
Profiling Neural Blocks and Design Spaces
for Mobile Neural Architecture Search

Keith G. Mills1∗†, Fred X. Han2∗, Jialin Zhang3, Seyed Saeed Changiz Rezaei2
Fabian Chudak2, Wei Lu2, Shuo Lian3, Shangling Jui3, Di Niu1

1University of Alberta, Edmonton, AB, Canada
2Huawei Technologies, Edmonton, AB, Canada

3Huawei Kirin Solution, Shanghai, China

ABSTRACT
Neural architecture search automates neural network design and
has achieved state-of-the-art results in many deep learning applica-
tions. While recent literature has focused on designing networks
to maximize accuracy, little work has been conducted to under-
stand the compatibility of architecture design spaces to varying
hardware. In this paper, we analyze the neural blocks used to build
Once-for-All (MobileNetV3), ProxylessNAS and ResNet families, in
order to understand their predictive power and inference latency
on various devices, including Huawei Kirin 9000 NPU, RTX 2080 Ti,
AMD Threadripper 2990WX, and Samsung Note10. We introduce a
methodology to quantify the friendliness of neural blocks to hard-
ware and the impact of their placement in a macro network on over-
all network performance via only end-to-end measurements. Based
on extensive profiling results, we derive design insights and apply
them to hardware-specific search space reduction. We show that
searching in the reduced search space generates better accuracy-
latency Pareto frontiers than searching in the original search spaces,
customizing architecture search according to the hardware. More-
over, insights derived from measurements lead to notably higher
ImageNet top-1 scores on all search spaces investigated.

KEYWORDS
Neural Architecture Search; Design Space; Latency Measurement

ACM Reference Format:
Keith G. Mills1∗†, Fred X. Han2∗, Jialin Zhang3, Seyed Saeed Changiz Rezaei2
and Fabian Chudak2, Wei Lu2, Shuo Lian3, Shangling Jui3, Di Niu1. 2021.
Profiling Neural Blocks and Design Spaces for Mobile Neural Architec-
ture Search. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (CIKM ’21), November 1–5, 2021,
Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3459637.3481944

∗Equal contribution.
†Work done during an internship at Huawei Technologies Canada.
Correspondence to:
Keith G. Mills (kgmills@ualberta.ca),
Fred X. Han (fred.xuefei.han@huawei.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3481944

1 INTRODUCTION
Neural Architecture Search (NAS) has been established as the de
facto method for automating neural network design [3, 5, 15], lead-
ing to state-of-the-art models in computer vision, especially back-
bone networks that achieve top performance on the ImageNet [20]
benchmarking dataset [1, 2, 22]. Hardware-aware NAS has recently
attracted much attention in both academia and industry, aiming
at finding high-performing and hardware-friendly architectures
tailored to different platforms, ranging from fleets of industry-grade
GPUs [28, 31] and consumer-grade graphics cards [24] to mobile
processors [29] and IoT devices [14].

A majority of NAS research has focused on innovating the search
strategies, including those based on Evolutionary Computing [19],
Reinforcement Learning [30], Gradient Descent [15], and Bayesian
Optimization [23], etc., as well as newer and more complex search
algorithms [4, 13, 16]. However, a common observation is that state-
of-the-art architectures produced by NAS [1, 2, 22] still critically
depend on the choice of the architecture search space (or design
space [17, 18, 27]). There are several top-performing and frequently
used families of design spaces, including MobileNetV2 [21], Mo-
bileNetV3 [10], ResNet [9], etc., each of which is built upon a set of
predefined neural blocks, e.g., MBConv blocks [11] for MobileNets.

Although a number of state-of-the-art networks, e.g., Efficient-
Net [22], Once-for-All [2], TuNAS [1], etc., have been discovered
by combining and arranging these popular neural blocks, little
has been done to understand the predictive power of these neural
blocks as building blocks of a high performing network, or their
friendliness to different hardware devices, especially in terms of
inference latency. However, such an understanding is desirable as
there is an imperative need to deploy customized neural networks
onto each type of hardware instead of merely increasing accuracies
on GPUs yet at the cost of large models. A prior knowledge of
neural block performance and their compatibility with hardware
will enable a search algorithm to focus on important regions of a
design space, reducing search cost and improving end results.

In this paper, we propose a neural network profiling method for
gauging the impact that popular neural blocks and their placement
in a macro structure have on the overall network performance in
terms of prediction accuracy, latency, FLOPS, etc. on a number
of hardware devices, with a focus on their behavior on mobile
hardware as compared to GPU/CPU. We aim to obtain insights
from neural block profiling such that hardware dependent search
space reduction and pruning can be performed to enhance search.

Specifically, we propose a method for profiling the neural blocks
used in the state-of-the-art mobile architecture design spaces of
Once-for-All (OFA) [2] and ProxylessNAS [3] as well as a variant

ar
X

iv
:2

10
9.

12
42

6v
1

 [
cs

.L
G

]
 2

5
Se

p
20

21

https://doi.org/10.1145/3459637.3481944
https://doi.org/10.1145/3459637.3481944
https://doi.org/10.1145/3459637.3481944

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Mills and Han, et al.

Stem Head...

BodyUnit 0 Unit 1 Unit i

C0 x H0 x W0 C1 x H1 x W1 Ci x Hi x Wi

...

Unit 1

C1 x H1 x W1

Unit 1
Layer 1

Unit 1
Layer 2

Unit 1
Layer d1

...

Unit 2

C2 x H2 x W2

Unit 2
Layer 1

Unit 2
Layer 2

Unit 2
Layer d2

...

Unit U

CU x HU x WU

Unit U
Layer 1

Unit U
Layer 2

Unit U
Layer dU

... PredictionData

Figure 1: The high-level macro layout of the neural networks analyzed, which represents many deep architectures. The body
of each network consists of𝑈 units, each containing 𝑑𝑢 layers and operating on a unique tensor shape𝐶𝑢 ×𝐻𝑢 ×𝑊𝑢 . A neural
block (i.e., an operation) is placed at each layer.

of the well-known ResNet50 [9]. Although typically only the per-
formance metric values pertaining to an entire network can be
measured, we introduce a sampling-based method that is able to
quantify the effect of specific blocks as well as their placement
position in a macro net. In order to quantify the contribution from
each block to the whole network, our method involves randomly
sampling architectures from a given design space, while fixing a
specified neural block (aka operation) to a certain layer in the macro
net. We then measure the end-to-end performance of each network
to produce a sample distribution that can quantify the aggregate
effect of a specific block placement.

A highlight of our contribution is that we perform extensive
latency profiling of neural blocks in the selected design spaces
across multiple devices including mobile devices such as Huawei
Kirin 9000 NPU, Samsung Note10, as well as Nvidia RTX 2080 Ti
GPU and AMD Threadripper 2990WX CPU. Based on both accu-
racy profiling and hardware-specific metrics, We discover and offer
insights into the behaviour of the neural blocks on these different
hardware platforms. We quantify effects that different blocks have
on overall performance metrics when present in a network. We
also profile how sensitive network topology is to block choice and
network depth. These knowledge and insights will help to rule out
unpromising regions of a search space during hardware-aware NAS
and boost search effectiveness.

We demonstrate the utility of the insights and knowledge dis-
covered from profiling by applying them for a priori design space
reduction and pruning before search. We execute searches on both
the original and reduced search spaces and show that the resultant
Pareto frontiers found in our insight-driven search spaces outper-
form those found in the original spaces. Additionally, the derived
insights when used with a simple evolutionary algorithm allow us
to notably outperform OFA𝐿𝑎𝑟𝑔𝑒 , the best architecture originally
found on OFA-MobileNetV3 by NAS in terms of ImageNet top-1
accuracy.

Finally, the networks on the Huawei-NPU Pareto frontier found
by insight-driven search on OFA have been used as backbone net-
works in several Kirin products, including a Hi-AI tracking task to
improve the motion auto-focusing of the camera, especially on fast-
moving objects. The adoption of these networks leads to latency
and model size reduction and have been deployed in production
since March 2021. The data collected to perform this study will
be released1 together with the analysis code to facilitate future
research on hardware-friendly NAS.

1Code and model data published at https://github.com/Ascend-Research/BlockProfile

2 BACKGROUND
In this section, we describe the families of search spaces considered
in our measurement study, including OFA-MobileNetV3 (or OFA in
short), ProxylessNAS and ResNet50, in terms of the macro network,
topologies, blocks, operations used and input resolutions adopted.
We also provide technical details how data collection is performed.

2.1 Design Spaces
Ahigh-level view of the network topologies considered in this paper
is given in Figure 1. Networks consist of stacking multiple units,
each corresponding to a specified latent tensor dimension, together
to form the searchable body. Each unit consists of a variable number
of layers, and each layer contains a single block chosen from a set of
candidate blocks. The convolution operation corresponding to the
block residing in the first layer of a given unit has a stride of 2 in
order to halve the height and width of latent data while increasing
the number of channels. Table 1 enumerates all candidate blocks.
We consider three design spaces, described as follows.

OFA-MobileNetV3 (OFA). The search space of Once-for-All
[2], as originally introduced, consists of MBConv blocks in Mo-
bileNetV3 [10], which have been used to construct multiple state-
of-the-art architectures, including TuNAS [1] and BigNAS [28].
Each MBConv block consists of a linear bottleneck, after which
the channels are multiplied by an expansion ratio. A depth-wise
convolution with a specified kernel size is performed, then followed
by a Squeeze-and-Excite [12] operation before another bottleneck
reduces the number of channels back to the original number. The
input is then added to the output. Finally, blocks in the later half of
the network use the h-swish activation function instead of the tra-
ditional ReLU. OFA consists of 5 units, each containing 2–4 layers,
depending on the selected architecture. Additionally, OFA incor-
porates the ability to accept input images of varying resolutions
other than the standard 224 pixels squared. For the purposes of this
paper we will focus on three resolutions for OFA, {192, 208, 224}.

ProxylessNAS search space consists of MBConv blocks from
MobileNetV2 [21], which relies exclusively on the ReLU nonlinear-
ity and lacks the Squeeze-and-Excite operation used in V3. In terms
of topology, ProxylessNAS is similar to OFA, with the exception of
a sixth unit that always contains a single layer.

ResNet50 is a classical architecture from before MobileNets
emerged. Unlike OFA and ProxylessNAS, the number of channels
in each unit of ResNet50 is variable and determined by multiplying
the maximum number of channels per unit by one of three ratios,
{0.65, 0.8, 1.0}. The blocks in each layer have expansion ratios cho-
sen from {0.2, 0.25, 0.35}. All blocks are residual; the input is added

Profiling Blocks and Design Spaces CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
Table 1: Candidate blocks for MobileNets (OFA and ProxylessNAS; left) and ResNet50 (right). Blk. Code is a proxy name we
use for figures in Section 4.2 to simplify notations.

MobileNets Exp. Ratio Kernel Size Blk. Code ResNet50 Unit Ratio Layer Ratio Blk. Code

MBConv3–3 3 3×3 B1 65–0.20 0.65 0.20 C65–B20
MBConv3–5 3 5×5 B2 65–0.25 0.65 0.25 C65–B25
MBConv3–7 3 7×7 B3 65–0.35 0.65 0.35 C65–B35
MBConv4–3 4 3×3 B4 80–0.20 0.8 0.20 C80–B20
MBConv4–5 4 5×5 B5 80–0.25 0.8 0.25 C80–B25
MBConv4–7 4 7×7 B6 80–0.35 0.8 0.35 C80–B35
MBConv6–3 6 3×3 B7 100–0.20 1.0 0.20 C100–B20
MBConv6–5 6 5×5 B8 100–0.25 1.0 0.25 C100–B25
MBConv6–7 6 7×7 B9 00–0.35 1.0 0.35 C100–B35

to the output prior to the final activation. Additionally, all layers
consist of three sets of convolution operations. The first and final
convolutions have a kernel size of 1, while the second has a size
of 3. The overall search space consists of 4 units, the first, second,
and final ones containing 2–4 layers, while the third contains 4–6
layers.

2.2 Data Collection
In this work, we mainly consider accuracy, inference latency and
FLOPS as performance metrics. To obtain the accuracy of an archi-
tecture sampled from the above three design spaces, we use the OFA
repository2, which provides pre-trained supernet model weights3.
OFA [2] essentially provides a supernet training mechanism to su-
perpose all architectures in each of the above design spaces such
that the architecture accuracy based on the supernet weights is
close to the true accuracy obtained by training it from scratch, with
proved performance [2]. Accuracy measurement requires evalua-
tion based on supernet weights on the ImageNet [20] validation set.
In addition, the repository also provides an accuracy predictor for
OFA-MobileNetV3. Obtaining measurement from predictors is less
costly than from supernets.

We obtain latencies on the Qualcomm Snapdragon 855 processor
in the Samsung Note10 by utilizing the predictor provided by the
OFA repository. We also train our own GRU-based latency predic-
tors for Huawei Kirin 9000 NPU, Nvidia RTX 2080Ti GPU and AMD
Threadripper 2990WX CPU. To collect latency data for the Kirin
9000 NPU, we measure the end-to-end latency of 5k networks on
a universal UDP development board with the NPU and record the
inference time needed to feed-forward a single image. We perform
the same procedure to measure 50k networks on the 2080 Ti GPU
and 15k networks on the 2990WX CPU. The collected data is used
to train our predictors. We measured FLOPS for ResNet50 using
the torchprofile package4.

3 BLOCK-WISE PERFORMANCE
In this section, we first describe our methodology for quantifying
the general predictive power or resource cost of a given neural
block. We then present the average performance of each block
pertaining to different hardware devices for all three design spaces.

2https://github.com/mit-han-lab/once-for-all
3We use ofa_mbv3_d234_e346_k357_w1.2 for OFA-MobileNetV3
4https://github.com/zhijian-liu/torchprofile/

3.1 Methodology
Measuring the accuracy of a single block is difficult since the block
must be used with other blocks in a macro network to achieve a
certain accuracy. Similarly, measuring the latency of an individual
block on a device is challenging because the latency is affected by
the input resolutions, channel sizes and neighboring blocks due
to hardware-enabled operation fusion. Despite these factors, we
observe that each single block still demonstrates different general
predictive power, resource cost and latency, by considering the
average behavior of randomly sampled networks using the block.
Moreover, their average performance when placed in networks may
also be used to assess different hardware behavior.

Formally, let 𝐴 denote an architecture randomly sampled from
one of the search spaces mentioned above, allowing a variable
number of layers in each unit. Furthermore, let 𝐴𝑢,𝑙,𝑏 denote a
randomly sampled architecture such that block 𝑏 is fixed to layer
𝑙 in unit 𝑢 while unit 𝑢 has at least 𝑙 layers. Both the number of
layers per unit and block per layer are uniformly sampled under
this constraint. Then, we can measure the end-to-end performance
of a network 𝐴𝑢,𝑙,𝑏 as𝑀 (𝐴𝑢,𝑙,𝑏), where𝑀 is a desired metric.

Therefore, to quantify the average performance𝑀𝑏 of a block 𝑏
on a given metric𝑀 , we can obtain the expectation of this metric
averaged across all locations (𝑢, 𝑙) in the network:

𝑀𝑏 =
1∑𝑈

𝑢=1 𝑑𝑢

𝑈∑︁
𝑢=1

𝑑𝑢∑︁
𝑙=1
E[𝑀 (𝐴𝑢,𝑙,𝑏)] . (1)

It is critical that the sampling of each location (𝑢, 𝑙) is uniform
for the value of𝑀𝑏 to be reflective of 𝑏 rather than (𝑢, 𝑙, 𝑏).

3.2 Results and Analysis
Figure 2 displays block-wise heatmaps on OFA in terms of supernet
accuracy, FLOPS, and latency on different devices, as the expansion
ratio and kernel size of MBConv vary. Visually, we note a high
correlation between accuracy and FLOPS, as both metrics follow
nearly identical increasing trends with block size, but emphasizes
expansion ratio slightly more than kernel size.

By contrast, latency on the Huawei Kirin 9000 NPU largely de-
pends on kernel size. Size 7 is distinctly unfriendly as the version of
the NPU under consideration has special optimization techniques
built-in for computing convolutions with kernel sizes of 3 or 5, but
not for size 7. Additionally, contrary to intuition, the resolution

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Mills and Han, et al.

6

4

3

77.51 77.54 77.58

77.44 77.48 77.49

77.43 77.43 77.42

Accuracy [%]

812 817 824

797 800 805

790 792 796

FLOPS [M]

8.111 8.112 8.112

8.111 8.110 8.111

8.111 8.112 8.111

RTX 2080 Ti [ms]

8.012 8.029 9.432

7.961 7.999 8.539

7.967 7.981 8.380

Huawei NPU-R224 [ms]

9.44 9.46 11.32

9.38 9.42 10.04

9.38 9.40 9.87

Huawei NPU-208 [ms]

9.37 9.41 11.18

9.32 9.36 10.01

9.34 9.34 9.80

Huawei NPU-192 [ms]

3 5 7

6

4

3

413 413 413

412 412 412

409 409 409

AMD 2990WX-R224 [ms]

3 5 7

405 406 405

404 404 404

401 401 401

AMD 2990WX-R208 [ms]

3 5 7

380 380 379

376 376 376

376 376 376

AMD 2990WX-R192 [ms]

3 5 7

42.12 42.66 43.41

41.46 41.82 42.31

41.14 41.41 41.81

Note10-R224 [ms]

3 5 7

37.23 37.69 38.34

36.64 36.95 37.37

36.35 36.59 36.92

Note10-R208 [ms]

3 5 7

31.06 31.45 31.99

30.56 30.82 31.17

30.33 30.53 30.80

Note10-R192 [ms]

Kernel Size

Ex
pa

ns
io

n
Ra

tio

OFA MBConv Response

Figure 2: Block-wise average response𝑀𝑏 for OFA-MobileNetV3 blocks in terms of accuracy, FLOPS, and latency on 4 hardware
devices. Each entry corresponds to a MBConv block identified by an expansion ratio and a kernel size. ‘-R’ flags indicate use
of a specific input resolution, assuming 224 by default.

6

4

3

75.88 75.91 75.96

75.81 75.88 75.88

75.73 75.83 75.82

Accuracy [%]

12.03 12.06 14.67

12.00 12.01 12.91

11.99 12.00 12.83

Huawei NPU [ms]

3 5 7

6

4

3

4.915 4.915 4.915

4.915 4.915 4.915

4.915 4.915 4.915

RTX 2080 Ti [ms]

3 5 7

113 114 113

113 113 113

113 113 113

AMD 2990WX [ms]

Kernel Size

Ex
pa

ns
io

n
Ra

tio

ProxylessNAS MBConv Response

Figure 3: Block-wise average response𝑀𝑏 for blocks in Prox-
ylessNAS on 3 different hardware devices.

corresponding to the lowest latencies is 224, even though it ne-
cessitates more computations than 208 or 192. The reason is that
224 is a common resolution for computer vision tasks [1, 15, 22],
one that the Da Vinci 2.0 Architecture of the NPU is designed to
accept as a template. When uncommon resolutions like 208 are
passed to the NPU, it first pads the data until it matches the size
of the next-largest template, which explains the additional latency
incurred when using smaller images.

When the NPU can take advantage of multiple optimization tech-
niques, it outperforms Nvidia 2080 Ti. The GPU is the most balanced
device in terms of latency as all blocks are equally hardware-friendly.
By contrast, the AMD 2990WX CPU is the least hardware-friendly
device, with inference latencies ranging in hundreds of milliseconds.
CPU latency follows the opposite trend as NPU latency. Instead of
increasing dramatically if a specific kernel size is selected, latency
largely depends on the expansion ratio. Moreover, CPU latency
is dependant on the input resolution. When images of size 224 or
208 are used, the latency of all blocks with expansion ratios of 4
or higher is high and fixed. However, this does not hold when the

resolution is further reduced to 192, as the latency of blocks with
an expansion ratio of 4 drops to the same values as expansion ratio
3 blocks.

Finally, Samsung Note10 latency rises and falls as a function
of both expansion ratio and kernel size, much like accuracy and
FLOPS. Additionally, latency decreases linearly as the resolution is
shrunk. In contrast to the other mobile processor used, the Huawei
NPU, these trends indicate a lack of specific optimizations in favor
of a simpler and intuitive performance profile.

Next, Figure 3 displays block profiling results for ProxylessNAS.
Compared to OFA, the average accuracy per block is lower, but
the accuracy trend is similar with only subtle differences in how
close the accuracy of larger blocks, such as MBConv4–7, are to
the largest block, MBConv6–7. NPU, GPU and CPU latencies all
follow the same trend as OFA, although with different scales. While
GPU and CPU latencies are much lower for ProxylessNAS, NPU
latency is higher. This is due to differences in the internal structures
of MobileNetV3 and ProxylessNAS backbones. The MobileNetV3
backbone contains more element-wise matrix operations per layer,
which is handled well by the NPU but less so by the GPU and CPU.
Meanwhile, the ProxylessNAS backbone has more channels per
layer, and their impact on latency is more apparent on an NPU,
which is designed for mobile phones with limited memory.

Furthermore, Figure 4 corresponds to block profiling in ResNet50
for accuracy, FLOPS and latency only on the GPU and CPU, as
ResNet is not designed for mobile devices. Block accuracy is the
highest for ResNet50 and follows a trend that places significant em-
phasis on the unit channel ratio over layer expansion ratio. Model
size is also much larger and measured in gigaFLOPS opposed to
megaFLOPS. FLOPS on ResNet50 follow a similar trend to FLOPS
on OFA, placing roughly equal emphasis on unit and layer ratios.

GPU latency is relatively even, but features a noticeably higher
degree of variance than the other search spaces. Finally, the trend of
ResNet50 CPU latency resembles a mix of the accuracy and FLOPS
trends, with a higher focus on the unit channel ratio.

Profiling Blocks and Design Spaces CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

1.0

0.8

0.65

78.52 78.53 78.55

78.27 78.35 78.37

77.89 77.99 78.04

Accuracy [%]

6.588 6.715 6.997

5.782 5.917 6.120

5.328 5.418 5.515

FLOPS [G]

0.2 0.25 0.35

1.0

0.8

0.65

5.474 5.471 5.498

5.461 5.449 5.463

5.458 5.460 5.455

RTX 2080 Ti [ms]

0.2 0.25 0.35

320 320 323

308 311 313

306 310 310

AMD 2990WX [ms]

Layer Expansion Ratio

Un
it

Ch
an

ne
l R

at
io

ResNet50 Response

Figure 4: Block-wise average response 𝑀𝑏 for blocks in
ResNet50 on the GPU and CPU.

4 LAYER-DEPENDENT PERFORMANCE
Since the same block can have a different effect when placed at a
different depth in a network, it is necessary to also profile block
performance depending on locations of placement (𝑢, 𝑙). Doing this
will not only assess the relative desirability of blocks, but also allows
us to understand which layers/units (whether the early or deeper
units) are more sensitive to block variation in terms of accuracy
and latency as well as other metrics. As a result, carefully selecting
blocks in these layers could become critical at determining the final
performance for a specific hardware.

Recall from Figure 1 that each unit within a network uses a
different tensor shape. Given this knowledge, we can infer that the
interaction of each block with these dimensions will vary. In this
section we first describe how to quantify these differences, then we
analyze the interaction of block 𝑏 and placement (𝑢, 𝑙) on different
hardware.

4.1 Methodology
Given a design space, recall that 𝐴 denotes a randomly sampled
architecture and 𝐴𝑢,𝑙,𝑏 denotes a randomly sampled architecture
with block 𝑏 fixed to location (𝑢, 𝑙). To quantify the effect of placing
block 𝑏 at location (𝑢, 𝑙) on a certain metric 𝑀 , we consider the
relative expectation 𝑀𝑢,𝑙,𝑏 , defined as

𝑀𝑢,𝑙,𝑏 = E(𝑀 (𝐴𝑢,𝑙,𝑏)) − E(𝑀 (𝐴)) . (2)
Similarly, we can also compute the relative 𝜏-percentile 𝑀𝜏,(𝑢,𝑙,𝑏) as

𝑀𝜏,(𝑢,𝑙,𝑏) = Q𝜏 (𝑀 (𝐴𝑢,𝑙,𝑏)) − Q𝜏 (𝑀 (𝐴)), (3)
where 𝜏 ∈ [0%, 100%] is the desired percentile, and Q𝜏 (𝑀 (𝐴))
gives the 𝜏-percentile of a collection of random architectures 𝐴 in
terms of the metric𝑀 . This is useful for deciding whether a specific
placement (𝑢, 𝑙, 𝑏) can change the landscape of top-performing or
lowest-performing architectures.

It is worth noting that our method of profiling block placement
performance costs far less than profiling an entire search space
by exhaustively evaluating all possible architectures as has been
done in multiple NAS Benchmarks [7, 26]. For example, the OFA
design space contains 1019 distinct architectures [2]. In contrast, the

number of unit-block-layer combinations is 5 𝑢𝑛𝑖𝑡𝑠 × 4 𝑙𝑎𝑦𝑒𝑟𝑠/𝑢𝑛𝑖𝑡
× 9 𝑏𝑙𝑜𝑐𝑘𝑠/𝑙𝑎𝑦𝑒𝑟 , which is 180, which is less than the number of
architectures bymanymagnitudes, and even givenmultiple samples
to compute the expectations, would require far less resources to
profile than measuring an entire search space.

4.2 Results and Analysis
We now profile block sensitivity by quantifying the statistics of
𝑀 (𝐴𝑢,𝑙,𝑏) relative to𝑀 (𝐴). Then, we analyze how the number of
layers in a unit can influence accuracy and latency.

Sensitivity to Block selection. Figure 5 maps the relative per-
formance for all (𝑢, 𝑙, 𝑏) combinations for OFA in terms of mean as
well as 5% and 95% percentile differences on different metrics. For
a given layer, we enumerate blocks following the order presented
in Table 1.

First, we observe that block choice influences accuracy more in
the later units, judging by the accuracy difference between the first
and last blocks in a given layer. The story is similar for NPU latency.
Additionally, latency is more sensitive to block choice in unit 1 than
units 2 and 3 because unit 1 processes the tensors with the largest
height and width, however across all units it is clear that kernel
size 7 is distinctly unfriendly and is an obvious choice for removal
when crafting a reduced search space.

By contrast, GPU latency is not sensitive to block choice while
CPU latency in unit 5 oscillates according to expansion ratio. Lastly
for OFA, Samsung Note10 latency is most responsive in unit 1, while
steadily losing sensitivity in units 2 and 3.

Next, Figure 6 provides results for ProxylessNAS. For accuracy
we provide the raw values5 instead of the relative deviation as we
found it easier to read in the absence of a predictor. While the accu-
racy curves are less salient than OFA, the mean and 5%-percentile
𝑀𝜏,(𝑢,𝑙,𝑏) curves still illustrate a large variation in the latter half
of the network. Like OFA, NPU latency varies greatly in the final
units, although the sensitivity of unit 4 to block choice is greatly
diminished, and is only slightly greater than unit 1. Following OFA,
GPU latency is not sensitive to block choice for ProxylessNAS,
while CPU latency only varies with expansion ratio in the first unit,
likely due to the size of input tensors.

Finally, Figure 7 illustrates metric profiles for ResNet50. Accuracy
is relatively invariant to block choice in the first 2 units but there
is a clear, linear dependency on both the number of channels in a
unit and the layer expansion ratio in the final 2 units. GPU latency
is largely unaffected by block choice while CPU latency greatly
depends on channels in units 3 and 4.

Sensitivity to network depth. Figure 5 shows that when the
final layer of a unit (layer 4) is present, accuracy rises uniformly
regardless of block choice. This is because including layer 4 ensures
that the unit is at maximum length.Moreover, the increase is highest
for unit 4, and lowest for unit 1. When designing a search space
reduction for OFA, this finding motivates us to ensure that later
units remain at maximum length, while earlier units others might be
restricted to limit latency. By contrast we do not note a significant
rise in NPU latency in the optional layers of any unit. GPU and
CPU latency for OFA are largely dependent on unit depth as the
presence of a fourth layer causes latency to rise and plateau.

5No subtraction term in (2) and (3).

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Mills and Han, et al.

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
−0.25

0.00

0.25

0.50

OFA predictor accuracy difference [%] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9

0

2

4
OFA Huawei NPU latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
0.0

0.2

OFA RTX 2080 Ti latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
−20

0

OFA AMD 2990WX latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
−2.5

0.0

2.5

5.0
OFA Samsung Note10 latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

5% Mean 95%

Figure 5: 𝑀𝑢,𝑙,𝑏 and𝑀𝜏,(𝑢,𝑙,𝑏) for OFA-MobileNetV3, where Unit-Layer-Blk (U-L-B) triplets are arranged in increasing order on
x-axis, with solid vertical lines demarcating units and dashed vertical lines demarcating layers. For each metric, we present 3
curves, the mean as well as 5% and 95% percentile relative performance according to (2) and (3). Input resolution is 224.

Depth sensitivity for ProxylessNAS is largely the same as OFA, as
Figure 6 shows. On the GPU there minimal variation in the amount
of added latency for layer 4 of a given unit. To purely minimize
GPU latency for MobileNets, all 5 units should be constrained to
have 3 layers maximum. However, in practice, this choice should
be weighed against potential loss of accuracy. Lastly, CPU latency
rises in units 1 and 2 when the fourth layer is present, but only for
the mean and 5%-percentile of architectures. We can therefore infer
that most of the random architectures that make up the top-95%-
percentile of CPU latency all have 4 layers in units 1 and 2.

Finally, GPU latency for ResNet50 is sensitive to unit depth, while
CPU latency depends on channel size beyond the first 2 units.

5 APPLICATION TO NAS
In this section, we demonstrate that knowledge obtained from
block profiling can be leveraged to effectively enhance hardware-
aware neural architecture search (NAS). Specifically, we strategi-
cally reduce a search space according to insights obtained from
block profiling results, then search for the optimal accuracy-latency
Pareto frontier. Experimental results suggest that the insights bring
improvements to accuracy-latency tradeoff on various hardware
devices. We also show that when using the insights to maximize
accuracy only, we find new architectures with accuracy outper-
forming the originally published best models found on OFA and
ProxylessNAS design spaces.

Profiling Blocks and Design Spaces CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9

74

76

ProxylessNAS supernet accuracy [%] for Au, l, b in terms of mean and 5%/ 95% percentiles, n=100

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
−2.5

0.0

2.5

5.0

ProxylessNAS Huawei NPU latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9
0.0

0.1

0.2

ProxylessNAS RTX 2080 Ti latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

U1-L1-B1 U1-L3-B2 U2-L1-B3 U2-L3-B4 U3-L1-B5 U3-L3-B6 U4-L1-B7 U4-L3-B8 U5-L1-B9

0

5

10

ProxylessNAS AMD 2990WX latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M

5% Mean 95%

Figure 6: 𝑀𝑢,𝑙,𝑏 and 𝑀𝜏,(𝑢,𝑙,𝑏) for ProxylessNAS, where Unit-Layer-Blk (U-L-B) triplets are arranged in increasing order on x-
axis, with solid vertical lines demarcating units and dashed vertical lines demarcating layers. For each metric, we present 3
curves, the mean as well as 5% and 95% percentile relative performance according to (2) and (3). Input resolution is 224.

5.1 Insights-Driven Pareto Front Search
We first apply our insights to generate Pareto frontiers for OFA and
ProxylessNAS where ImageNet top-1 accuracy is maximized while
hardware inference latency is minimized. The details of the pruned
search spaces on this task are enumerated below:

• OFA-NPU: To reduce latency, remove kernel 7 blocks for
all units. To increase accuracy, prioritize optimizing block
choice in the final 2 units.

• OFA-GPU: To reduce latency, constrain units 2, 4 and 5 to
have atmost 3 layers. To increase accuracy, removeMBConv3–
3, MBConv3–7 and MBConv4–3 from the search space.

• OFA-CPU: To reduce latency, constrain units 1, 2 and 3 to
have at most 3 layers.

• OFA-Note10-R224/192: To reduce latency, constrain unit
1 to have at most 3 layers. To increase accuracy, remove
MBConv3–7 and MBConv4–7 from the search space.

• ProxylessNAS-NPU: Same as OFA-NPU.
• ProxylessNAS-GPU: To reduce latency, constrain units 1,
2 and 3 to have at most 3 layers. To increase accuracy, remove
MBConv3–3,MBConv3–7 andMBConv4–3 from search space.

• ProxylessNAS-CPU: To reduce latency, constrain units 1
and 2 to have at most 3 layers.

Our objective is to demonstrate that our insights can improve
search by pruning potentially sub-optimal regions in the design
space. While any reasonable search algorithm can be chosen to
facilitate this goal, we conduct our search using an Evolutionary Al-
gorithm (EA), a typical family of search algorithms widely adopted
in existing NAS practice [6, 8].

We start the search with a set of randomly sampled architectures
as the initial population. Next, unit-wise random mutations are
performed on architectures from this population, where the choices
include adding or removing a layer to/from a stage, as well as chang-
ing the block type in an existing layer. After getting a set of new
architectures, we query the relevant performance metrics, i.e., accu-
racy and/or hardware latency. Using the ranks produced by these
metrics as the population fitness score, we get the top-performing
architectures and merge them with the initial population to cre-
ate a new top population. A new round of evolution continues on
this new generation. When conducting Pareto frontier searches,
we set the number of generations to 10, the starting population

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Mills and Han, et al.

U1-L1-C65-B20 U1-L1-C100-B25 U2-L3-C80-B35 U3-L6-C65-B20 U3-L3-C100-B25 U4-L2-C80-B35

0

1

ResNet50 supernet accuracy difference [%] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=100

U1-L1-C65-B20 U1-L1-C100-B25 U2-L3-C80-B35 U3-L6-C65-B20 U3-L3-C100-B25 U4-L2-C80-B35

0.00

0.25

0.50

ResNet50 RTX 2080 Ti latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1k

U1-L1-C65-B20 U1-L1-C100-B25 U2-L3-C80-B35 U3-L6-C65-B20 U3-L3-C100-B25 U4-L2-C80-B35
−20

0

20

40

ResNet50 AMD 2990WX latency difference [ms] between Au, l, b and random architecture A in terms of mean and 5%/ 95% percentiles, n=1k

5% Mean 95%

Figure 7: 𝑀𝑢,𝑙,𝑏 and 𝑀𝜏,(𝑢,𝑙,𝑏) for ResNet50, where Unit-Layer-Blk (U-L-B) triplets are arranged in increasing order on x-axis,
with solid vertical lines demarcating units, dashed lines demarcate unit channel settings, and dotted lines demarcate layers.
For each metric, we present 3 curves, the mean as well as 5% and 95% percentile relative performance according to (2) and (3).
Input resolution is 224.

size to 100 and generate 200 child architectures in each generation.
Experimental runs take roughly 1 GPU day per Pareto frontier.

Figure 8 shows Pareto frontiers on various hardware platforms.
Under our insight-based search spaces for OFA and ProxylessNAS,
the same search algorithm discovers better Pareto frontiers in the
mid/low latency regions on NPU, GPU and CPU hardware. Notice-
ably on Huawei NPU, our insights produce up to 3 times latency
reduction, while the accuracy is significantly improved for the
< 3𝑚𝑠 region. In fact, to make the insight Pareto curves visible, we
removed the highest latency entries for the original spaces on the
NPU as they were in excess of 10ms and provided minimal accu-
racy gain. For 2080Ti GPU and 2990WX CPU, we use our insights
to specifically improve the accuracy of mid/low latency regions,
which explains why the Pareto frontiers are shorter on the right
end but better in the remaining regions when compared to the full
space baseline.

While improvements on the Note10 platform are sparse, our
pruned search space achieves higher gains in more places than
the original search space. Optimizing for accuracy against Note10
latency is difficult because of how patently high correlated both
metrics are. Removing a high latency operation means removing a
high accuracy operation at the same time. This is in contrast to other
metrics like NPU latency, where one can exploit the unfriendliness
of kernel size 7 blocks to reduce latency, or GPU latency, where we
can prune low-accuracy operations without an increase in latency
due to near constant inference time.

5.2 Unconstrained Maximum Accuracy Search
In addition to our Pareto frontier search task, we also leverage our
insights to prune the search spaces such that the search algorithm
finds high-accuracy architectures more readily. In this situation, we
focus on finding the maximum possible accuracy and disregard la-
tency constraints. For the OFA and ProxylessNAS design spaces, we
remove all expansion 3 blocks, as well as MBConv4–3 for all units
since they are sub-optimal in terms of accuracy. For the ResNet50
design space, we constrain the last two units to always have the
maximum number of layers and output channels.

As our goal in this situation is to find a single high-performance
architecture, rather than a spectrum, we set the number of genera-
tions to 4, the starting population size to 20 and generate 50 child
architectures in each generation. We do not perform fine-tuning
after finding an architecture. Experimental runs take 2 GPU hours
for OFA and ProxylessNAS, and roughly 3 GPU hours for ResNet50.

Table 2 records the results of our maximum accuracy experi-
ments. Observe that the insight-based search setups consistently
find superior networks, both on average and when the maximum
accuracy is considered, across different design spaces despite the
restrictions imposed. The results imply that the derived insights
are more helpful at discovering hardware-friendly architectures
for mobile devices, while improving the predictive power of the
search spaces. This is most evident for OFA. While the base search
space does not exceed the top-1 accuracy of OFA𝐿𝑎𝑟𝑔𝑒 , the insight-
driven search exceeds it by 0.2%, a significant amount. Also, not that
while the ResNet50 design space achievees the highest accuracy,
the number of Multiply-Accumulate operations (MACs) is almost

Profiling Blocks and Design Spaces CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

2.00 4.00 6.00
76.00

77.00

78.00

79.00
OFA-Huawei NPU

Original
Insight

6.00 8.00

77.00

78.00

79.00
OFA-2080 Ti

Original
Insight

300 400 500

76

78

OFA-2990WX

Original
Insight

20.00 40.00 60.00
74.00

76.00

78.00

OFA-Note10

Original
Insight

2.00 3.00 4.00

74.00

76.00

78.00
ProxylessNAS-Huawei NPU

Original
Insight

4.00 5.00 6.00

74.00

76.00

78.00
ProxylessNAS-2080 Ti

Original
Insight

75 100 125

74

76

78
ProxylessNAS-2990WX

Original
Insight

20.00 30.00 40.00

74.00

76.00

78.00
OFA-Note10-R192

Original
Insight

Latency [ms]

Ac
cu

ra
cy

 [%
]

Figure 8: Pareto frontiers contrasting the original search spaces (blue) with our insight-based search spaces (red).

Table 2: Maximum top-1 ImageNet accuracy search results
on different design spaces, compared to existing works. We
show averages over 5 random seeds for our experiments.

Model Accuracy MACs

MobileNetV2 [21] 72.0 300M
MobileNetV3-Large [10] 75.2 219M
OFA [2] 76.0 230M
OFA𝐿𝑎𝑟𝑔𝑒 79.0 595M

OFA-insight 79.2 ± 0.04 342M
OFA-base 78.9 ± 0.07 292M
ProxylessNAS-insight 77.9 ± 0.04 417M
ProxylessNAS-base 77.6 ± 0.08 359M
ResNet50-insight 80.0 ± 0.03 2.81B
ResNet50-base 79.9 ± 0.09 2.64B

a magnitude higher than OFA and ProxylessNAS spaces. There-
fore, we would still recommend the OFA and ProxylessNAS design
spaces for mobile applications, e.g. the Samsung Note10 or Huawei
NPU, where power or memory consumption is often a concern.

6 RELATEDWORK
Our work on block and search space profiling draws inspiration
from the recent benchmarking efforts in NAS. Benchmarks like
NAS-Bench-101 [26] and 201 [7] define their own search spaces
and label the truth accuracy for all possible architectures. They
are the first hint that the search space has a significant impact on
the performance of an neural architecture. However, the search
spaces of NAS-Bench-101 and 201 are relatively small, consisting
of 423k and 15k architectures, respectively. In contrast, the OFA-
MobileNetV3 search space contains 1019 architectures [2]. Thus,
it is too costly to exhaustively evaluate every architecture in such
search spaces. A key advantage of our method is that we do not
evaluate all possible architectures. Instead, our method enables the
profiling of blocks and their placement in units and layers.

There are other works that perform measurements on design
spaces. For example, [17] uses complexity measures to normalize
and compare the accuracy error distributions of competing search
spaces across parameters or FLOPS. [18] uses statistical insights
to prune the number of degrees of freedom present in a design
space. In contrast, our work uses sampling to obtain block-level
insights across different locations in the network, with an emphasis
on hardware friendliness.

More NAS algorithms start to incorporate search space mod-
ifications to improve performance. [29] uses different candidate
operator sets for each searchable layer, while TinyNAS [14] first
optimizes the search space to fit hardware resource constraints and
then searches for the best architecture. HourNAS [25] divides its
search space into vital and non-vital components. P-DARTS [5] re-
duces its search space in order to search for large models. However,
these works often lack a systematic analysis about why certain
operators are favorable in certain network layers, and in this paper
we aim to fill this gap.

7 CONCLUSION
In this paper, we propose a sampling methodology to profile neural
blocks used in the state-of-the-art neural architecture search spaces
of Once-for-All and ProxylessNAS aswell as the classical framework
of ResNet50. We profile the blocks in terms of their contributions
to end-to-end network accuracy, latency and other metrics across
a range of hardware devices, including Huawei Kirin 9000 NPU,
Nvidia RTX 2080 Ti GPU, AMD 2990WX CPU and Samsung Note10.
Our findings show that the latency response of each device is unique
and helps us to obtain knowledge regarding their sensitivity to
block choice, block placement at different depths and macro net
structure. By applying our insights to reduce the original search
spaces, we find better Pareto frontiers in terms of accuracy and
latency, compared to the original search spaces. Finally, we show
that the use of insights can also lead to architectures that notably
surpass the original best architecture found in OFA on ImageNet
top-1 accuracy.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Mills and Han, et al.

REFERENCES
[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan

Kindermans, and Quoc V Le. 2020. Can Weight Sharing Outperform Random Ar-
chitecture Search? An Investigation With TuNAS. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14323–14332.

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once
for All: Train One Network and Specialize it for Efficient Deployment. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=HylxE1HKwS

[3] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. arXiv preprint arXiv:1812.00332
(2018).

[4] Xiangning Chen and Cho-Jui Hsieh. 2020. Stabilizing differentiable architec-
ture search via perturbation-based regularization. In International Conference on
Machine Learning. PMLR, 1554–1565.

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive differentiable
architecture search: Bridging the depth gap between search and evaluation. In
Proceedings of the IEEE International Conference on Computer Vision. 1294–1303.

[6] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei,
Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, et al. 2020. FBNetV3: Joint
Architecture-Recipe Search using Neural Acquisition Function. arXiv preprint
arXiv:2006.02049 (2020).

[7] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations.

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081 (2018).

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 1314–1324.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[12] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[13] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. 2020.
Geometry-Aware Gradient Algorithms for Neural Architecture Search. arXiv
preprint arXiv:2004.07802 (2020).

[14] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
Mcunet: Tiny deep learning on iot devices. arXiv preprint arXiv:2007.10319 (2020).

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[16] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and Jianlong Fu. 2020.
Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture
Search. arXiv preprint arXiv:2010.15821 (2020).

[17] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. 2019.
On network design spaces for visual recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1882–1890.

[18] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 10428–10436.

[19] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[21] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[22] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

[23] Colin White, Willie Neiswanger, and Yash Savani. 2019. BANANAS: Bayesian
Optimization with Neural Architectures for Neural Architecture Search. arXiv
preprint arXiv:1910.11858 (2019).

[24] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2020. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. In International Conference on Learning Representa-
tions.

[25] Zhaohui Yang, Yunhe Wang, Dacheng Tao, Xinghao Chen, Jianyuan Guo, Chun-
jing Xu, Chao Xu, and Chang Xu. 2020. Hournas: Extremely fast neural ar-
chitecture search through an hourglass lens. arXiv preprint arXiv:2005.14446
(2020).

[26] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. 2019. Nas-bench-101: Towards reproducible neural architecture
search. In International Conference on Machine Learning. 7105–7114.

[27] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural
networks. Advances in Neural Information Processing Systems 33 (2020).

[28] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,
Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le.
2020. BigNAS: Scaling up neural architecture search with big single-stage models.
arXiv preprint arXiv:2003.11142 (2020).

[29] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. 2020.
Fast hardware-aware neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 692–693.

[30] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. https://arxiv.org/abs/1611.01578

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://arxiv.org/abs/1611.01578

	Abstract
	1 Introduction
	2 Background
	2.1 Design Spaces
	2.2 Data Collection

	3 Block-wise Performance
	3.1 Methodology
	3.2 Results and Analysis

	4 Layer-Dependent Performance
	4.1 Methodology
	4.2 Results and Analysis

	5 Application to NAS
	5.1 Insights-Driven Pareto Front Search
	5.2 Unconstrained Maximum Accuracy Search

	6 Related Work
	7 Conclusion
	References

