
ar
X

iv
:2

00
1.

04
28

9v
1 

 [
cs

.L
O

] 
 8

 J
an

 2
02

0

Symblicit Exploration and Elimination

for Probabilistic Model Checking⋆

Ernst Moritz Hahn1 and Arnd Hartmanns2

1 Queen’s University Belfast, Belfast, UK
2 University of Twente, Enschede, The Netherlands

Abstract. Binary decision diagrams can compactly represent vast sets
of states, mitigating the state space explosion problem in model checking.
Probabilistic systems, however, require multi-terminal diagrams storing
rational numbers. They are inefficient for models with many distinct
probabilities and for iterative numeric algorithms like value iteration. In
this paper, we present a new “symblicit” approach to checking Markov
chains and related probabilistic models: We first generate a decision di-
agram that symbolically collects all reachable states and their predeces-
sors. We then concretise states one-by-one into an explicit partial state
space representation. Whenever all predecessors of a state have been
concretised, we eliminate it from the explicit state space in a way that
preserves all relevant probabilities and rewards. We thus keep few explicit
states in memory at any time. Experiments show that very large models
can be model-checked in this way with very low memory consumption.

1 Introduction

Many of the complex systems that we are surrounded by, rely on, and use every
day are inherently probabilistic: The Internet is built on randomised algorithms
such as the collision avoidance schemes in Ethernet and wireless protocols, with
the latter additionally being subject to random message loss. Hard- and software
in cars, trains, and airplanes is designed to be fault-tolerant based on mean-time-
to-failure statistics and stochastic wear models. Machine learning algorithms give
recommendations based on estimates of the likelihoods of possible outcomes,
which in turn may be learned from randomly sampled data.

Given a formal mathematical model of such a system, e.g. in the form of (a
high-level description of) a discrete- or continuous-time Markov chain (DTMC
or CTMC), probabilistic model checking can automatically compute (an ap-
proximation of) the value of a quantity of interest. Such quantities include the
probability to finally reach an unsafe state (a measure of reliability), the steady-
state probability to be in a failure state (determining availability), the long-run
average reward (measuring e.g. throughput or energy consumption), or the ac-
cumulated cost up to a certain set of states (where e.g. a job is complete). The
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standard approach is to proceed in two phases: First, explore the state space,
building a representation of the set of reachable states and the transitions con-
necting them. Transitions are annotated with rational values for probabilities
and rewards, which are usually represented as floating-point numbers. Second,
use an iterative numeric algorithm such as value iteration [35] or one of its sound
variants [5,21,29,36] to compute the quantity of interest. These algorithms in fact
compute a value for every state that approximates the quantity starting from
that state up to a prescribed error ǫ. In contrast to classic functional model check-
ing, which admits on-the-fly algorithms for e.g. reachability or LTL properties,
probabilistic model checking is thus doubly affected by the state space explosion
problem: First, the entire state space must be stored in memory, including many
numeric values. Second, the numeric computation requires multiple vectors of
values to be stored, and updates to be performed on them, for all states.

Current approaches to mitigate the state space explosion problem in proba-
bilistic model checking include the use of partial exploration and learning al-
gorithms, bisimulation minimisation, and compact representations of the state
space or value vectors by binary decision diagrams (BDDs). They exploit differ-
ent structural properties that only sometimes overlap. The learning-based ap-
proaches [1, 8] for reachability probabilities work well for models where a small
initial subset of the state space determines most of the probability mass. In such
cases, which are not abundant among existing case studies [23], they complete in
a few seconds while exhaustive approaches run out of time or memory [11, Ta-
ble 1]. Bisimulation minimisation reduces the state space to a quotient according
to a probabilistic bisimulation relation; see [3, Sect. 5.1] for an overview. It has
been implemented in Storm [15] and allows certain very large models to be
checked efficiently; in general, its impact depends on the amount of bisimilar
states in the given system. Finally, BDDs [9, 33] have a long history of use in
(discrete-state) model checking [12] to compactly represent state spaces, in good
cases reducing memory usage by orders of magnitude. They work well when the
state space is structured and exhibits symmetry, which is often the case for real-
life case studies modelled by humans (as opposed to randomly generated exam-
ples). In probabilistic model checking, however, numeric values from continuous
domains are part of state spaces and must be encoded in the decision diagrams.
A binary encoding of their floating-point representation does not usually result
in compact diagrams; instead, multi-terminal BDDs (MTBDDs), where each of
the (unbounded number of) leaves represents one number, have been applied
with some success, notably in the probabilistic model checker Prism [32]. They
however do not provide much compaction for models with many distinct proba-
bilities or reward values due to the large number of leaves. They also do not work
well to represent the large vectors of values used in iterative numeric algorithms
such as value iteration, which progress through many very different intermediate
values for each state before converging to, but often not reaching, a fixpoint. For
this reason, Prism defaults to its hybrid engine, which uses MTBDDs for the
state space but arrays of double-precision values for iteration. Its fully symbolic
mtbdd engine only solves specific large structured models in reasonable runtime.
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Our contribution is a new approach that combines (MT)BDDs, explicit state
representations, and state elimination to tackle the problem of model-checking
large probabilistic specifications. Its novelty lies in (1) using BDDs precisely
for those tasks that they work well for, and (2) using state elimination instead
of the standard iterative algorithms in the computation phase. We work with
discrete-state probabilistic systems; in this paper, we use DTMC to explain our
approach, but the same techniques apply directly to CTMC, Markov decision
processes (MDP) [35], and Markov automata (MA) [16], too.

Our state space exploration performs a standard explicit-state breadth-first
search, but we use a decision diagram instead of the standard hashset to store
the set of visited states. We do not store transitions, thus no continuous numeric
values blow the diagram up. However, we do count the number of predecessors
of each state—thus we use an MTBDD. Since this number is a discrete quan-
tity with low variation in most models, the diagrams usually remain compact.
For the computation phase, we explore the state space again, this time creating
a representation that includes transitions, but that is explicit. During this ex-
ploration, we keep track of the number of explored predecessors of each state.
Whenever, for some fully-explored state s, this number reaches the predecessor
count given by the MTBDD, we apply state elimination: we remove s from the
(yet incomplete) explicit state space representation, and replace all of its incom-
ing and outgoing transitions by direct transitions between the predecessors and
successors of s. By redistributing the original transitions’ probabilities and re-
wards in the right way, the quantity of interest remains unaffected. This method
of computation simultaneously avoids the iterative algorithms’ convergence and
precision issues [20] and keeps memory usage due to the explicit representation
low: on most models, most states are eliminated soon after they have been fully
explored, thus only few need to be kept in memory at any time. Upon termi-
nation, only the initial state and goal state(s) remain, and the value for the
quantity of interest can be read off the transitions connecting them.

Two technical insights make our computation phase work well: First, we use
an explicit representation not only to avoid storing (continuous) probabilities
and rewards in an MTBDD, but also because state elimination tends to create
unstructured intermediate state spaces that would blow up any BDD represen-
tation. Second, the precomputed predecessor count allows us to eliminate a state
at precisely the moment after which we will not encounter it again in our search,
avoiding costly re-explorations and re-eliminations.

Related work. State elimination stems from the classic reduction algorithm to
convert a finite automaton into a regular expression [10]. It was introduced to
probabilistic model checking to solve parametric Markov chains [13] and forms
the core of the Param [25] and Prophesy [14] tools. For non-parametric mod-
els, it enables efficient computation of reward-bounded reachability probabili-
ties [22]. In this paper, we use it for non-parametric Markov chains and un-
bounded (infinite-horizon) properties. In all of these settings, its effectiveness
crucially depends on the order in which states are eliminated, which is deter-
mined by (configurable) heuristics. Symblicit techniques have previously been
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Fig. 1. DTMC Mz for the Zeroconf protocol (h = 32, a = 28, p = 0.2, n = 4)

used for long-run average properties [38], based on bisimulation minimisation,
and later expanded in related settings [7]. A different form of elimination on
strongly-connected components was used by Gui et al. [19] to accelerate the
(explicit-state) computation of reachability probabilities via value iteration.

2 Background

Mathematical notions. R
+
0 is the set of all non-negative, and R+ the set of all

positive, real numbers. A (discrete) probability distribution over S is a function
µ ∈ S → [0, 1] with countable support spt(µ) def= { s ∈ S | µ(s) > 0 } and∑

s∈spt(µ) µ(s) = 1. Dist(S) is the set of all probability distributions over S.

2.1 Discrete-Time Markov Chains

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = 〈S, sI , P,R〉
consisting of a finite set of states S, an initial state sI ∈ S, a transition function
P : S → Dist(S), and a reward function R : S → R

+
0 .

We also write a transition as s p−→ s′ if p = P (s)(s′) > 0. A transition is uniquely
identified by the two states it connects. When in state s of a DTMC, we delay
for one time unit before jumping to the next state. Continuous-time Markov
chains (CTMC) extend DTMC by additionally assigning a rate Q(s) ∈ R+ to
every state. Then the probability to delay for at most t time units is 1−e−Q(s)·t,
i.e. the residence time follows the exponential distribution with rate Q(s). In
both models, the probability to then move to state s′ is given by P (s). When
staying for t time units in state s, we incur a reward of R(s) · t. To simplify the
presentation, we use DTMC throughout this paper, but mention the changes
needed in definitions or algorithms to use CTMC, where appropriate.

Example 1. As a running example, we use a very abstract model of the Zeroconf
protocol [6], shown as DTMC Mz in Fig. 1 (adapted from [18]). We draw transi-
tions as arrows labelled with their probability. Non-zero rewards are given next
to the states. Mz has 7 states and 12 transitions. The protocol is used by hosts
joining a network to auto-configure a unique IP address. A new host joining
the network of h = 32 host starts in state i. It selects an address uniformly at
random from the space of a = 28 addresses. The probability that the address
is already in use is h

a
= 1

8 . The host checks n = 4 times whether its address is
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already in use. If it is not, all checks will succeed, modelled by state ok, to which
we moved with probability 1 − h

a
. If it is, then states n down to 1 model the

checks. Each check can fail to give the correct negative result due to message
loss with probability p = 0.2. If all tests do so, then the host incorrectly believes
that it has a unique address, in state ⊥. Otherwise, it retries with a newly chosen
address from state i. We incur a reward of 1 in state i, i.e. for every IP address
we try. The size of the DTMC can be blown up arbitrarily via parameter n.

In practice, higher-level modelling languages like Modest [24] or the Prism

language [32] are used to specify larger DTMC. The semantics of a DTMC is
formally captured by its paths :

Definition 2. Given a DTMC M as above, a finite path is a sequence πfin =
s0 t0 s1 t1 . . . sn of states si ∈ S and delays ti ∈ R+ where P (si)(si+1) > 0 and
ti = 1 for all i ∈ { 0, . . . , n − 1 }. Let |πfin|

def= n, last(πfin)
def= sn, dur(πfin)

def=
∑n−1

i=0 ti, and rew(πfin)
def=

∑n−1
i=0 ti · R(si). Πfin is the set of all finite paths

starting in sI . A path is an analogous infinite sequence π, and Π are all paths
starting in sI . We define s ∈ π ⇔ ∃ i : s = si. Let π→m for m ∈ N be the prefix
of π of length m, i.e. |π→m| = m, and let π→G be the shortest prefix of π that
contains a state in G ⊆ S, or ⊥ if π contains no such state. Let rew(⊥) def= ∞.

In CTMC, the ti can be arbitrary numbers in R
+
0 . For M as above, following the

rules described below Definition 1 and the standard cylinder set construction [4],
we obtain a probability measure PM on measurable sets of paths starting in sI .

Definition 3. Given a set of goal states G ⊆ S, the reachability probability
w.r.t. g is P(⋄G) def= PM (π ∈ Π | ∃ g ∈ G : g ∈ π). Let rG : Π → R

+
0 be the ran-

dom variable defined by rG(π) = rew(π→G). Then the expected reward to reach
G is the expected value of rG under PM , written as E( � G). Let rlra : Π → R

+
0

be defined by rlra (π) = limi→∞ rew(π→i)/dur(π→i). Then the long-run average
reward is the expected value of rlra under PM , written as L.

The steady-state probability S(S′) of residing in a state in S′ ⊆ S is a special
case of the long-run average reward where R(s) = 1 if s ∈ S′ and 0 otherwise.
Whenever we consider a DTMC with a set of goal states G, we assume that they
have been made absorbing, i.e. that for all g ∈ G we have P (g)(g) = 1. Given a
CTMC, reachability probabilities and expected rewards can be computed on its
embedded DTMC, obtained by dividing all rewards by Q(s); only for long-run
averages do we need a dedicated treatment of the rates resp. residence times.

Example 2. For our Zeroconf example DTMC Mz from Fig. 1, we may want to
compute the probability to eventually pick a unique address P(⋄ { ok}), which
will be just below 1, and the expected number of addresses that we ever try
E( �{ ok,⊥}). Note that E( �{ ok}) is ∞ by definition since the set of paths that
never reach state ok has positive probability.
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Fig. 2. MTBDD counting the numbers of predecessors for all states of Mz

2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) [9, 33] represent Boolean functions as rooted
directed acyclic graphs. They have two leaf nodes, true and false . Every inner
node is associated to one input bit, and has two children: the high (solid line)
and low (dotted line) child. On a path from the root to a leaf, every bit must
occur at most one. Such a path corresponds to the inputs in which bit bi is
assigned to true (false) if we go from a node for bi to its high (low) child. We
typically order the bits on all paths, merge isomorphic subgraphs, and remove
redundant nodes. Then a BDD can represent many functions with few nodes.

In model checking, BDDs are used to represent sets of states (by assigning
true to the binary encoding of a state iff it is in the set) as well as the transition
relation (by assigning true to the binary encoding of a pair of states if they are
connected by a transition). In probabilistic model checking, however, we need to
encode functions that map to rational numbers to encode transition probabili-
ties, rewards, and the value vectors in value iteration. Most tools represent them
as 64-bit floating-point values, but the corresponding binary representation does
not typically allow good compression with BDDs. Symbolic probabilistic model
checkers such as Prism [32] this use multi-terminal BDDs (MTBDDs) with one
leaf node per number. Since a finite model only contains finitely many proba-
bilities, or values for states, this approach is effective, but often not efficient:
for example, when performing value iteration on our example DTMC Mz for
P(⋄ { ok}), we have to encode the following function after 5 iterations:

{ i 7→ 0.99225, 4 7→ 0.9716, 3 7→ 0.966, 2 7→ 0.938, 1 7→ 0.784, ok 7→ 1,⊥ 7→ 0 }

Observe that every state has a distinct value, thus the MTBDD offers no com-
pression. In practice, they only work well for very specific models with few
distinct transition probabilities and rewards, and where the iterative numeric
algorithms assign the same (intermediate) values to many states.

Example 3. Fig. 2 shows an MTBDD mapping every state of Mz to its number
of predecessor states. We have 7 states, thus use 3 bits for their encoding. States
1 through 4 are encoded as that number, i is 5 (1012), ok is 6 ((1102), and
⊥ is 7 (1112). There is no (reachable) state encoded as 0, thus we map 0 to
the extra ⊥ leaf node—in this way, such an MTBDD can indicate that certain
states are unreachable, or have not been explored yet. Observe that the MTBDD
representation achieves some compression by excluding two redundant nodes for
bit 2. If we scale the model up by increasing n, the compression would increase.
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2.3 State Elimination

State elimination is a process by which a state of a DTMC is removed, i.e.
transitions are modified such that it is no longer reachable from the initial state
and it is removed from the state set S, in a way that preserves the values of all
properties of interest. We show the schematic of state elimination in Fig. 3: we
eliminate a state t by redistributing the probability to enter a self-loop onto its
other outgoing transitions, then combine its incoming and outgoing transitions.
It is easy to see that this preserves the probabilities of all measurable sets of
paths that pass through t when projecting t out from every path. In particular,
the paths that forever take the self-loop have probability mass zero, which is
why we could eliminate the loop. For rewards, the transformation only preserves
the expected reward values of sets of paths:
1. In t, the expected number of times we take the self-loop is pc

1−pc
, thus the

expected reward from passing through t is rt·pc

1−pc
(for the loop) plus rt (for

taking one of the other outgoing transitions.
2. Out of s, the probability to enter t next is pa, thus we multiply the expected

reward of passing through t by pa and add this to the reward of s.
Alg. 1 shows the pseudocode to perform state elimination on a DTMC stored in
explicit data structures (i.e. hash sets for states, lists of transitions, etc.).

3 Symblicit Exploration and Elimination

As we explained in Sect. 1 and illustrated in Sect. 2.2, many probabilistic models
do not give rise to a compact BDD-based representation if the numeric values—
probabilities, rewards, rates for CTMC—are included. Furthermore, the stan-
dard iterative numeric algorithms like value iteration usually produce data that
is hardly BDD-compressible. In this section, we present a combined symbolic-
explicit approach that uses MTBDDs in a way that usually avoids such problems,
and that uses state elimination to calculate P, E, and L values without having
to keep (values for all states of) the entire state space in memory.

The pseudocode of our approach is shown as function ExploreEliminate in
Alg. 2. It uses functions Explore of Alg. 3 and Eliminate of Alg. 1. We typeset
values that represent executable code in monospace font: compact specifications
in high-level modelling languages are typically compiled to or interpreted as
functions that, given an explicit (bit string) representation of a state, enumerate
its transitions (P), compute its reward (R), and return true iff it is a goal state
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1 function Eliminate(〈S, sI , P,R〉, s ∈ S, Skeep ⊆ S) // all explicit
2 if s ∈ spt(P (s))∧P (s)< 1 then // if s has a self-loop and other transitions:
3 foreach s′ ∈ spt(P (s)) \ { s } do // redistribute onto other transitions
4 P (s)(s′) := P (s)(s′)/(1− P (s)(s)) // the self-loop’s probability

5 R(s) := R(s) +R(s) · P (s)(s)/(1− P (s)(s)) // add the expected reward
6 P (s)(s) := 0 // remove the self-loop

7 foreach spre ∈ { s′′ | s ∈ spt(P (s′′)) } \ { s } do // for every predecessor spre :
8 p := P (spre)(s), P (spre)(s) := 0 // remove the transition from spre to s
9 foreach s′ ∈ spt(P (s)) do // then merge the transitions of s

10 P (spre)(s
′) := P (spre)(s

′) + p ·P (s)(s′) // into the transitions of spre

11 R(spre) := R(spre) + p ·R(s) // merge the reward of s into that of spre

12 if s /∈ Skeep ∧ P (s)(s) = 0 then // if s is not needed: remove
13 P := P \ { s 7→ P (s) }, R := R \ { s 7→ R(s)} // its transitions, reward,
14 S := S \ { s } // and the state itself

Alg. 1: State elimination for probabilities and expected rewards

(G). We mark variables storing symbolic data (i.e. BDDs or MTBDDs) with a
ˆhat . All other values typeset in italics use explicit data structures such as bit

strings for states, hash sets or queues of such bit strings, lists of transitions, etc.
Our first step, in line 2, is to symbolically explore the set of reachable states

by calling function Explore. This function performs a standard breadth-first
search, using a BDD for the set of visited states, and additionally constructs an
MTBDD that counts the number of predecessors of each state like the one shown
in Fig. 2 for Mz. In our implementation, seen and pre are actually managed in
a single MTBDD as explained in Example 3.

We then, starting from line 3, perform another exploration of the state space.
This time, however, we use explicit data structures, and we track the number
of fully explored predecessors for every state in hash table pre ′. A state is fully
explored if its reward, all of its transitions, and all successor states, have been
added to the explicit representations for S, R, and P . We track the set of fully
explored states in hash set done. Whenever we are done visiting a state s in this
second exploration (i.e. in line 13 and below), it has just become fully explored,
and the fully-explored-predecessor count of its successors has changed. We then
check which of these changed states fulfils the criteria for being eliminated: It
must be fully explored (which only s is for certain), and all of its predecessors
must be fully explored (which we determine by comparing pre ′ and ˆpre). We
call Eliminate on these states in line 17. In this way, if we indeed manage
to eliminate most states soon after they have been explored, the explicit data
structures—S, P , R, pre ′, done, etc.—only track few states at any time and thus
consume little memory. The predecessor count in ˆpre is crucial for being able to
perform efficient elimination; without it, we would have to apply heuristics that
could lead to states being eliminated that would later be explored as successors
of other states again, leading to costly re-exploration and re-eliminations.
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1 function ExploreEliminate(sI , P, R, G) // explicit sI , executable P, R, G
2 ˆpre := Explore(sI , P) // get predecessor count MTBDD for all states
3 done := ∅, agenda := { sI } // done stored as hash set, agenda as queue
4 S := { sI }, P := ∅, R := ∅, pre ′ := { sI 7→ 0 } // explicit sets and functions
5 while agenda 6= ∅ do

6 s := next element of agenda , agenda := agenda \ { s }
7 foreach s′ ∈ spt(P(s)) do // explore s
8 P (s)(s′) := P(s)(s′), R(s) := R(s)
9 if s′ /∈ S then

10 S := S ∪ { s }, agenda := agenda ∪ { s }
11 pre ′ := pre ′ ∪ { s′ 7→ 0 }

12 if s′ 6= s then pre ′(s′) := pre ′(s′) + 1

13 done := done ∪ { s } // s is now fully explored
14 E := { se | se ∈ {s} ∪ spt(P (s))∩ done } // collect just modified states
15 E := { se | se ∈ E ∧ ˆpre(se)= pre ′(s) } // with all predecessors explored
16 foreach selim ∈ E do // and eliminate them
17 Eliminate(〈S, sI , P,R〉, selim , { sI })
18 if selim /∈ S then // cleanup
19 pre ′ := pre ′ \ { selim 7→ pre ′(selim ) }, done := done \ { selim }

20 if we compute a reachability probability then return
∑

g∈G
P (sI)(g)

21 else if we compute an expected reward then

22 if spt(P (sI)) \ G 6= ∅ then return ∞ // we have P(⋄ G) < 1
23 else return R(si) +

∑
g∈G

P (sI)(g) ·R(g)

Alg. 2: Symblicit exploration-elimination for probabilities and expected rewards

In Eliminate, if a state is part of the set Skeep, we still modify and “redirect”
the transitions of its predecessors to go around this state, but we do not remove
it from the state space. We use this to avoid eliminating the initial state sI . We
also do not eliminate states whose only transition is a self-loop: they do not have
successors to which transitions could be redirected. Elimination will thus eventu-
ally reduce each bottom strongly connected component (BSCC) of the DTMC to
one such self-loop state. Since we assume all goal states to only have a self-loop,
each of them is a BSCC. Once the outer loop of line 5 in ExploreEliminate

finishes, Eliminate has been called for all states. Every surviving state at this
point is thus the result of eliminating a number of transient states plus a non-
goal BSCC or a goal state, and has become a direct successor of the initial state.
We can then directly read the value of P(⋄ G) from the transitions to the goal
states (line 20). Similarly, the value of E( � G) can be derived directly from the
remaining rewards, if it is not ∞ by definition (lines 22-23).

Example 4. For our example DTMC Mz of Fig. 1, we have already shown the
predecessor count MTBDD computed by Explore in Fig. 2. Let us now step
through the rest of ExploreEliminate on this model. The partial state spaces
that we consider in each step are shown in Fig. 4. Fully explored states are drawn
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1 function Explore(sI , P) // explicit sI , executable P

2 ˆseen := { sI }, agenda := { sI } // seen stored as BDD, agenda as queue
3 ˆpre := { sI 7→ 0 } // predecessor count, stored as MTBDD
4 while agenda 6= ∅ do

5 s := next element of agenda , agenda := agenda \ { s }
6 foreach s′ ∈ spt(P(s)) \ { s } do

7 if s′ /∈ ˆseen then

8 ˆseen := ˆseen ∪ { s }, agenda := agenda ∪ { s }
9 ˆpre := ˆpre ∪ { s′ 7→ 0 }

10 ˆpre(s′) := ˆpre(s′) + 1 // s is a previously-unseen predecessor of s′

11 return ˆpre

Alg. 3: Symbolic exploration via breadth-first search with predecessor counting

with solid outlines, all other states (i.e. those in S but not in done) with dashed
outlines. In step (1), we have just fully explored state i, i.e. we just executed
line 13 in the first iteration of the outer loop. Since ˆpre tells us that i still has
unexplored predecessors, we cannot eliminate, and next explore ok in step (2).
We then eliminate ok—its only predecessor i is fully explored—but since ok has
just a single self-loop, the elimination has no effect. In step (3), we have just
explored state 4, which can now be eliminated. The result is shown as step (4).
We proceed in the same pattern in steps (5) through (8). Then, in step (9),
we fully explore state 1. Now all predecessors of i are fully explored, and we
can eliminate both 1 and i. For the sake of illustration, let us pick the more
complicated ordering and eliminate i first. The result is shown as step (10).
Since i is the initial state, we keep it, but redirect all incoming transitions.
We also merge its rewards, which is why 1 now has a non-zero reward. Note
that we show rationals in Fig. 4, but our implementation uses floating-point
numbers. Remember that, without ˆpre, we might have eliminated i too early;
after any subsequent exploration of a state in { 1, . . . , n }, we would then have to
re-eliminate i. We finally eliminate 1 in step (11) and explore state ⊥ in step (12).
At this point, the outer loop terminates; we read P(⋄ { ok}) = 4375

4376 ≈ 0.999771
and E( � { ok,⊥}) = 1 + 119918

119793 ≈ 2.001043. Observe that, at any time, we kept
at most 4 explicit states in memory. We can arbitrarily increase the size of this
model by increasing n, but will only ever need at most 4 states in memory.

· · ·

p1

pn

1, ru = us, rl = ls

1, ru = u1, rl = l1

1, ru = un, rl = ln

Fig. 5. Computation of long-run averages.

Long-run average rewards. The al-
gorithm we presented so far com-
puted reachability probabilities and
expected rewards. For long-run aver-
age reward properties, there are no
goal states. In such a case, our state
elimination procedure computes the
recurrence reward for each BSCC [17].



11

i

1

ok

(1)

4
0.875 0.125

i

1

ok

(2)

4
0.875 0.125

1

i

1

ok

(3)

4 3
0.875 0.125 0.2

1

0.8

i

1

ok

(4)

3
0.875 0.025

1

0.1

i

1
ok

(5)

3 2
0.875 0.025 0.2

1

0.8

0.1

i

1

ok

(6)

2
0.875 0.005

1

0.12

. . .

i

1
ok

(9)

1 ⊥
0.875 0.001 0.2

1

0.8

0.124

i

1
ok

(10)

1

200

219

⊥

875

876

1

876 0.2
1

175

219 1

1095

i

1+ 119918

119793

ok

(11)

⊥

4375

4376

1

4376

1 i

1+ 119918

119793

ok

(12)

⊥

4375

4376

1

4376

1 1

Fig. 4. Example for exploration with interleaved elimination on Mz

To obtain the long-run average reward, we need to divide the recurrence reward
for the rewards as given in the DTMC by the recurrence reward that we would
obtain if all states had reward 1. We can do so by straightforwardly extending
Algs. 1 and 2 to work on two reward structures ru and rl in parallel. Upon
termination of the outer loop in ExploreEliminate, we then have one of the
two situations described at the end of Sect. 4 in [17], and can again directly
read off the value for our (L-)property. Consider Fig. 5: In the simpler case, the
remaining model consists of the initial state s with a self-loop with probability
one and ru = us, rl = ls. In this case, the average value is us

ls
. In the other case,

the remaining model consists of the initial state s which has a probability of pi
to move to one of the other n remaining states si , i = 1, . . . , n, which all have
a self-loop with probability one and ru(si) = ui, rl(si) = li. In this case, the
average value is

∑
i=1,...,n pi

ui

li
.

When computing long-run average rewards, the final value for L may be
small, but the two recurrence rewards that we need to divide are often extremely
large numbers beyond what can usefully be represented as 64-bit (i.e. double-
precision) floating point numbers. We thus implemented a variant of our algo-
rithm that uses the GNU MPFR library (see mpfr.org) for arbitrary-precision
floating-point arithmetic, allowing us to use more than 64 bits. We did not find
this to significantly affect the performance of the overall approach.

Alternatives and optimisations. So far, we have assumed that we compute suc-
cessors for each state explicitly and individually. For the state elimination phase,

https://www.mpfr.org/
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doing so is indeed necessary. However, for just exploring the states we could also
compute the transition relation as a BDD, and then use the transition relation to
symbolically explore the set of reachable states. This is the standard approach in
model checkers such as PRISM [32] and potentially faster than the semi-symbolic
approach we have discussed. Also, using the transition relation and according
MTBDD operations (in particular sum-abstraction), the number of predecessors
of each state can also be computed symbolically.

We have so far assumed that the reachable states and the number of pre-
decessors are stored as (MT)BDDs. An alternative to this approach is to store
these numbers on secondary storage (e.g. hard disk) in a similar way as e.g.
in [28]. This approach would be useful for models the state space of which is
not suitable to be stored as a BDD. This might be the case because of lack of
implicit symmetries or because the size of the representation of each state is not
constant.

4 Experimental Evaluation

We have implemented a preliminary version of our method which we integrated
as a plugin for the probabilistic model checker ePMC [26]. For the analysis, we
transform the model and property into C++ code so as to have a means to
quickly compute successors of states, similar to the approach used in SPIN [31].
This C++ file is then appended with code so as to achieve the following: In the
first phase, we then explore the state space in a breadth-first manner where we
explore each state explicitly but store sets of states as BDDs, using the BDD
package CUDD [2]. In the second phase, we generate an MTBDD mapping all
states to value 0. Then, we iterate over all reachable states, recompute their
successors, and increment the value of these successors in the MTBDD by 1
each time. In the third phase, we execute the state elimination algorithm as
discussed. This C++ code is then compiled and run in a process separate from
ePMC, such that we can measure the memory usage exactly (the memory usage
of ePMC itself is not of much interest, because it is rather small and about the
same for any analysis).

In the following, we apply our tool on several case studies from the website
of the probabilistic model checker PRISM. All experiments were performed on
a MacBook Pro with a 2.7 GHz Quad-Core Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 RAM. In the following tables, “model states” is the total
number of states the model has for the given parameters, “result”, is the value
of the property computed, “time” is the total time of the analysis in seconds,
“exp. states” (“exp. transitions”) are maximal number of states (transitions) be-
ing stored explicitly at the same time. By “peak mem” we denote the maximal
memory usage in MB of the analysis process.
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4.1 Simple Molecular Reactions: Na + Cl ↔ Na
+

+ Cl
−

This case study 3 is a CTMC modelling the chemical reaction Na + Cl ↔
Na+ + Cl−. The parameters of this case study are N1 , the initial number of
Na molecules and N2 , the initial number of Cl molecules. In Table 1, we con-
sider the performance figures for the analysis of R=?[S] which describes the
expected long-run average number of Na molecules. Here, we consider a starting
configuration in which initially the number of Na and Cl is the same, that is,
N1 = N2 .

N1=N2 model states result time exp. states exp. trans peak mem

10 11 2.2623e+01 8 5 5 22
100 101 2.3894e+01 8 5 5 22

1,000 1,000 2.4012e+01 7 5 5 22
10,000 10,001 2.4024e+01 7 5 5 25

100,000 100,001 2.4025e+01 10 5 5 28
1,000,000 1,000,001 2.4025e+01 32 5 5 27

10,000,000 10,000,001 2.4025e+01 258 5 5 31
100,000,000 100,000,001 2.4025e+01 2,609 5 5 29

1,000,000,000 1,000,000,001 2.4025e+01 18,807 5 5 25

Table 1. Na +Cl ↔ Na+ + Cl− performance figures.

As we see, the model scales well for large numbers of molecules and accord-
ingly large state spaces. The memory usage grows only slowly with increasing
model parameters, and the number of states and transitions required to be stored
explicitly is constant.

4.2 Bounded Retransmission Protocol

The Bounded Retransmission Protocol [30]4 is a file transmission protocol. Files
are divided into N packages, each of which is transferred individually. Data and
confirmation packages are sent over unreliable channels, such that they might get
lost. Packages can only be resent a number of MAX times. In Table 2, we provide
performance figures for the analysis of the property P=?[ F s=5 ], that is the
probability that the sender does not eventually report a successful transmission.
“N ” and “MAX ” are as discussed above, the other numbers are as in the previous
case study.

Compared to the instances of the PRISM website, we have analysed instances
with higher parameter numbers N and MAX because our focus was in the
scalability of our method. For comparison, for the first table entry we used the
same parameters as the last table entry on the PRISM website.

As we see, we are able to handle instances with several million states with a
low memory usage. Even for higher parameter values for which the number of
total states the model consists of is in the millions, we never use more than a
few thousand explicit states and transitions and less than 100MB.

3 https://www.prismmodelchecker.org/casestudies/molecules.php
4 https://www.prismmodelchecker.org/casestudies/brp.php
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N MAX model states result time exp. states exp. trans peak mem

64 5 4,936 4.48e-08 9 12 29 25
64 10 9,101 1.05e-15 9 20 53 25
64 100 84,071 5.03e-153 9 140 517 25
64 1000 833,771 3.14e-1526 25 258 986 33

128 10 18,189 2.11e-15 9 20 53 25
128 100 168,039 1.01e-152 10 140 517 32
128 1000 1,666,539 6.28e-1526 38 514 1,978 36
256 10 36,365 4.21e-15 9 20 53 27
256 100 335,975 2.01e-152 15 150 517 28
256 1000 3,332,075 1.26e-1525 72 1,026 3,962 39
512 10 72,717 8.42e-15 9 20 53 29
512 100 671,847 4.03e-152 18 140 517 32
512 1000 6,663,147 2.51e-1525 140 1,340 5,167 42

1024 10 145,421 1.69e-14 10 20 53 29
1024 100 1,262,631 8.06e-152 29 140 517 30
1024 1000 13,325,291 5.02e-1525 280 1,340 5,167 43
2048 10 290,829 3.37e-14 12 20 53 27
2048 100 2,687,079 1.61e-151 50 140 517 30
2048 1000 26,649,579 1.00e-1524 552 1,340 5,167 41
4096 10 581,645 6.74e-14 17 20 53 27
4096 100 5,374,055 3.22e-151 95 140 517 28
4096 1000 53,298,155 2.01e-1524 1,151 1,340 5,004 39
8192 10 1,163,277 1.35e-13 26 20 53 28
8192 100 10,748,007 6.45e-151 187 140 517 27
8192 1000 106,595,307 4.02e-1524 2,385 1,340 5,004 40

16384 10 2,326,541 2.67e-13 48 20 53 27
16384 100 21,495,911 1.29e-150 392 140 517 28
16384 1000 213,189,611 8.03e-1524 4,534 1,340 5,004 40
32768 10 4,653,069 5.39e-13 91 20 53 26
32768 100 42,991,719 2.58e-150 781 140 517 27
32768 1000 426,378,219 1.61e-1523 9,039 1,340 5,004 41
65536 10 9,306,125 1.08e-12 20 54 156 25
65536 100 85,983,335 5.16e-150 140 503 1,362 29

131072 10 18,612,237 2.1572e-12 312 20 54 26
131072 100 171,966,567 1.03e-149 2,847 140 503 29

Table 2. Bounded Retransmission Protocol performance figures.
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4.3 Wireless Communication Cell

This case study is a performance model of wireless communication cells [27]5.
The parameter N describes the number of channels in a cell. We analyse the
property R{"calls"}=? [ S ] which describes the average number of calls in
the cell on the long run. We provide performance figures in Table 3.

N model states result time exp. states exp. trans peak mem

10,000 10,001 7.00e+01 7 5 5 24
100,000 100,001 7.00e+01 9 5 5 24

1,000,000 1,000,001 7.00e+01 24 5 5 25
10,000,000 10,000,001 7.00e+01 183 5 5 26

100,000,000 100,000,001 7.00e+01 1,731 5 5 25

Table 3. Wireless Communication Cell performance figures.
Also for this case study, the approach works fine in that the number of states

and transitions to be stored is small as is the peak memory usage.

4.4 Crowds Protocol

The Crowds protocol [37]6 is a means to allow anonymous web browsing. To do
so, messages are not directly sent, but forwarded to other users, who might either
forward them again or send them to the destination. By doing so, it is hard for
attackers to decide whether the sender of a message is the original sender or is
just forwarding the message. The model version we consider has two parameters:
TotalRuns is the number of routing paths of the model instance, and CrowdSize

is the number of honest participants of the protocol. We consider the property
Pmax=?[true U (new & runCount=0 & observe0 > observe1 & ... &

observe0 > observe19)] which means that an attacker is eventually able to
observe the true sender of a message more often than participants just forwarding
the message and is thus able to guess the original sender. In Table 4, we provide
performance figures.

CrowdSize TotalRuns model states result time exp. states exp. trans peak mem

5 5 8,653 2.7884e-01 9 289 1,278 77
5 6 18,817 2.9791e-01 9 510 2,236 77
5 7 37,291 3.1812e-01 9 823 3,898 164

10 5 111,294 2.1662e-01 19 6,604 33,513 2487
10 6 352,535 2.3162e-01 106 17,824 89,120 10698
15 5 592,060 1.9674e-01 676 44,104 356,143 9240

Table 4. Crowds Protocol performance figures.
As we see, for this model the current implementation does not perform very

well. The reason is that too many states and transitions have to be stored ex-
plicitly at the same time, leading to a large memory overhead.

5 https://www.prismmodelchecker.org/casestudies/cell.php
6 https://www.prismmodelchecker.org/casestudies/crowds.php
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4.5 Embedded Control System

This case study [34]7 is an embedded control system which features a cyclic
polling process. If a certain component detects that more than a given number
MAX_COUNT of cycles have been skipped due to issues,then the system is shut
down for safety reasons. We consider the property R{"danger"}=? [ F "down" ],
which expresses the expected time the system is in an endangered state before
it eventually has to be shut down. We provide performance figures in Table 5.
Again, the analysis method works fine, as the number of states and transitions
stored explicitly is limited.

MAX_COUNT model states result time exp. states exp. trans peak mem

512 320,316 3.3454e-01 56 267 11,938 80
1024 639,804 3.3731e-01 107 267 11,938 80
2048 1,278,780 3.4283e-01 201 267 11,938 80
4096 2,556,732 3.5371e-01 400 267 11,938 80
8192 5,112,636 3.7485e-01 794 267 11,938 80

16384 10,224,444 4.1469e-01 1,579 267 11,938 80
32768 20,448,060 7.6563e-01 2,914 284 10,513 72

Table 5. Embedded Control System performance figures.

5 Conclusion and Future Work

In this paper, we have discussed a new memory-efficient analysis method for
properties of stochastic models. Our method is widely applicable to a large vari-
ety of stochastic models and properties, though, for conciseness of presentation
we have concentrated on DTMCs (with some of the case studies being CTMCs).
Experimental evidence has shown that our approach has the potential to analyse
models with millions of states with just a few megabytes. One advantage of our
method is that we directly obtain a precise result: Our current implementation is
based on (variable-precision) floating-point numbers, and computation precision
is limited by the properties of this representation. We could however as well use
exact (rational) arithmetic and would obtain exact values without any change in
the core algorithms, since all intermediate and final values are rational, though
at the cost of increased computation time and memory usage. Alternatively, we
could use interval arithmetic so as to obtain precise upper and lower bounds of
the values computed, again, without any change in the algorithm, and with only
moderate overhead. This is in contrast to methods based on value iteration or
state-space abstraction, for which special precaution is required to ensure this.
Our current implementation explores and eliminates states in a strict breadth-
first search order. Motivated by the problematic performance of the Crowds
protocol case study, we also want to consider different search orders so as to
improve the behaviour for models for which the strict breadth-first search order
does not perform well.

7 https://www.prismmodelchecker.org/casestudies/embedded.php
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