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The intrinsic hardware imperfection of WiFi chipsets manifests itself in the transmitted signal, leading to
a unique radiometric fingerprint. This fingerprint can be used as an additional means of authentication
to enhance security. In fact, recent works propose practical fingerprinting solutions that can be readily
implemented in commercial-off-the-shelf devices. In this paper, we prove analytically and experimentally
that these solutions are highly vulnerable to impersonation attacks. We also demonstrate that such a unique
device-based signature can be abused to violate privacy by tracking the user device, and, as of today, users do
not have any means to prevent such privacy attacks other than turning off the device.

We propose RF-Veil, a radiometric fingerprinting solution that not only is robust against im-
personation attacks but also protects user privacy by obfuscating the radiometric fingerprint of the
transmitter for non-legitimate receivers. Specifically, we introduce a randomized pattern of phase er-
rors to the transmitted signal such that only the intended receiver can extract the original fingerprint of
the transmitter. In a series of experiments and analyses, we expose the vulnerability of adopting naive ran-
domization to statistical attacks and introduce countermeasures. Finally, we show the efficacy of RF-Veil
experimentally in protecting user privacy and enhancing security. More importantly, our proposed solution
allows communicating with other devices, which do not employ RF-Veil.
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1 INTRODUCTION
The omnipresence of WiFi devices in our daily lives demands strong and quantifiable security

and privacy mechanisms to protect us from attackers. WiFi security mechanisms traditionally
reside above the physical layer. This can be augmented by using physical layer characteristics (e.g.,
channel fading, interference, hardware impairments), which further enhance the security of WiFi.
In fact, physical layer security gained momentum after a chain of acute vulnerabilities rendered
these high-layer security mechanisms unsecure. This includes the disastrous RC4 vulnerability in
WEP [12] as well as the more recent attacks on WPA2 (e.g., KRACK [37] and Kr00k [7]). We have
also witnessed a variety of masquerading attacks in which the adversary mounts a machine-in-the-
middle (MitM) attack by creating a rogue access point (AP), mimicking the identity (i.e., SSID) of
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Fig. 1. WiFi radiometric fingerprints of 5 identical phone (Samsung Galaxy S6). Fig. 1a shows that the
fingerprints differ from one another even though the chipsets belong to the same series and manufacturer, thus
allowing to distinguish among multifarious devices. Fig. 1b shows that the devices can be distinguished with
96.5% accuracy using a simple mean absolute error (MAE)-based classifier (MAE threshold = 4.5◦).

a legitimate AP. It has been shown that physical layer security, in particular, radiometric (radio
frequency) fingerprinting can thwart such attacks [5, 21, 23].

Radiometric fingerprinting techniques rely on measuring and extracting device-specific imperfections
of the transmitter RF circuitry embedded in the emitted signal, which manifest in form of negligible
but distinguishable errors, e.g., in phase (e.g., [23]) or frequency (e.g., [18]). These imperfections are
so individualized that even chipsets from the same manufacturer have different fingerprints [5, 23].
In Fig. 1a, we demonstrate that the radiometric fingerprint1 of five identical phones with the same
WiFi chipset are visually distinguishable. Thus, it is not surprising that these devices can be easily
differentiated from one another with high success ratio (i.e., 96.5%). Such degree of accuracy, on the
one hand, reveals the potential of radiometric fingerprinting for achieving accurate authentication,
thus enhancing security. On the other hand, it raises major privacy concerns since adversaries can
locate/track devices using these unique fingerprints. Our work is motivated by the potential of
radiometric fingerprinting in coping with security and privacy challenges.

Challenge I: Privacy. Any unique identifier which can be easily measured/accessed by an
adversary poses a significant privacy threat. Indeed, this is the motivation behind MAC address
randomization inWiFi or temporary identifiers in cellular networks to prevent potential adversaries
from tracking users. Radiometric fingerprints expose users to the same privacy vulnerability, and
as of today, users do not have any means to prevent such privacy attacks other than turning off the
device. While randomizing the physical layer characteristics of the signal is a plausible solution
to enhance privacy, such procedure may degrade the communication link and disrupt or prevent
legitimate radiometric fingerprinting, which brings us to the next challenges.

Challenge II: Security. Radiometric fingerprints are typically considered a secure anchor for
device authentication. Still, they are collectible by anyone in the vicinity of the transmitter who is
capable of "overhearing" the packets, e.g., 50-100 meters for WiFi. This exposes the fingerprinting
methods to impersonation attacks. Initial proposals argued that the cost of mimicking the fingerprints
is too high [31]. To date, a wide range of software-defined radios (SDRs) costing from a few hundred
(up to a few thousand) euros can collect and forge the fingerprints of other devices, e.g., through
modifying the phases of emitted signals, as shown in Section 2.2. This issue is further exacerbated
by the emergence of WiFi firmware patching tools [34], which enables commercial WiFi chipsets
to shape their signals and impersonate other devices.

Challenge III: Allowing for legitimate radiometric fingerprinting. There are several so-
lutions to hide ones’ fingerprint: (i) Jamming, which defeats the primary purpose of WiFi, i.e.,
communication; (ii) Constructive interference. The seminal work of Oh et al. on location privacy [25]
1These fingerprints are extracted from non-linear phase errors derived from device-specific hardware imperfections [23]
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and recent literature on privacy against WiFi sensing [26, 40] use coordinated transmissions or
a secondary signal repeater to obfuscate the physical layer information, which are not scalable
and can be costly due to reliance on secondary devices; (iii) Fingerprint randomization at the trans-
mitter has the advantage of scalability, but it can disrupt the communication link by distorting
the channel estimation at the receiver. In [8], the authors randomize the transmitted signal to
obfuscate device-free localization but their approach introduces marginal impact on the quality of
the communication. Furthermore, we must ensure that the randomization is reversible to allow
legitimate fingerprinting.

1.1 Our approach
In this paper, we propose RF-Veil, a scalable approach that enhances the user privacy by

obfuscating the radiometric fingerprints of the device from adversaries while allowing the use
of channel state information (CSI)-based fingerprinting at legitimate receivers to strengthen the
security of the network.
In essence, RF-Veil adds a crafted randomized phase noise to the signal at the transmitter such

that the radiometric fingerprints are obfuscated, but the quality of communication remains intact.
Furthermore, we facilitate fingerprint extraction through a low-overhead synchronized random noise
generation process between legitimate transmitters and receivers. The properties of RF-Veil are:

Privacy-preserving. The latest radiometric fingerprinting solutions extract device-specific
phase errors from the CSI [18, 23]. RF-Veil introduces deliberate phase noise to the subcarriers in
the OFDM symbols on a per-frame basis such that the adversary can no longer estimate the actual
radiometric fingerprint by analyzing the CSI, thus preventing the device identification/tracking via
radiometric fingerprint.

Secure against impersonation. We strive to maintain the possibility of legitimate fingerprint-
ing without exposing the user to impersonation attacks. To this aim, we first devise a technique
(synchronized phase noise generation), which enables only the legitimate receivers to denoise the
transmitted signals and extract the original fingerprint. Secondly, we apply the obfuscation on a
per-frame basis to eliminate the possibility of impersonation or reply attack via over-the-air packet
sniffing. The effectiveness of this method is proven both theoretically and experimentally, even in
presence of sophisticated adversaries with the capability of realizing statistical attacks.

Dualmode. RF-Veil is designed to allow the legitimate use of wireless fingerprinting techniques
(e.g., for authentication as in [23]) in presence of our obfuscation method. Furthermore, a reduced
form of RF-Veil can be used to obfuscate the fingerprint of the device in order to only protect the
device’s privacy when fingerprinting is not used as an additional security feature, i.e., reversing
the phase noise is not required.We refer to this second operational mode as RF-Veil-Standalone.
In this mode, we can hide the fingerprint of the transmitter by executing the obfuscation blocks
without any handshake or coordination with other receivers. As a result, we can ensure privacy
protection in a much broader scenario, e.g., communicating with non-RF-Veil-enabled devices, in
absence of any active connections, or in connection establishment phase.

Low-overhead and scalable. RF-Veil has low overhead from both computational and signal-
ing/control message perspective. Our simple yet effective obfuscation technique enabled extraction
of CSI-based radiometric fingerprints at the legitimate receiver without any additional complex
signal processing. Furthermore, RF-Veil is highly scalable since it is implemented directly at the
transmitter and does not rely on any secondary device [26, 40]. Therefore, any WiFi device can
obfuscate its fingerprint easily and independently.
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Fig. 2. IEEE 802.11ac PHY frame format.

1.2 Our contributions
To the best of our knowledge, this is the first work exposing privacy and security vulnerabilities

of radiometric fingerprints as well as devising practical methods to resolve them. Note that prior
works such as [27, 28] propose techniques for preventing the exposure of unencrypted fields
(e.g., headers and payload information) to counter, for instance, reactive jamming attacks that
can adapt to the rate of transmission. While the approach prevents data analysis and acquisition
of transmission cues, it does not protect the radiometric fingerprint of the device. The following
summarizes our main contributions: (i) Showing vulnerabilities of recent CSI-based radiometric
fingerprinting solutions [5, 23, 38] to impersonation attacks (Section 3); (ii) Proposing a method for
injecting artificial noise to the fingerprint without impacting communication quality (Section 4).
(iii) Designing RF-Scope, a benchmarking tool to assess the effectiveness of radiometric fingerprint
obfuscation against statistical attacks (Section 5). Specifically, RF-Scope is a maximum-likelihood-
based estimator of the CSI, which we prove to be near-optimal through derivation of Cramer-Rao
bounds (Appendix B); (iv) Devising RF-Veil, a fingerprint obfuscation framework that circumvents
the privacy issues without impacting the communication quality (Section 6). (v) We prove the
efficacy of our proposals, both analytically and experimentally.

2 FINGERPRINTING PRIMER
Radio signal analysis to identify devices and distinguish between friends and foes dates back to

the time of the Vietnam war. In the same line, radiometric fingerprinting has gained momentum in
recent years with the surge of attacks that leverage hardware impairments to breach privacy and
security in wireless networks. Recently, CSI-based radiometric fingerprinting gained popularity
due to the availability of CSI extraction tools [14, 17, 38]. These tools allow per-frame CSI collection
from commercial WiFi chipsets (e.g., Intel, Qualcomm, Broadcom), making CSI-based fingerprinting
practical and feasible for all devices. In the following, a short overview of CSI estimation and
CSI-based fingerprinting is provided.

2.1 Channel estimation in WiFi
As a prelude to CSI-based fingerprinting, we describe channel estimation in WiFi throughout this

section. Fig. 2 shows the IEEE 802.11ac PHY frame structure, wherein we recognize four distinct
fields: short training field (STF), long training field (LTF), SIG, and DATA (cf. 17.3 in [35]). The
receiver uses the STF field for signal detection, automatic gain control, time synchronization, and
coarse carrier frequency offset (CFO). The LTF field is employed for fine CFO estimation and channel
estimation. Channel estimation is performed by sending BPSK pilots over the LTF subcarriers of
two consecutive OFDM symbols. The SIG and DATA fields convey the MCS level and the payload,
respectively. The OFDM symbols in the SIG and DATA fields are equalized using the channel
estimated by the preceding LTF field. The prefix "L-" denotes the legacy fields, which are included
for compatibility with IEEE 802.11a.
Let 𝐾 denote the number of subcarriers and s = [𝑠1, · · · , 𝑠𝐾 ]𝑇 ∈ C𝐾×1 the BPSK pilot symbols

(defined in Equation 19-23 of [35]). Also, let F ∈ C𝐾×𝐾 and F𝐻 ∈ C𝐾×𝐾 denote the discrete Fourier
transform (DFT) matrix and the inverse DFT (IDFT) matrix, respectively. Moreover, FF𝐻 = I, with
( ·)𝐻 representing the Hermitian transpose. The discrete-time OFDM symbol is given by x = F𝐻 s
[1]. In order to improve the signal robustness against multi-path interference, the periodic OFDM
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symbol x̃ is produced by appending the cyclic prefix (CP) to x. The CP consists of the last 𝐿 samples
of x, thus x̃ =

[
x𝑇[𝐾−𝐿+1:𝐾 ] , x

𝑇
]𝑇

∈ C(𝐾+𝐿)×1. Appending the CP to x transforms the linear convolution
between x̃ and the channel c =

[
𝑐1, · · · , 𝑐 𝐽

]𝑇 ∈ C𝐽 ×1 (with 𝐽 < 𝐿 paths) into a circular convolution.
This has the advantage of simplifying OFDM demodulation and equalization at the receiver. Upon
transmitting x̃ over the channel c, the receiver obtains r̃ = x̃ ∗ c, where ∗ denotes the convolution
operator. To remove the impact of inter-block interference between adjacent LTF frames (caused
by multi-path propagation), we discard the first 𝐿 elements of r̃, thus yielding r = r̃[𝐿+1:𝐿+𝐾 ] ∈ C𝐾×1.
The received signal r can be expressed as:
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where w ∼ CN
(
0, 𝜎2I

) denotes circularly-symmetric complex Gaussian noise. The receiver demod-
ulates the received signal r by multiplying it with F to obtain y = Fr = FCx + Fw. The convolution
matrix C ∈ C𝐾×𝐾 is circulant, which is a consequence of adding the CP to the transmitted signal. Cir-
culant matrices can be expressed via eigen-decomposition as C = F𝐻HF, where H = diag ( [ℎ1, · · · , ℎ𝐾 ])
represents a diagonal matrix containing the eigenvalues of C [13]. As a result, the demodulated
signal y collapses to y = F

(
F𝐻HF

) (
F𝐻 s

)
+ F𝐻w = Hs +w. More specifically,©«
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Thus, for any subcarrier 𝑘 ∈ K = {1, · · · , 𝐾 }, the received symbol is expressed as
𝑦𝑘 = ℎ𝑘𝑠𝑘 + 𝑤𝑘 = |ℎ𝑘 | 𝑒 𝑗𝜙𝑘 𝑠𝑘 + 𝑤𝑘 , (2)

which shows that the channel affects each pilot symbol 𝑠𝑘 by a complex-valued factor ℎ𝑘 = |ℎ𝑘 | 𝑒 𝑗𝜙𝑘
and additive noise 𝑤𝑘 . Since the pilot symbols s are known by the receiver, the CSI vector h =

[ℎ1, · · · , ℎ𝐾 ]𝑇 can be obtained upon equalizing each received symbol 𝑦𝑘 with the compensation
factor 𝑠∗

𝑘

|𝑠𝑘 |2
. Thus, the estimated channel in subcarrier 𝑘 is given by:

ℎ̃𝑘 = ℎ𝑘𝑠𝑘
𝑠∗
𝑘

|𝑠𝑘 |2
+ 𝑤𝑘

𝑠∗
𝑘

|𝑠𝑘 |2
= |ℎ𝑘 | 𝑒 𝑗𝜙𝑘 + 𝑤𝑘 . (3)

2.2 CSI-based fingerprinting
CSI-based radiometric fingerprinting techniques consist of analyzing the CSI to extract features

that are unique to the transmitting device. Specifically, Zhuo et al. [41] found that WiFi chipsets
exhibit non-linear phase errors that change across subcarriers and are analogous to a sinusoidal
function, as shown in Fig. 1a. These phase errors are caused by I/Q imbalance as a result of hardware
imperfections. It was shown in [41] that these errors are latent signatures that can be extracted
upon removing the linear phase errors from the CSI. Building on this finding, Liu et al. [23] harness
these non-linear errors as CSI-based radiometric fingerprints for identification, thus preventing
impersonation by unauthorized WiFi devices. Following the same notation in (2) and (3), we denote
the CSI phases by 𝚽 = [𝜙1, · · · , 𝜙𝐾 ]𝑇 , which can be further decomposed into

𝚽 = 𝝋 + 𝝎 + 𝜽 + 𝝍︸                   ︷︷                   ︸
linear errors

+ 𝝐︸︷︷︸
non-linear error (fingerprint)

, (4)
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Fig. 3. Adversary model. We consider an impersonation
scenario, where the adversary has captured the fingerprint
of the victim (legitimate user). The adversary forges the
fingerprint of the victim by introducing additional phase
rotations to its own fingerprint.

time[minutes]
0 1 2 3 4 5 6 7 8 9 10

Phone 1

Phone 2

Phone 3

Phone 4

Phone 5
Actual
Predicted

Fig. 4. Adversary prediction on the presence
time of 5 different phones turned on and off at
different time intervals. An adversary can accu-
rately determine the presence of a specific user in a
network by tracking the radiometric fingerprints.

where 𝝋 ∈ R𝐾×1 represents the phase of the signal at the transmitter while 𝝎 ∈ R𝐾×1, 𝜽 ∈ R𝐾×1 and
𝝍 ∈ R𝐾×1 denote the phase errors due to sampling frequency offset, frame detection delay and time
of flight, respectively. By using the mirror subcarriers, the linear part of the phase errors can be
canceled [23]. Hence, the non-linear phase errors 𝝐 ∈ R𝐾×1 are obtained by the following equation

𝝐 = 𝚽 −
(
2𝜋_ · v + 1𝑄★

)
, (5)

where v =
[
−𝐾/2, · · · ,−1, 1, · · · , 𝐾/2

]𝑇 and _ is a constant used for nullifying the linear phase rotation
in a specific frame whereas 𝑄★ is used for phase error normalization [23].

The authors show that the non-linear phase errors exhibit both time and location invariance and
change significantly even across devices of the same manufacturer. As a result, these non-linear
phase errors can be used as highly distinctive radiometric fingerprints for device identification
by leveraging the above described approach in [23]. Even though the difference is very small, the
phones are distinguishable from one another, as illustrated in Fig. 1b. As a result, the authors
conclude that these fingerprints can be used as countermeasures against impersonation attacks.
However, we show in the next section that impersonation is indeed possible.

3 ADVERSARY MODEL AND ATTACK SCENARIO
In this section, we introduce the adversary model and devise two attack scenarios, which aim at

breaching privacy and security.

3.1 Adversary model
We consider a scenario where the legitimate device (i.e., client) communicates with an AP and

vice versa, see Fig. 3. We further consider an adversary in transmission range of the legitimate
communication with the following capabilities: (i) sniffing packets sent by the legitimate device; (ii)
extracting the fingerprint of the legitimate device from the CSI; (iii) knowing its own fingerprint and
the ability to change it arbitrarily. Hence, the adversary can breach the user privacy upon extracting
the fingerprint from the sniffed packets. Even if the client employs MAC address randomization to
remain anonymous, the adversary can identify and track the client via the radiometric fingerprint
(Attack scenario I). Further, having the ability to change its fingerprint arbitrarily, the adversary
can subsequently modify its own fingerprint to impersonate the client, thus compromising the
security of the system (Attack scenario II). Note that we do not consider an adversary launching a
denial-of-service attack by jamming the WiFi signals as this will disrupt the communication in
WiFi channels as a whole.
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Fig. 6. Impersonation attack on CSI-
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sonation is feasible when the adversary is
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phase rotations per subcarrier to match
the fingerprint of the victim.

3.2 Attack scenario I: Violating user privacy by tracking the radiometric fingerprints
This attack focuses on tracking the presence of specific devices in the network using their radio-

metric fingerprints. In this scenario, the privacy-invading adversary silently sniffs the encrypted
traffic over a WiFi network, extracts the fingerprints from the CSI, and creates a database recording
time and duration in which a device was present in the vicinity. In order to show the efficacy of
this attack experimentally, we setup an adversary and 5 phones that are entering and leaving the
network at different times over the course of 10 minutes. We depict the results of this experiment
in Fig. 4, in which the ground truth is presented in solid bars, whereas the hatched bars indicate
the adversary’s prediction.We observe that the adversary is able to determine the presence time of the
different phones with fairly high accuracy. Note that MAC layer anonymization techniques cannot
stop our adversary from tracking the presence of users across networks since such techniques do
not conceal the inherent physical cues of the device, i.e., radiometric fingerprint. In an era where
smartphones, smartwatches, and other WiFi-enabled wearables are omnipresent, these simple
attacks expose us to significant privacy risks at workplace and at home.

3.3 Attack scenario II: Compromising security via impersonation attacks
Radiometric fingerprinting can enhance the security of networks by enabling means of additional

authentication based on physical layer properties of devices [5, 21, 23]. However, we found that an
adversary can easily impersonate other devices exploiting the fingerprinting scheme proposed by
Liu et al. [23]. We mount such an impersonation attack using an SDR as follows: we first compute
the fingerprint of the SDR by connecting it to another receiver (e.g., another SDR, signal analyzer).
This needs to be done only once. Next, we measure the fingerprint of the target device, which only
requires the adversary to sniff one (encrypted or unencrypted) packet sent by the target device.
Knowing the proprietary fingerprint and that of a target, we can compute the phase offset on
each subcarrier. These phase offsets are added to the LTF subcarriers and all subcarriers in the
succeeding OFDM symbols (cf. Fig. 2) at the SDR. Consequently, the fingerprint extracted by the
receiver matches that of the target device. The SDR provides flexible processing capabilities that
allow us to introduce phase rotations to the transmission chain easily. In Fig. 6, we demonstrate
how accurately the SDR (i.e., adversary) can replicate the fingerprint of another device (i.e., victim).
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Fig. 7. Diagram illustrating the phase randomization method at the transmitter. Additional random phase
rotation at every subcarrier protects the fingerprint of the transmitter and therefore prevents impersonation.

We now analyze the efficacy of the impersonation attack in a real-world scenario (i.e., an office
building). We set up an AP which employs the CSI-based fingerprinting mechanism in [23] for
authentication. To show the severity of the attack, we mount the attack in different locations in
the vicinity of the victims, as depicted in Fig. 5. The adversary is transmitting 1000 packets in
each location from which the access point calculates the fingerprints and compares them against a
reference fingerprint of the legitimate user. We conduct this experiment for each of the WiFi bands
(i.e., 2.4 and 5 GHz) and show the results in the table in Fig. 5. In the 2.4 GHz band, we observe
that the adversary can successfully impersonate the victim in all locations. While the attack is
very successful in line-of-sight scenarios (i.e., inside the lab), we observe that it still yields very
high success rates in non-line-of-sight (NLOS) scenarios, e.g., the hallway or even in the office
across the hallway. We kept all doors closed throughout the experiments. We also observe that the
impersonation attack is possible even in highly challenging scenarios, i.e., behind a 30-centimeter
thick ferro-concrete wall. However, the success rate is lower due to high signal attenuation. Due to
higher propagation and penetration loss at 5 GHz band, the success rate in the NLOS locations (i.e.,
L5 to L11) is lower. In particular, in locations L9 to L11, no signal was received by the AP. However,
locations L5 to L8 yield similar results in 5 GHz and 2.4 GHz bands. We conclude that, as long as the
adversary is in range of the access point, they can successfully effectuate an impersonation attack
regardless of the frequency band used by the access point.

3.4 Takeaway
In this section, we emphasize the need for a secure and privacy-preserving fingerprinting solution.

Existing fingerprinting solutions based on CSI are capable of distinguishing between different devices,
even of the same model, allowing adversaries to track the presence of users in a network. Further, we
show that an adversary can successfully impersonate the victim’s device even through thick composite
steel–concrete walls, which are among the most disruptive construction materials for wireless signals.
Hence, there are two main takeaway messages from this section: (𝑖) device fingerprints can be used
to invade privacy of users and, as of the writing of this paper, there is no protection for users; and (𝑖𝑖)
active deployments of CSI-based fingerprinting schemes can be attacked.

4 HOW TO INJECT ARTIFICIAL NOISE TO FINGERPRINTS WITHOUT IMPACTING
COMMUNICATION

Here we discuss our method for injecting artificial noise (i.e., randomized phase rotation) to the
radiometric fingerprints. We further prove why it does not impact the quality of communication.
Randomizing the radiometric fingerprints is the first logical step towards maintaining user

privacy. However, if not carefully designed, the randomization can potentially break/degrade the
communication link. As described in Section 2.1, the WiFi receiver relies on the LTF field for
channel estimation. To ensure that obfuscation via randomization does not disrupt communication,
we maintain the introduced phase rotations on each subcarrier constant for the duration of the whole
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Fig. 9. Throughput before and after obfuscation. The
throughput is not affected by the phase rotations, as
these can be reverted at the receiver.

frame. As a result, the estimated CSI from the preambles remains valid for the succeeding VHT-
DATA frame, as shown in Fig. 2, thus allowing successful decoding of information. In the following,
we describe the process. Fig. 7 shows the transmitter chain of our proposed fingerprint obfuscation
method, in which we include deliberate phase randomization across all OFDM subcarriers. Having
the pre-shared key and randomization index, the receiver can decode the message and extract the
fingerprint without impacting the communication.

Let 𝑧𝑘 denote the phase rotation in subcarrier 𝑘 intentionally included by the transmitter. From (2),
the signal received in the 𝑘-th subcarrier is given by 𝑦𝑘 = ℎ𝑘𝑠𝑘𝑒

𝑗𝑧𝑘 + 𝑤𝑘 . Using (3), the CSI at the
receiver is expressed as

ℎ̃𝑘 = ℎ𝑘𝑒
𝑗𝑧𝑘 + 𝑤𝑘 = |ℎ𝑘 | 𝑒 𝑗 (𝜙𝑘+𝑧𝑘 ) + 𝑤𝑘 . (6)

Compared to (3), the factor 𝑒 𝑗𝑧𝑘 in (6) obfuscates the legitimate CSI by shifting its phase in-
formation. As a result, the phase 𝑧𝑘 will appear in the radiometric fingerprint extracted by an
adversary, thus safeguarding the device original fingerprint. The effects of this phase randomization
mechanism can only be reverted by a trusted receiver that is aware of 𝑧𝑘 . In particular, we assume
that the phase 𝑧𝑘 is a realization of a random variable 𝑍𝑘 , that can be generated locally at the receiver
since the pre-shared key to the random generator is known. As a result, the receiver generates
𝑧𝑘 and multiplies the perturbed ℎ̃𝑘 in (6) by 𝑒−𝑗𝑧𝑘 yielding 𝑒−𝑗𝑧𝑘

(
|ℎ𝑘 | 𝑒 𝑗 (𝜙𝑘+𝑧𝑘 ) + 𝑤𝑘

)
= |ℎ𝑘 | 𝑒 𝑗𝜙𝑘 + 𝑤𝑘 ,

which is equivalent to (3), and therefore showing that the CSI remains unaffected as the phase
randomization can be removed. In addition, we denote the capacity of the channel in (3) by
𝐶′ = log2

(
1 +

�� |ℎ𝑘 | 𝑒 𝑗𝜙𝑘 ��2 /𝜎2
)
= log2

(
1 + |ℎ𝑘 |2 /𝜎2

)
. Similarly, the channel capacity of (6) is denoted by

𝐶′′ = log2
(
1 +

�� |ℎ𝑘 | 𝑒 𝑗 (𝜙𝑘+𝑧𝑘 ) ��2 /𝜎2
)
= log2

(
1 + |ℎ𝑘 |2 /𝜎2

)
, thus revealing the equivalence𝐶′ ≡ 𝐶′′. This shows

that the channel capacity before and after randomization does not change. Therefore, for a given
MCS level, the throughput is not altered by phase randomization as long as the phase 𝑧𝑘 is generated
correctly at each receiver. We generalize this idea for every subcarrier 𝑘 ∈ K. In Fig. 8, we illustrate
the original fingerprint of a device as well as the obfuscated versions, in which the random phase
rotations are obtained from uniform and Gaussian distributions, i.e., 𝑍𝑘 ∼ U

(
`𝑘 , b

2
𝑘

) and 𝑍𝑘 ∼ N
(
`𝑘 , b

2
𝑘

)
with `𝑘 = 0 deg and b2

𝑘
= 60 deg2 (deg ≡ ◦). Since the additional randomized phase 𝑧𝑘 differs for

each subcarrier, the adversary cannot leverage the linear phase error difference among subcarriers
to identify the users. In particular, if the same phase rotation 𝑧𝑘 is used for all 𝐾 subcarriers, the
original fingerprint can be easily extracted via the method proposed in [23] as such method exploits
the phase difference among adjacent subcarriers, which in this case would be constant and easy to
remove.Moreover, we corroborate experimentally that the throughput is not affected by our pro-
posed obfuscation method. In particular, for the obfuscated signals depicted in Fig. 8, we show the
throughput in Fig. 9.
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Fig. 10. Collected CSI measurements with additional synchronization phase rotations obtained from a
zero-mean unit-variance Gaussian probability density function.

In the next section, we discuss the robustness of this approach against statistical attacks.

5 RF-SCOPE: A BENCHMARKING TOOL FOR ASSESSING VULNERABILITY TO
STATISTICAL ATTACKS

Statistical attacks are common in cryptography where the adversary exploits statistical weak-
nesses of the underlying random number generators or hashing algorithms to discover the secrets,
e.g., birthday attacks [3]. In the course of our experiments, we discovered that an adversary can
mount similar attacks on phase randomization to restore the original fingerprint. Viewing this as
an estimation problem, we devise RF-Scope, which is a maximum likelihood-based approach design
to restore the legitimate (unimpaired) CSI from a set of captured CSI measurements with obfuscated
fingerprints. Thus, if the legitimate CSI is restored accurately, the radiometric fingerprint can be
extracted by the method described in Section 2.2 and used for malicious purposes. In essence, we
designed RF-Scope as a tool to evaluate the efficiency of RF-fingerprint obfuscation against statistical
attacks. Specifically, we designed an experiment in which the adversary captures 10000 CSI samples
(within ∼ 10 seconds) and uses RF-Scope to estimate the legitimate CSI. This experiment showed
that an adversary can denoise the fingerprint even without the knowledge of the probability density
function used for phase randomization. We will elaborate on RF-Scope and the experimental results
in Section 5.1. We prove that this vulnerability stems from the zero-mean nature of the selected
distributions, see Section 5.2.
Fig. 10 shows the magnitude and phases of CSI measurements. We assume that the channel

impulse response is invariant for a short interval 𝜏 compliant with the channel coherence time 𝑇𝑐 .
Thus, small-scale oscillations in the CSI magnitude are attributed to noise. On the other hand, the
CSI phase changes abruptly between contiguous measurements due to phase randomization.

5.1 A maximum-likelihood-based estimator for evaluating statistical attacks
RF-Scope minimizes the overall approximation error between the unknown CSI and the col-

lected measurements. The premise is that adversaries do not have information on the probability
density function used for CSI phase randomization. Let M = [m1, · · · ,m𝑁 ] ∈ C𝐾×𝑁 denote a ma-
trix that collects 𝑁 measurements in all 𝐾 subcarriers, where vector m𝑛 ∈ C𝐾×1 represents the
CSI (contaminated with phase randomization and noise) in the 𝑛-th captured LTF frame. Also,
let u =

[
|ℎ1 | 𝑒 𝑗𝜙1 , · · · , |ℎ𝐾 | 𝑒 𝑗𝜙𝐾

]𝑇 ∈ C𝐾×1 denote the unknown unrandomized CSI vector. Further,
𝚫 = [m1 − u, · · · ,m𝑁 − u] = M −

(
1𝑇 ⊗ u

) represents the error matrix between the unknown CSI u and
the measurements M, where ⊗ is the Kronecker product. We define the following problem:

B : u★ = argmin
u∈C𝐾×1

M − 1𝑇 ⊗ u
2
F ,︸              ︷︷              ︸

𝐽

(7)

where ∥ · ∥2F denotes the Frobenius norm. To solve problem B, we have used several Kronecker product
properties specified inAppendix A. Recalling that ∥𝚫 ∥2F = Tr

(
𝚫
𝑇
𝚫

)
, the objective function can be recast
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Fig. 11. Restored fingerprint upon CSI denoising.We observe that an adversary capable of mounting a statistical
attack can obtain the original fingerprint even after randomization.

as 𝐽 = Tr
( (
M− 1𝑇 ⊗ u

)𝑇 (
M− 1𝑇 ⊗ u

) ). By employing Property 1 and Property 2, the objective collapses to
𝐽 = Tr

(
M𝑇M−

(
1 ⊗ u𝑇

)
M−M𝑇

(
1𝑇 ⊗ u

)
+L⊗

(
u𝑇 u

) ), where L = 11𝑇 . To find a critical point u★ that minimizes
𝐽 , we compute the gradient of 𝐽 with respect to u and equate it to zero, i.e., ∇u 𝐽 = 0. To this purpose,
we resort to the use of differentials. Thus, 𝑑 𝐽 = Tr

(
−

(
1 ⊗ 𝑑u𝑇

)
M −M𝑇

(
1𝑇 ⊗ 𝑑u

)
+ L ⊗

(
𝑑u𝑇 u

)
+ L ⊗

(
u𝑇𝑑u

) ),
where 𝑑 denotes the differential operator and 𝑑M = 0, 𝑑L = 0. Using Property 2, Property 3 and Property
4, the differential of 𝐽 is expressed as 𝑑 𝐽 = Tr

(
−

(
M1

)
⊗𝑑u𝑇 −1𝑇 ⊗

(
M𝑇𝑑u

)
+L ⊗

( (
𝑑u𝑇

)
u
)
+L ⊗

(
u𝑇𝑑u

) ). Now,
by means of Property 4 and Property 5 we obtain 𝑑 𝐽 = 2Tr

( (
−

(
M1

)𝑇 + 𝑁u𝑇
)
𝑑u

)
. The Frobenius inner

product of two matrices A and B is defined as ⟨A,B⟩F ≡ Tr
(
A𝑇 B

). Therefore, 𝑑 𝐽 = 2 ⟨−M1 + 𝑁u, 𝑑u⟩F, from
where we obtain ∇u 𝐽 = 2

(
−M1 + 𝑁u

). Upon equating ∇u 𝐽 to zero, we obtain u★ = 1
𝑁
M1 = 1

𝑁

∑𝑁
𝑛=1 m𝑛 .

The denoised CSI phase 𝚽 for all subcarriers is computed as

𝚽
★ = arctan

(
ℑ𝔪

{
1
𝑁

𝑁∑︁
𝑛=1

m𝑛

}
⊘ ℜ𝔢

{
1
𝑁

𝑁∑︁
𝑛=1

m𝑛

})
. (8)

Since denoised CSI is available through (8), the radiometric fingerprint 𝝐★ can be extracted using
(5). [23] Fig. 11 shows the restored fingerprints for uniform and Gaussian distributions with mean
`𝑘 = 0◦ and variance b2

𝑘
= 60 deg2, for all subcarriers 𝑘 ∈ K. In both cases, we have collected 𝑁 = 10000

measurements. We observe that the obtained fingerprints exhibit a small deviation with respect
to the original one. When uniform distribution is used, the mean absolute error (MAE) is 0.7489◦,
whereas that of Gaussian distribution is 1.2252◦. Although both distributions have a variance of
b2
𝑘
= 60 deg2, for the uniform case, this signifies that the range of phase rotations is bounded to

[−99.2◦; 99.2◦ ]. However, for the Gaussian case, the range of rotation phases spans [−180◦; 180◦ ].
InAppendix B, we analyze the RF-Scope estimator under the Cramer-Rao bound (CRB) framework.

We show that RF-Scope attains near-optimality in estimating the CSI.

5.2 Statistical rationale for CSI denoising feasibility via RF-Scope

If an efficient estimator does not exist for an unknown variable, the maximum-likelihood esti-
mation often yields an asymptotically efficient estimator for sufficiently large number of samples.
Based on this premise, we expect the effect of randomization to be averaged out. Thus, motivated
by the outcome of RF-Scope, we justify why the effect of randomization, introduced in Section 4,
can be removed. By assuming that an adversary is capable of collecting an infinite number of
measurements, we RF-Scope within the law of large numbers; which states that the average of
outcomes obtained from a large number of experiments approximates the expected value.
Assumption: Let 𝑓𝑍𝑘

(
𝑧𝑘

)
be a symmetric zero-mean probability density function governing the random

phase rotation 𝑍𝑘 , spanning an interval with upper and lower bounds 𝑧𝑈𝑘 = 𝑅𝑘 and 𝑧𝐿𝑘 = −𝑅𝑘 , respectively.
Invoking the assumption above, the expected value of the corrupted CSI information in sub-

carrier 𝑘 according to (6) is defined as E
[
ℎ̃𝑘

]
= E

[
ℎ𝑘𝑒

𝑗𝑍𝑘
]
+ E [𝑤𝑘 ], where E

[
ℎ𝑘𝑒

𝑗𝑍𝑘
]
= ℎ𝑘E

[
𝑒 𝑗𝑍𝑘

]
=
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ℎ𝑘
∫ 𝑅𝑘
−𝑅𝑘

𝑒 𝑗𝑧𝑘 𝑓𝑍𝑘
(
𝑧𝑘

)
𝑑𝑧𝑘 . Using integration by parts, E [

𝑒 𝑗𝑍𝑘
] can be recast as,

E
[
𝑒 𝑗𝑍𝑘

]
= 2 sin

(
𝑅𝑘

)
𝑓𝑍𝑘

(
𝑅𝑘

)
−

∫ 𝑅𝑘

−𝑅𝑘
sin

(
𝑧𝑘

)
𝑓 ′𝑍𝑘

(
𝑧𝑘

)
𝑑𝑧𝑘 + 𝑗

∫ 𝑅𝑘

−𝑅𝑘
cos

(
𝑧𝑘

)
𝑓 ′𝑍𝑘

(
𝑧𝑘

)
𝑑𝑧𝑘 = 𝛽real

𝑘
+ 𝑗𝛽 imag

𝑘
, (9)

where the equivalence
∫
𝑢𝑑𝑣 = 𝑢𝑣−

∫
𝑣𝑑𝑢 is used assuming that 𝑢 = 𝑓𝑍𝑘

(
𝑧𝑘

), 𝑑𝑣 = 𝑒 𝑗𝑧𝑘𝑑𝑧𝑘 and 𝑓𝑍𝑘 (
−𝑅𝑘

)
=

𝑓𝑍𝑘
(
𝑅𝑘

) due to symmetry. In the following, we instantiate three fundamental corollaries that allow
us to gain insights on the characteristics of (9).
Corollary 1: If 𝑔 (𝑥) is an even function, then its derivative 𝑔′ (𝑥) is an odd function.
Corollary 2: If 𝑔 (𝑥) is even and ℎ (𝑥) is odd, then 𝑞 (𝑥) = 𝑔 (𝑥)ℎ (𝑥) is odd.
Corollary 3: If 𝑔 (𝑥) is odd, then

∫ 𝑎
−𝑎 𝑔 (𝑥)𝑑𝑥 = 0 for 𝑎 > 0.

Bymeans ofCorollary 1, we assert that 𝑓 ′
𝑍𝑘

(
𝑧𝑘

) is an odd function. Also, viaCorollary 2, the function
cos(𝑧𝑘 ) 𝑓 ′𝑍𝑘

(
𝑧𝑘

) is odd. Finally, by means of Corollary 3 the value of 𝛽 imag
𝑘

=
∫ 𝑅𝑘
−𝑅𝑘

cos
(
𝑧𝑘

)
𝑓 ′
𝑍𝑘

(
𝑧𝑘

)
= 0. As a

result, E [
ℎ𝑘𝑒

𝑗𝑍𝑘
]
= 𝛽real

𝑘
ℎ𝑘 , which shows that (on average) the CSI in every subcarrier 𝑘 is affected

only by a real-value attenuation factor 𝛽real
𝑘

without altering the phase.
Claim: When we obfuscate the fingerprints through phase randomization using symmetric zero-mean
distributions, RF-Scope produces an unbiased estimator for the CSI phase.
Harnessing this outcome, we compute the expected value of the proposed RF-Scope estima-

tor, i.e., E [
u★

]
= 1

𝑁

∑𝑁
𝑛=1 E [m𝑛 ] = 1

𝑁

∑𝑁
𝑛=1 E

[
diag

(
𝑒 𝑗z𝑛

)
h +w𝑛

] , where z𝑛 =
[
𝑍𝑛,1, · · · , 𝑍𝑛,𝐾

]𝑇 and w𝑛 =[
𝑤𝑛,1, · · · , 𝑤𝑛,𝐾

]𝑇 . Thus, E [
u★

] reduces to
E

{
u★

}
=

©«
𝛽real1 · · · 0
.
.
.

. . .
.
.
.

0 · · · 𝛽real
𝐾

ª®®®®¬
©«
|ℎ1 | 𝑒 𝑗𝜙1

.

.

.

|ℎ𝐾 | 𝑒 𝑗𝜙𝐾

ª®®®®¬
. (10)

From (10), we note that when the randomization scheme in Section 4 is used for CSI obfuscation,
its effect can be removed via RF-Scope. Essentially, the restored CSI magnitudes |ℎ𝑘 | are scaled
by 𝛽real

𝑘
but the phases 𝜙𝑘 remain unaffected. As a result, an adversary can extract the radiometric

fingerprint 𝝐 (defined in (4)) from the restored CSI phase 𝚽. In order to prevent this outcome that
infringes secrecy, a specific type of probability density function is required that prevents CSI
denoising from collected measurements. This aspect is elaborated thoroughly in Section 6.2.

5.3 Takeaway
Any system relying on randomization for improving security/privacy should prove robust against

statistical attacks. Here we propose RF-Scope to assess the vulnerability of fingerprint randomization
against these attacks. This tool will be later used to demonstrate the robustness of our proposed
fingerprint obfuscation method (i.e., RF-Veil) against statistical attacks. Furthermore, we analyze
the statistical rationale behind the aforementioned vulnerability. This analysis is then leveraged to
devise suitable countermeasures in the next section.

6 RF-VEIL: A PRIVACY- AND SECURITY-PRESERVING SOLUTION FOR
RADIOMETRIC FINGERPRINTING

In this section, we introduce our proposed technique RF-Veil, which injects crafted artificial
noise to fingerprints in order to improve the robustness of WiFi transmissions against statistical
attacks aiming at fingerprint acquisition. In Fig. 12, we illustrate the building blocks of RF-Veil.
Note that, in RF-Veil-Standalone mode, we only need a subset of the blocks at the transmitter
since the receiver does not perform any radiometric fingerprinting. To avoid repetition, we highlight
the RF-Veil-Standalone-specific blocks and the algorithm workflow in this mode in Section 6.4.

A short overview of RF-Veil. As shown in Fig. 12, the transmitter uses a random number
generator to generate a pattern that obfuscates its radiometric fingerprint on a per-frame basis. The
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Fig. 12. Schematic overview of an RF-Veil transmitter and receiver. The flow-diagram in the center depicts
the WiFi connection establishment and data exchange procedure (changes due to RF-Veil marked in red
color). The ACK messages are not shown in the figure for readability. They are not modified in RF-Veil.

random number generator follows a specific distribution that is robust against statistical attacks. The
receiver requires the seed to the random generator in order to generate the same pattern, which is
used for CSI denoising and fingerprint extraction. The details about standard compliancy, random
sequence generation, and key exchange are elaborated below.

6.1 Association
In WiFi, every new device first associates to the AP upon arrival to the network. This includes

exchanging the probe, authentication, and association request and response messages. It is within
this stage that the AP and the device establish a secure connection. In RF-Veil, we require the
access point and the client to exchange one more key, which is used as one of the inputs to the
random number generator, as shown in Fig. 7. We choose to use a pre-shared key due to ease of
implementation. However, one can leverage alternative secret key extraction methods that rely on
channel response [22]. As a result, the receiver and transmitter do not require a security handshake
in advance but use physical layer information to generate the secret keys.

At this stage, the AP can extract the real fingerprint of the client after obtaining the shared key.
We elaborate further on this in Section 6.3.

6.2 Obfuscation at the transmitter
The main task of the transmitter consists in obfuscation, as depicted on the left-hand side

in Fig. 12. For every frame, a random sequence is generated using the pre-shared key and the
synchronization index.

Pre-shared key. In our implementation, we used a 128-bit key, which is refreshed every time
the device re-associates with the AP. As a privacy protection measure, we obfuscate the fingerprint
even before the association with an AP takes place. Hence, any frame transmitted from the devices
(e.g., beacon, discovery) has an obfuscated fingerprint. In this case, it is advised to generate a new
key periodically in order to protect against statistical attacks (see Section 4 ). We leave the frequency
of key renewal as a design choice. Since renewing the pre-shared key does not impose considerable
overhead, we suggest to lean towards higher security.

Synchronization index. Attaching a synchronization index to each frame has two purposes:
(i) synchronize the random generator between the receiver and the transmitter and (ii) protect
the receiver from replay attacks. The synchronization is important because the pre-shared key
only ensures that the random generators at both ends produce the same string of random numbers.
However, if a frame is lost, then the receiver may try to de-obfuscate the frame with the wrong
pattern. To prevent this, we attach an index for each frame, so that the receiver can use this index in
combination with the pre-shared key to generate a synchronized and secure randomization pattern.
We intentionally refrained from using the existing 12-bit MAC frame sequence number due to its
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vulnerability to replay attacks. Even at low data rates, the 12-bit sequence number resets within
seconds, whereas our 32-bit sequence number takes 24 days to reset at the rate of 1000 frames per
second. We expect the WiFi connection to be re-initiated within such an interval. Even though
the exposure of this synchronization index does not expose legitimate users to security threats, it
can still be abused for tracking. Therefore, we encrypt this index with the pre-shared key via XOR
operations. We further discuss this approach in Section 8.
Once the obfuscation pattern is generated for all subcarriers, the symbols of the regular WiFi

transmitter are rotated accordingly. The frame sequence number is then updated for the next frame
and stored in a lookup-table (LUT). Finally, the symbols with phase rotations can be sent out over
the air. However, one question still remains: how do we ensure robustness against statistical attacks?

Robustness against statistical attacks. In Section 5, we showed experimentally and analyti-
cally that obfuscation with symmetric zero-mean distributions is susceptible to statistical attacks.
Recalling the analysis therein, a robust distribution against such attacks should have the following
properties.

(P1) : 𝑓𝑍
(
𝑧
)
≥ 0 (P2) :

∫ ∞

−∞
𝑓𝑍

(
𝑧
)
𝑑𝑧 = 1 (P3) : 𝑓𝑍

(
𝑧
)
≠ 𝑓𝑍

(
− 𝑧

)
(P4) : E

[
𝑓𝑍

(
𝑧
) ]

≠ 0

Essentially, (P1) and (P2) are inherent properties of all probability density functions, i.e., they
are non-negative, and the total area under the graph 𝑓𝑍

(
𝑧
) is equal to unity. On the one hand, (P3)

requires the probability density function to be non-symmetric while (P4) states that it must not be
centered around zero. These properties ensure that the effect of the random phase rotations will
prevail even if a statistical attack is perpetrated. In Section 7, we corroborate experimentally that
probability density functions complying with (P1), (P2), (P3) and (P4) can conceal the radiometric
fingerprint effectively.
In the following, we justify the necessity for (P3) and (P4). From (9), we note that E [

𝑒 𝑗𝑍𝑘
]
=

𝛽real
𝑘

+ 𝑗𝛽 imag
𝑘

must be complex-valued in order to prevent the phase randomization effect from being
removed. This is attained when the term 𝛽

imag
𝑘

=
∫ 𝑅𝑘
−𝑅𝑘

cos
(
𝑧𝑘

)
𝑓 ′
𝑍𝑘

(
𝑧𝑘

)
𝑑𝑧𝑘 ≠ 0, which produces a non-zero

phase shift that is absorbed by the CSI phase thus concealing the fingerprint. In order for this
to hold, cos (

𝑧𝑘
)
𝑓 ′
𝑍𝑘

(
𝑧𝑘

) must not be an odd function according to Corollary 3. Since cos
(
𝑧𝑘

) is an
even function, this also signifies that 𝑓 ′

𝑍𝑘

(
𝑧𝑘

) must not be an odd function according to Corollary 2.
Via Corollary 1, this requirement is satisfied when 𝑓𝑍𝑘

(
𝑧𝑘

) is not an even function. Therefore, it is
revealed that we can design arbitrary probability density functions 𝑓𝑍𝑘

(
𝑧𝑘

) that are not even with
non-zero mean, thus yielding the desired effect that prevents phase randomization removal.

A simple yet effective manner to meet the above criteria is using a shifted even probability density
function (e.g., shifted Gaussian or uniform distribution). We will experimentally prove that in Section 7.2.

6.3 De-obfuscation and authentication at the receiver
The right-hand side of Fig. 12 shows the two main tasks of the receiver: de-obfuscation and

authentication.
De-obfuscation. Having the synchronization index and pre-shared key, the receiver can re-

generate the obfuscation pattern (i.e., randomized phase rotations) of the transmitted frame. This
allows the receiver to extract the original fingerprint. This is done easily by subtracting the
obfuscation pattern from the phase of the received signal.

Authentication. The receiver verifies the restored fingerprint against the original fingerprint of
the transmitter to authenticate the received frame. In addition, the receiver verifies that the synchro-
nization index is larger than that in the last received frame. A frame whose synchronization index
is less than or equal to the last frame is probably sent from an adversary attempting a replay attack.
We highlight that with RF-Veil, WiFi devices can always obfuscate their fingerprint. We mentioned
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Fig. 13. Schematic overview of the hardware setup.

in Section 4 that RF-Veil is designed such that obfuscation does not impact the communication
performance. Hence, user privacy is always ensured through fingerprint concealment.

6.4 RF-Veil-Standalone mode
In this mode, we allow the transmitting device to hide its fingerprint by executing the obfusca-

tion blocks without any handshake or coordination with other receivers. Specifically, the device
generates locally a synchronization index and the key, which are used as inputs for fingerprint
obfuscation, as depicted in the transmitter side of Fig. 12. As a result, we can ensure privacy
protection in a much broader scenario, e.g., communicating with non-RF-Veil-enabled devices, in
absence of any active connections, or in connection establishment phase.

6.5 SDR implementation
We have implemented RF-Veil using the USRP 2954R SDR platform. A simplified overview of

the hardware used in our setup is depicted in Fig. 13. Each USRP is connected via PCI-e interface to
a host machine running NI-Linux RT (kernel version 4.1.13-rt15-nilrt). We build RF-Veil using NI
802.11 application framework (AFW) 2, which provides the physical layer and lower MAC layer
functions in the FPGA, while the rest of the MAC procedures run at the host (Linux RT in our
setup). We provide a detailed overview of the existing implementation in Appendix D. Due to space
constraints, we do not delve into the SDR implementation details. Our implementation and data is
available online3. The following briefly describes the setup.

Fingerprint extraction at the receiver. The physical layer implementation of 802.11 AFW
already includes CSI estimation in the FPGA. For our implementation, we have transferred the CSI
from the FPGA to the host via a Target-to-Host (T2H) FIFO on a per-frame basis. This enables fast
prototyping while maintaining real-time operation of the testbed. Having the CSI, we implemented
the radiometric fingerprinting using non-linear phase errors, as described in Section 2.2.

Fingerprint modification at the transmitter. These are required modifications at both the
FPGA and the host. At the host, we compute the obfuscation pattern, which is sent to the FPGA on
a per-frame basis. We made use of the interprocess communication protocol by NI to send packets
containing the additional phase rotations. Then, we modified the transmitter chain at the FPGA to
read the obfuscation pattern and multiply each outgoing symbol with the corresponding phase
rotations. This increases the latency of the transmission chain by 5 clock cycles (12.5 ns).

Secure fingerprinting. We implement RF-Veil on top of the Fingerprint Extraction and Fin-
gerprint Modification modules on the host. We extend the packet headers so as to also carry the
32-bit synchronization index chosen at the transmitter. When a new packet is being prepared for
transmission, the MAC header is used to obtain the key and synchronization index from the LUT.
Then, the obfuscation pattern is generated using the key and synchronization index. This pattern
serves as input for the Fingerprint Modification module, which then pushes the values to the PHY.
At the receiver side, the CSI is written into the T2H Channel Estimation FIFO at the PHY. The

frame reception continues on the FPGA while the implementation of RF-Veil runs on the output
of the FIFO at the host. After the information for random pattern generation is obtained, and the

2http://www.ni.com/pdf/manuals/376779f.pdf
3https://github.com/seemoo-lab/RF-Veil
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Fig. 14. Mean absolute error (MAE) for different symmetric zero-mean distributions using RF-Scope in
802.11ac. These results show that zero-mean randomization is not robust against statistical attacks since the
fingerprint can be obtained with high accuracy and negligible error (below 2%).
randomization is reverted, the fingerprint is calculated by the Fingerprint Extraction module. The
obtained fingerprint is then passed to the Matcher to be compared with the original fingerprint for
authentication.

6.6 Takeaway
In this section, we elaborated on the workings behind RF-Veil and its standalone-mode. We devised

the idea of synchronized obfuscation with special probability density functions to counter the statistical
attacks introduced in Section 5, as well as the tracking and impersonation attacks introduced in Section 3.
The prototype implementation of RF-Veil on a USRP SDR platform enables us to experimentally
evaluate the performance of our approach. The takeaway message is that RF-Veil introduces low
overhead to the existing WiFi message flow while providing enhanced privacy for users and a secure
way of physical layer device identification.

7 EVALUATION
In this section, we first evaluate the efficacy of the impersonation attack introduced in Sec-

tion 3. We then leverage RF-Scope to provide a broader assessment of the performance of naive
randomization (i.e., obfuscation via zero-mean distributions) and RF-Veil against statistical attacks.

7.1 Performance of naive randomization
In Section 5, we demonstrated the vulnerability of obfuscation, with zero-mean distributions, to

statistical attacks experimentally and analytically. In particular, we showed that an adversary can
easily restore the original fingerprint from 10000 frames. However, we have neither studied the
impact of number of samples, nor considered the effect of the distributions variance on the accuracy
of the restored fingerprint by the adversary. To this aim, in Fig. 14, we show the mean absolute error
(MAE) of the adversary’s estimate of the original fingerprint when using RF-Scope in 802.11ac. The
figure demonstrates the results under four distributions, namely, uniform, Gaussian, Laplacian, and
triangular. For each distribution, we compute the MAE with four variances. Here we make two key
observations: (i) the adversary can restore the original fingerprint with very high accuracy by just
processing the CSI of ∼2000 frames (a couple of seconds4), and (ii) the CSI-recovery error increases
with the variance of randomization since larger variance leads to higher entropy of the obfuscated
fingerprints. This behavior is mainly observed when the number of samples is low. As more samples
are processed, the estimation error converges to nearly the same value (this is also supported by
equation (B7) in Appendix B). Nonetheless, an adversary can still obtain accurate estimates of
the original fingerprint with negligible error even when distributions with large variances are

4In estimating the time for collecting a given number of frames, we assume that the user transmits at ∼ 8Mbps. This number
is referential and intendeds to provide an estimate of how fast an adversary can mount an statistical attack.
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Fig. 15. Restored fingerprint after obfuscation with RF-Veil. Note that RF-Veil prevents potential adversaries
from infringing privacy and security since the original fingerprint cannot be recovered. In this experiment, the
RF-Veil transmitters use the same values for shifting the means across the subcarriers. Hence, it is the expected
behavior that the restored fingerprint for the different random distributions are similar.
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Fig. 16. Mean absolute error (MAE) using RF-Scope in 802.11ac after fingerprint obfuscation via RF-Veil.
Since the error is high, RF-Veil prevents adversaries from obtaining the fingerprint of the targeted victim.

employed. For instance, with only 1000 CSI samples, the MAE is below 3◦ for distributions with
a variance of 60 deg2. For small variances such as b2 = 5 deg2, with only 500 samples (roughly 0.5
seconds), the estimation error is consistently below 1◦ for all distributions. We observe a similar
trend with 802.11a, whose results are available in Appendix C.
Remarks: We have shown experimentally that the effect of naive randomization can be removed if

an attacker is capable of collecting a few thousand samples to mount an statistical attack. Thus, naive
randomization does not protect the fingerprint of devices.

7.2 RF-Veil performance
In this experiment, we evaluate the security and privacy enhancement achieved by RF-Veil.

Following the conditions for randomization patterns that are robust to statistical attacks (see
Section 6.2), we obfuscate the original signature of the device using the same four distributions
whose mean values are now shifted according to a random pattern, unlike the previous experiment.
The results of this experiment in legacy mode 802.11a are provided in Appendix C. As depicted in
Fig. 15, the recovered fingerprints using RF-Scope deviate from the original fingerprint substantially
and follow the course of a random pattern. Essentially, when an adversary uses statistical analysis to
identify devices, the extracted fingerprint will not match with the original fingerprint. To shed light
on this aspect, Fig. 16 depicts the MAE of fingerprints restored by RF-Scopewith increasing sample
sizes and under different variances. As compared to the low MAE in Fig. 14 (3◦) where zero-mean
distributions are used, the MAE in Fig. 16 increases approximately by 4-fold (13◦) regardless of
the variances and sample sizes used. While all the variances lead to nearly the same error when 𝑁
is large, we observe that a large variance produces more variability in the MAE, specially with a
small number of samples 𝑁 . On the other hand, small variances produce a more condensed range
of MAE values throughout all 𝑁 . This result demonstrates two promising properties of RF-Veil: (i)
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Fig. 17. Average throughput of regular 802.11ac and RF-Veil in different distances and with different MCS
over the course of 60 seconds. Here, we prove experimentally that RF-Veil does not impact the throughput.

the adversary’s estimate does not improve even with large number of samples, and (ii) the impact
of the variance on estimation is almost negligible as all the errors converge to a similar value (also
supported by equation (B7) in Appendix B). Note that the random pattern in Fig. 15 is generated
approximately within the same phase-error range as the original fingerprint (i.e., between −25◦ and
40◦). Therefore, the attained MAE is not excessively large. However, the MAE can be arbitrarily
larger if we construct the pattern spanning a wider range.
Remarks: RF-Veil protects users’ privacy by preventing adversaries from estimating the original

fingerprint for tracking/locating the user. Furthermore, the security is also enhanced, since the adversary
cannot successfully forge the original fingerprints of other devices.

Effect of RF-Veil on throughput. In Section 4, we analytically showed that RF-Veil does not
impact the throughput of WiFi communication. Here, we confirm our analysis with experiments.

We design an experiment in which we measure the throughput of two WiFi devices at different
distances (up to 20m) and under distinct modulation and coding schemes (MCS) (up to 64 QAM)
with/without RF-Veil. Fig. 17 demonstrates that RF-Veil does not impact the throughput of the
system, thus confirming our analysis. This is because the fingerprint obfuscation of RF-Veil is based
only on phase rotations of the I/Q symbols within a frame. In particular, such rotations do not affect
the WiFi channel estimation since their effect is removed at the legitimate receivers. In the figure,
we only show the result of obfuscation with uniform random distribution with b2 = 60◦. However, we
report that the other random distributions (Gaussian, Laplacian, and triangular) do neither impact
the throughput. In this experiment, we also measured the computational overhead of RF-Veil.
Our measurements show that RF-Veil has an average execution time of 49.495 microseconds,
even though we implemented most parts of RF-Veil on the host (i.e., a windows machine). We
expect the execution time to drop by at least an order of magnitude in real-time kernel or FPGA
implementation.

Remark: RF-Veil has low computational overhead and does not impact the communication quality.

8 DISCUSSION
In this section, we discuss some of the practical aspects of RF-Veil.
To share or not to share? For the secure CSI-denoising when using RF-Veil, we use a sym-

metric shared key as it provides the easiest way of synchronizing the random number generators
at the transmitter and receiver. Furthermore, the synchronization index can be easily encrypted by
XOR-ing the index with the shared key. An alternative to the key exchange we use in Section 6.1 is
a key extraction mechanism based on physical layer properties, such as [22]. This key extraction
method leverages channel response information at the transmitter and receiver to generate sym-
metric keys. Note that RF-Veil is compatible with both methods. Regardless of the method, the key
should be renewed at certain intervals, which brings us to the next point in our discussion.

How often should we renew the key? The monotonically increasing 32-bit synchronization
index ensures that, even if the transmitter keeps the symmetric key static for a certain time, they
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Fig. 18. Time to renew the key for different sending rates.

do not repeat the pattern of phase rotations. If the synchronization index wraps around at its
maximum of 232 = 4 294 967 296, the pattern of random phase rotations is repeated, and an adversary
can potentially launch a replay attack. In order to thwart such an attack, the key has to be renewed
before the transmitter starts to re-use their synchronization indices for this key. Furthermore, it is
important to point out that the transmitter initializes the synchronization index with a number
between 0 and 2 147 483 648, which ensures that a part of the key cannot be guessed from the encrypted
synchronization index in the frame. We plot the minimum time for key refreshment under different
transmission rates in Fig. 18 (for the worst case in which the transmitter chose to start at 2 147 483 648).
We observe that the key has to be refreshed every 596 hours (24.8 days), assuming an average of 1000
packets per second. Even if we assume that the transmitter sends on average 25 000 packets per second,
which would imply a rate of 462.4 Mbps, it will exhaust the number of available synchronization
indices in 23.8 hours. Thus, even at very high rates (5 TByte of traffic per day), the key exchange
is not too frequent. Note that increasing the frequency of key exchange does not decrease the
security level but increase the overhead since the keys are either transmitted encrypted by WPA2
or extracted by both transmitter and receiver using key extraction methods [22]. Subsequently, an
exposure of this key would affect the privacy and security of the connection until a new key is
exchanged.

What if a frame is rejected? A frame can be rejected for two different events: (𝑖) the calculated
frame check sequence (FCS) of the frame does not match the actual FCS in the frame, and (𝑖𝑖) the
fingerprinting algorithm rejects the frame (e.g., the extracted fingerprint differs from the expected
one). In both cases, we let the MAC layer handle the re-transmission. In the case of a rejected
frame, an RF-Veil transmitter does not re-use the synchronization index of the frame that is to be
re-transmitted; instead, it increases the count as if a new frame was transmitted. This is crucial to
guarantee the security of the system as the encryption of the same synchronization index would
lead to the same cipher-text.

What if a device is not yet connected? If a device is not connected to an AP, it can still
obfuscate its fingerprint by using RF-Veil-Standalone mode in order to lead a potential privacy-
intruding adversary astray. Once the device is connected to an AP and the pre-shared key has been
established, it can switch into RF-Veilmode, allowing the AP to securely extract the unrandomized
fingerprint. This same mechanism applies to the probe requests and acknowledgments in response
to probe responses from APs during active scanning. Note that, when the device is not associated
to an AP, it can simply use a random key.

How does an RF-Veil transmitter communicate with a non-RF-Veil receiver? Recalling
Section 4, the obfuscation of fingerprints does not degrade the channel quality as the channel
estimation and equalization at the receiver can handle the arbitrary phase shifts introduced by
the transmitter. Specifically, the additional phase rotations are absorbed by the CSI, and as long
as the same phase rotation pattern is used for all the subcarriers within the frame, the receiver
will assume that such CSI is legitimate. Hence, a receiver that is not aware of RF-Veil will simply
revert the phase shifts together with the channel effects. In other words, a transmitter using the
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RF-Veil-Standalone mode can still communicate with a legacy receiver. This receiver, however,
will not be able to extract the correct fingerprint of the transmitter.

Can we implement RF-Veil on commercial off-the-shelf (COTS) devices? In recent years,
a number of research groups have developed firmware modification/patching tools which allow
manipulating MAC/PHY layer operations of the WiFi chipset. Although out of scope of this work,
we believe that RF-Veil can be implemented on COTS devices using such tools. In particular,
Schulz et al. [33] demonstrate the feasibility of modifying IQ symbols in commercial APs equipped
Broadcom chipsets using their firmware patching framework, i.e., nexmon5.

9 RELATEDWORK
To date, we have not found any prior work on radiometric fingerprint obfuscation. Prior works

only focused on thwarting identification techniques that used packet metadata (frame size, data
rate, inter-packet time, etc.) and friendly jamming [29], upper-layer characteristics such as jitter of
beacon timestamps [2], rate switching mechanisms [9], and under-specification of the MAC layer
protocols and procedures [4, 6]. The proposed countermeasures for these upper-layer fingerprinting
techniques consist of pattern randomization [15, 19, 28, 36], similar to ours.However, unlike RF-Veil,
their approach eliminates the possibility of legitimate fingerprinting. Furthermore, the solutions therein
are not tested against statistical attacks.
In the following, we provide a broader overview of the radiometric fingerprinting solutions,

which can be categorized into transient-based and modulation-based approaches.

9.1 Transient-based approaches
The transient refers to the part of the signal in which the amplitude rises from background

noise to full power [30]. Given its dependence on the hardware characteristics, a transient is a
reliable feature for device identification by tracking the small but measurable differences in the
turn-on transients. This can, for example, include the duration of turn-on transient [30] or standard
deviation of normalized amplitude, phase, and frequency [16]. These approaches are cumbersome
since they rely on the exact extraction of the transient portion of signals, which further depends
on the channel noise. To ensure accurate and timely detection of the transient despite the channel
noise, a very high sampling rate is required, which is typically achievable by high-end oscilloscopes
(e.g., 4 Giga samples per second in [11]).

9.2 Modulation-based approaches
Modulation- or steady-state approaches, as the name suggests, make use of errors in the mod-

ulated signal. The seminal work of Brik et al. [5] proposes to collect the fingerprints from five
features of the modulated signal, that is, magnitude, phase and frequency error, I/Q origin off-
set, and SYNC correlation. They show experimentally that their solutions, called PARADIS, can
differentiate among 130 identical IEEE 802.11b devices with an accuracy above 99% even under
mobility and varying noise conditions. Similar to the transient-based approaches, their approach
requires additional equipment since they rely on high-end vector analyzers for channel sampling.
Motivated by their work, recent approaches [18, 23] propose to use the CSI obtained from the
pilot symbols which are readily available on WiFi chipsets, such as the Intel 5300 or Atheros
AR9380. Specifically, Hua et al. [18] propose to compute the fingerprint using a combination of
CFO extracted from the CSI and time difference of arrival (TDoA) computed from capturing 5000
adjacent frames. Furthermore, they require the device to remain stationary for at least 10 seconds
for authenticating a device based on the previously collected fingerprint. The most recent work on

5https://github.com/seemoo-lab/nexmon
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radiometric fingerprinting [23] makes use of the non-linear phase errors extracted from CSI. Their
work takes advantage of non-linear phase error extraction methods proposed by Zhuo et al. in [41].
In this paper, we work toward obfuscating the radiometric fingerprints caused by non-linear phase
errors [23, 41] since it neither relies on RF equipment with very high sampling rates nor requires
large number of frames or stationary user behavior for fingerprinting. Nonetheless, RF-Veil’s
approach can be extended to other features of the signal, which is controllable at the chipset, such
as CFO and amplitude.

10 CONCLUSIONS
Radiometric fingerprinting is typically considered a secure method for device identification [23,

31, 39]. In this paper, we first demonstrate the vulnerability of the latest CSI-based radiometric
identification schemes to impersonation attacks, which emphasizes the need for fingerprinting
solutions that are robust against adversarial attacks on user security and privacy. We also illustrate
that a naive fingerprint-randomization approach does not withhold adversaries capable of mounting
statistical attacks (i.e., RF-Scope in this paper). Consequently, we devise RF-Veil, a framework
that enhances user privacy against fingerprint-based tracking/localization attacks, and is robust to
statistical, impersonation, and replay attacks.

To the best of our knowledge, this is the first article that addresses the vulnerabilities of radiometric
fingerprints. Hence, we foresee a few avenues of research as future work. Leveraging the randomization
patterns to create a side-channel between the receiver and transmitter is an interesting method for
exchanging the synchronization index. Furthermore, extending RF-Veil to support MIMO transmis-
sions or other signal characteristics such as CFO is another direction to further enhance user privacy.
Randomizing the STFs and its impact on the communication and radiometric fingerprints is also an
interesting research avenue. Further, investigating new distributions functions for the phase rotations
that not only preserve security and communication but also reduce the peak-to-average power ratio is
an interest research direction, especially for achieving high energy efficiency in low-power IoT devices.
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A KRONECKER PRODUCT PROPERTIES
Property 1 (Transpose of a Kronecker product): Let A ∈ C𝑚×𝑛 , B ∈ C𝑟×𝑠 , then (A ⊗ B)𝑇 = A𝑇 ⊗ B𝑇 .
Property 2 (Product of two Kronecker products): Let A ∈ C𝑚×𝑛 , B ∈ C𝑟×𝑠 , C ∈ C𝑛×𝑝 , and D ∈ C𝑠×𝑡 , then
AB ⊗ CD = (A ⊗ C) (B ⊗ D).
Property 3 (Trace of a Kronecker product of matrices): Let A ∈ C𝑚×𝑚 , B ∈ C𝑛×𝑛 , then Tr

(
A⊗B

)
= Tr

(
A
) (
B
).

Property 4 (Cyclic permutation of the trace): Let A ∈ C𝑚×𝑛 , B ∈ C𝑛×𝑚 , then Tr
(
AB

)
= Tr

(
BA

).
Property 5 (Trace of a Kronecker product of vectors): Let a ∈ C𝑚×1, b ∈ C𝑚×1, then Tr

(
a ⊗ b𝑇

)
= Tr

(
ab𝑇

).
B CRAMER-RAO BOUND OF RF-SCOPE

We analyze the performance of RF-Scope and compare it to the Cramer-Rao bound (CRB) bound.
We show that RF-Scope is a near-optimal estimator of the CSI, as defined in (B22). For notation
simplicity and without loss of generality, in the sequel, we drop the subcarrier index 𝑘 and consider
the analysis for a single subcarrier for which 𝑁 measurements are available.

Let𝑚𝑛 be a measurement (or observation) in a given subcarrier defined as
𝑚𝑛 = ℎ𝑒 𝑗𝑍𝑛 + 𝑤𝑛, (B1)

where 𝑍𝑛 is a random phase rotation and ℎ is the complex-valued channel. Recalling Section
6, 𝑍𝑛 is introduced by our proposed approach RF-Veil to prevent attackers from acquiring the
channel accurately. Thus, let 𝑝 (𝑚𝑛 | 𝑍𝑛 ;ℎ) denote the joint likelihood function of 𝑍𝑛 and ℎ, given the
observation𝑚𝑛

𝑝 (𝑚𝑛 | 𝑍𝑛 ;ℎ) =
1

√
𝜋𝜎2

𝑒
− 1
𝜎2 |𝑚𝑛−ℎ𝑒 𝑗𝑍𝑛 |2

. (B2)

For 𝑁 uncorrelated measurements, we have the likelihood function

𝑝 (𝑚1, · · · ,𝑚𝑁 | 𝑍1, · · · , 𝑍𝑁 ;ℎ) = Π𝑁𝑛=1
1

√
𝜋𝜎2

𝑒
− 1
𝜎2 |𝑚𝑛−ℎ𝑒 𝑗𝑍𝑛 |2

, (B3)

which can be equivalently recast as

𝑝 (m | Z;ℎ) = 1
(𝜋𝜎2)𝑁 /2 𝑒

− 1
𝜎2 ∥m−ℎ𝑒 𝑗Z ∥22 , (B4)

where m = [𝑚1, · · · ,𝑚𝑁 ]𝑇 and Z = [𝑍1, · · · , 𝑍𝑁 ]𝑇 . To compute the CRB of ℎ, we require the likelihood
function 𝑝 (m;ℎ). Note that this function can be obtained through averaging 𝑝 (m | Z;ℎ) over the
random nuisance variables Z. Thus, the likelihood function 𝑝 (m;ℎ) is computed as

𝑝 (m;ℎ) = EZ
[

1
(𝜋𝜎2)𝑁 /2 𝑒

− 1
𝜎2 ∥m−ℎ𝑒 𝑗Z ∥22

]
,

=

∫
DZ

1
(𝜋𝜎2)𝑁 /2 𝑒

− 1
𝜎2 ∥m−ℎ𝑒 𝑗Z ∥22𝑝Z (z)𝑑z,

(B5)

where z = [𝑧1, · · · , 𝑧𝑁 ]𝑇 denote the integration variables, and DZ is the domain of the random variables
Z. In addition, EZ denotes statistical expectation with respect to Z, which has a priori probability
density function 𝑝Z (z). Assuming that the random phases are independent, then 𝑝Z (z) =

∏𝑁
𝑛=1 𝑝𝑍𝑛 (𝑧𝑛).
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Thus, (B5) can be expressed as

𝑝 (m;ℎ) =
∫
D𝑍1

· · ·
∫
D𝑍𝑁

1
(𝜋𝜎2)𝑁 /2 𝑒

− 1
𝜎2

∑𝑁
𝑛=1 |𝑚𝑛−ℎ𝑒 𝑗𝑍𝑛 |2

𝑝𝑍1 (𝑧1) · · ·𝑝𝑍𝑁 (𝑧𝑁 ) 𝑑𝑧1 · · ·𝑑𝑧𝑁 . (B6)

The CRB of any unbiased estimator ℎ̂ of the channel ℎ is given by

CRB
(
ℎ̂

)
= Em

[
𝜕

𝜕ℎ
ln𝑝 (m;ℎ) 𝜕

𝜕ℎ∗
ln𝑝 (m;ℎ)

]−1
, (B7)

where Em denotes statistical expectation with respect to m [20]. Nonetheless, the computation
of this expression is analytically intractable due to the embedded integration with respect to the
random variables 𝑍1, · · · , 𝑍𝑁 . As a result, a simpler (but looser) bound called the modified CRB
(MCRB) has been derived in [10, 24]. Specifically, the MCRB is a lower bound of the CRB, i.e.,
MCRB

(
ℎ̂

)
≤ CRB

(
ℎ̂

)
is defined as

MCRB
(
ℎ̂

)
= EZ

[
Em|Z

[
𝜕

𝜕ℎ
ln𝑝 (m | Z;ℎ) 𝜕

𝜕ℎ∗
ln𝑝 (m | Z;ℎ)

] ]−1
. (B8)

From (B6), we compute the derivatives with respect to ℎ and ℎ∗,
𝜕

𝜕ℎ
ln𝑝 (m | z;ℎ) = 1

𝜎2

𝑁∑︁
𝑛=1

(
𝑒 𝑗𝑍𝑛𝑚∗

𝑛 − ℎ∗
)
=

1
𝜎2

𝑁∑︁
𝑛=1

𝑤∗
𝑛𝑒
𝑗𝑍𝑛 , (B9)

𝜕

𝜕ℎ∗
ln𝑝 (m | z;ℎ) = 1

𝜎2

𝑁∑︁
𝑛=1

(
𝑒−𝑗𝑍𝑛𝑚𝑛 − ℎ

)
=

1
𝜎2

𝑁∑︁
𝑛=1

𝑤𝑛𝑒
−𝑗𝑍𝑛 , (B10)

Upon replacing (B9) and (B10) in (B8), we obtain that

MCRB
(
ℎ̂

)
= EZ

[
Em|Z

[
1
𝜎2

𝑁∑︁
𝑛=1

𝑤∗
𝑛𝑒
𝑗𝑍𝑛

1
𝜎2

𝑁∑︁
𝑙=1

𝑤𝑙𝑒
−𝑗𝑍𝑙

] ]−1
,

= EZ

[
Ew|Z

[
1
𝜎2

𝑁∑︁
𝑛=1

𝑤∗
𝑛𝑒
𝑗𝑍𝑛

1
𝜎2

𝑁∑︁
𝑙=1

𝑤𝑙𝑒
−𝑗𝑍𝑙

] ]−1
,

= EZ

[
Ew|Z

[
1
𝜎4

𝑁∑︁
𝑛=1

𝑁∑︁
𝑙=1

𝑤∗
𝑛𝑤𝑙𝑒

𝑗𝑍𝑛𝑒−𝑗𝑍𝑙

] ]−1
,

= EZ

[
Ew|Z

[
1
𝜎4

𝑁∑︁
𝑛=1

|𝑤𝑛 |2 +
1
𝜎4

𝑁∑︁
𝑛=1

𝑁∑︁
𝑙≠𝑛

𝑤∗
𝑛𝑤𝑙𝑒

𝑗𝑍𝑛𝑒−𝑗𝑍𝑙

] ]−1
,

= EZ

[
Ew|Z

[
1
𝜎4

𝑁∑︁
𝑛=1

|𝑤𝑛 |2
]
+ Ew|Z

[
1
𝜎4

𝑁∑︁
𝑛=1

𝑁∑︁
𝑙≠𝑛

𝑤∗
𝑛𝑤𝑙𝑒

𝑗𝑍𝑛𝑒−𝑗𝑍𝑙

] ]−1
,

= EZ

[
1
𝜎4

𝑁∑︁
𝑛=1
E𝑤𝑛 |Z

[
|𝑤𝑛 |2

]
+ 1
𝜎4

𝑁∑︁
𝑛=1

𝑁∑︁
𝑙≠𝑛

E𝑤𝑛 |Z
[
𝑤∗
𝑛

]
E𝑤𝑙 |Z [𝑤𝑙 ] 𝑒 𝑗𝑍𝑛𝑒−𝑗𝑍𝑙

]−1
,

= EZ

[
𝑁𝜎2

𝜎4

]−1
.

(B11)

In the second step of (B11), Em|Z has been changed to Ew|Z due to the direct dependence of m
on w (when Z is fixed). Note that E𝑤𝑛 |Z [𝑤𝑛 ] = 0 and E𝑤𝑛 |z

[
|𝑤𝑛 |2

]
= 𝜎2 since w ∼ CN

(
0, 𝜎2I

). Thus,∑𝑁
𝑛=1 E𝑤𝑛 |z

[
|𝑤𝑛 |2

]
= 𝑁𝜎2 and ∑𝑁

𝑛=1
∑𝑁
𝑙≠𝑖
E𝑤𝑛 |z

[
𝑤∗
𝑛

]
E𝑤𝑙 |z [𝑤𝑙 ] 𝑒 𝑗𝑍𝑛𝑒−𝑗𝑍𝑙 = 0 yielding

MCRB
(
ℎ̂

)
=
𝜎2

𝑁
. (B12)

From (B12), we realize that the performance of an optimal estimator ℎ̂ improveswith 𝑁 . Essentially,
as more measurements become available, the estimation error decreases. From Section 5.1, the
channel estimated by RF-Scope for a single subcarrier was found to be 𝑢 = 1

𝑁

∑𝑁
𝑛=1𝑚𝑛 . To evaluate

the performance of RF-Scopewe compute its mean square error (MSE). To this purpose, we assume
that the random phase rotations are distributed according to a Gaussian probability density function
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defined as 𝑝𝑍𝑛 (𝑧𝑛) = 1√
2𝜋b2

𝑒
− (𝑧𝑛−`)2

2b2 with mean ` and variance b2. Note that b2 and ` are the same for
all the measurements because these are collected for a single subcarrier. Thus,

MSE (𝑢) = E
[
(𝑢 − ℎ)∗ (𝑢 − ℎ)

]
,

= E

[
1
𝑁 2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1
𝑚∗
𝑛𝑚𝑖 −

ℎ∗

𝑁

𝑁∑︁
𝑛=1

𝑚𝑛 − ℎ

𝑁

𝑁∑︁
𝑛=1

𝑚∗
𝑖 + |ℎ |2

]
,

= E

[
1
𝑁 2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1
𝑚∗
𝑛𝑚𝑖

]
︸                       ︷︷                       ︸

𝑆1

−E
[
ℎ∗

𝑁

𝑁∑︁
𝑛=1

𝑚𝑛

]
︸             ︷︷             ︸

𝑆2

−E
[
ℎ

𝑁

𝑁∑︁
𝑛=1

𝑚∗
𝑖

]
︸            ︷︷            ︸

𝑆∗2

+E
[
|ℎ |2

]
,

(B13)

Now, by using (B1), we expand 𝑆1

𝑆1 = E

[
1
𝑁 2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1
𝑚∗
𝑛𝑚𝑖

]
,

=
|ℎ |2

𝑁 2 E

[
𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1

𝑒−𝑗 (𝑍𝑛−𝑍𝑖 )
]
+ ℎ

𝑁 2 E

[
𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1

𝑤∗
𝑛𝑒
𝑗𝑍𝑖

]
+ ℎ∗

𝑁 2 E

[
𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1

𝑤𝑖𝑒
−𝑗𝑍𝑛

]
+ 1
𝑁 2 E

[
𝑁∑︁
𝑛=1
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(B14)
The sum of complex exponentials in (B14) can be equivalently expressed as,

𝑁∑︁
𝑛=1

𝑁∑︁
𝑖=1

𝑒−𝑗 (𝑍𝑛−𝑍𝑖 ) =𝑁 +
𝑁∑︁
𝑛=1

𝑁∑︁
𝑖≠𝑛

𝑒−𝑗 (𝑍𝑛−𝑍𝑖 )

=𝑁 + 2
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑛=𝑖+1

cos(𝑍𝑖 − 𝑍𝑛)

=𝑁 + 2

𝑁 (𝑁−1)
2∑︁
𝑙=1

cos(𝑋𝑙 )

=𝑁 + 𝑁 (𝑁 − 1) cos(𝑋 ) .

(B15)

In (B15), 𝑋 = 𝑍𝑖 − 𝑍𝑛 , ∀𝑖, 𝑛 denotes the difference of two Gaussian random variables. The resulting
random variable 𝑋 is also Gaussian, which can be obtained by means of the convolution theorem.
Specifically, 𝑋 has mean zero and twice the variance of 𝑍𝑖 , i.e., the probability density function of 𝑋
is given by 𝑝𝑋 (𝑥) = 1√

4𝜋b2
𝑒
− 𝑥2

4b2 . Replacing (B15) in (B14), 𝑆1 can be recast as

𝑆1 =
|ℎ |2

𝑁 2 E

[
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𝑁∑︁
𝑖=1

𝑒−𝑗 (𝑍𝑛−𝑍𝑖 )
]
+ 𝜎
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𝑁
,

=
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𝑁
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|ℎ |2
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𝑁
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𝑁
,
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𝑁
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−∞
cos(𝑥) 1√︁
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𝑒

−𝑥2
4b2 𝑑𝑥 + 𝜎
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𝑁
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2

𝑁
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(B16)
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where 𝑒−b2 =
∫ ∞
−∞ cos(𝑥) 1√

4𝜋b2
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−𝑥2
4b2 𝑑𝑥 . Besides, the term 𝑆2 collapses to
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︸            ︷︷            ︸
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= |ℎ |2
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𝑒
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2b2 𝑑𝑍𝑛

= |ℎ |2 𝑒−b2/2𝑒 𝑗` .

(B17)

Collecting the results in (B16) and (B17), the MSE collapses to

MSE (𝑢) = |ℎ |2

𝑁
+ |ℎ |2 𝑒−b2 − |ℎ |2 𝑒−b2

𝑁
+ 𝜎

2

𝑁
− |ℎ |2 𝑒−b2/2𝑒 𝑗` − |ℎ |2 𝑒−b2/2𝑒−𝑗` + |ℎ |2 ,

= |ℎ |2 + |ℎ |2 𝑒−b2 − 2 |ℎ |2 cos(`)𝑒−b2/2 + |ℎ |2

𝑁
− |ℎ |2 𝑒−b2

𝑁
+ 𝜎

2

𝑁
.

(B18)

By definition, the MSE of any estimator consists of the bias and the variance as shown in
MSE (𝑢) = bias (𝑢)2 + var (𝑢) . (B19)

The bias of the estimator is computed as
bias (𝑢) = E [𝑢 − ℎ] ,

= E [𝑢 ] − ℎ,
= ℎE

[
𝑒 𝑗𝑍

]
− ℎ,

= ℎ

∫ ∞

−∞
𝑒 𝑗𝑍

1√︁
2𝜋b2

𝑒
− (𝑧−`)2

2b2 𝑑𝑧 − ℎ,

= ℎ𝑒−b
2/2𝑒 𝑗` − ℎ.

(B20)

Thus, the squared bias is
bias (𝑢)2 = (ℎ𝑒−b2/2𝑒 𝑗` − ℎ)∗ (ℎ𝑒−b2/2𝑒 𝑗` − ℎ),

= |ℎ |2 + |ℎ |2 𝑒−b2 − 2 |ℎ |2 cos(`)𝑒−b2/2 .
(B21)

By comparing (B18), (B19) and (B21), we can extract the variance of the estimator. Therefore,

var (𝑢) = |ℎ |2

𝑁
− |ℎ |2

𝑁
𝑒−b

2 + 𝜎
2

𝑁
. (B22)

Upon comparing (B12) and (B22), we note that a large variance b2 (b2 in radians) of the random
variables 𝑍𝑛 leads to a high estimation error according to (B22). In such a case, var (𝑢) ≈ |ℎ |2

𝑁
+ 𝜎2
𝑁
.

However, for small values of b2, the variance collapses to var (𝑢) ≈ 𝜎2
𝑁
, thus showing the equivalence

between (B12) and (B22). While this observation demonstrates that the estimation error of RF-Scope
is near-optimal in the variance sense, we also need to consider the bias in (B21), which is nonzero.
Ideally, the estimator needs to be unbiased, i.e., bias (𝑢)2 = 0. As explained in Section 6.2, a legitimate
user is aware of the synchronization index and key, and can therefore generate the same sequence
of random numbers that yield ` (i.e., shifts of the probability density functions). As a result, a
legitimate user can remove the additional shift, thus making ` = 0. In contrast, for an attacker, ` ≠ 0.
The bias for legitimate users and attackers are respectively defined as

bias𝑙 (𝑢)2 = |ℎ |2 + |ℎ |2 𝑒−b2 − 2 |ℎ |2 𝑒−b2/2, (B23)

bias𝑎 (𝑢)2 = |ℎ |2 + |ℎ |2 𝑒−b2 − 2 |ℎ |2 cos(`)𝑒−b2/2, ` ≠ 0, (B24)
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Fig. 19. Comparison of normalized biases between legitimate users and attackers considering various config-
urations of ` and b2. In the case of attackers, the bias increases since the additional shift ` cannot be removed.
Specifically, this occurs due to the impossibility to attackers of generating the sequence of random numbers that
renders `, which can only obtained by legitimate users.

showing that bias𝑙 (𝑢)2 ≤ bias𝑎 (𝑢)2.
To illustrate the difference between (B23) and (B24), we show in Fig. 19 the biases for several

configurations of ` and b2. We observe that for only small ` = {1◦, 5◦ } the biases of the attacker and the
legitimate users are similar. However, for sufficiently large ` the difference between the two biases
becomes noticeable. In our approach, RF-Veil, ` is not fixed but is instead randomly generated for
every subcarrier using the randomization index and the key. Therefore, for potential attackers—not
aware of this information—the bias for each subcarrier varies within the range of values shown
in Fig. 19, hindering accurate CSI acquisition. Further, for small b2 we observe that bias𝑙 (𝑢)2 ≈ 0,
thus indicating that RF-Scope can be seen as an unbiased estimator in the case of legitimate users
when the variance of the phase rotations is low. To clarify this aspect, in Fig. 20a we show the
MCRB bound and the variance of the estimator RF-Scope when RF-Veil is used to conceal the
CSI. In Fig. 20a we have neglected the effect of bias and assumed that |ℎ |2 = 𝜎2 = 1. We realize that
even for large values of b2, RF-Scope is capable of performance similarly to the MCRB bound in
terms of its variance. In Fig. 20b, we consider the overall effect of bias and variance in channel
estimation for both legitimate users and attackers. We observe that for legitimate users, RF-Scope
performs near-optimally when b2 is relatively small (i.e., b2 = 5) whereas the error increases for
larger b2. However, as demonstrated in Section 7, even a small value of b2 is effective in hindering
the CSI acquisition by attackers. Thus, b2 = 5 can be used to successfully protect the CSI and the
radiometric fingerprint while assuring near-optimality. For potential attackers, the errors between
10 and 100 times higher for the shown setting.

As complementary discernment, we show non-tight MCRBs bounds for the channel magnitude,
channel phase, and variance of the disturbance that reveal relations that can be used to guide the
design of alternative estimators.

MCRB
(
|̂ℎ |

)
=
𝜎2

2𝑁
(B25)

MCRB
(
𝜙

)
=

𝜎2

2𝑁 |ℎ |2
=

MCRB
(
|̂ℎ |

)
|ℎ |2

(B26)

MCRB (̂z) = 1
2𝑁 |ℎ |2
𝜎2 + 𝑁

b2

=
1

MCRB
(
𝜙

)−1
+ 𝑁

b2

(B27)
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Fig. 20. Comparison of MCRB and RF-Scope when using RF-Veil as a tool to conceal the CSI from potential
attackers.

C EXPERIMENTAL RESULTS FOR 802.11A
We analyze the performance of naive randomization in 802.11a6 and show the results in Fig. 21.

The results suggest that naive randomization performs similarly in 802.11a and 802.11ac, i.e.,
through RF-Scope the MAE error diminishes with larger 𝑁 , which allows an adversary to restore
the original fingerprint.

The results of RF-Veil over 802.11a are shown in Fig. 22, which are reminiscent of the behavior
observed with 802.11ac in Fig. 16. In particular, the MAE is 10-fold the error achieved with naive
randomization. This experiment corroborates that RF-Veil is not only feasible in 802.11ac but also
in other technologies with a similar underlying structure.

D NI 802.11 APPLICATION FRAMEWORK
The implementation of the NI 802.11 AFW is separated into a host and an FPGA module, as

depicted in Fig. 23a. The host module of the NI 802.11 AFW mainly implements middle MAC layer
functionalities as well as a MAC high abstraction layer. The latter allows third party 802.11 higher
MAC applications, such as the ns-3 network simulator, to connect to the stack. The MAC high
abstraction layer is connected to MAC middle layer via UDP, which is responsible for duplicate
detection in RX and synchronization index assignment in TX direction.
Note that the higher MAC abstraction layer does not implement association or authentication

procedures, so the NI 802.11 AFW cannot complete the connection setup to COTS hardware. To still
allow data streams for demo and measurement purposes between two instances of the 802.11 AFW,
simplistic data sinks and sources (random data / User Datagram Protocol (UDP)) are available.
The FPGA module includes the implementation of the lower MAC layer as well as the whole

physical layer. Even though both layers are running on the FPGA, they are executed in different
clock domains, as the timing requirements are different. This results in clock rates of 100 MHz (10
nanoseconds) and 250 MHz (4 nanoseconds) for MAC and physical layer, respectively.
The main building blocks of the physical layer, as implemented on the FPGA, are depicted in

Fig. 23b. In TX direction, the lower MAC layer passes the digital data as bits through the TX PHY
service access point (SAP) to the physical layer. The first block (PSDU Discard) removes the PHY
service data unit (PSDU) and verifies the consistency of the packet before passing it to the TX
6The main difference between these two technologies is the number of subcarriers, which is 52 and 56 for 802.11a and
802.11ac, respectively.
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Fig. 21. Mean absolute error (MAE) for different symmetric zero-mean distributions using RF-Scope in
802.11a. The MAE values with 10000 samples are below 1◦ for all distributions.
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Fig. 22. Mean absolute error (MAE) of transmissions using RF-Veil in 802.11a. The observed errors are in the
order of 10◦, which shows that fingerprint extraction by adversaries is not feasible.

Bit Processing block. This following block takes care of serialization, scrambling, convolutional
encoding, puncturing, and interleaving. The subsequent TX IQ Processing block modulates the
data and creates the OFDM symbols, including all training fields. While the STF is pre-calculated in
time-domain, all other training fields, such as the LTFs are modulated in frequency-domain. After
that, the Inverse Fast Fourier Transform (IFFT) transforms the data form the frequency domain
into the time-domain. The time domain samples are written to the TX to RF FIFO in the last block
(TX Data Sink). The final steps, consisting of up-conversion to carrier frequency and sending out
the up-converted samples over the air, are left out of Fig. 23b for brevity.
The PHY code in RX direction involves more steps to accurately and correctly identify and

retrieve a packet. The RX Signal Filter reads the already down-converted samples in the baseband
and filters for 40 or 20 MHz channels. Upon that, the synchronization detects the packet start
using the Schmidl and Cox algorithm [32], which also estimates and compensates the CFO. The
Clear Channel Assessment (CCA) in the subsequent step calculates the received signal power and
compares it against a given CCA threshold. The RX IQ Processing module then transforms the
samples from time-domain into frequency-domain using FFT. Furthermore, it equalizes the channel
and detects the format of the frame (non-HT, HT, VHT). The last step consists of transforming the
IQ samples into bits, creating field assignments, bit deinterleaving, decoding, and descrambling.
The RX Bit Processing writes the finished frame into the RX PHY SAP for the lower MAC layer
to further process it. The RX PHY State Machine generates control information for the IQ and
bit processing modules based on the bitstream. It keeps track of meta-information of the packet,
such as the number of OFDM symbols inside a packet, bandwidth, and PSDU length, and signals
the lower MAC layer when a packet is completely received. Parallel to this whole process, power
measurements on the baseband are performed (Power Measurement) and provided to the Automatic
Gain Control (AGC), which dynamically determines the gain of the amplifiers.
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Fig. 23. NI 802.11 implementation details. Fig. 23a shows the interfaces used to connect the different layers
of the WiFi implementation. Fig. 23b provides an overview of the physical layer implementation on the FPGA.
We mainly adjusted the IQ processing blocks (marked in blue) in both, RX and TX directions.
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