
Adversarial Attacks on Deep Models for Financial

Transaction Records

Ivan Fursov∗1, Matvey Morozov∗1, Nina Kaploukhaya1,2,4, Elizaveta Kovtun1, Rodrigo
Rivera-Castro1, Gleb Gusev †3,4, Dmitry Babaev3, Ivan Kireev3, Alexey Zaytsev∗ ‡ 1, Evgeny

Burnaev1

1Skoltech, Moscow, Russia
2 IITP RAS, Moscow, Russia
3Sber AI lab, Moscow, Russia

4MIPT, Moscow, Russia

Abstract
Machine learning models using transaction records as in-
puts are popular among financial institutions. The most
efficient models use deep-learning architectures similar
to those in the NLP community, posing a challenge due
to their tremendous number of parameters and limited
robustness. In particular, deep-learning models are vul-
nerable to adversarial attacks: a little change in the in-
put harms the model’s output.

In this work, we examine adversarial attacks on
transaction records data and defences from these at-
tacks. The transaction records data have a different
structure than the canonical NLP or time series data,
as neighbouring records are less connected than words
in sentences, and each record consists of both discrete
merchant code and continuous transaction amount. We
consider a black-box attack scenario, where the attack
doesn’t know the true decision model, and pay special
attention to adding transaction tokens to the end of a
sequence. These limitations provide more realistic sce-
nario, previously unexplored in NLP world.

The proposed adversarial attacks and the respective
defences demonstrate remarkable performance using rel-
evant datasets from the financial industry. Our results
show that a couple of generated transactions are suf-
ficient to fool a deep-learning model. Further, we im-
prove model robustness via adversarial training or sep-
arate adversarial examples detection. This work shows
that embedding protection from adversarial attacks im-
proves model robustness, allowing a wider adoption of
deep models for transaction records in banking and fi-
nance.

1 Introduction
Adversarial attacks are a fundamental problem in deep
learning. Alone a small targeted perturbation in the
machine learning model’s input results in a wrong pre-

diction by the model [11]. These type of attacks are per-
vasive and present in various domains such as computer
vision, natural language processing, event sequence pro-
cessing, and graphs [4].

In this study, we consider a specific application do-
main of data models based on transaction records sim-
ilar to Figure 1. This type of data arises in the finan-
cial industry, a sector that sees a vertiginous adoption of
deep-learning models with a large number of parameters
[3, 2]. Analysts use them to detect a credit default or
fraud. As a result, deep-learning models on sequences
of transactions stemming from a client or a group of
clients are a natural combination. However, given their
vast number of parameters, these models can be vulner-
able to adversarial attacks [11]. Hence, risk mitigation
related to the possibility of adversarial attacks becomes
paramount. Despite the great attention of both academy
and industry to adversarial attacks in machine learning,
there are still no papers studying this problem in the
finance domain. We must make these models robust to
such attacks if we want to see them widely adopted by
the industry.

41 / 
 Drug 
Store

124 / 
 Grocery

Store

24 / 
 Clothing

41 / 
 Drug 
Store

430 217 3099 406

MCC
code

Amount

Figure 1: Example of a transaction records data se-
quence: Each transaction has information about its
MCC (Merchant Category Codes) describing the pur-
chase category and purchase amount. Data can also in-
clude transaction location and time values.

Transaction records data consists of sequences, mak-
ing it possible to transfer some techniques from the do-
main of natural language processing [30]. However, there

∗Equal contribution
†E-mail: gleb57@gmail.com
‡E-mail: a.zaytsev@skoltech.ru

1

ar
X

iv
:2

10
6.

08
36

1v
1 

 [
cs

.L
G

] 
 1

5 
Ju

n 
20

21



are several peculiarities related to the generation of ad-
versarial sequences of transactions:

1. Unlike neighbouring words in natural language,
there may be no logical connection between neigh-
bouring transactions in a sequence.

2. An attacker cannot insert a token at an arbitrary
place in a sequence of transactions in most cases.
Often, the attacker can only add new transactions
to the end of a sequence.

3. The concept of semantic similarity is underdevel-
oped when we compare it to what we see in the
NLP world [29].

4. Transaction data is complex. Besides MCC,
which is categorical, we also have the transaction
amount, and can also have its location, timestamp,
and other fields. It is particularly an essential
question if adversarial transactions’ amount affects
an attack’s success.

To make an attack scenario realistic, we consider
inference-time black-box attacks, i.e. an attacker has
access only to a substitute model different from the tar-
get attacked model and trained using a different dataset
and attacks a model, when it is used in production. We
compare this scenario to a more dangerous but less re-
alistic white-box attack. This setting is close to works
such as [9] for NLP and [22] for CV models.

1.1 Novelty

This work addresses three research questions: (1) The
vulnerability of finance models to different attack meth-
ods in a realistic scenario, (2) the effectiveness of adver-
sarial training, (3) the role of the amount of adversarial
transactions. We propose several black-box adversarial
attacks for transaction records data for realistic scenar-
ios and provide defences from these attacks accounting
for the above challenges. Our black-box attacks change
or add only a couple of tokens with minimal money
amounts for each token to fool the model. We adopt the
idea of loss gradients and a substitute model to create
effective adversarial attacks using a separately trained
generative model for transactions models. The scheme
of our attack is in Figure 2.

Target
model

Substitute
model

Initial
sequence

Adversarial
sequence

Bad
client

Good
client!

Generative 
model

Figure 2: Proposed attack scheme: we consider a realis-
tic black box scenario, when a malicious model user has
access to a separate substitute model during an attack
on a target model. To fool a target model, he adds new
transactions to the end of a sequence making additional
purchases. To select new sequence, the attacker adopts
a conditioned generative model.

Our defences make most of these attacks ineffective
besides an attack based on sampling from a language
model. Banks and other financial actors can use our
results to improve their fraud detection and scoring sys-
tems.

The main claims and structure of the paper are as
follows:

• We address an important and practical research
questions: the vulnerability of deep finance models
to adversarial attacks in the most realistic black-
box scenarios, and the effectiveness of adversarial
learning;

• We develop black-box adversarial attacks for trans-
action records data from the financial industry and
defences from these attacks in the light of the
above challenges. Our approach adopts the idea
of loss gradients and a substitute model to cre-
ate effective adversarial attacks based on a gener-
ative model that takes into account mixed disrete-
continuous structure of bank transactions data.
subsection 3.1 describes our attacks and defenses.

• Our black-box attacks change or add only a cou-
ple of tokens with small monetary values for each
token to fool the model. We show that in subsec-
tion 5.2.

• Our defences render most of these attacks ineffec-
tive except for an attack based on sampling from
a language model. We present it in subsection 5.4.

• We conduct experiments on relevant datasets from
the industry and provide an investigation on the
effectiveness of such attacks and how one can de-
fend her model from such attacks. Banks can use
the obtained results to improve their fraud detec-
tion and scoring systems. We provide a discussion
on our attacks and defences in subsection 5.6.

2



2 Related work
Adversarial attacks exist for most deep-learning models
in domains as wide as, [25], computer vision [1, 13],
natural language [30, 23], and graph data [21]. A suc-
cessful attack generates adversarial examples that are
close to an initial input but result in a misclassification
by a deep-learning model [14]. [24, 20] provides a com-
prehensive review. For sequential data and especially for
NLP data, there are also numerous advances in recent
years. [30, 23] discuss them. Similarly, the work of [28]
emphasizes adversarial attacks in financial applications.

Our study uses transaction records data. As a con-
sequence, we generate adversarial examples for discrete
sequences of tokens. For NLP data, [19] is one of the first
approaches to deal with this challenge. The authors con-
sider white-box attacks for an RNN model. In our work,
we focus on black-box attacks. We consider this scenario
more realistic than the white-box one. Along the same
lines [10] also consider black-box attacks for discrete se-
quences. They present an algorithm, DeepWordBug, to
identify the most relevant tokens for the classifier whose
modifications lead to wrong predictions.

Popular methods for generating adversarial sequence
use the gradient of the loss function to change the ini-
tial sequences. The first practical and fast algorithm
based on the gradient method is the Fast Gradient Sign
Method (FGSM) [11]. One attack inspired by the FGSM
is the high-performing BERT-attack [15]. The attack
uses a pre-trained language model BERT to replace cru-
cial tokens with semantically consistent ones.

The existence of adversarial attacks implies the ne-
cessity of developing defence methods. [26] provides
an overview, for example. One of the most popular ap-
proaches for defence is an adversarial training advocated
in [11, 12]. The idea of adversarial training is to expand
a training sample with adversarial examples equipped
with correct labels and fine-tune a deep-learning model
with an expanded training sample. Similarly, in [27],
the authors improve a fraud detection system by adding
fraudulent transactions in the model’s training set. An-
other approach is adversarial detection. In this case, we
train a separate detector model. [18] describe the detec-
tor of adversarial examples as a supplementary network
to the initial neural network. Meanwhile [7] provide
a different approach to detecting adversarial examples
based on Bayesian theory. They detect adversarial ex-
amples using a Bayesian neural network and estimating
the uncertainty of the input data.

Adversarial attacks and defences from them are of
crucial importance in financial applications [28]. The
literature of adversarial attacks on transaction records
includes [8, 9]. However, the authors do not consider
the peculiarities of transaction records data and apply
general approaches to adversarial attacks on discrete se-
quence data. Also, they pay little attention to efficient
defences from such attacks and how realistically one can
obtain such sequences.

There are no comprehensive investigations on the re-
liability of deep-learning models aimed at processing se-

quential data from transaction records in the literature.
It stems from the lack of attention to the transaction
records data’s peculiarities and the limited number of
problems and datasets.

This study fills this void by being the first en-
compassing work on adversarial attacks on transaction
records data and corresponding defences for diverse
datasets while taking data peculiarities into account.
According to our knowledge, no one before explored at-
tacks with additions of tokens to the end and training
specific generative model for financial transactions data
that is a sequence of a mix of discrete and continuous
variables. Moreover, as the data is interpretable, it is vi-
tal to consider, what factors affect vulnerability of mod-
els to adversarial attacks.

3 Methods

Blackbox vs whitebox scenario We focus on the
most realistic blackbox scenario [22]. The attack in this
scenario does not have access to the original model. In-
stead, the attacker can use scores for a substitute model
trained with a different subset of data. A substitute
model can have different hyperparameters or even a dif-
ferent architecture replicating real-life situations. The
attacker has little knowledge about the model’s real ar-
chitecture or parameters but can collect a training data
sample to train a model.

3.1 Attack methods

We consider realistic attack scenarios in the financial
sector. For this reason, our attacks resemble existing ap-
proaches in other communities. We adapt them to the
specificity of transaction records data. We categorize the
algorithms by attack method into two types. In the first
case, an attack edits an original sequence of transactions
by replacing existing tokens. We present the scheme
of such attack in Figure 3. For the second case, an at-
tack concatenates new adversarial transactions to
the end of the original sequence. For such attacks, we
use the Concat prefix in the name. The scheme of such
attack is in Figure 4.

413133 344

MASK133 344

Initial sequence

Sequence with masked tokens

117133 344

Generated adversarial sequence

Figure 3: Example of an attack with token replacements
where we select tokens to replace and then find the most
effective tokens for a replacement to obtain an adversar-
ial sequence

3



413133 344

413133 344

Initial sequence

Sequence with masked tokens

413133 344

Generated adversarial sequence

MASK

314

Figure 4: Example of an attack with token additions
where we add the most adversarial tokens to the end of
an adversarial sequence

Replacement and concatenation attacks Sam-
pling Fool (SF) [9]. It uses a trained Masked Language
Model (MLM) [5], to sample from a categorical distri-
bution new tokens to replace random masked tokens.
Then it selects the most adversarial example among a
fixed number of generated sequences. We generate 100
sequences in our experiments.

FGSM (Fast Gradient Sign Method) [16]. The
attack selects a random token in a sequence and uses
the Fast Gradient Sign Method to perturb its embed-
ding vector. The algorithm then finds the closest vector
in an embedding matrix and replaces the chosen token
with the one that corresponds to the identified vector.
We show the FGSM attack in an embedded space of to-
kens in Figure 5. If we want to replace several tokens,
we do it greedily by replacing one token at a time. We
select the amounts from a categorical distribution given
the overall limit for these attacks if not specified other-
wise.

Embeddings space of
tokens

Initial
token

embedding

Embedding
after

FGSM

The closest
real token

Figure 5: FGSM attack scheme in an embedded space
of tokens

Concat FGSM. This algorithm extends the FGSM
idea. Here, we add k random transactions to the origi-
nal sequence and run the FGSM algorithm only on the
added transactions. As a result, the edit-distance be-
tween the adversarial example and the original will be
exactly k. We use two variations of this approach. They
are Concat FGSM, [seq], and Concat FGSM, [sim]. In
the first option, sequential, we add tokens one by one at
the end of the sequence. In the second, simultaneous,
we start by adding a random number of mask tokens
and then replacing them by FGSM simultaneously tak-
ing into account the context. We show the difference
between both approaches in Figure 6.

413133 344

Sequence with masked tokens

413133 344

Option 1, step 1: add first token

MASK

214

MASK

413133 344

Option 1, step 2: add second token

214 14

413133 344

Option 2: add all tokens simultaneously

311 75

Figure 6: Difference between sequential (Option 1) and
simultaneous (Option 2) Concat FGSM attacks

LM FGSM. To increase the plausibility of gener-
ated adversarial examples, LM FGSM uses a trained
autoregressive language model to estimate which trans-
action is the most appropriate in a given context. The
algorithm uses FGSM to find the closest token with the
perplexity less than a predefined threshold τ . Thus, LM
FGSM increase the plausibility of generated adversarial
examples. A similar idea appears in [6] for NLP data.

Concat Sampling Fool (Concat SF). This
method replicates the idea of Concat FGSM and adds
k random transaction tokens to the original sequence.
Then, using the pre-trained BERT language model, we
receive the vocabulary probabilities for each added to-
ken. As a result, the algorithm samples from the cate-
gorical distribution and chooses the best adversarial ex-
ample using a given temperature value.

Sequential Concat Sampling Fool (Seq Con-
cat SF). The difference between this algorithm and the
usual Concat SF is that this algorithm, instead of im-
mediately adding k tokens to the original sequence, adds
tokens one at a time. We choose the token at each step
that reduces the model’s probability score for the target
(correct) class the most.

3.2 Defense methods
We use two approaches to defend from adversarial at-
tacks with ideas from the general defences literature [23].
They are adversarial training and adversarial detection.

Adversarial training. The adversarial training ob-
jective is to increase the model robustness by adding
adversarial examples into the training set. The most
popular and common approach is adding the adversar-
ial examples with correct labels to the training set, so
the trained model correctly predicts the label of future
adversarial examples after fine-tuning. Other popular
adversarial training methods generate adversarial exam-
ples at each training iteration [17]. From the obtained
examples, we calculate the gradients of the model and
do a backpropagation.

Adversarial detection. This method consists of
training an additional model, a discriminator, which
solves a binary classification model addressing whether

4



a present sequence is real or generated by an adversar-
ial attack. The trained discriminator model can detect
adversarial examples and prevent possible harm from
them.

4 Data
We consider sequences of transaction records stemming
from clients at financial institutions. For each client, we
have a sequence of transactions. Each transaction is a
triplet consisting of three elements. The first one is a
discrete code to identify the type of transaction (Mer-
chant Category Code). Among others, it can be a drug
store, ATM or grocery store. The second corresponds to
a transaction amount, and the third is a timestamp for
the transaction time. For the transaction codes and the
formatting of the data, we take [2] as an inspiration.

Moreover, we consider diverse real-world datasets for
our numerical experiments taken from three major fi-
nancial institutions. In all cases, the input consists of
transactions from individual clients. For each client, we
have an ordered sequence of transactions. Each entry
contains a category identifier such as a bookstore, ATM,
drugstore, and more as well as a monetary value. Fur-
ther, the first and second sample’s target output, Age 1
and Age 2, is the client’s age bin with four different bins
in total. For the third sample, Leaving, the goal is to pre-
dict a label corresponding to a potential customer churn.
The fourth sample, Scoring, contains a client default for
consumer credit as a target. We present the main statis-
tics for both the data and the models we use in Table 1.
For our critical experiments, we provide results for all
datasets. In other cases, due to space constraints, we
focus on one or two datasets, as results are similar if not
specified otherwise.

We train the target model on 65% of the original
data. Similarly, we use for the substitute model the rest
of the data, 35%. Additional implementation details are
in Appendix.

5 Experiments
We provide the code, experiments, running examples
and links to the transaction datasets on a public online
repository∗.

5.1 Metrics
To measure the quality of attacks, we find an adversarial
example for each example from the test sample. We use
the obtained adversarial examples to calculate a set of
metrics and assess the attacks’ quality. We then average
over all considered examples. As we compare multiple
adversarial attacks, we provide a unified notation to fa-
cilitate their understanding. We consider the following
elements in our notation:

• Ct — The target classifier that we want to ”de-
ceive” during the attack;

• xi — An original example from the test sample.

• x̃i — An adversarial example that we obtain dur-
ing the attack for an example xi.

• Ct(xi) – The prediction of the original classifier
for the object xi, a class label.

• Ct(x̃i) – The prediction of the original classifier
for the adversarial example x̃i, a class label.

With this notation, we can define a list of four met-
rics to evaluate our data against them.

1. Word Error Rate (WER). Before we can cre-
ate an adversarial attack, we must change the ini-
tial sequence. Our change can be either by insert-
ing, deleting, or replacing a token in some position
in the original sequence. In the WER calcula-
tion, we treat any change to the sequence made
by insertion, deletion, or replacement as 1. There-
fore, we consider the adversarial sequence perfect
if WER = 1 and the target classifier output has
changed.

2. Adversarial Accuracy (AA). AA is the rate
of examples that the target model classifies cor-
rectly after an adversarial attack. We use the
following formula to calculate it: AA(A) =
1
N

∑N
i=1 1{Ct(xi) = Ct(x̃i)}.

3. Probability Difference (PD). The PD demon-
strates how our model’s confidence in the response
changes after an adversarial attack: PD(A) =
1
N

∑N
i=1 C

t
P(xi)−CtP(x̃i), where CtP(xi) is the con-

fidence in the response for the original example xi,
and CtP(x̃i) is the confidence in the response for the
adversarial example x̃i.

4. NAD (Normalized Accuracy Drop) NAD is a
probability drop, normalized on WER. For a clas-
sification task, we calculate the Normalized Accu-
racy Drop in the following way:

NAD(A) =
1

N

N∑
i=1

1{Ct(xi) 6= Ct(x̃i)}
WER(xi, x̃i)

,

NAD reflects a trade-off between the number of
changed tokens and model quality on adversarial
examples.

5.2 Overall attack quality
We compare the performance of six attacks. They are
Sampling Fool (SF), Concat Sampling Fool (Concact
SF), Sequential Concat Sampling Fool (Seq Concat SF),
FGSM, Concat FGSM, Concat LM FGSM and we de-
scribe them in subsection 3.1. The results are in Table 2
for the GRU target and the substitute model architec-
tures. Similarly, in Table 3, we have them for the sake of
comparison for the white-box scenario, when we use the
target model as the substitute for the most promising
and representative attacks.

We observe that all adversarial attacks have a high
quality. After we change on average no more than 2 to-
kens, we can fool a model with a probability of at least

∗https://github.com/fursovia/adversarial_sber

5

https://github.com/fursovia/adversarial_sber


Dataset Age 1 Age 2 Client leaving Scoring
#classes 4 4 2 2

Mean sequence length 86.0 42.5 48.4 268.0
Max sequence length 148 148 148 800

Number of transactions 2 943 885 3 951 115 490 513 3 117 026
Number of clients 29 973 6886 5000 332 216

Number of code tokens 187 409 344 400
Models’ accuracy for the test data

Substitute 0.537 0.675 0.653 0.825
LSTM

Target 0.551 0.668 0.663 0.881
Substitute 0.548 0.675 0.644 0.833

GRU
Target 0.562 0.663 0.672 0.862

Substitute 0.553 0.674 0.660 0.872
CNN

Target 0.564 0.674 0.670 0.903

Table 1: Datasets statistics and models’ accuracy for the test data

0.8. This probability makes the attacked model useless,
while the number of added or modified transactions is
small compared to the total number of transactions in
the sequence judging by Word Error Rate. We can com-
pletely break the model for some attacks by adding only
one token at the end. Attacks, where we add tokens at
the end, perform comparably to attacks, where we in-
clude tokens in the middle of a sequence. So, these more
realistic attacks are also powerful for money transactions
data. The quality of attacks is comparable to the quality
of the Greedy baseline attack. It is the Greedy attack
based on a brute force selection of tokens for insertion
or editing. Thus, the attack provides close to the best
achievable performance in our black-box scenario. How-
ever, FGSM-based attacks provide better performance
scores than SamplingFool-based ones due to the random
search for adversarial examples in the second case. It
can be useful to unite these approaches to create a gen-
erative model that can generate sequences of transaction
records that are both realistic and adversarial [8]. Also,
more realistic concatenation of tokens to the end of a se-
quence results in lower performance scores. In sections
below we consider the most successful and the most rep-
resentative attacks SF, Concat SF, FGSM, and Concat
FGSM.

5.3 Dependence on the architecture
A malicious user can lack knowledge regarding the spe-
cific architecture used for data processing. Hence, we
want to address how the attack’s quality changes if the
architectures of both the attacked target and the substi-
tute model used for the attack differ. For this, we present
the results when the attack targets an LSTM model and
a CNN the substitute model in Table 4. Comparing
these results to the previous section results, we see that
the attack’s quality in the case of models of different
nature deteriorates markedly. However, in both cases,
the Concat FGSM attack works reasonably by adding
strongly adversarial tokens at the end of the sequence.
We conjecture that this is because RNN-based models
pay more attention to the tokens in the end, while a
CNN model is position-agnostic regarding a particular

token. So, Concat FGSM attacks are successful, even if
a substitute model’s architecture is different from that
of a target model.

5.4 Defenses from adversarial attacks

5.4.1 Adversarial training

Figure 7 presents the adversarial training results for one
dataset. The target and substitute models are GRU.
In the figure, we average the results from 10 runs and
present mean values as solid curves and a mean ± with
two standard deviations as a shaded area. For most at-
tacks, the Adversarial Accuracy quickly increases when
we compare it against the overall accuracy presented as
the dashed line. The results for other datasets are sim-
ilar. For most attacks, we see that it is enough to add
about 15000 adversarial examples to the training sample
and fine-tune model using an expanded training sample
to make model robust against a particular adversarial
attack. However, after adversarial training, a Sampling-
Fool attack is possible despite being worse on our attack
quality metrics.

Figure 7: Adversarial Accuracy metric vs number of ad-
versarial examples added to the training set for dataset
Age 2.

6



Attack NAD ↑ WER ↓ AA ↓ PD ↑
Age 1 (Accuracy 0.562)

SF 0.09 12.87 0.45 0.07
Concat SF 0.26 2 0.49 0.06

Seq Concat SF 0.28 2 0.45 0.09
FGSM 0.45 1.79 0.49 0.04

Concat FGSM 0.13 4 0.47 0.07
LM FGSM 0.44 1.78 0.50 0.04

Age 2 (Accuracy 0.663)
SF 0.45 5.18 0.29 0.07

Concat SF 0.38 2 0.25 0.07
Seq Concat SF 0.39 2 0.12 0.09

FGSM 0.71 3.46 0.21 0.08
Concat FGSM 0.2 4.0 0.19 0.07

LM FGSM 0.71 3.45 0.20 0.08
Client leaving (Accuracy 0.672)

SF 0.14 14.78 0.69 0.00
Concat SF 0.19 2 0.62 0.00

Seq Concat SF 0.23 2 0.55 0.03
FGSM 0.23 8.69 0.47 0.10

Concat FGSM 0.14 4 0.46 0.09
LM FGSM 0.24 8.84 0.44 0.11

Scoring (Accuracy 0.86)
SF 0.15 5.74 0.78 0.00

Concat SF 0.05 6 0.73 0.05
FGSM 0.27 8.43 0.67 0.10

Concat FGSM 0.10 6 0.44 0.22
LM FGSM 0.27 7.76 0.67 0.09

Table 2: Summary of the effectiveness of black-box
attacks with GRU as the target and the substitute
models architectures for different datasets with ini-
tial accuracy values in brackets. ↑ marks metrics
we want to maximize, ↓ marks metrics we want to
minimize.

Attack NAD ↑ WER ↓ AA ↓ PD ↑
Age 1

SF 0.13 13.18 0.07 0.23
Concat SF 0.38 2 0.23 0.24

FGSM 0.70 2.51 0.00 0.29
Concat FGSM 0.25 4 0.00 0.48

LM FGSM 0.68 2.68 0.01 0.27
Age 2

SF 0.56 4.81 0.22 0.09
Concat SF 0.42 2 0.15 0.12

FGSM 0.79 2.40 0.01 0.15
Concat FGSM 0.24 4 0.05 0.25

LM FGSM 0.84 2.13 0.03 0.14
Client leaving

SF 0.29 14.37 0.50 0.09
Concat SF 0.23 2 0.53 0.06

FGSM 0.42 6.51 0.09 0.15
Concat FGSM 0.16 4 0.35 0.18

LM FGSM 0.42 6.37 0.11 0.15
Scoring

SF 0.15 5.74 0.79 0.15
Concat SF 0.03 6 0.80 0.22

FGSM 0.47 8.43 0.02 0.28
Concat FGSM 0.14 6 0.14 0.43

LM FGSM 0.46 7.76 0.04 0.28

Table 3: Summary of the effectiveness of the most
promising white-box attacks with GRU as the target
model architecture

5.4.2 Adversarial detection

Another approach for defending against adversarial at-
tacks is the adversarial sequences detection. Carrying
out this type of attack entails that we train a separate
classifier detecting a sequence from an original data dis-
tribution or stemming from an adversarial attack. If
this classifier is of high quality, we can easily protect our
model from adversarial attacks by discarding potentially
adversarial sequences.

As the detector classifier, we use a GRU model. We
train it for 10 epochs. We notice that increasing the
number of epochs does not lead to improving the detec-
tor’s quality.

The classification data is balanced, so we calculate
the accuracy for evaluating the quality of adversarial
detection. These results for different attacks are in Ta-
ble 5.

We can detect with accuracy greater than 0.9 the
adversarial examples generated by most of the attacks.
However, adversarial sequences from the Sampling Fool
attack are more difficult to detect. Therefore, we postu-
late that we can effectively repel many attacks with the

help of a trained detector.

5.5 Dependence on additional amount

In addition to a discrete token, each transaction has an
associated money amount. A strong dependence on an
attack’s performance based on using additional mone-
tary amounts can be a show stopper, as a malicious user
tries to minimize the amount of money spent on addi-
tional transactions.

We experiment on the Age 1 dataset by measuring
the Concat FGSM attack’s quality with varying con-
straints starting from few constraints and going to the
case where there is practically no limit.

In Table 6, we present the results. For this table,
we consider the Age 1 dataset and add one token at the
end of a transaction sequence, so WER equals 1 for all
attacks. They demonstrate no difference in the attack’s
quality concerning the considered amount. Therefore,
we can fool the model using a quite limited amount of
monetary funds. We elucidate that the model takes most
of its information from the transaction token. As a re-
sult, attack strategies should focus on it.

7



Attack NAD ↑ WER ↓ AA ↓ PD ↑
Age 1

SF 0.10 13.75 0.45 0.12
Concat SF 0.30 2 0.40 0.14

FGSM 0.40 3.81 0.48 0.10
Concat FGSM 0.18 4 0.30 0.20

LM FGSM 0.43 3.53 0.45 0.10
Age 2

SF 0.21 14.92 0.78 -0.10
Concat SF 0.09 2 0.82 -0.81

FGSM 0.21 8.90 0.78 -0.13
Concat FGSM 0.05 4 0.80 -0.10

LM FGSM 0.58 3.37 0.38 0.02
Client leaving

SF 0.09 12.17 0.46 0.03
Concat SF 0.25 2 0.50 0.04

FGSM 0.46 6.67 0.30 0.10
Concat FGSM 0.14 4 0.43 0.08

LM FGSM 0.21 12.53 0.55 0.07
Scoring

SF 0.10 6.31 0.84 0.05
Concat SF 0.06 6 0.65 0.18

FGSM 0.17 13.92 0.76 0.12
Concat FGSM 0.06 6 0.64 0.18

Table 4: Black-box attack effectiveness with LSTM as the target model and CNN as the substitute model

Attack Age 1 Age 2 Client Scoring
leaving

SF 0.500 0.623 0.661 0.422
Concat SF 0.998 0.986 0.967 0.988

FGSM 0.493 0.946 0.800 0.953
Concat FGSM 1.000 0.995 0.991 1.000

Table 5: Accuracy of adversarial examples detection for different types of attacks and datasets

5.6 Closer look at generated sequences

Natural language data allow for a straightforward inter-
pretation by experts. A human can assess how realistic
an adversarial sentence is. For transaction records data,
we can manually inspect any generated adversarial se-
quences and verify their realism level.

The histograms of the initial distribution of tokens
and tokens inserted by the Sampling Fool attack are
in Figure 8. We notice that most of the inserted tokens
occur in the original sequences with similar frequencies,
so the generated sequences are realistic from this point
of view. However, some of the inserted tokens do not
belong to the history of the client’s transactions. Never-
theless, they are in the training set of the model. This
constellation also occurs in the case of the histogram of
the Concat Sampling Fool.

We can observe different types of distributions for
the Concat FGSM in Figure 9. For this attack, only
a limited number of tokens has a significant effect on
the model prediction. The same phenomenon happens
for the cases of the FGSM attacks. So, we expect, that
while these attacks are adequate given our metrics, it

remains easy to detect them or fine-tune the model to
make it resistant to this type of attacks.

Figure 8: The histograms of tokens from the initial
transactions are in green and tokens inserted by the Sam-
pling Fool attack in orange for the Age 1 dataset

8



Amount limit AA PD
300 0.09 0.23
500 0.12 0.20
1000 0.2 0.17
3000 0.05 0.27
5000 0.01 0.31
10000 0.01 0.35
100000 0.04 0.31

Table 6: Overview of the Concat FGSM attack quality for different amounts of tokens for Age 1 dataset

Figure 9: The histograms of tokens from the initial
transactions are in green and tokens inserted by Con-
cat FGSM attack in orange for the Age 1 dataset

We can summarize numerically the diversity of to-
kens added to the sequences through the considered at-
tacks. Three of our metrics are a diversity rate, a repeti-
tion rate, and a perplexity. For the first case, the diver-
sity rate represents the number of unique adversarial
tokens divided by the size of the vocabulary from which
we sample these tokens. High diversity values suggest
that an attacker uses a vast number of unique tokens
and the generated adversarial sequences are harder to
distinguish from sequences present in the original data.
In contrast, low diversity values suggest that an attack
inserts the limited number of specific tokens. For the
second case, the repetition rate equals the number
of tokens added by an attack appearing in an original
sequence divided by the total number of added adver-
sarial tokens. High repetition rate means that an attack
adds tokens that are already present in a sequence, thus
the generated sequence is more realistic, while low rep-
etition rate means that an attacker tries to insert new
types of tokens, and that can be unrealistic. Finally,
Perplexity is the inverse normalized probability den-
sity that the specified sequence x = (x1, x2, . . . , xn) is
derived from the specified distribution. We define it as

PP(x) = P(x1, x2, · · · , xn)−
1
n = n

√
1

P(x1,x2,...,xn)
. We cal-

culate the density using a trained language model. The
lower the perplexity, the more plausible the sequence is
from the language model’s point of view.

We observe the obtained diversity rate, repetition rate,
and perplexity in Table 7 for Age 1 dataset. For other
datasets, the results are similar. As the baselines we
perform uniform sampling of tokens from the training
set (Unif. Rand.) and sampling w.r.t. their frequen-
cies of the occurrence (Distr. Rand.). We see that SF
and Concat SF’s attacks for the language model gen-
erate more realistic adversarial sequences based on the
considered criterion, while FGSM-based approaches and
the Greedy attack do not pay attention to how realistic
the generated sequences are.
In addition to the added tokens’ realisticity, we consider
the added amounts’ plausibility for those tokens. As
we show, the transaction’s value has little effect on the
attack’s success, so we only need certainty that the mon-
etary value is realistic and not excessively large. We can
find the histograms for the original and the Sampling
Fool adversarial sequences in Figure 10. We see that the
adversarial sequences meet both of the specified require-
ments. For other datasets and attacks, the figures are
similar.

Figure 10: The histograms of amounts for original trans-
actions and amounts for transactions inserted by the
Sampling Fool attack for a balanced Age 1 dataset of
adversarial and initial normal sequences

6 Conclusion
We consider an essential topic of adversarial attacks on
machine-learning models for a highly relevant use case,
transactions record data, and present defences against
such attacks.

9



Data Attack Diversity ↑ Repetition ↑ Perplexity ↓
rate rate

Age 1 Unif. Rand. 0.99 0.47 7.49
Distr. Rand. 0.37 0.99 3.02

SF 0.62 0.80 4.28
Concat SF 0.77 0.58 6.01

FGSM 0.15 0.57 4.71
Concat FGSM 0.08 0.11 17.76

Table 7: Diversity rate, repetition rates and perplexity of the adversarial sequences generated by the attacks

We find out that alone by inserting a couple of trans-
actions in a sequence of transactions, it is possible to
fool a model. Even small model accuracy drops can lead
to significant financial losses to an organization, while
for most datasets we observe a severe model quality de-
crease. Moreover, attack are the most effective for im-
portant borderline decision cases. However, we can eas-
ily repel most classic attacks. It is straightforward to
detect an adversarial sequence or to fine-tune a model
to process adversarial sequences correctly.

Attacks stemming from generative data models rep-
resent the most promising ones. It is challenging to de-
fend against them, and they show high efficiency. During
our experiments, a manual assessment of the adversarial
sequences show that they are realistic, and thus experts
must be careful whenever deploying deep-learning mod-
els for processing transaction records data. Nevertheless,
we still can detect adversarial sequences in most realis-
tic scenarios, when an attack appends new transactions
only to the end of a sequence.

We expect, that our result shades a light on how at-
tacks and defences should look like for models based on
transactions record data. They can be extended to more
general event sequences data.

References

[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of
adversarial attacks on deep learning in computer vi-
sion: a survey. IEEE Access 6 (2018), 14410–14430.

[2] D. Babaev, I. Kireev, N. Ovsov, M. Ivanova, G. Gu-
sev, and A. Tuzhilin. 2020. Event sequence metric
learning. arXiv:2002.08232 (2020).

[3] Dmitrii Babaev, Maxim Savchenko, Alexander
Tuzhilin, and Dmitrii Umerenkov. 2019. ET-RNN:
Applying Deep Learning to Credit Loan Applica-
tions. In 25th ACM SIGKDD. 2183–2190.

[4] Anirban Chakraborty, Manaar Alam, Vishal Dey,
Anupam Chattopadhyay, and Debdeep Mukhopad-
hyay. 2018. Adversarial attacks and defences: A
survey. preprint arXiv:1810.00069 (2018).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. preprint arXiv:1810.04805 (2018).

[6] J. Ebrahim, A. Rao, D. Lowd, , and D. Dou. 2018.
Hotflip: white-box adversarial examples for text
classification. arXiv:1712.06751 (2018).

[7] R. Feinman, R. R. Curtin, S. Shintre, and A. B.
Gardner. 2017. Detecting adversarial samples from
artifacts. preprint arXiv:1703.00410 (2017).

[8] I. Fursov, A. Zaytsev, N. Kluchnikov, A.
Kravchenko, and E. Burnaev. 2020. Differentiable
language model adversarial attacks on categorical
sequence classifiers. arXiv:2006.11078 (2020).

[9] Ivan Fursov, Alexey Zaytsev, Nikita Kluchnikov,
Andrey Kravchenko, and Evgeny Burnaev. 2020.
Gradient-based adversarial attacks on categorical
sequence models via traversing an embedded world.
arXiv:2003.04173 (2020).

[10] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
IEEE Security and Privacy Workshops. IEEE, 50–
56.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. preprint arXiv:1412.6572 (2014).

[12] R. Huang, B. Xu, D. Schuurmans, and C.
Szepesvári. 2015. Learning with a strong adversary.
preprint :1511.03034 (2015).

[13] Valentin Khrulkov and Ivan Oseledets. 2018. Art of
singular vectors and universal adversarial perturba-
tions. In IEEE CVPR. 8562–8570.

[14] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2016. Adversarial examples in the physical world.
preprint arXiv:1607.02533 (2016).

[15] Linyang L., Ruotian M., Qipeng G., Xiangyang X.,
and Xipeng Q. 2020. BERT-attack: adversarial at-
tack against BERT using BERT. arXiv:2004.09984
(2020).

[16] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2017. Deep text clas-
sification can be fooled. preprint arXiv:1704.08006
(2017).

10



[17] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversar-
ial attacks. preprint arXiv:1706.06083 (2017).

[18] J. H. Metzen, T. Genewein, V. Fischer, and B.
Bischoff. 2017. On detecting adversarial perturba-
tions. ICLR (2017).

[19] Nicolas Papernot, Patrick McDaniel, Ananthram
Swami, and Richard Harang. 2016. Crafting ad-
versarial input sequences for recurrent neural net-
works. In MILCOM 2016-2016 IEEE Military Com-
munications Conference. IEEE, 49–54.

[20] Nikolaos Pitropakis, Emmanouil Panaousis,
Thanassis Giannetsos, Eleftherios Anastasiadis,
and George Loukas. 2019. A taxonomy and survey
of attacks against machine learning. Computer
Science Review 34 (2019), 100199.

[21] Lichao Sun, Ji Wang, Philip S Yu, and Bo Li. 2018.
Adversarial attack and defense on graph data: a
survey. preprint arXiv:1812.10528 (2018).

[22] Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. 2013. Intriguing properties
of neural networks. preprint arXiv:1312.6199
(2013).

[23] W. Wang, B. Tang, R. Wang, L. Wang, and A.
Ye. 2019. Towards a Robust Deep Neural Net-
work in Texts: A Survey. preprint arXiv:1902.07285
(2019).

[24] Han X., Yao M., Haochen L., Debayan D., Hui L.,
Jiliang T., and Anil K.J. 2019. Adversarial attacks
and defenses in images, graphs and text: a review.
arXiv:1909.08072 (2019).

[25] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li.
2019. Adversarial examples: attacks and defenses
for deep learning. IEEE transactions on neural
networks and learning systems 30, 9 (2019), 2805–
2824.

[26] Xiaoyong Yuan, Qile Zhu Pan He, and Xiaolin Li.
2017. Adversarial examples: attacks and defenses
for deep learning. arXiv:1712.07107 (2017).

[27] Mary Zeager, Aksheetha Sridhar, Nathan Fogal,
Stephen Adams, Donald Brown, and Peter Bel-
ing. 2017. Adversarial learning in credit card fraud
detection. 112–116. https://doi.org/10.1109/

SIEDS.2017.7937699

[28] Mary Frances Zeager, Aksheetha Sridhar, Nathan
Fogal, Stephen Adams, Donald E Brown, and Pe-
ter A Beling. 2017. Adversarial learning in credit
card fraud detection. In 2017 Systems and Infor-
mation Engineering Design Symposium (SIEDS).
IEEE, 112–116.

[29] T. Zhang, V. Kishore, F. Wu, K.Q. Weinberger, and
Y. Artzi. 2019. Bertscore: Evaluating text genera-
tion with bert. preprint arXiv:1904.09675 (2019).

[30] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and CHENLIANG LI. 2019. Adversarial attacks on
deep learning models in natural language process-
ing: a survey. preprint arXiv:1901.06796 (2019).

11

https://doi.org/10.1109/SIEDS.2017.7937699
https://doi.org/10.1109/SIEDS.2017.7937699


A Research Methods
A.1 Implementation details

Here, we give an overview of the implementation details.
We base our implementation on the AllenNlp library.

1. Reading data. To read the original transac-
tions record data, and to transform it into the
so-called allennlp.data.fields format, which we re-
quire to manipulate our data, we use the Transac-
tions Reader, based on the DatasetReader from the
AllenNlp library, with a pre-trained discretizer to
transform monetary values and further work with
these amounts in a discrete space. The discretizer
is the KBinsDiscretizer with hyperparameters, n
bins=100, strategy=quantile, encode=ordinal.

2. Classifiers. In this work, we use a bidirectional
GRU, an LSTM with 1 layer, a dropout with 0.1,
a hidden size of 256 or a CNN with 64 filters and
a ReLu activation layer. We use cross-entropy as
the loss function. We train all models with a batch
size 1024 for 50 epochs with an early stop if the
loss does not decrease during the validation phase
within 3 epochs. Further, we use the Adam opti-
mizer with a step size 0.001.

3. Attacks. We conduct most of the experiments
with attacks using black-box settings. For our ex-
periments, Table 2 is the result of an RNN with
a GRU block as an attacked model and an RNN
with a GRU block as a substitute model that an
attacker uses to assess the so-called adversality of
the generated sequences. We generate 1000 ad-
versarial sequences from the test set and average
evaluated model performance metrics over them.

All hyperparameters and implementation details
for our attacks are in subsection 3.1. We list them
as follows:

• Sampling Fool (SF). The algorithm hyper-
parameters of the Sampling Fool attack in-
clude temperature and the number of sam-
ples. The temperature regulates how close
the distribution of tokens is to be uniform. At
high temperatures, attacks are more diverse
but less effective. We set the temperature pa-
rameter to 2.0 and the number of samples to
200.

We use the Masked Language Model
(MLM) [5], as our language model for the
Sampling Fool attack. The MLM acciden-
tally masks some tokens from the original
sequence during training and tries to pre-
dict which tokens were instead of the masked
ones. In our task, we input the model not
only of the embeddings of transactions but
also the embeddings of the amounts of these
transactions, which are concatenated and fed
to the encoder. We train the model by

maximizing the probability of the sequences.
maxθ log pθ(x) =

∑T
t=1 log pθ (xt | x<t).

Figure 11: Dependence of the Adversarial Accuracy
Metric on the number of samples for Sampling Fool and
Concat Sampling Fool, and a number of iterations in the
case of Concat FGSM. For this experiment, we used Age
2 dataset.

We use these models to sample the most plau-
sible sequences from transactions with a con-
straint on the input amounts:

• Concat SF, Sequential Concat SF. The
attacks have the same hyperparameters as SF
with an additional parameter for the number
of tokens, added in the attack. We set this
parameter to 2.

• FGSM. We have the hyperparameters, ε for
the step size towards the antigradient, and n
as the algorithm’s number of steps. We set ε
to 1.0 and number of steps to 30.

• Concat FGSM. The attack has the same hy-
perparameters as FGSM with an additional
parameter for the number of tokens added in
the attack. We set this parameter to 4.

12



Attack NAD ↑ WER ↓ AA ↓ PD ↑

Age 1
SF 0.08 12.79 0.48 0.08

Concat SF 0.46 2 0.09 0.26
FGSM 0.44 1.73 0.51 0.06

Concat FGSM 0.24 4 0.02 0.24
Client Leaving

SF 0.17 14.71 0.67 0.01
Concat SF 0.18 2 0.63 0.01

FGSM 0.29 8.67 0.50 0.08
Concat FGSM 0.11 4 0.53 0.09

Scoring
SF 0.12 6.16 0.83 -0.05

Concat SF 0.05 6 0.67 0.07
FGSM 0.23 8.72 0.67 0.08

Concat FGSM 0.08 6 0.50 0.19

Table 8: Attacking of model with CNN architecture using substitute model with GRU architecture

Figure 12: Dependence of the Adversarial Accuracy
Metric on the number of added adversarial tokens (or
WER) for Concat SF and Concat FGSM. Client leav-
ing dataset is under consideration, GRU is used as the
target and substitute models. Figure 13: Dependence of the Adversarial Accuracy

Metric on the length of the original sequences for Client
leaving dataset. The target and substitute models are
GRU. The green line corresponds to the accuracy of the
target classifier for the original sequences and the orange
line corresponds to the results on adversarial sequences.

13



Figure 14: Dependence of WER on length of the original
sequences for successful attacks. Client leaving dataset
was used. The target and substitute models are GRU.

A.2 Alternative model architectures
We perform additional experiments for different archi-
tectures of the target and substitute models. The results
are in Table 8. We can attack the target model con-
sisting of a CNN architecture with a substitute model
entailing a GRU architecture, and the quality of some
attacks will be still high. We are mainly considering
when the target and substitute models are both a GRU
architecture. However, most of our main claims hold
when both models also have a CNN architecture.

A.3 Varying hyperparameters
We select all parameters for the attacks by doing brute
force on the grid. We examine the efficiency of the at-
tacks by varying the number of sample hyperparameters.
In Figure 11, we can observe the results for our con-
sidered attacks. An increase in the number of samples
linearly impacts the scale attack time, but we observe

that it is sufficient to use about 100 to reach the attack
quality plateau for all attacks.

A.4 Influence of WER on attacks effec-
tiveness

We evaluate the Concat SF and Concat FGSM attacks
to understand how the number of appended adversarial
tokens at the end affects the attacks’ quality. In Fig-
ure 12, we depict the result of the dependence of Adver-
sarial Accuracy on WER. From this experiment, we can
see that we increase the attack’s effectiveness by adding
more tokens at the end of the sequence.

A.5 Connection between attacks met-
rics and sequence lengths

We are also interested in the connection between the at-
tacks’ metrics and the length of the initial transaction
sequences. In Figure 13, we assess the dependence of
Adversarial Accuracy on sequence length. We divide all
transaction records sequences into five groups according
to their length. Each point corresponds to the center
of one of five length intervals. Then, on each interval,
we record the number of attacks where the initial label
does not change. From our observations, we conclude
that long sequences are more robust to the attacks, while
short adversarial sequences are more vulnerable to the
attacks because of the absence of long-term patterns in
them. Also, we want to understand the relationship be-
tween the sequence lengths and the number of adversar-
ial tokens required in the sequence to lead to misclassifi-
cation. Our results are in Figure 14. We must add more
adversarial tokens to the long sequences, so the target
classifier generates a wrong prediction compared to the
short sequences.

14


	1 Introduction
	1.1 Novelty

	2 Related work
	3 Methods
	3.1 Attack methods
	3.2 Defense methods

	4 Data
	5 Experiments
	5.1 Metrics
	5.2 Overall attack quality
	5.3 Dependence on the architecture
	5.4 Defenses from adversarial attacks
	5.4.1 Adversarial training
	5.4.2 Adversarial detection

	5.5 Dependence on additional amount
	5.6 Closer look at generated sequences

	6 Conclusion
	A Research Methods
	A.1 Implementation details
	A.2 Alternative model architectures
	A.3 Varying hyperparameters
	A.4 Influence of WER on attacks effectiveness
	A.5 Connection between attacks metrics and sequence lengths


