2109.05261v1 [csIR] 11 Sep 2021

arxXiv

CauseRec: Counterfactual User Sequence Synthesis for
Sequential Recommendation

Shengyu Zhang*
Zhejiang University, China
sy_zhang@zju.edu.cn

Tat-seng Chua
National University of Singapore
descts@nus.edu.sg

ABSTRACT

Learning user representations based on historical behaviors lies
at the core of modern recommender systems. Recent advances in
sequential recommenders have convincingly demonstrated high ca-
pability in extracting effective user representations from the given
behavior sequences. Despite significant progress, we argue that
solely modeling the observational behaviors sequences may end
up with a brittle and unstable system due to the noisy and sparse
nature of user interactions logged. In this paper, we propose to learn
accurate and robust user representations, which are required to be
less sensitive to (attack on) noisy behaviors and trust more on the
indispensable ones, by modeling counterfactual data distribution.
Specifically, given an observed behavior sequence, the proposed
CauseRec framework identifies dispensable and indispensable con-
cepts at both the fine-grained item level and the abstract interest
level. CauseRec conditionally samples user concept sequences from
the counterfactual data distributions by replacing dispensable and
indispensable concepts within the original concept sequence. With
user representations obtained from the synthesized user sequences,
CauseRec performs contrastive user representation learning by
contrasting the counterfactual with the observational. We con-
duct extensive experiments on real-world public recommendation
benchmarks and justify the effectiveness of CauseRec with multi-
aspects model analysis. The results demonstrate that the proposed
CauseRec outperforms state-of-the-art sequential recommenders
by learning accurate and robust user representations .
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1 INTRODUCTION

Due to the overwhelming data that people are facing on the Inter-
net, personalized recommendation has become vital for retrieving
information and discovering content. Accurately characterizing
and representing users plays a vital role in a successful recom-
mendation framework. Since users’ historical interactions are se-
quentially dependent and by nature time-evolving, recent advances
[40, 42, 43, 48, 57-60, 63, 71, 74, 82] pay attention to sequential
recommendation, which captures the current and recent preference
by exploiting the sequentially modeled user-item interactions.

A sequential recommender aims to predict the next item a user
might interact with based on the historical interactions. The chal-
lenging and open-ended nature of sequence modeling lends itself
to a variety of diverse models. Traditional methods mainly exploit
Markov chains [15] and factorization machines [22, 49] to capture
lower-order sequential dependencies. Following these works, the
higher-order Markov Chain and RNN (Recurrent Neural Network)
[18, 21, 66] are proposed to model the complex high-order sequen-
tial dependencies. More recently, MIND is proposed to transform
the historical interactions into multiple interest vectors using the
capsule network [51]. ComiRec [5] differs from MIND by leveraging
the attention mechanism and introducing a factor to control the
balance of recommendation accuracy and diversity.

Despite significant progress made with these frameworks, there
are some challenges demanding further explorations. A vital chal-
lenge comes from the noisy nature of implicit feedback. Due to the
ubiquitous distractions that may affect the users’ first impressions
(such as caption bias [39], position bias [24], and sales promotions),
there are inconsistencies between users’ interest and their click-
ing behaviors, known as the natural noise [45]. Another challenge
relates to the deficiency of existing methods in confronting data
sparsity problem in recommender systems where users in general
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Figure 1: An illustration of the proposed contrastive user
representation learning by modeling the counterfactual
world (below), compared with most traditional approaches
that solely model the observational user sequences (above).

only interact with a limited number of items compared with the
item gallery which can easily reach 100 million in large live systems.
Therefore, solely modeling the observational behavior sequences
that can be both sparse and noisy may end up with a brittle system
that is less satisfactory. To this end, learning accurate and robust
users’ user representations is essential for recommender systems.

In this paper, we propose Counterfactual User Sequence Syn-
thesis for Sequential Recommendation, abbreviated as CauseRec.
The essence of CauseRec in confronting the data sparsity problem
is to model the counterfactual data distribution rather than the
observational sparse data distribution where the latter can be a
subset of the former one, as shown in Figure 1. We mainly aim to
answer the counterfactual question, "what the user representation
would be if we intervene on the observed behavior sequence?".
Specifically, given the observed behavior sequence, we identify in-
dispensable/dispensable concepts at both the fine-grained item level
and the abstract interest level. A concept indicates a certain aspect
of user interest/preference. We perform counterfactual transfor-
mations on both the item-level and the interest-level user concept
sequences. We obtain counterfactually positive user representation
by modifying dispensable concepts, and counterfactually negative
user representation by replacing indispensable concepts. To learn
accurate and robust user representations, we propose to conduct
contrastive learning between: 1) the observational and the counter-
factual user representations; and 2) the user representations and the
target items. Contrast with such out-of-distribution hard negatives
potentially makes the learned representations robust since they
are less sensitive to dispensable/noisy concepts. Contrast with such
out-of-distribution positives potentially makes the learned repre-
sentations accurate since they will trust more on the indispensable
concepts that are better representing user’s interest.

We conduct in-depth experiments to validate the effectiveness of
the proposed CauseRec architectures on various public recommen-
dation datasets. With a naive deep candidate generation (or match-
ing) architecture as the baseline method, CauseRec outperforms
SOTA sequential recommenders for deep candidate generation. We
conduct comprehensive model analysis to uncover how different

building blocks and hyper-parameters affect the performance of
CauseRec. Case studies further demonstrate that CauseRec can
help learn accurate user representations. To summarize, this paper
makes the following key contributions:

e We propose to model the counterfactual data distribution
(besides the observational data distribution) to confront the
data sparsity problem for recommendation.

e We devise the CauseRec framework which learns accurate
and robust user representations with counterfactual transfor-
mations on both fine-grained item-level and abstract interest-
level, and with various contrastive objectives.

e We conduct extensive experiments and show that with a
naive deep candidate generation architecture as the baseline,
CauseRec can outperform SOTA sequential recommenders.

2 RELATED WORKS

2.1 Sequential Recommendation

Sequential recommendation can be traced back to leveraging Markov-
chain [14, 15] and factorization machines [22, 49]. To capture long-
term and multi-level cascading dependencies, deep learning based
techniques (e.g., RNNs [10, 21, 47, 66] and CNNs [55, 75]) are in-
corporated into sequential modeling. DNNs are known to have
enticing representation capability and have the natural strength to
capture comprehensive relations [76] over different entities (e.g.,
items, users, interactions). Recently, there are works that explore
advanced techniques, e.g., memory networks [53], attention mech-
anisms [56, 79], and graph neural networks [9, 26, 31, 36, 81] for
sequential recommendation [6, 23, 29, 54, 61, 67, 72]. Typically,
MIND [32] adopts the dynamic routing mechanism to aggregate
users’ behaviors into multiple interest vectors. ComiRec [5] dif-
fers from MIND by leveraging the attention mechanism for user
representations and proposes a factor for the trade-off between
recommendation diversity and accuracy. Different from the above
works that solely model the observational user sequences, we take
a step further to model the counterfactual data distributions. By
contrasting the user representations of the observation with the
counterfactual, we aim to learn user encoders that can better con-
front out-of-distribution user sequences and learn accurate and
robust user representations.

2.2 Contrastive Learning for Recommendation

A growing number of attempts have been made to exploit the
complementary power of self-supervised learning (e.g., contrastive
learning) and deep learning, with domains varying from computer
vision [12, 17, 68], natural language generation [7, 77], to graph em-
bedding [46]. However, how to consolidate the merits of contrastive
learning into recommendation remains largely unexplored in the
literature. Recently, Sun et al.[33] adopt noise contrastive estima-
tion [16] to transfer the knowledge from a large natural language
corpus to recommendation-specific content that is sparse on long-
tail publishers and thus learning effective word representations.
CLRec [83] bridges the theoretical gap between contrastive learning
objective and traditional recommendation objective, e.g., sampled
softmax loss, as well as more advanced inverse propensity weighted
(IPW) loss. They show that directly performing contrastive learn-
ing can help to reduce exposure bias. CP4Rec [69] and S3-Rec [84]



integrates Bert structure and contrastive learning objective for user
pretraining, which require a fine-tuning stage. Compared with these
works, we design model-agnostic and non-intrusive frameworks
that help any baseline model learn more effective user represen-
tations in an end-to-end manner. Such representations are more
accurate and robust by contrasting the original user representa-
tion with counterfactually positive samples and counterfactually
negatives samples.

2.3 Counterfactual for Recommendation

Causality and counterfactual reasoning have attracted great at-
tentions in various domains [11, 78, 80]. Previous counterfactual
frameworks in recommendation focus on debiasing the learning-
to-rank problems. A rigorous counterfactual learning framework,
i.e., PropDCG [1], is proposed to overcome the distorting effect
of presentation bias. The position bias and the clickbait issue are
investigated in [2, 64] and [62], respectively. The Inverse Propen-
sity Score [52, 70] method obtains unbiased estimation by sample
re-weighting based on the likelihood of being logged. Another line
of works encapsulates the uniform data into recommendation by
learning imputation models [73], computing propensity [52], using
knowledge distillation [13, 37], and directly modeling the uniform
data [4, 28, 38, 50]. Different from these works, we focus on de-
noising user representation learning and considers the retrospect
question, i.e., 'what the user representation would be if we intervene
on the observed behavior sequence?’. Technically, we propose sev-
eral counterfactual transformations based on the identification of
indispensable/dispensable concepts and devise several contrasting
objectives for learning accurate and robust user representations.

3 METHODS

3.1 Problem Formulation

In the view of sequential recommendation, datasets can be for-
mulated as D = {(xuz, Yut)u=12. Nt=12..T,, Where xy; =
{Yu1:(+-1) } denotes a user’s historical behaviors prior to the tth
behavior y,, ; and arranged in a chronological order, and T, denotes
the number of behaviors for the user u. The goal of sequential rec-
ommendation is to predict the next item y,,; given the historical
behaviors xy ¢, which can be formulated as modeling the probability
of all possible items:

p (yu,t = ylxu,t) s (1)

We will drop the sub-scripts occasionally and write (x, y) in place
of (xy,z, Yu,¢) for simplicity. Let X denote the set of all possible click
sequences, i.e. x € X and each y € Y represent a clicked item,
while Y is the set of all possible items.

Since the number of items | Y| can easily reach 100 million, in-
dustrial recommender systems consist typically of two phases, i.e.,
the matching phase and the ranking phase, due to concerns on
system latency. The matching (also called deep candidate genera-
tion) phase focuses on retrieving Top N candidates for each user,
while the ranking phase further sorts the N candidates by typically
considering more fine-grained user/item features and incorporating
complex modeling architectures. In this paper, we mainly conduct
experiments in the matching stage (e.g., comparing with SOTA
matching models).

3.2 A Naive Matching Baseline

The paradigm of a matching model includes a user encoder fy(x) €
R¥, which takes the user’s historical behavior sequence as input
and output one (or more) dense vector representing the user’s in-
terests, and an item encoder gg(y) € R, that represents the items
in the same vector space as the user encoder. We denote all the
trainable parameters in the system as 6, which includes the param-
eters in fp and gg. With the learned encoders and the extracted
item vectors, i.e, {gg(y)} ey, a k-nearest-neighbor search service,
e.g., Faiss [27], will be deployed for Top-N recommendation. Specif-
ically, at serving time, an arbitrary user behavior sequence x will
be transformed into a vectorial representation fy(x) and top N
items with the largest matching scores will be retrieved as Top-N
candidates. Such matching scores are typically computed as inner
product ¢g(x,y) = (fp(x),gg(y)) or cosine similarity. In a nut-
shell, the learning procedure can be formulated as the following
maximum likelihood estimation:

D, —logpy(y | x), ()

arg min
o Pl pen

1
1D
exp $g (%, )
Zyey expdo(xy’)

where po(y | x) = 3)

In the matching phase, it can be infeasible to sum over all possible
items y’ as in the denominator. Here we adopt the sample softmax
objective [3, 25]. To demonstrate the effectiveness of the proposed
CauseRec architecture, we utilize a naive framework as the baseline.
Specifically, the item encoder gg(y) is a plain lookup embedding
matrix where the nth vector represents the item embedding with
item id n. The user encoder fy(x) aggregates the embeddings of
historically interacted items using global average pooling and then
transforms the aggregated embedding into the same embedding
space as item embeddings using multi-layer perceptrons (MLP):

t-1
folx) = MIP(—— 3" g9 (31)). @
i=1

3.3 The CauseRec Architecture

In this section, we give an brief illustration on the intuition and
overall schema/pipeline of the CauseRec architecture, which is
depicted in Figure 2, and introduce the building blocks in detail.

3.3.1 Overall Schema. The essence of CauseRec is to answer the
retrospect question, *what the user representation would be if we
intervene on the observed behavior sequence?’ The counterfac-
tual transformation in CauseRec relates to the ’intervention on the
observed behavior sequence. For answering "what the user rep-
resentation would be, we introduce an important inductive bias
that makes the intervention work as expected. Specifically, we first
identify indispensable/dispensable concepts in the historical behav-
ior sequence. An indispensable concept indicates a subset of one
behavior sequence that can jointly represent a meaningful aspect
of the user’s interest. A dispensable concept indicates a noisy sub-
set that is less meaningful/important in representing an aspect of
interest. We introduce the details in Section 3.3.2.
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Figure 2: Schematic of the proposed CauseRec-Item framework.

Given the identified concepts, a representative counterfactual
transformation is designed to build out-of-distribution counterfac-
tual user sequences. Here comes the inductive bias, i.e., counterfac-
tual sequences constructed by replacing the dispensable concepts in
the original user sequence should still have similar semantics to the
original one. Here semantics refer to the characteristics of user in-
terests/preferences. Therefore, replacing indispensable concepts in
the original user sequence should incur a preference deviation from
the resulted user representation to the original user representation.
We denote these resulted user representations as counterfactually
negative user representations. We note that such negatives are hard
negatives where hard refers to that other dispensable concepts stay
the same as the original user sequence and negatives means that
the semantics of the user sequence should be different. In contrast,
replacing dispensable concepts in the original user sequence should
incur no preference change in representations. We denote these
resulted user representations as counterfactually positive user rep-
resentations. Different contrastive learning objectives are proposed
to learn accurate and robust user representations that are less sen-
sitive to the (attack on the) dispensable/noisy concepts and that
trust more on the indispensable concepts that better represent the
user’s interest. Details can be found in Section 3.3.5.

3.3.2  Identification of Indispensable/Dispensable concepts. To iden-
tify indispensable/dispensable concepts, we propose to first extract
concept proposals and compute the proposal scores.

Item-level Concepts. Inspired by instance discrimination [17], a
straightforward while workable solution is to treat each item in
the behavior sequence as an individual concept since each item has
its unique fine-grained characteristics. In this way, we obtain the
concept sequence C = X € R4 where X = 9o (xy,t+1) denotes
the vectorial representations of the behavior sequence. In essence,
concept scores indicate to what extent these concepts are important
to represent the user’s interest. Since there is no groundtruth for

one user’s real interest, we use the target item y;41 as the indicator:

Pl = $p (ciy), 5)

where c; indicates the representation of ith concept in C, and y
indicates the representation of the target item. ¢g is the similarity
function, and we empirically use dot product for its effectiveness
in the experiment. pftem is thus the score for the ith concept.
Interest-level Concepts. However, such a solution may incur re-
dundancy in concepts since some items may share similar seman-
tics, and might deteriorate the capability of modeling higher-order
relationships between items. To this end, besides the item-level
concepts, we introduce interest-level concepts by leveraging the at-
tention mechanism [56] to extract interest-level concepts. Formally,
X € R¥4, we obtain the following attention matrix:

A = softmax (W tanh (W1XT))T , (6)

where W; € R9*d and W, € RK*da are trainable transformation
matrices. K is thus the number of concepts that is pre-defined. A is
of shape R**K, We obtain the concept sequence as the following:

C=ATX, )

Since interest-level concepts and the target item are not naturally
embedded in the same space, we compute the concept score by the
weighted sum of item-level scores:

Pinterest — AT¢9 (X, Y)~ (8)

For both item-level concepts and interest-level concepts, we treat
the top half concepts with the highest scores as indispensable con-
cepts and the remaining half concepts as dispensable concepts. This
strategy is mainly designed to prevent the number of indispensable
or dispensable concepts from being too small. We leave finding
more effective solutions as future works as illustrated in Section 5.

3.3.3 Counterfactual Transformation. The proposed counterfactual
transformation aims to construct out-of-distribution user sequences
by transforming the original user sequence for one user. We here



use user sequence to generally denote the concept sequence, which
can be either the commonly known item-level concept sequence,
i.e., the original user behavior sequence, or the interest-level con-
cept sequence. Based on the inductive bias described in Section
3.3.1, we propose to replace the identified indispensable/dispensable
concepts at the rate of rrep to construct counterfactually nega-
tive/positive user sequences, respectively. We note that directly
dropping indispensable/dispensable concepts also seems feasible,
but replacement has the advantage of not affecting overall sequence
length and the relative positions of remaining concepts. We main-
tain a first-in-first-out queue as a concept memory for each level
and use dequeued concepts as substitutes. We enqueue the con-
cepts extracted from the current mini-batch. We denote the user
sequence with indispensable/dispensable concepts being replaced
as counterfactually negative/positive user sequence.

3.34 User Encoders. We note that item-level concept represen-
tations can be trained along with the item embedding matrix in
most recommendation frameworks. Therefore, the above item-
level concept identification and counterfactual transformation pro-
cesses can be performed without any modification on the user
encoder in the original baseline model, ie., a model-agnostic
and non-intrusive design. We denote the architecture solely con-
sidering item-level concepts as CauseRec-Item. CauseRec-Item
obtains counterfactually positive/negative user representations
{x*"™} =1, m/{X 7" }n=1,.. N from counterfactual item-level con-
cept sequences using the original user encoder fp.

We denote the architecture solely considering interest-level con-
cepts as CauseRec-Interest. Different from CauseRec-Item, interest-
level concepts are constructed with learnable parameters, i.e., W1
and W3 in Equation 6. Therefore, CauseRec-Interest is an intrusive
design, and the inputs to the user encoder should be the interest-
level concept sequence rather than the behavior sequence at the
item-level. We note that there are no further modifications, and
the architecture of the user encoder can stay the same as in the
original baseline model. CauseRec-Interest obtains counterfactually
positive/negative user representations from counterfactual interest-
level concept sequence using the original user encoder fp.

We denote the architecture that considers counterfactual trans-
formation on both the item-level concept sequence and the interest-
level concept sequence as CauseRec-H(ierarchical). CauseRec-H is
also an intrusive design with interest-level concepts as the inputs
of the user encoder. Different from CauseRec-Interest, CauseRec-
H further considers counterfactual transformations performed on
item-level concepts. The counterfactually transformed item-level
sequence will be forwarded to construct interest-level concept se-
quence using Equation 6-7. We note that counterfactual transfor-
mations will not be performed on these two levels simultaneously,
which might introduce unnecessary noises. In other words, each
counterfactual user representation is constructed with transforma-
tion on sequence solely from one level.

3.3.5 Learning Objectives. Besides the original recommendation
loss Lynatrching described near Equation 2, we propose several con-
trastive learning objectives that are especially designed for learning
accurate and robust user representations.

Contrast between Counterfactual and Observation. As dis-
cussed in Section 3.3.1, a robust user representation should be less
sensitive to (possible attack on) dispensable concepts. Therefore, the
user representations learned from counterfactual sequences with
indispensable concepts transformed should be intuitively pushed
away from the original user representation. Similar in spirit, an
accurate representation should trust more on indispensable con-
cepts. Therefore, user representations learned from counterfactual
sequences with dispensable concepts transformed should be intu-
itively pulled closer to the original user representation. Under these
intuitions, we derive inspiration from the recent success of con-
trastive learning in CV [17, 68] and NLP [7], we use triplet margin
loss to measure the relative similarity between samples:

M

N
co= Z Z max {d (x%,x™™) —d (xT,x7") + Aco, 0} . )

m=1n=1

where x9 denotes the original user representation. We set the dis-
tance function d as the L2 distance since user representations gen-
erated by the same user encoder are in the same embedding space.
We empirically set the margin A, = 1.

Contrast between Interest and Items. The above objective con-
siders the user representation side solely, and we further capitalize
on the target item y;, which also enhances the user representation
learning. Formally, given the L2-normalized representation of the
target item § and user representation X, we have:

M N
Lip= ) 1=%""- 5+ 3 max (0,575 - Ay),  (10)
m=1 n=1

This objective also has the advantage of preventing the user en-
coder from learning trivial representations for counterfactual user
sequences. We set the margin Aj; = 0.5 in the experiment. Finally,
the loss for training the whole framework can be written as:

Lequse = -Lmatching + M Leo + A2 Lii. 11)

During testing/serving, only the backbone model that generates
the user representation is needed. The identification of indispens-
able/dispensable concepts and the counterfactual transformation
processes are disregarded. Noteworthy, the computation of pro-
posal scores which depends on the target item does not belong to
the backbone model and is not required during testing.

4 EXPERIMENTS

We conduct experiments on real-world public datasets and mainly
aim to answer the following three research questions:

e RQ1: How does CauseRec perform compared to the base model
and various SOTA sequential recommenders?

e RQ2: How do the proposed building blocks and different hyper-
parameter settings affect CauseRec?

e RQ3: How do user representations benefit from modeling the
counterfactual world and contrastive representation learning?

4.1 Experimental Setup

To demonstrate the generalization capability on learning users’ rep-
resentations of the proposed CauseRec architecture, we employ an



Table 1: Statistics of the Datasets.

Dataset #Users  #ltems #Interactions #Density
Amazon Books 459,133 313,966 8, 898, 041 0.00063
Yelp 31, 668 38, 048 1, 561, 406 0.00130
Gowalla 52, 643 91, 599 2,984,108 0.00084

evaluation framework [5, 35, 41] where models should confront un-
seen user behavior sequences. Specifically, the users of each dataset
are split into training/validation/test subset by the proportion of
8 :1: 1. For training sequential recommenders, we incorporate a
commonly used setting by viewing each item in the behavior se-
quence as a potential target item and using behaviors that happen
before the target item to generate the user’s representation, as de-
fined in Section 3.1. For evaluation, only users in the validation/test
set are considered, and we choose to generate users’ representations
on the first 80% behaviors, which are unseen during training. Such
a framework can help justify whether models can learn accurate
and robust user representations that can generalize well. We mainly
focus on the matching phase of recommendation and accordingly
choose the datasets, comparison methods, and evaluation metrics.

Datasets We consider three challenging recommendation datasets,
of which the statistics are shown in Table 1.

o Amazon Books. We take Books category from the product re-
view datasets provided by [44], for evaluation. For each user, we
keep at most 20 behaviors that are chronologically ordered.

e Yelp2018. Yelp challenge (2018 edition) releases the review data
for small businesses (e.g., restaurants). We view these businesses
as items and use a 10-core setting [20, 65] where each item/user
has at least ten interactions.

o Gowalla. A widely used check-in dataset [34] from the Gowalla
platform. Similarly, we use the 10-core setting [19].

Comparison Methods We mainly consider sequential recom-
menders for comparison since models are required to confront
unseen behaviors for each user. Therefore, factorization-based and
graph-based methods are not considered. The compared state-of-
the-art models are listed as the following:

e POP. A naive baseline that always recommends items with the
most number of interactions.

e YouTube DNN [8]. A successful industrial recommender that
generates one user’s representation by pooling the embeddings
of historically interacted items.

e GRU4Rec [21]. An early attempt to introduce recurrent neural
networks into recommendation.

o MIND [32]. The first framework that extracts multiple interest
vectors for one user based on the capsule network.

e ComiRec-DR [5]. A recently proposed SOTA framework fol-
lowing MIND to extract diverse interests using dynamic routing
and incorporate a controllable aggregation module to balance
recommendation diversity and accuracy.

e ComiRec-SA [5]. ComiRec-SA differs from ComiRec-DR by
using self-attention to model interests.

Evaluation Metrics We employ three broadly used numerical
criteria for the matching phase, i.e., Recall, Normalized Discounted

Cumulative Gain (NDCG), and Hit Rate. We report metrics computed
on the top 20/50 recommended candidates. Higher values indicate
better performance for all metrics.

Implementation Details We use Adam [30] for optimization with
learning rate of 0.003/0.005 for Books/Yelp and Gowalla, f; = 0.9,
B2 =0.99, € = 1x1078, weight decay of 1x1e—5. We train CauseRec-
Item for (maximum) 10 epochs and CauseRec-Interest/CauseRec-H
for (maximum) 30 epochs with mini-batch size 1024. All models
are with embedding size 64. We set hyper-parameters ; = A3 =1
and do not tune them with bells and whistles. As illustrated in
Section 3.2, the item encoder is a plain embedding lookup matrix,
and the user encoder is a three-layer perceptron with hidden size
256. Weset N =8, M =1, Trep = 0.5 for CauseRec-Item/-Interest
and N = 16 M = 2 for CauseRec-H to accommodate transformation
on two levels, as illustrated in Section 3.3.4. We set K = 20 for
CauseRec-Interest/-H.

4.2 Performance Analysis (RQ1)

The comparison results of CauseRec with SOTA sequential rec-
ommenders are listed in Table 2. We report three architectures of
CauseRec including CauseRec-Item (Causeltem), CauseRec-Interest
(Causeln), and CauseRec-Hierarchical (CauseH), as described in
Section 3.3.4. In a nutshell, we observe a clear improvement of
these architectures over various comparison methods and across
three different metrics. Notably, CauseRec-H improves the previ-
ous SOTA ComiRec-SA/DR by +.0299 (relatively 22.1%) concerning
NDCG@50 on the Amazon Books dataset and +.0179 (relatively
8.64%) concerning Recall@20 on the Gowalla dataset. Among the
comparison methods, ComiRec mostly yields the best performance
by modeling multiple interests for a given user. However, only mod-
eling the noisy historical behaviors might result in diverse but noisy
interests that may not accurately represent users, finally leading to
inferior results. GRU4Rec achieves comparably good results with
ComiRec on the Gowalla dataset. GRU4Rec can effectively model
the sequential dependency between items in the behavior sequence.
However, it might be more likely to suffer from the noises due to
the strict step-by-step encoding process. In contrast, CauseRec ar-
chitectures confront the noises within users’ behaviors by pushing
the user representation away from counterfactually negative user
representations and pulling it closer to counterfactually positive
user representations. Besides, these results demonstrate the gener-
alization capability of CauseRec on confronting out-of-distribution
user sequences by modeling the counterfactual world.

Among three CauseRec architectures, CauseRec-Item is a model-
agnostic and non-intrusive design, which means it can be applied
to any other sequential recommender without any modification
on the original user encoder, and solely functions in the training
stage without sacrificing inference efficiency. CauseRec-Interest
constructs interest-level concepts by grouping items that may be-
long to a certain interest (e.g., chocolate and cake belong to
sweets) into one holistic concept. Compared to CauseRec-Item,
CauseRec-Interest has the advantage of reducing concept redun-
dancy and modeling higher-order relationships between items, and
thus improving CauseRec-Item. To combine the merits of CauseRec-
Interest and CauseRec-Item, CauseRec-Hierarchical considers both



Table 2: Comparison results of three CauseRec architectures with SOTA sequential recommenders designed for the matching
phase. Causeltem/CauseIn/CauseH stand for CauseRec -Item/-Interest/-Hierarchical, respectively. The symbol * indicates the
improvements over the strongest baseline (underlined) are statistically significant (p < 0.05) with one-sample t-tests.

Datasets  Metric POP Y-DNN GRU4Rec MIND ComiSA ComiDR Causeltem Causeln CauseH Improv.
R@20 0.0137  0.0457 0.0406 0.0486 0.0549 0.0531 0.0582 0.0593 0.0623* 13.5%
R@50 0.0240  0.0731 0.0650 0.0764  0.0847 0.0811 0.1001 0.0993 0.1018" 20.2%
Books NDCG@20 0.0226  0.0767 0.0680 0.0793 0.0899 0.0918 0.0985 0.1006 0.1051* 14.5%
NDCG@50 0.0394  0.1208 0.1037 0.1223 0.1356 0.1352 0.1628 0.1619 0.1655* 22.1%
HR@20 0.0302  0.1029 0.0894 0.1062 0.1140 0.1201 0.1280 0.1303 0.1370* 14.1%
HR@50 0.0523  0.1589 0.1370 0.1610 0.1720 0.1758 0.2078 0.2062 0.2113* 20.2%
R@20 0.0016  0.0506 0.0454 0.044 0.0534 0.0472 0.0570 0.0580 0.0591" 10.7%
R@50 0.003 0.1048 0.0937 0.0943 0.1101 0.0935 0.1163 0.1175 0.1182* 7.36%
Yelp NDCG@20 0.0065  0.1582 0.1447 0.1414 0.1728 0.1453 0.1812 0.1806 0.1830* 5.90%
NDCG@50 0.0129  0.2887 0.2673 0.2699  0.3025 0.2612 0.3179 0.3180 0.3210" 6.12%
HR@20 0.0152  0.3015 0.2826 0.2681 0.3249 0.2775 0.3416 0.3391 0.3426"* 5.45%
HR@50 0.0268  0.5131 0.4853 0.4866 0.5324 0.4629 0.5583 0.5576 0.5605* 5.28%
R@20 0.0028  0.1127 0.1273 0.1218 0.1277 0.1153 0.1315 0.1355 0.1359* 6.42%
R@50 0.0054  0.1926 0.2043 0.2049 0.2072 0.1831 0.2238 0.2204 0.2251* 8.64%
Gowalla NDCG@20 0.0073  0.2378 0.2803 0.2565 0.2736 0.2534 0.2747 0.2825 0.2842* 1.39%
NDCG@50 0.0135  0.3638 0.4002 0.3888 0.4019 0.3621 0.4123 0.4113 0.4221* 5.03%
HR@20 0.0104  0.3443 0.3814 0.3627 0.3838 0.3429 0.3918 0.3995 0.4042* 5.32%
HR@50 0.0224  0.5010 0.5251 0.5301 0.5288 0.5355 0.5596 0.5553 0.5697* 6.39%

interest-level and item-level concepts in counterfactual transfor-
mation. CauseRec-H achieves the best results, which shows that
counterfactual transformation on item-level concepts still yields
some unique advantages, such as modeling fine-grained prefer-
ences. For example, people might not generally like all sweets and
prefer cake to chocolate.

4.2.1 Ablation Studies. We are interested in the CauseRec-Item
architecture due to its strengths of being: easy to implement (model-
agnostic), efficient in serving (non-intrusive), and effective. To ob-
tain a better understanding of different building blocks in CauseRec-
Item, we consider surgically removing some components and con-
struct the following architectures. The results on Yelp and Gowalla
datasets are shown in Table 3.

w.o. (without) L.,. This means we do not consider the contrast
between the counterfactual and the observation. The performance
drop compared to CauseRec-Item indicates that pushing counter-
factually negative user representation away and pulling counter-
factually positive user representation closer can potentially help
the learned observational user representation to trust more on in-
dispensable items (accurate) and to be immune from dispensable
items (robust).

w.0. Ljj. Ljj is defined in Equation 10. Removing £;; means we
do not consider the contrast between counterfactual user repre-
sentations and positive/negative target items. According to Table
3, we observe a clear performance drop compared to CauseRec-
Item. Furthermore, eliminating £;; yields poorer performance than
eliminating L¢,. We attribute this to that, £;; prevents the user
encoder from yielding trivial representations for counterfactual

user sequences (item-level and interest-level) by contrasting coun-
terfactual user representations with target items representations.
In other words, L, with possibly trivial counterfactually user
representations (without £;;) might hurt the effectiveness L,.

Pos Only. CauseRec-Item with only counterfactual transforma-
tions on dispensable items and counterfactually positive user rep-
resentation is denoted as Pos. This architecture disregards L, and

term Zﬁ:jzl max (O, X"y, - Amargm) in L;;. Not surprisingly, Pos
Only architecture achieves inferior results compared with w.o. L,
architecture, demonstrating the merits of counterfactually nega-
tive user representations. Still, this architecture improves the base
model, demonstrating the effectiveness of contrasting counterfac-

tual user representations with target items for recommendation.

Neg Only. CauseRec-Item with only counterfactual transforma-
tions on indispensable items is denoted as Neg. We observe similar
results to the Pos Only architecture. This again verifies the effec-
tiveness of the contrastive user representation learning framework
by modeling the counterfactual distribution. Compared to Pos Only
architecture, Neg Only architecture achieves inferior results. This
phenomenon might indicate that making user representation trust
more on indispensable concepts can be potentially more important
than eliminating the effect of indispensable concepts (i.e., noisy
items in CauseRec-Item) on user representation learning. This is
reasonable in the sense that the former process might potentially
make the user in the embedding space away from all other items,
including the dispensable items that are replaced during counter-
factual transformation.

Base Model A naive matching baseline described in Section 3.2.
All other Architectures yield improvement over the Base Model.



Table 3: Ablation studies by constructing different architectures. We progressively ablate key components in CauseRec-Item,
which is a model-agnostic and non-intrusive design.

Yelp Gowalla
Model Metrics@20 Metrics@50 Metrics@20 Metrics@50
Recall NDCG HitRate Recall NDCG HitRate Recall NDCG Hit Rate Recall NDCG Hit Rate

CauseRec-Item 0.0570 0.1812 0.3416 0.1163 0.3179 0.5583 0.1315 0.2747 0.3918 0.2238 0.4123 0.5596
w.0. Lo 0.0563 0.1794 0.3350 0.1169 0.3174 0.5507 0.1286 0.2719 0.3865 0.2153  0.4055 0.5522
w.o. Lijj 0.0518 0.1679 0.3113 0.1067  0.2983 0.5267 0.1256  0.2668 0.3758 0.2110 0.3968 0.5445
Pos Only 0.0518 0.1662 0.3101 0.1047 0.2911 0.5115 0.1256  0.2693 0.3851 0.2090 0.3945 0.5398
Neg Only 0.0494 0.1633 0.3044  0.1024 0.2909 0.5137 0.1246  0.2608 0.3754  0.2053 0.3925 0.5368
Base Model 0.0444 0.1444 0.2722 0.0934 0.2650 0.4692 0.1208 0.2569 0.3670 0.2000 0.3811 0.5218

4.2.2  Analysis on the number of counterfactual user representations.
We ablate the number of counterfactually positive/negative user
representations, i.e., M and N, as defined in Section 3.3.4. As shown
in Table 4, we can observe that 1) increasing the number (from
N =M =1to N = M = 8) not necessarily leads to better perfor-
mance. 2) particularly increasing the number of counterfactually
negative user representations (from N =M =1to N =8 M = 1)
can be useful. This result is reasonable in the sense that such repre-
sentations can be interpreted as hard negatives since each of the
corresponding counterfactual user sequences contains dispensable
items staying the same as the original user sequence, and hard nega-
tives are known to be helpful. 3) particularly increasing the number
of counterfactually positive user representations (from N = M =1
to N = 1, M = 8) may introduce noises since each of them contains
some randomly sampled items that can be falsely interpreted as
"positive". Therefore one counterfactually positive user representa-
tion can be enough for learning accurate user embeddings.

4.2.3  Analysis on the Replace Ratio. We are interested in how the
replacement ratio, ie., Trep, in counterfactual transformation of
CauseRec-Item affects the model performance. Table 5 shows the
results by varying ryep. The best result is achieved with rpep =
0.4/0.5 for the Yelp dataset and ry¢p = 0.5 for the Gowalla dataset.
Either too small or too large ryep will lead to sub-optimal results.
We attribute this phenomenon to that small ry¢p will affect the
capability of counterfactual learning and large ryep will introduce
more noises brought by randomly sampled items for replacement.
rrep makes a tradeoff between these two impacts.

4.2.4  Analysis on the number of interest-level concepts. Here we
take an analysis on the number of interest-level concepts particu-
larly for CauseRec-Interest architecture. Specifically, we ablate K
as described in Equation 6. As shown in Table 6, we observe a per-
formance improvement with K increasing (e.g., 4 — 10, 10 — 20).
Each interest-level concept can be more coarse-grained when K
becomes smaller and more find-grained when K becomes larger. It
can be hard to classify a coarse-grained concept as indispensable or
dispensable. It may lead to also coarse-grained or even inaccurate
transformations afterward, and thus hurting the performance. Too
large K (e.g., 30) may bring redundancies and noises (more random
concepts introduced with a fixed replace ratio) to the framework
and eventually leads to inferior results.

Table 4: Performance analysis on the number of counterfac-
tually positive/negative user representations in CauseRec-
Item, denoted in M/N.

Yelp Gowalla
Model R@50 N@50 H@50 R@50 N@50 H@50
N=1M=1 0.111 0310 0.541 0.219 0.413 0.559
N=4M=4 0113 0308 0.542 0.210 0.394 0.541
N=8§M=8 0106 0298 0.524 0.204 0.381 0.521
N=8§M=1 0.116 0.318 0.558 0.224 0412 0.560
N=1,M=8 0.09 0273 0483 0.185 0.361 0.498
Table 5: Performance analysis on the replace rate ry¢p in
counterfactual transformation for CauseRec-Item.
Yelp Gowalla
Model R@50 N@50 H@50 R@50 N@50 H@50
rrep =02 0115 0318 0552  0.209 0389  0.531
rrep =04 0.117 0.318  0.556 0.209  0.401 0.543
Trep =05 0.116 0.318 0.558 0.224 0412 0.560
rrep =0.6  0.113 0307 0537 0.210 0397  0.537
Trep = 0.8  0.106  0.296 0.520  0.211 0.399 0.544

Table 6: Analysis on the number of constructed interest con-
cepts K for CauseRec-Interest.

Yelp Gowalla
Model R@50 N@50 H@50 R@50 N@50 H@50
K=4 0.100 0.28 0.501 0.206 0.390 0.531
K=10 0.111 0.305 0.536 0.215 0.403 0.546
K=20 0.118 0318 0.558 0.220 0.411 0.555
K=30 0.117 0.311 0.547 0.219 0.406 0.547

4.3 Case Study (RQ3)

To understand how the learned user representations benefit from
the CauseRec framework, we plot randomly selected six users from
the Amazon books dataset. We also plot ten corresponding items
sampled from the test set for each user. Specifically, we perform



. * se2e63 ° * se2463

* sooas * 623
—% * * 572825 o * * 572825
- * 705 . . * 57058
. * eeico . * o s
. . ° . . 590695 e o o LI 590695
* o 0 .
. . e o
* — ° . * *
o ©® o g
.
. . p . ° °
° . >
. .
e o o A o .
e % 4 . .
*= . .
. o o .
. * o ® ° .
° . . ° . .
. . o s o
% . . . .
* ° o .
. ¢ X
* *

(a) Base Model (b) CauseRec

Figure 3: Visualization of randomly sampled users (shown
as stars) with their interacted items (shown as points of the
same color) from the Amazon Books dataset. We perform
the t-SNE transformation on the representations learned by
the base model (left) and CauseRec (right).

t-SNE transformation on the user/item representations learned
by the base model (as shown in Figure 3a) and CauseRec-Item (as
shown in Figure 3b). The connectivities of users and test items in the
embedding space can help reflect whether the model learns accurate
and robust user representations. From Figure 3b, we observe that
users with their corresponding test items easily form clusters and
show small intra-cluster distances and large inter-cluster distances.
By jointly comparing the same users (e.g., 590695, and 586100) in
Figures 3a and 3b, we can see that CauseRec-Item helps the user
encoder learn representations that are closer to their corresponding
test items. These results qualitatively demonstrate the effectiveness
of CauseRec on learning accurate and robust user representations.
We also present a recommendation result from the Amazon
Books test datasets in Figure 4. We list the historical behaviors, the
top five books recommended by the base model and CauseRec-Item,
and books interacted by the corresponding user in the test set. We
mainly visualize the books’ covers and categories for better clarity.
We note that the side information is generally not considered in
training matching models (both the base model and CauseRec). As
shown in Figure 4, we observe that CauseRec yields more consistent
recommendation results to the books in the test set. Supposing
historical behaviors consist of noisy ones, and behaviors in the test
accurately reflect users’ interest for the current state, CauseRec
successfully captures users’ interests, i.e., Children’s Books, and
Literature&Fictions. In contrast, the base model is more likely to be
affected by noisy behaviors that appear only a few times, such as the
Biographies&Memories, and Education&Reference. These results
further demonstrate that CauseRec can learn accurate and robust
user representations that are less distracted by noisy behaviors.

5 CONCLUSION AND FUTURE WORK

In this work, we propose to model the counterfactual data dis-
tribution to confront the sparsity and noise nature of observed
user interactions in recommender systems. The proposed CauseRec
conditionally sample counterfactually positive and negative user se-
quences with transformations on the dispensable/indispensable con-
cepts. We propose multiple structures (-item, -interest, -hierarchical)
to confront both fine-grained item-level concepts and abstract
interest-level concepts. Several contrastive objectives are devised to

: Education
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Literature&Fiction

Figure 4: Case study by visualizing a real-world sample from
the Amazon Books testing set. We mainly show the books’
covers and categories for clarity.

contrast the counterfactual with the observational to learn accurate
and robust user representations. Among several proposed architec-
tures, CauseRec-Item has the advantage of being non-intrusive, i.e.,
solely functioning at training while not affecting serving efficiency.
With a naive matching baseline, CauseRec achieves a considerable
improvement over it and SOTA sequential matching recommenders.
Extensive experiments help to justify the strengths of CauseRec as
being both simple in design and effective in performance.

This work can be viewed as an initiative to exploit the joint
power of constative learning and counterfactual thinking for rec-
ommendation. We believe that such a simple and effective idea
can be inspirational to future developments, especially in model-
agnostic and non-intrusive designs. CauseRec-Item is compatible
with various user encoders within most existing sequential recom-
menders. We choose a naive baseline to better demonstrate the
effectiveness of this work, and we plan to explore its strengths in
more models. Another future direction is to whether more effective
solutions of identifying indispensable/dispensable concepts exist,
including both the computation of concept scores and the determi-
nation of indispensable or dispensable for each concept based on
the scores. Lastly, we will explore the strengths of CauseRec for
the ranking phase of recommendation. Counterfactual transforma-
tions designed with various auxiliary features and complex model
architectures will open up new research possibilities.
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