 𝑡 , the parameters of its
TSOL include wt ∈ R2𝑘 and 𝑏𝑡 ∈ R. Denote the 𝑖-th input sample
as (𝑄𝑖 ,A(𝑄𝑖)) where 𝑄𝑖 is a question index and A(𝑄𝑖) is a list
containing the indices of the question’s answers. Denote the sam-
ple’s label as 𝑦𝑖 . Motivated by RankNet [4], we compute the loss
term of 𝑖-th sample, denoted as 𝐿𝑖𝑡 , as follows: (1) Retrieve the input
node embeddings for TSOLs by𝑄𝑖 andA(𝑄𝑖); (2) Concatenate the
question embedding with each of the answer embeddings. Denote
the concatenated embeddings asMi

t ∈ R
2𝑘×|A(𝑄𝑖) | ; (3) Compute

the ranking score of answer in the 𝑗-th position of A(𝑄𝑖), denoted
as 𝑅 𝑗 , by

𝑅 𝑗 = 𝜎 (wT
t M

i
t [:, 𝑗] + 𝑏𝑡), (5)

where Mi
t [:, 𝑗] is the 𝑗-th column of Mi

t matrix; (4) Calculate the
loss term as

𝐿𝑖𝑡 = − 1
|A(𝑄𝑖) |

|A (𝑄𝑖) |∑︁
𝑗=1, 𝑗≠𝑦𝑖

[log(𝑓 (𝑅𝑦𝑖 − 𝑅 𝑗))] . (6)

The loss of this task denoted as 𝐿𝑡 is the average of all input samples’
loss terms. Since Equation (6) is essentially a pairwise ranking loss,
minimizing 𝐿𝑡 amounts to maximizing the difference between the
ranking score of the accepted answer and those of the other answers
in each input sample, which results in recommendations where the
ranks of the accepted answers tend to be high.

4.2.3 Classification. Regarding a classification task 𝑡 , we use a
MLP with one layer as its TSOL. The weight and bias of this MLP
areWt ∈ R𝐾𝑡×𝑘 and bt ∈ R𝐾𝑡 respectively, where 𝐾𝑡 is the number
of possible classes in task 𝑡 . Given an input sample, which is a node
embedding vector h′

i ∈ R
𝑘 , the TSOL first computes the logit vector,

denoted as xi ∈ R𝐾𝑡 , by a linear transformation:

xi = Wth
′
i + bt . (7)

Then the loss of task 𝑡 , denoted as 𝐿𝑡 , is calculated by softmax
cross-entropy:

𝐿𝑡 = − 1
𝑁

′

𝑁
′∑︁

𝑖=1
[log(exp(x[𝑦𝑖])∑𝐾𝑡

𝑗=1 exp(x[𝑗])
)], (8)

where 𝑁 ′ is the number of input samples and 𝑦𝑖 is the class label
of the 𝑖-th sample.

4.3 Cross-task Constraints
Besides data-driven learning, our model can be equipped with do-
main knowledge about tasks’ relationships via incorporating several
cross-task constraints into the objective function to regularize the
joint learning. In this paper, we design two cross-task constraints
as a demonstration of our constraint learning framework. Apart
from these constraints, our framework can easily incorporate more
cross-task constraints exploiting the domain knowledge about tasks’
relationships by simply adding extra constraint loss functions into
the objective.

Each of the two cross-task constraints relies on one of the fol-
lowing two assumptions based on the domain knowledge about
CQA. Given two answers 𝐴1 and 𝐴2 of a question:

(1) Assumption 1: if 𝐴1’s score attribute is higher than that of
𝐴2, then 𝐴1 is more likely to be accepted;

(2) Assumption 2: if𝐴1’s owner’s reputation attribute is higher
than that of 𝐴2, then 𝐴1 is more likely to be accepted.

Assumption 1 is reasonable as an answer with higher score attribute
usually has higher quality. Similarly, Assumption 2 is also legitimate
since a user with higher reputation attribute typically has higher
capability, which implies that the user’s answer tends to be better.
Hence, we propose the following two cross-task constraints.

The constraint of assumption 1 encourages answer(s) predicted
to have the highest score attribute in each sample to rank highly
in the recommendation list. Figure (2a)-(2b) illustrate an example
of computing this constraint loss. The general idea is: (1) For each
input sample (i.e., a question with all of its answers), use the out-
put layer of answer score classification to compute all answers’
logits; (2) Use the output layer of answer recommendation to
get the ranking score(s) of answer(s) with the highest logit; (3)
Compute negative log-likelihood functions based on these ranking
scores from all input samples, which are then averaged to get the
overall constraint loss function 𝐶1.

Specifically, we store a sample list I1 before training, where each
sample is a question index with a list of the indices of the question’s
answers. Let the 𝑖-th sample be (𝑄𝑖 ,A(𝑄𝑖)) where 𝑄𝑖 is the ques-
tion index and A(𝑄𝑖) is the answer indices list. This sample’s loss
term is calculated as follows: (1) Retrieve the corresponding node
embeddings by 𝑄𝑖 and A(𝑄𝑖); (2) Calculate the logit values of the

(a) Constraint 1 step (1): compute logits via answer classification
output layer and select the answer with highest logit.

(b) Constraint 1 step (2), (3): compute the ranking score(s) of
answer(s) with the highest logit, then compute negative log-
likelihoods which are averaged to get the overall constraint loss.

(c) Constraint 2 step (1), (2): find owner users and compute their
logits via user classification output layer.

(d) Constraint 2 step (3), (4): compute the ranking score(s) of an-
swerswhose owner user(s) has the highest logit, then compute nega-
tive log-likelihoods which are averaged to get the overall constraint
loss.

Figure 2: Examples of computing the proposed two cross-task constraints’ loss functions. Figures (a)-(b) illustrate the 1st
constraint, while figures (c)-(d) illustrate the 2nd constraint.

answers associated with A(𝑄𝑖) by Equation (7), where the weight
and bias come from the TSOL of answer score classification, and
the answer embeddings are those retrieved in Step (1); (3) Create
a list I′

1 containing the indices of answer(s) with the highest logit
value in Step (2); (4) Concatenate the retrieved question embed-
ding with the retrieved embedding of every answer whose index
is in I′

1 . Denote the concatenated embedding(s) as Mi
1 ∈ R2𝑘×|I

′
1 | ;

(5) Obtain the ranking score of every answer whose index is in I′
1

via Equation (5), where the weight, bias, and activation function are
from the TSOL of answer recommendation, and the concatenated
embeddings are those in Mi

1; (6) Create a list R
′
1 containing the

ranking scores in Step (5), and then compute the loss term 𝐶𝑖1 as:

𝐶𝑖1 = − 1
|R′

1 |

|R′
1 |∑︁

𝑗=1
[log(𝑓 (R

′
1 [𝑗]))] . (9)

The first constraint loss𝐶1 is the average of loss terms of all samples
in I1. Since minimizing Equation (9) amounts to maximizing the
ranking scores of answers corresponding to I′

1 , reducing 𝐶1 will
encourage answer(s) which is predicted to have the highest value
of score attribute in each sample to rank highly, which enhances
the consistency between the answer score classification and answer
recommendation tasks.

The constraint of assumption 2 encourages the answer(s) whose
user is predicted to have the highest reputation in each sample
to have higher rank in the recommendation list. Figure (2c)-(2d)

illustrate an example of computing this constraint loss. The general
idea is: (1) For each input sample (i.e., a question with all of its
answers), find the answers’ owner users; (2) Use the output layer of
user classification to compute the logits of all these users; (3) Use
the output layer of answer recommendation to get the ranking
score(s) of answer(s) whose owner(s) has the highest logit; (4)
Compute negative log-likelihood functions based on these ranking
scores from all samples as in Equation 10 (the notations are similar
to those in Equation 9 for the first constraint), which are then
averaged to get the overall constraint loss 𝐶2.

𝐶𝑖2 = − 1
|R′

2 |

|R′
2 |∑︁

𝑗=1
[log(𝑓 (R

′
2 [𝑗]))] . (10)

Because minimizing Equation (10) is equivalent to maximizing
the ranking scores of answers corresponding to I′

2 , decreasing
𝐶2 will provide the answer(s) whose user is predicted to have the
highest reputation in each sample with more chance of having
a high rank in the recommendation list, which strengthens the
consistency between the user reputation classification and answer
recommendation tasks.

Admittedly, this approach of designing constraints is somewhat
ad-hoc. Nonetheless, these cross-task constraints, which reflect
human’s domain knowledge of the tasks, not only are lucid and easy
to implement but also significantly boost our model’s performance
as verified in the experiments.

Figure 3: Generic overview ofHMTGIN.TSOL (𝑖) denotes the
task-specific output layer of 𝑖-th task.

4.4 Heterogeneous Multi-Task Graph
Isomorphism Network (HMTGIN)

Finally, we illustrate our MTL algorithm called HMTGIN. Suppose
the input multi-relational CQA graph consists of graph structure
and initial node embeddings, and there are 𝑇 tasks and 𝑀 cross-
task constraints. The training process of HMTGIN is as follows:
(1) The MRGIN model defined in Section 4.1 learns new node
embeddings by taking in the initial node embeddings and then
performing neighborhood aggregations based on the graph struc-
ture. The new node embeddings are termed residual node embed-
dings; (2) Skip-connection technique is adopted by performing
node-wise concatenation between the initial node embeddings and
the residual node embeddings. We call these concatenated em-
beddings as generated node embeddings; (3) The generated node
embeddings are shared by every TSOL to calculate corresponding
loss 𝐿𝑡 (𝑡 ∈ {1, 2, ...,𝑇 }) as described in Section 4.2; (4) Cross-task
constraint losses 𝐶1,𝐶2, ...,𝐶𝑀 are computed using respective gen-
erated node embeddings as described in Section 4.3; (5) Compute
the total loss 𝐿′ as:

𝐿′ =
1
𝑇

𝑇∑︁
𝑡=1

𝛼𝑡𝐿𝑡 +
𝑀∑︁
𝑖=1

𝛽𝑖𝐶𝑖 , (11)

where 𝛼𝑡 (𝑡 ∈ {1, 2, ...,𝑇 }) and 𝛽𝑖 (𝑖 ∈ {1, 2, ..., 𝑀}) are pre-defined
constant real numbers. (6) Update HMTGIN’s learnable parameters
by back-propagation with respect to the total loss𝐿′; (7) Repeat
Step (1) - (6) until the termination condition is met. In evaluation,
the generated node embeddings after the last training epoch are
shared across different TSOLs to make corresponding predictions.
A generic overview of our model is shown in Figure 3 .

5 EXPERIMENTS
In this section, we present our experiments.

5.1 Dataset
We obtained the Stack Overflow raw dataset from the Stack Ex-
change Data Dump2. We then performed data cleaning steps like
removing attributes with too many missing values. Afterward, we
constructed a million-scale multi-relational graph consisting of
questions with at least eight answers, all other types of nodes that
2https://archive.org/details/stackexchange

Table 1: Cardinalities of all node types.

Type Cardinality
Questions 108,113
Answers 1,212,308
Users 773,517
Tags 55,663

Figure 4: Schema of the Stack Overflow dataset.

are either directly or indirectly connected to these questions, and
associated edges. The graph has 4 node types and 22 edge types
including self loop edge types for all node types and all reverse edge
types3. Thus, in our experiments, we do not compare with ordinary
GCN and GIN as doing so will lose a lot of edges. Each node type’s
cardinality is included in Table 1, where the total number of nodes
is over two million. Figure 4 depicts the graph’s schema4.

Every node has several attributes (e.g., ‘Body’ attribute of Ques-
tions). An attribute would be ignored if it appears in less than 10%
of the corresponding type of nodes. Regarding any date-time at-
tribute (e.g., ‘CreationDate’ of Questions), it will be ignored if it is
missing in any of the corresponding types of nodes. We performed
several text pre-processing operations like expanding contractions
on every textual attribute (e.g., ‘Body’ attribute of Answers). There-
after, we constructed the initial feature vector for an attribute 𝐴 as
follows: (1) If 𝐴 is textual, we numericalize it by averaging all its
words’ pre-trained GloVe [24] embeddings. A vector filled with 0
is used for missing values; (2) If 𝐴 is categorical (e.g., ‘PostTypeId’
attribute of Posts of other types), then we convert it into a one-hot
vector. The value of𝐴 will be set to −1 before conversion if its value
is missing; (3) If 𝐴 is numerical (e.g., ‘Views’ attribute of Users),
then we normalize its value into the range [0, 1]. The value of 𝐴
will be set to 0 before conversion if its value is missing; (4) If 𝐴 is
a date-time attribute, we encode its different aspects of temporal
information (e.g., what weekday it is) into a numeric vector. The
initial feature vector of every node is then the concatenation of all
its attributes’ initial feature vectors. We applied SVD to reduce the
dimension of all nodes’ initial feature vectors to 16 for efficiency.
These compressed vectors serve as the initial node embeddings. All
3Any two edges which have either different source node types or different destination
node types are considered to be of different edge types (e.g., ‘owner_of’ edge type
between Users and Questions are considered to be different from that between Users
and Answers).
4Reverse edge types are omitted for conciseness.

Table 2: Baselines and evaluation metrics for all tasks.

Tasks Baselines Metrics
Tag WDL, NCF, TransE Accuracy,
Recommendation COMPGCN, KBGAT F1
Duplicate Question CDSSM, MaLSTM, TransE Accuracy,
Detection COMPGCN, KBGAT F1
Answer WDL, NCF HR@3,
Recommendation COMPGCN NDCG@3
Answer Score Text-CNN, BiLSTM Accuracy,
Classification COMPGCN, BERT Macro F1
User Reputation Text-CNN, BiLSTM Accuracy,
Classification COMPGCN, BERT Macro F1

experiments are only performed on the constructed Stack Over-
flow dataset as our approach can be directly applied to other CQA
platforms with trivial modifications.

5.2 Baselines
We compare our model with the following algorithms: (1)WDL [8];
(2) NCF [12]; (3) CDSSM [29]; (4) MaLSTM [22]; (5) Text-CNN
[17] ; (6) BiLSTM [28]; (7) TransE [3]; (8) COMPGCN [32]; (9)
KBGAT [23]; (10) BERT (Large) [9]. We do not include any of
the existing MTL models for CQA in the experiment since none of
them can jointly learn the highly heterogeneous tasks targeted in
this paper.

Baseline models for the ranking task are extended to incorporate
the loss function of RankNet [4] to boost performance. Besides
the above baselines, to verify the effectiveness of MRGIN, we also
compare HMTGIN with one of its variants termed Heterogeneous
Multi-Task Graph Convolutional Networks (HMTGCN) which is
the same as HMTGIN except that it replaces the MRGIN component
of HMTGIN with RGCNs. The baseline algorithms and evaluation
metrics for all tasks are included in Table 2, where F1means F1 score,
HR@3 means Hit Ratio in top-3 list, NDCG@3 means Normalized
Discounted Cumulative Gain in top-3 list, and Macro F1 means
macro F1 score for multi-class classification5. The word embeddings
are fixed during training for CDSSM, MaLSTM, Text-CNN, BiLSTM,
and BERT.

5.3 Settings
We split each task’s dataset into training, development, and test
sets with an 8 : 1 : 1 ratio. The best hyper-parameter configuration
of every model is determined by evaluating the trained models on
corresponding development set(s), where the configuration with
the best average score over all relevant evaluation metrics is chosen.
Multi-task models are compared by their average scores over all
respective evaluation metrics on the development sets of all cor-
responding tasks. Afterward, the trained model with the chosen
configuration is examined on the test set(s) to get its test scores for
all relevant evaluation metrics. Every instance of a baseline model
is trained and evaluated on only one task, whereas every instance
of an MTL model is trained and evaluated on all tasks.
5We omit micro F1 score as it always has the same value as accuracy does in this
setting.

Table 3: Performance comparison in the TR task.

Models
Metrics Accuracy F1

WDL 0.870 ± 0.002 0.786 ± 0.001
NCF 0.871 ± 0.001 0.786 ± 0.001

TransE 0.879 ± 0.000 0.795 ± 0.000
COMPGCN 0.895 ± 0.002 0.810 ± 0.001
KBGAT 0.882 ± 0.001 0.803 ± 0.001

HMTGCN 0.911 ± 0.002 0.866 ± 0.002
HMTGIN 0.921 ± 0.000 0.878 ± 0.000

The hyper-parameters we have tuned for HMTGIN as follows,
where the values used in the best configuration of HMTGIN are
shown in bold.

(1) number of hidden layer: 0, 1, 2, 3;
(2) hidden dimension(s) : 8, 16, 32, 64;
(3) whether the 𝜖 coefficient in Equation 1 is trainable or not:

yes, no;
(4) dropout rate in all MRGIN layer: 0, 0.1, 0.2, 0.3;
(5) number of mlp layer in each MRGIN layer: 0, 1, 2, 3, 4.

We train each HMTGIN instance for 135 epochs, where the check-
point is saved whenever the average score increases. The coeffi-
cients of both cross-task constraints are 1. The coefficients asso-
ciated with the losses of both duplication question detection and
answer score classification are 7, whereas the others are 1. The
model is trained using Adam [18] algorithm in full batch. The 𝜎
activation function in Equation 1 and Equation 5 is Leaky ReLU.
The value of the 𝜖 coefficient in Equation 1 is 0. The learning rate
is reduced by 0.5 in every 50 epochs.

5.4 Performance Comparison
We abbreviate task names as follows: ‘TR’ means tag recommen-
dation; ‘DQD’ denotes duplicate question detection; ‘AR’ means
answer recommendation; ‘ASC’ denotes answer score classifica-
tion; ‘URC’ means user reputation classification. Regarding each
task, we train and test the corresponding model instances with
their respective best hyper-parameters under three different ran-
dom seeds. The mean test scores and the standard deviations of all
models are shown in Table 3, 4, 5, 6, and 7 respectively 6. The best
mean score in each task for every corresponding evaluation metric
is marked in bold.

In summary, HMTGIN outperforms all baselines in all tasks,
where the improvements are up to 16.9%, which distinctly demon-
strates its effectiveness.

Regarding link prediction, the improvements in accuracy are up
to 12%, and the improvements in F1 score are up to 13.3%. Regarding
ranking, the improvements are up to 11.3% and 12.9% in HR@3 and
NDCG@3 respectively. Such considerable improvements indicate
that the proposed cross-task constraints are significant. Regarding
classification, all HMTGIN’s scores in URC task substantially exceed
those of the corresponding best baselines (the improvements over

6The numbers to the left of ‘±’ symbols are the mean scores and the numbers to the
right of ‘±’ symbols are the corresponding standard deviations

Table 4: Performance comparison in the DQD task.

Models
Metrics Accuracy F1

CDSSM 0.795 ± 0.004 0.656 ± 0.003
MaLSTM 0.794 ± 0.003 0.601 ± 0.002
TransE 0.683 ± 0.001 0.552 ± 0.001

COMPGCN 0.702 ± 0.003 0.583 ± 0.002
KBGAT 0.721 ± 0.002 0.591 ± 0.002

HMTGCN 0.773 ± 0.001 0.645 ± 0.002
HMTGIN 0.803 ± 0.001 0.685 ± 0.001

Table 5: Performance comparison in the AR task.

Models
Metrics HR@3 NDCG@3

WDL 0.624 ± 0.001 0.49 ± 0.001
NCF 0.631 ± 0.001 0.498 ± 0.001

COMPGCN 0.697 ± 0.001 0.583 ± 0.002
HMTGCN 0.717 ± 0.002 0.589 ± 0.003
HMTGIN 0.737 ± 0.000 0.619 ± 0.000

Table 6: Performance comparison in the ASC task.

Models
Metrics Accuracy Macro F1

Text-CNN 0.421 ± 0.001 0.423 ± 0.002
BiLSTM 0.435 ± 0.004 0.438 ± 0.005

COMPGCN 0.331 ± 0.002 0.342 ± 0.001
BERT 0.442 ± 0.001 0.438 ± 0.001

HMTGCN 0.434 ± 0.002 0.429 ± 0.002
HMTGIN 0.444 ± 0.001 0.439 ± 0.002

Table 7: Performance comparison in the URC task.

Models
Metrics Accuracy Macro F1

Text-CNN 0.395 ± 0.003 0.393 ± 0.003
BiLSTM 0.405 ± 0.001 0.396 ± 0.003

COMPGCN 0.314 ± 0.001 0.302 ± 0.001
BERT 0.459 ± 0.001 0.436 ± 0.001

HMTGCN 0.423± 0.002 0.417 ± 0.001
HMTGIN 0.483 ± 0.002 0.470 ± 0.001

accuracy and macro F1 are 2.4% and 3.4% respectively), whereas in
ASC task, HMTGIN only slightly outperforms the corresponding
best baselines. This might result from that the best baseline is
already powerful enough for ASC task, which leads to a small
room for further improvement. By comparing the performance of
HMTGIN and HMTGCN, we can see that HMTGIN consistently
outperforms HMTGCN in all tasks, where the improvements are

Figure 5: Comparison between STL and MTL settings of
HMTGIN.

up to 6%, and in two out of the five tasks, the improvements are at
least 3%. This result shows that GIN is more powerful than GCN.

5.5 Ablation Studies
We conduct the following ablation studies: (1) comparing Single
Task Learning (STL) settings with MTL settings; (2) examining the
influence of the cross-task constraints. (3) parameter sensitivity
study on the number of MLP layers in each MRGIN layer. Every
numerical result is the average over three random seeds.

5.5.1 STL Settings VS MTL Settings. The STL scores together with
the MTL ones are shown in Figure 5, and the x-axis contains the
task names and respective metrics.

Generally speaking, the MTL instance outperforms all of its STL
counterparts for all evaluation metrics (i.e., there is no negative
transfer), where the improvements are up to 8%, which justifies the
effectiveness of our MTL strategy. In particular, the MTL instance
surpasses the STL instances by a large margin in TR (3.8% and
4.7% in accuracy and F1 score respectively), DQD (2.8% and 2.2% in
accuracy and F1 score respectively), and AR (7.1% and 8% in HR@3
and NDCG@3 respectively). By contrast, the performance gain in
the ASC task (0.7% in both accuracy and macro F1 score) and URC
task (1.2% and 1.1% in accuracy and macro F1 score respectively)
is not very noticeable. Such a distinction indicates that learning
signals from the MTL mechanism are more crucial for the first three
tasks than the last two tasks.

5.5.2 Role of Cross-task Constraints. We conduct experiments on
the following settings of cross-task constraints to examine their
significance, where the results are included in Figure 6: (1) No
constraint means removing both constraints described in Section
4.3; (2) Constraint 1 only denotes retaining only constraint 1, and
similarly for Constraint 2 only; (3) Both 0.5 denotes keeping both
constraints, and setting both their coefficients as 0.5, and similarly
for Both 17 and Both 2. We only show and discuss the F1 scores for
link prediction tasks, NDCG@3 score for ranking task, and macro
F1 scores for classification task here due to space limitation, and
the pattern of the scores which are not included here is almost the
same. The x-axis is similar to that of Figure 5, where the ‘Average’
includes the average value over all the five shown scores of the
instance under each of the above five settings.

In general, Both 1 instance achieves the best average score, which
shows that the proposed cross-task constraints are beneficial to the
overall performance. Moreover, keeping both constraints almost
always improves performance in the tasks related to the constraints
(i.e., AR, ASC, and URC), except in a few cases where there are still

7Configuration of the HMTGIN instance in Section 5.4 corresponds to this setting.

Figure 6: Comparison between different settings of HMT-
GIN’s cross-task constraints.

Figure 7: Comparison between different numbers of the
MLP layer in each MRGIN layer.

some settings that retain both constraints and have the best scores
for the corresponding evaluation metrics. For instance, Both 0.5,
Both 1, and Both 2 instances all outperform the remaining settings
in both evaluation metrics for AR, where the improvements for
NDCG@3 range from 2.3% to 25% respectively. These enhance-
ments are attributed to the cross-task constraints which strengthen
the consistency between related tasks, as illustrated in Section 4.3.
Specifically, No constraint and Constraint 1 only instances consis-
tently perform worse than the setting Constraint 2 only in URC
(the average difference for macro F1 is 3.2%), which empirically
justifies the analyses in Section 4.3 as the constraint 2 is established
on the relationship between URC and AR. In addition, Constraint 1
only instance surpasses both Constraint 2 only and No constraint
instances in ASC (the average improvements in macro F1 is 8.9%),
which is also consistent with the explanation in Section 4.3 since
the constraint 1 reinforces the coherence between AR and ASC.
Another interesting observation is that the average score of Both
0.5 instance is quite close to those of Constraint 1 only, Constraint 2
only and No Constraint instances, where the improvements range
from 0.1% to 2.1%. This might be because the small weights of both
coefficients weaken the regularization power of the constraints.
However, the average score of the Constraint 2 only instance is
worse than that of the Constraint 1 only instance, although the gap
is tiny (0.3%). This is probably because the high weights of both
coefficients somewhat impede the optimization of losses. Accord-
ingly, choosing appropriate values of both constraints’ coefficients
is critical.

5.5.3 Parameter sensitivity study on the number of MLP layers in
each MRGIN layer. The performance with different number of MLP

layer in each MRGIN layer is shown in Figure 7, where the 0 is the
instance with no MLP module , the 1 is the instance with 1 MLP
layer, and so on8.

To summarize, the presence of MLP layer greatly boosts the
performance (the average improvements are up to 6.9%), which can
be attributed to the universal approximation theorem [13] ensuring
that MLP can learn the composition of the multiset functions that
allows GIN to have the maximum discriminative power among
all GNN variants [41]. Furthermore, the instance with one MLP
layer has the best average score (i.e., 64.8%), even though the other
instances with MLP module are only slightly weaker than it (the
largest margin in the average score is only 0.3%). This indicates that
altering the number of MLP layer in each MRGIN layer of HMTGIN
have limited effect when there is at least one MLP layer in each
MRGIN layer. Moreover, increasing the number of MLP layer does
not exhibit any generally monotonic trend in the average scores
(the changes from zero MLP layer to one MLP layer, from one to
two MLP layers, from two MLP layers to three MLP layers, and
from three MLP layers to four MLP layers are 6.9%, −0.3%, 0.1%
and −0.1% respectively). The performance gain offered by the MLP
module is most distinct in TR, where the improvements from the
instance without MLP layer to instances with MLP layer are up to
32.7% and 29.0% for accuracy and F1 respectively. Such considerable
improvements might be since the MLP layer is highly effective in
capturing the tags’ semantics. By contrast, the instances with MLP
module tend to perform worse compared with those without MLP
module in classification tasks, especially in ASC, where the instance
without MLP layer outperforms all the instances with MLP layer
in both evaluation metrics (the score differences range from 0.3%
to 1.0% and 0.7% to 1.4% for accuracy and macro F1 respectively).
Such results suggest that MLP is not very helpful for distinguishing
the data characteristics in MTL.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a multi-relational graph based MTLmodel
named HMTGIN which efficiently tackles CQA with considerable
task and graph heterogeneity. To the best of our knowledge, HMT-
GIN is the first MTL model solving CQA tasks from the angle of
multi-relational graphs. To evaluate the effectiveness of HMTGIN,
we build a novel million-scale multi-relational graph CQA dataset.
Experiments of five tasks demonstrate that HMTGIN surpasses all
baselines in all tasks. Further ablation studies manifest the substan-
tial role of the proposed cross-task constraints and MTL strategy.
An interesting future direction would be investigating how to de-
velop a more principled way to incorporate the domain knowledge
by imposing cross-task constraints on multi-relational graph based
MTL algorithms for CQA tasks.

7 ACKNOWLEDGEMENT
The authors of this paperwere supported by theNSFC Fund (U20B2053)
from the NSFC of China, the RIF (R6020-19 and R6021-20) and the
GRF (16211520) fromRGCofHongKong, theMHKJFS (MHP/001/19)
from ITC of Hong Kong, with special thanks to theWeChat-HKUST
WHAT Lab on Artificial Intelligence Technology.

8The 1 instance corresponds to the configuration in Section 5.4.

REFERENCES
[1] Leman Akoglu, Duen Horng Chau, U Kang, Danai Koutra, and Christos Faloutsos.

2012. Opavion: Mining and visualization in large graphs. In SIGMOD. ACM,
717–720.

[2] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. 2004. A probabilistic
framework for semi-supervised clustering. In SIGKDD. ACM, 59–68.

[3] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[4] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In ICML. ACM, 89–96.

[5] Rich Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (1997), 41–75.
[6] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.

2019. Representation Learning for Attributed Multiplex Heterogeneous Network.
In SIGKDD. ACM, 1358–1368.

[7] Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012. Structured learning with
constrained conditional models. Machine learning 88, 3 (2012), 399–431.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In DLRS@RecSys. ACM,
7–10.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT (1). ACL, 4171–4186.

[10] Kuzman Ganchev, João GraÃ, Jennifer Gillenwater, and Ben Taskar. 2010. Pos-
terior regularization for structured latent variable models. Journal of Machine
Learning Research 11, 67 (2010), 2001–2049.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. IEEE, 770–778.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. ACM, 173–182.

[13] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks 4, 2 (1991), 251–257.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In WWW. ACM, 2704–2710.

[15] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In ICML. PMLR,
448–456.

[16] Xin Jin, Fuzhen Zhuang, Sinno Jialin Pan, Changying Du, Ping Luo, and Qing He.
2015. Heterogeneous Multi-task Semantic Feature Learning for Classification. In
CIKM. ACM, 1847–1850.

[17] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP. ACL, 1746–1751.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR. OpenReview.net.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR. OpenReview.net.

[20] Hui Li, Yanlin Wang, Ziyu Lyu, and Jieming Shi. 2020. Multi-task Learning for
Recommendation over Heterogeneous Information Network. IEEE Transactions
on Knowledge and Data Engineering (2020).

[21] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial Multi-task
Learning for Text Classification. In ACL. ACL, 1–10.

[22] Jonas Mueller and Aditya Thyagarajan. 2016. Siamese Recurrent Architectures
for Learning Sentence Similarity. In AAAI. AAAI Press, 2786–2792.

[23] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn-
ing Attention-based Embeddings for Relation Prediction in Knowledge Graphs.
In ACL. ACL, 4710–4723.

[24] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP. ACL, 1532–1543.

[25] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. CoRR abs/1706.05098 (2017).

[26] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. 2019.
Latent multi-task architecture learning. In AAAI. AAAI Press, 4822–4829.

[27] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[28] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[29] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In CIKM. ACM, 101–110.

[30] Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low
level tasks supervised at lower layers. In ACL. ACL, 231–235.

[31] Ivan Srba and Maria Bielikova. 2016. A comprehensive survey and classification
of approaches for community question answering. ACM Transactions on the Web

10, 3 (2016), 1–63.
[32] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. 2020.

Composition-based Multi-Relational Graph Convolutional Networks. In ICLR.
OpenReview.net.

[33] Liting Wang, Li Zhang, and Jing Jiang. 2020. Duplicate question detection with
deep learning in stack overflow. IEEE Access 8 (2020), 25964–25975.

[34] Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, and Xiao-ming Wu. 2020.
M2GRL: A Multi-task Multi-view Graph Representation Learning Framework
for Web-scale Recommender Systems. In SIGKDD. ACM, New York, NY, USA.

[35] Wenlin Wang, Hongteng Xu, Zhe Gan, Bai Li, Guoyin Wang, Liqun Chen, Qian
Yang, Wenqi Wang, and Lawrence Carin. 2020. Graph-Driven Generative Models
for Heterogeneous Multi-Task Learning. In AAAI. AAAI Press, 979–988.

[36] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. InWWW, Ling Liu, Ryen W.
White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates,
and Leila Zia (Eds.). ACM, 2022–2032.

[37] BorisWeisfeiler and Andrei A Lehman. 1968. A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsia 2, 9 (1968), 12–16.

[38] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2020. A Comprehensive
Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems (2020), 1–21.

[39] Wenyi Xiao, Huan Zhao, Haojie Pan, Yangqiu Song, Vincent W Zheng, and Qiang
Yang. 2019. Beyond personalization: Social content recommendation for creator
equality and consumer satisfaction. In SIGKDD. ACM, 235–245.

[40] Fei Xu, Zongcheng Ji, and Bin Wang. 2012. Dual role model for question recom-
mendation in community question answering. In SIGIR. ACM, 771–780.

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR. OpenReview.net.

[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML. PMLR, 5449–5458.

[43] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding Entities and Relations for Learning and Inference in Knowledge Bases.
In ICLR. OpenReview.net.

[44] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous Network Representation Learning: Survey, Benchmark, Evaluation, and
Beyond. CoRR abs/2004.00216 (2020).

[45] Min Yang, Lei Chen, Xiaojun Chen, Qingyao Wu, Wei Zhou, and Ying Shen.
2019. Knowledge-enhanced Hierarchical Attention for Community Question
Answering with Multi-task and Adaptive Learning.. In IJCAI. ijcai.org, 5349–
5355.

[46] Min Yang, Wenting Tu, Qiang Qu, Wei Zhou, Qiao Liu, and Jia Zhu. 2019. Ad-
vanced community question answering by leveraging external knowledge and
multi-task learning. Knowledge-Based Systems 171 (2019), 106–119.

[47] Xiaolin Yang, Seyoung Kim, and Eric P. Xing. 2009. Heterogeneous multitask
learning with joint sparsity constraints. In NIPS. Curran Associates, Inc., 2151–
2159.

[48] Yu Zhang and Qiang Yang. 2017. A Survey on Multi-Task Learning. CoRR
abs/1707.08114 (2017).

[49] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In SIGKDD. ACM, 635–644.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Community Question Answering (CQA)
	2.2 Multi-Task Learning (MTL)
	2.3 Graph Neural Networks
	2.4 Constraint Learning

	3 Preliminaries
	3.1 Tasks Description
	3.2 Notations

	4 Methodology
	4.1 Multi-Relational Graph Isomorphism Network (MRGIN)
	4.2 Task-Specific Output Layers (TSOLs)
	4.3 Cross-task Constraints
	4.4 Heterogeneous Multi-Task Graph Isomorphism Network (HMTGIN)

	5 Experiments
	5.1 Dataset
	5.2 Baselines
	5.3 Settings
	5.4 Performance Comparison
	5.5 Ablation Studies

	6 Conclusion and Future Work
	7 Acknowledgement
	References

