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Figure 1: Controllable Continuous Gaze Redirection. (a) A sample image of Barack Obama and the gaze direction space defini-
tion; (b-e) Some gaze redirection results from the proposed interpGaze. The dots are target directions, and the circles indicate
the possible values in the full space of gaze directions.

ABSTRACT
In this work, we present interpGaze, a novel framework for control-
lable gaze redirection that achieves both precise redirection and
continuous interpolation. Given two gaze images with different
attributes, our goal is to redirect the eye gaze of one person into any
gaze direction depicted in the reference image or to generate con-
tinuous intermediate results. To accomplish this, we design a model
including three cooperative components: an encoder, a controller
and a decoder. The encoder maps images into a well-disentangled
and hierarchically-organized latent space. The controller adjusts the
magnitudes of latent vectors to the desired strength of correspond-
ing attributes by altering a control vector. The decoder converts the
desired representations from the attribute space to the image space.
To facilitate covering the full space of gaze directions, we introduce
a high-quality gaze image dataset with a large range of directions,
which also benefits researchers in related areas. Extensive exper-
imental validation and comparisons to several baseline methods
show that the proposed interpGaze outperforms state-of-the-art
methods in terms of image quality and redirection precision.
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1 INTRODUCTION
Eye contact plays a crucial role in our daily social communication
since it conveys important non-verbal cues such as emotion, inten-
tion and attention. Gaze redirection is an emerging research topic
in computer vision and computer graphics, aiming at manipulating
the gaze of a given image to the desired direction with an angle
or image as the reference, as illustrated in Figure 1. This task is
important in many real-world scenarios. For example, the case that
people are not looking at the camera at the same time occurs fre-
quently when taking a group photo. In the video conference, the
participants do not have the chance to make direct eye contact due
to the location disparity between the video screen and the camera.
In both cases, gaze redirection can adjust each person’s eye gaze
to the same direction or along a single direction to simulate eye
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contact. Gaze redirection technique could also alleviate the data in-
sufficiency problem for gaze estimation in the wild, by synthesizing
novel samples to augment existing datasets.

Traditional methods typically re-render the entire input region
by performing 3D transformations, which requires heavy instru-
mentation to acquire the depth information [9, 19, 39, 45]. Learning-
based gaze redirection approaches [10, 13] has risen in recent years.
For example, DeepWarp [10] uses a neural network to warp the
input image to the desired direction by predicting the dense flow
field. Their method fails to generate photo-realistic images for large
redirection angles, especially in the presence of large dis-occlusions,
such as large parts of the eyeball being covered by the eyelid in
the source image. More importantly, such warping methods cannot
generate precise gaze redirection, as it only minimizes the pixel-
wise differences between the synthesized and ground-truth images
without any geometric regularization.

He et al. [13] first introduce Generative Adversarial Network
(GAN) to synthesize photo-realistic eye images conditioned on a
target gaze direction. Since they incorporate both source gaze im-
age and target gaze vector as input and use a high-quality gaze
dataset [29] for training, their method can synthesize images with
high quality and redirection precision. However, they do not in-
corporate head pose together with the vertical and horizontal gaze
direction. Head pose is also an important attribute for gaze redirec-
tion since the positions of eye balls with the same gaze direction are
distinct at different head poses as shown in Figure 2(a). That means
they need to train a model for each head pose to precisely con-
trol the redirection. Furthermore, although able to produce photo-
realistic and precise redirection images, the vector-based methods
are prone to the gaze ranges defined in the training dataset and
fail to generalize to unseen angles, which hinders the models to
cover the full space of gaze directions. Odobez et al. [40] propose a
self-supervised method to adapt the model pretrained from large
amounts of well-aligned synthetic data to real data. Their method
produces continuous but perceptually implausible results, due to
the limitation of synthetic data as shown in Figure 2(b).

To address the limitations of previous methods, i.e., (1) low-
quality generation, (2) low redirection precision and (3) gaze angle
limitation, we propose a novel controllable gaze redirection method
that can achieve precise redirection and continuous interpolation
in one model. More specifically, our method works on both eye
image synthesis conditioned on target gaze directions, and contin-
uous intermediate gaze change between two given gaze images.
As shown in Figure 3, our model contains an Encoder 𝑬 , a Con-
troller C and a Decoder 𝑮 . The Encoder 𝑬 maps two input gaze
images, source image 𝒙𝑠 and target image 𝒙𝑡 , into a latent feature
space with 𝐹𝑠 = 𝑬 (𝑥𝑠 ) and 𝐹𝑡 = 𝑬 (𝑥𝑡 ). Then the feature difference
between 𝐹𝑠 and 𝐹𝑡 is fed into four branches of the controller C
to produce morphing results of two samples C𝒗 (𝐹𝑠 , 𝐹𝑡 ). The four
branches represent head pose, gaze yaw, pitch and miscellaneous
attributes respectively. The Decoder 𝑮 maps the latent features
back to the image space. To achieve precise redirection and con-
tinuous interpolation, we introduce a gaze vector 𝒗 ∈ [0, 1]𝑐×1
to the controller C. Each element of 𝒗 corresponds to a mixing
indicator for each attribute. Since the head pose, gaze yaw, gaze
pitch and miscellaneous attributes have been well-disentangled and
hierarchically-organized in the latent space, we can adjust each

attribute by altering the control vector 𝒗. For precise gaze redirec-
tion, the control vector 𝒗 selects the features of target directions to
generate photo-realistic eye images with the desired head pose and
gaze directions. For continuous interpolation, the control vector 𝒗
interpolates gradually in the latent space of the difference between
the source gaze images and the target gaze images. More impor-
tantly, benefiting from the flat and smooth latent space, we can
generate interpolation sequences in different orders by assigning 𝒗,
and can generalize to exaggeration of certain attribute by setting
corresponding dimension 𝑣𝑘 to be a reasonable value greater than 1.
The two completely different tasks are unified into the same frame-
work through the proposed feature disentanglement and control
mechanism, while avoiding the deficiencies in covering the gaze
space of vector-based redirection methods.

In addition, to alleviate the current drawbacks of existing datasets,
we collect a large-scale high-quality dataset for gaze redirection
and other related tasks, which can also benefit research in related
areas. It covers a larger range of eye angles than other popular
gaze redirection dataset like Columbia Gaze [29] and is also with
diversity on eye shapes, glasses, ages and genders.

Our main contributions can be summarized as follows:

• We present interpGaze, a novel framework achieving both
precise gaze redirection and continuous gaze interpolation.
The two different tasks can be readily controlled by altering
a control vector.

• We learn a well-disentangled and hierarchically-organized
latent space by decoupling the related gaze attributes and
equipping with the efficacy of one-shot and diversity, which
makes our method interpretable and complete.

• We contribute a high-quality gaze dataset, which contains a
large range of gaze directions and diversity on eye shapes,
glasses, ages and genders, to benefit other researchers in
related areas.

2 RELATEDWORK

Gaze Redirection. Some traditional approaches are based on 3D
modeling [2, 36]. They use 3D morphable models to fit both texture
and shape of the eye, and re-render the synthesized eyeballs super-
imposed on the source image. However, these methods make strong
model assumptions that may not hold in practice. Therefore, they
can not handle images with eyeglasses and other high-variability
inter-personal differences. Some others [9, 19, 39, 45] render a scene
containing the face of a subject from a given viewpoint to mimic
gazing at the camera. These methods require a depth map and
synthesize a person-specific image with the redirected gaze by
performing 3D transformations.

Learning-based methods have shown remarkable results from
using a large dataset labelled with head pose and gaze angles. He
et al. [13] first introduce Generative Adversarial Network (GAN) to
generate photo-realistic eye images while preserving the desired
gaze direction. However, the lack of large redirection angles hin-
ders the models to cover the full space of gaze directions. Odobez
et al. [40] propose a self-supervised method to adapt the model pre-
trained from large amounts of well-aligned synthetic data to real
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Figure 2: Attribute illustration. (a) Samples from the
Columbia Gaze [29]. Typically, gaze-related attributes are
head pose (P), horizontal gaze direction (yaw, H) and verti-
cal gaze direction (pitch, V). The directions are illustrated
in (c). Number means angle, and negative sign means left
hand direction of the subject. Each row of (a) demonstrates
the same gaze direction at different head poses, and each col-
umn shows the gaze difference at the same head pose. The
positions of eye balls with the same gaze direction are dis-
tinct at different head poses. (b) A sample from the synthetic
UnityEyes [34]. (c) Gaze direction illustration.

data. Their method produces continuous but perceptually implausi-
ble results. There are also some face manipulation methods [8, 14]
based on image translation or image inpainting to redirect gaze but
lack of the capability to precisely control the transformation.

Continuous Image Generation. Recently, there has been some
studies on continuous image generation. Most of them can be di-
vided into two categories: (a) Learning explicit or implicit 3D rep-
resentations and rendering images in different viewpoints. For ex-
ample, Wood et al. [35] fit a parametric eye region model to images
and perform gaze redirection by warping eyelids, and composit-
ing eyeballs onto the output in a photo-realistic manner. Chen et
al. [5] present a transforming auto-encoder in combination with
a depth-guided warping procedure that learns to produce geomet-
rically accurate views with fine-grained (e.g., 1° step-size) camera
control for both single objects and natural scenes. Olszewski et
al. [25] propose a Transformable Bottleneck Networks to learn the
3D spatial structure from a single image for arbitrary novel-view
synthesis. Mildenhall et al. [24] represent scenes as Neural Radiance
Fields for synthesizing novel views from a sparse set of input views.
(b) Learning continuous 2D latent features. For example, Pumarola
et al. [27] introduce a novel GAN model conditioned on a continu-
ous embedding of muscle movements defined by Action Units (AU)
annotations, which is able to generate novel facial expressions in a
continuum. But their method requires continuous label annotation.
Chen et al. [7] propose an unsupervised image-to-image translation
framework aiming at generating naturally and gradually chang-
ing intermediate facial images. Lira et al. [22] design a multi-hop
mechanism that transforms images gradually between two input
domains without any in-between hybrid training images. More re-
cently, Abdal et al. [1] propose to directly embed two given images
into the latent space of StyleGAN [16], and compute the morphing
𝜔 based on a linear interpolation of the obtained vectors 𝜔1, 𝜔2

by 𝜔 = 𝜆 · 𝜔1 + (1 − 𝜆) · 𝜔2, where 𝜆 ∈ (0, 1) controls the level of
mixing of two samples.

3 METHODOLOGY
3.1 Overview
Our goal is to learn a model which can achieve both precise redi-
rection and continuous interpolation. For an RGB image of an
eye patch 𝑥 ∈ R𝐻×𝑊 ×3, we define three primary attributes, i.e.,
gaze direction 𝒅𝑔 and head pose 𝒅ℎ , where 𝒅𝑔 = [𝜙𝑔, 𝜃𝑔], 𝜙𝑔 ∈ R
and 𝜃𝑔 ∈ R denote the target yaw and pitch angles, respectively.
Given two gaze images 𝑥𝑠 and 𝑥𝑡 with different attributes, the task
is to redirect the eye gaze of one person 𝑥𝑠 into any gaze direction
𝑥𝑔 depicted in the reference image of another person 𝑥𝑡 , or to gen-
erate continuous intermediate results 𝑥𝑔 between 𝑥𝑠 and 𝑥𝑡 of the
same person.

To achieve this, we design a model including an encoder 𝑬 , a
controller C and a decoder 𝑮 . The encoder 𝑬 maps images 𝑥𝑠 and
𝑥𝑡 into feature space 𝐹𝑠 = 𝑬 (𝑥𝑠 ) and 𝐹𝑡 = 𝑬 (𝑥𝑡 ). The controller C
produces morphing results of two samples C(𝐹𝑠 , 𝐹𝑡 ). The decoder
𝑮 maps the desired features back to the image space. Figure 3
provides a full overview of the method. The precise redirection and
continuous interpolation can be achieved using the same model by
altering a control vector 𝒗. We elaborate on the three components
in more detail below.

3.2 Encoder and Decoder
To make the precise redirection and continuous interpolation feasi-
ble, we need the encoder 𝑬 unfold the natural image manifold to a
flat and smooth structure of latent space. We use WGAN-GP [12] to
train our model due to its stable performance. The encoder 𝑬 and
the controller C are trained to minimize the Wasserstein distance
between real gaze images and generated ones, while a discriminator
D is trained to maximize the distance. It can be formulated as

min
D

L𝐺𝐴𝑁D
= EP𝑓 [D(𝐹 )] − EP𝑟 [D(𝐹 )] + 𝜆𝑔𝑝L𝑔𝑝 ,

min
𝑬 ,C

L𝐺𝐴𝑁𝑬 ,C = EP𝑟 [D(𝐹 )] − EP𝑓 [D(𝐹 )] .
(1)

In Equation 1, 𝐹 = 𝐸 (𝑥) is the feature extracted from gaze image 𝑥
by the encoder 𝑬 ; 𝐹 = C(𝐹𝑖 , 𝐹 𝑗 ) is the mixing feature generated by
a morphing function of the obtained vectors 𝐹𝑖 , 𝐹 𝑗 ; P𝑟 and P𝑓 are
the distributions of real and fake gaze images respectively; and L𝑔𝑝

is the gradient penalty term [12] used to maintain the Lipschitz
continuity of D. The hyperparameter 𝜆𝑔𝑝 controls the strength of
the gradient penalty, and we use 𝜆𝑔𝑝 = 10 in all experiments. Here
the encoder 𝑬 works together with the controller C to generate
target gaze images. We will introduce more details of controller C
in the next section.

We additionally incorporate a decoder 𝑮 to invert features back
to images. The decoder 𝑮 is trained with perceptual loss and recon-
struction loss.

The perceptual loss proposed in [15] penalizes the decoder 𝑮 for
generating images that match ground-truth images perceptually.
Typically, the perceptual loss is defined by the VGG-16 [28] model
pre-trained on ImageNet [18]. The perceptual loss contains two
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Figure 3: Overview of the proposed interpGaze. Our proposed model contains (a) an Encoder 𝑬 , (b) a Controller C and (c) a
Decoder 𝑮. The Encoder 𝑬 maps images 𝒙𝑠 and 𝒙𝑡 into feature space 𝐹𝑠 = 𝑬 (𝑥𝑠 ) and 𝐹𝑡 = 𝑬 (𝑥𝑡 ). Then the feature difference
is fed into four branches of the controller C to produce morphing results of two samples C𝒗 (𝐹𝑠 , 𝐹𝑡 ) = 𝐹𝑠 +

∑𝑐+1
𝑘=1 𝒗

𝑘T𝑘 (𝐹𝑡 − 𝐹𝑠 ).
The abbreviations P, H, V and O are head pose (P), vertical gaze direction (pitch, V), horizontal gaze direction (yaw, H) and
miscellaneous attributes. The “O” branch is designed for other secondary attributes like glass, eyebrow, skin color, hair and
illumination. The control vector 𝒗 ∈ [0, 1] (𝑐+1)×1 adjusts the strength of each attribute, where 𝑐 = 3 in current setting. The
Decoder 𝑮 maps the latent features back to the image space. Please refer to Section 3 for details.
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Figure 4: Illustration of Control Mechanism of interpGaze
for (a) gaze interpolation and (b) gaze redirection. The two
completely different tasks are unified into the same frame-
work and can be controlled by altering a control vector.
Please refer to Section 3.4 for more details.

terms, the content loss L𝑐 and style loss L𝑠 , which are defined as

min
𝑮

L𝑐 = E

(
1

𝐻 𝑗𝑊𝑗𝐶 𝑗



𝜓 𝑗 (𝑮 (𝐹 )) −𝜓 𝑗 (𝑥𝑠 )


2) , (2)

min
𝑮

L𝑠 = E
©­«

𝐽∑︁
𝑗=1



𝑓𝑗 (𝑮 (𝐹 )) − 𝑓𝑗 (𝑥𝑠 )


2ª®¬ , (3)

where𝜓 denote the pre-trained VGG-16 network,𝜓 𝑗 (𝒙) ∈ R𝐻 𝑗×𝑊𝑗×𝐶 𝑗

is the activation of 𝑗-th layer of𝜓 , L𝑠 is the sum of all style losses
from the 1-st layer to the 𝐽 -th layer of the VGGmodel. 𝑓𝑗 (𝒙) denotes
the Gram matrix, the entry of which is defined as

𝑓𝑗 (𝒙)𝑐,𝑐′ =
1

𝐻 𝑗𝑊𝑗𝐶 𝑗

𝐻 𝑗∑︁
ℎ

𝑊𝑗∑︁
𝑤

𝜓 𝑗 (𝒙)ℎ,𝑤,𝑐𝜓 𝑗 (𝒙)ℎ,𝑤,𝑐′ . (4)

The perceptual loss is the sum of content loss and style loss: L𝑝 =

L𝑐 + L𝑠 . The above two loss terms can force the generated eye
patch images to be photo-realistic, and ensure redirection of the
gaze directions simultaneously. Following [46], we enforce cycle
consistency as the reconstruction term to ensure that personalized
features are maintained during the redirection process, which is
defined as

min
𝑬 ,𝑮

L𝑟𝑒𝑐𝑜𝑛 = E(


(𝑮 (𝑬 (𝑥𝑔))) − 𝑥𝑠



2) . (5)

We also introduce a knowledge distillation loss to guide the
training of 𝑬 . Knowledge distillation [3] is widely used to com-
press CNN models and has recently been utilized for latent space
interpolation [7, 31]. However, distilling the dark knowledge from
the teacher’s output pixels is difficult. Instead, we match the in-
termediate representations as explored in prior studies [21]. The



Figure 5: Illustration of gaze interpolation and extrapolation. The four examples are produced by the proposed interpGaze.
Green rectangles are the start gaze images and blue ones are the ends. Between them are intermediate results of the two given
gaze images. The last column is the result of extrapolation. Detailed interpretation can be found in Section 5.3.

intermediate layers allow the student model to acquire more in-
formation in addition to outputs, as they contain more channels
and provide richer information. The distillation objective can be
formalized as

min
𝑬 ,𝑭

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =

𝑇∑︁
𝑡=1

∥𝑬𝑡 (x) − 𝑭 𝑡 (𝜓𝑡 (x))∥2 , (6)

where 𝑬𝑡 (x) and𝜓𝑡 (x) are the intermediate feature activations of
the 𝑡-th chosen layer in the encoder 𝑬 and VGG models, and 𝑇

denotes the number of layers. A 1 × 1 learnable convolution layer
𝑭 𝑡 maps the features from the student model to the same number of
channels in the features of the teacher model. We jointly optimize
𝑬𝑡 and 𝑭 𝑡 to minimize the distillation loss L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 .

The final objective function of the encoder 𝑬 and decoder 𝑮 is

L𝑬 = 𝜆𝐺𝐴𝑁𝑬L𝐺𝐴𝑁𝑬 ,C + 𝜆𝑬L𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑑𝑖𝑠𝑡𝑖𝑙𝑙L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ,

L𝑮 = 𝜆𝑝L𝑝 + 𝜆𝑮L𝑟𝑒𝑐𝑜𝑛,

LD = 𝜆𝐺𝐴𝑁D
L𝐺𝐴𝑁D

.

(7)

We set all scalars 𝜆𝑖 as 1 in our experiments.

3.3 Controller
The controller C produces morphing results C (𝐹𝑠 , 𝐹𝑡 ) of two fea-
tures. Then the decoder 𝑮 maps the morphed latent features back
to the image space. This morphing process typically can be rep-
resented as the Latent Space Interpolation [3, 4, 6, 32]. Specifically,
this process can be done linearly as

C
(
𝐹𝑖 , 𝐹 𝑗

)
= 𝐹𝑖 + 𝛼

(
𝐹 𝑗 − 𝐹𝑖

)
, (8)

where 𝐹𝑖 and 𝐹 𝑗 are two features of real samples, and 𝛼 ∈ [0, 1] is a
parameter that controls the mixing strength of two samples. The
second term 𝛼 (𝐹 𝑗 − 𝐹𝑖 ) can also be seen as the relative offset or a
shifting vector that points from 𝐹𝑖 towards 𝐹 𝑗 . These interpolation
methods can connect images of different attributes and produces in-
termediate results. Nevertheless, they fail to achieve precise control
and explain how these attributes are mixed.

The controller C plays two roles: (a) disentangle the represen-
tations of these three primary gaze-related attributes and other
attributes, and (b) manipulate them precisely.

To obtain disentangled representation for each attribute, we
introduce a function I(·) that maps latent feature 𝐹𝑖 to an attribute
vector 𝑧𝑖 , i.e., I(𝐹𝑖 ) = 𝑧𝑖 . The translation from the latent space to
the attribute space can be performed by the following structure-
preserving map (and vice versa), which is analogous to isomorphism
in algebra [33]:

I
(
C
(
𝐹𝑖 , 𝐹 𝑗

) )
= C′ (I (𝐹𝑖 ) ,I

(
𝐹 𝑗
) )
, (9)

where C′ (𝒛𝑖 , 𝒛 𝑗 ) can be viewed as an morphing function that in-
terpolates in the attribute space.

To manipulate these attributes flexibly, we need a control vector
𝒗 ∈ [0, 1]𝑐×1 to adjust the strength of each selected attribute. With
both extensions of Equation 8, the revised version of morphing
process C

(
𝐹𝑖 , 𝐹 𝑗

)
can be written as a more flexible formulation

C𝒗
(
𝐹𝑖 , 𝐹 𝑗

)
. The linear interpolation defined in Equation 8 is ex-

tended to a piece-wise one of

C𝒗 (𝐹𝑖 , 𝐹 𝑗 ) = 𝐹𝑖 +
𝑐+1∑︁
𝑘=1

𝒗𝑘T𝑘 (𝐹 𝑗 − 𝐹𝑖 ), (10)



where T𝑘 (·) is a learnable mapping function represented by CNN,
𝒗𝑘 is the 𝑘-th dimension of 𝒗, 𝑘 = 1, · · · , 𝑐, 𝑐 + 1, 𝑐 is the number of
the three primary attributes (head pose, gaze yaw or pitch). We also
add another branch for other secondary attributes such as glass,
skin color, eyebrow and hair.

𝒗𝑘 corresponds to the interpolation strength of the 𝑘-th attribute
𝑧𝑘 . The 𝑘-th attribute changes from sample 𝑖 to 𝑗 accordingly as 𝒗𝑘
alters from 0 to 1. Thus, interpolation in the latent feature space
should correspond to interpolation in the attribute space, if all pos-
sible values of 𝒛 form an attribute space. The relation between the
latent space and the attribute space initially defined in Equation 9
can be re-formulated as

I
(
C𝒗

(
𝐹𝑖 , 𝐹 𝑗

) )
= C′

𝒗
(
I (𝐹𝑖 ) ,I

(
𝐹 𝑗
) )
,∀𝒗 ∈ [0, 1] (𝑐+1)×1 . (11)

In Equation 11, C′
𝒗 (𝒛𝑖 , 𝒛 𝑗 ) can be viewed as an interpolation func-

tion defined in the attribute space that is controlled by 𝒗. C′
𝒗
(
𝒛𝑖 , 𝒛 𝑗

)
is defined as

C′
𝒗
(
𝒛𝑖 , 𝒛 𝑗

)
=

[
C′
𝒗
(
𝒛𝑖 , 𝒛 𝑗

)1 · · · , C′
𝒗
(
𝒛𝑖 , 𝒛 𝑗

)𝑐+1]
, (12)

where C′
𝑣

(
𝒛𝑖 , 𝒛 𝑗

)𝑘
= 𝒛𝑘

𝑖
+ 𝒗𝑘

(
𝒛𝑘
𝑗
− 𝒛𝑘

𝑖

)
. Each dimension 𝒗𝑐 sets the

interpolation strength of each attribute between the two samples.
There is a critical assumption underlying in Equation 11, which is
the equivalence of the structure in the latent space and the attribute
space defined by operations C𝒗 (·) and C′

𝒗 (·), i.e., isomorphism. The
left-hand side of Equation 11means the attribute values ofmorphing
samples C𝒗 (𝐹 𝑗 − 𝐹𝑖 ), and the right side represents attribute values
of the two samples. They are expected to be equal since both sides
are controlled by the same control vector 𝒗. To ensure this, we
train a network to approximate C(·) and establish a one-to-one
mapping from a unique identity element in the latent space to
the corresponding one in the attribute space. Specifically, we train
the attribute classification network I ′(·) to map the interpolated
feature C𝒗 (𝐹 𝑗 − 𝐹𝑖 ) = 𝐹𝑖 +

∑𝑐+1
𝑘=1 𝒗

𝑘T𝑘 (𝐹 𝑗 − 𝐹𝑖 ) to attribute 𝑧𝑖 . This
can be achieved by minimizing the cross-entropy loss

min
C𝒗

LC𝑖𝑠𝑝
= E[−C′

𝒗 (𝑧𝑖 , 𝑧 𝑗 ) log(I ′(C𝒗 (𝐹𝑖 , 𝐹 𝑗 )))] . (13)

During training, we assign uniformly random values to 𝒗 to cover
the whole feasible set.

Besides, similar to the perceptual losses [15], we introduce a loss
defined on feature space, which is formulated as

LC𝑡 =


C𝒗 (

𝐹𝑖 , 𝐹 𝑗
)
− 𝐹 𝑗



2 . (14)

To summarize, the overall loss function LC of Controller C is
LC = 𝜆𝐺𝐴𝑁C

L𝐺𝐴𝑁𝑬 ,C + 𝜆C𝑖𝑠𝑝
LC𝑖𝑠𝑝

+ 𝜆C𝑡
LC𝑡 (15)

where L𝐺𝐴𝑁𝑬 ,C , LC𝑖𝑠𝑝
and LC𝑡

are defined in Equation 1, Equa-
tion 13 and Equation 14, respectively, and 𝜆𝐺𝐴𝑁C

, 𝜆C𝑖𝑠𝑝
and 𝜆C𝑡

are all set to 1 in our experiments.

3.4 Control Mechanism
Figure 4 shows the control mechanism for gaze redirection and
interpolation. The abbreviations P, H, V and O are head pose (P),
vertical gaze direction (pitch, V), horizontal gaze direction (yaw, H)
and miscellaneous attributes, which are also consistent with the
four branches in Figure 3.

Source DeepWarp [10] He et al. [13] Ours Ground-Truth

Figure 6: Gaze redirection comparison. Detailed discussion
in Section 5.2.

Table 1: Attributes and corresponding labels. The 1st-3rd
columns: dimension index in the control vector, name of at-
tributes, corresponding attribute labels.

Dim Attribute Labels
1 head pose 0◦,±15◦,±30◦
2 gaze yaw 0◦,±5◦,±10◦,±15◦,±25◦,±35◦,±45◦
3 gaze pitch 0◦,±10◦,±15◦,±25◦,±35◦

For gaze redirection, the inputs are a gaze patch of a certain
person as the source image and that of another person (whose
appearance may vary considerably) with the desired directions as
the target. For gaze interpolation, the inputs are two gaze patches
of the same person. We can set the strength and order of the con-
trol vector to select features of each attribute and generate the
desired results. For example, given (−15P, 0V, 15H) as the source
and (15P, 0V,−15H) as the target, we can set the control vector
𝒗1 as [0.5, 0.667, 0, 0] to generate a specific intermediate result
(0P, 0V,−5H), as illustrated in Figure 4(a). Similarly, we can gener-
ate predictable interpolation sequences in different orders using
different control vectors. If we want to redirect the same source
image to the desired direction (0P, 0V,−5H) defined in the refer-
ence image, we can set 𝒗2 as [1.0, 1.0, 0, 0], which alters the target
attribute while keeping others almost intact, as illustrated in Fig-
ure 4(b). The appearance of the reference image is allowed to be
dramatically different from the source. This means that our method
can be extended into one-shot [23] inference, using the synthetic
image from UnityEyes [34] or SynthesEyes [37], which covers the
full space of gaze direction, as the reference to produce an image
with the unseen target direction.

The “O” branch in Figure 4 represents other attributes like glass,
eyebrow, skin color and hair as aforementioned. Both the last ele-
ments in 𝒗41 and 𝒗

4
2 are set as 0, which means that these secondary

attributes remain unchanged during the generation. But we can
also set 𝒗41 as any value in [0, 1] to generate diverse results, which
makes our methodmulti-modal [20, 38, 47]. On the one hand, the “O”
branches describe the common attributes of the same person when
performing interpolation. On the other hand, the appearance of the



Figure 7: Data Collection Setup (a) and an example (b). For
more details, please see Section 4.

two input images may be slightly different (not the attributes of
the subject in the picture), which is mostly caused by the light and
shade during photo capturing. This also indicates that our method
can be extended to integrate more attributes like illumination and
exposure.

Through the proposed feature disentanglement and controlmech-
anism, we have unified two completely different tasks into the same
framework, while avoiding the deficiencies in covering the gaze
space of vector-based redirection methods. Notice that we use rela-
tive offset of each attribute of two inputs in practice, the illustration
in Figure 4 is simplified for easy understanding.

4 DATASET
4.1 Why Do We Need A New Gaze Dataset?
Unfolding the natural image manifold to a flat and smooth latent
space is the key for our method to perform precise redirection and
continuous interpolation, including the more challenging one-shot
and extrapolation. In addition to designing the network structure to
allow the encoder to obtain a smooth and flat latent space, a dataset
with a relatively larger range of directions is also crucial for the
model to learn such latent space. Furthermore, such a high-quality
gaze dataset can also benefit other researchers in related areas.

4.2 Dataset Collection
We collect images in the same way as [29]. As shown in Figure 7,
subjects were seated in a fixed location in front of a black back-
ground, and a 13 × 9 grid of dots was attached to a wall in front
of them. The dots were placed by the angle-distance relation. For
each subject and head pose, we took images of the subject gazing
at each dot of the pose’s corresponding grid of dots. Then, we col-
lect a high-quality gaze dataset that contains 29, 250 images of 50
subjects with the resolution of 5, 184 × 3, 456. We use resized eye
patch images following the same procedure as in [13] for our exper-
iments. We have three gaze-related attributes with certain labels,
i.e., head pose, gaze yaw and pitch direction, as shown in Table 1.
We randomly select 85 subjects from the Columbia Gaze [29] and
ours for training, and use the others for testing. For fair comparison
on gaze redirection, we also train our model only with Columbia
Gaze [29].

4.3 Dataset Analysis
There are several important properties that a high-quality gaze
redirection dataset should own: realness, high-resolution, collected

in the constrained environment, with precise annotation and a large
range of directions. We compare a range of RGB gaze datasets in Ta-
ble 2. Some publicly available gaze datasets, such as MPIIGaze [43],
Gaze Capture [17], UT Multi-View [30] or CMU Multi-Pie [11],
only provide low-resolution images and would therefore intro-
duce an unwanted bias towards low-quality images. Those [17, 43]
proposed for gaze estimation are collected under unconstrained
environmental conditions and vary in background and illumination,
which means these datasets are not suitable for high-quality gaze
redirection. Some recent learning-based gaze redirection studies
either learn from synthetic data [40] (e.g., SynthesEyes [37], Uni-
tyEyes [34]), or use limited high-quality dataset [13] (e.g., Columbia
Gaze [29]). The synthetic data e.g., SynthesEyes [37] and Uni-
tyEyes [34], covers the full space of gaze direction but methods
trained on them are not as photo-realistic as those trained on
high-quality real images. The Columbia Gaze dataset [29] is a
high-resolution, publicly available human gaze dataset collected
from 56 subjects in a constrained environment. The head poses
of each subject are discrete values in the set [0◦,±15◦,±30◦]. For
each head pose, there are 21 gaze directions, which are the com-
binations of three pitch angles [0◦,±10◦], and seven yaw angles
[0◦,±5◦,±10◦,±15◦]. However, it does not cover an enough range
of gaze direction. According to the Driver and Vehicle Licensing
Agency (DVLA) in the United Kingdom, the normal range of the
human eye is about 120◦ of horizontal field and 40◦ of vertical field.
In our collection procedure, we found that it is about 45◦ horizon-
tally and 35◦ vertically if focused accurately on a dot. Out of this
range, the obtained gaze images would look like almost the same
in a certain direction.

5 EXPERIMENTS
5.1 Metrics
It remains an open problem to effectively evaluate the quality of gen-
erated images in image generation tasks. Gaze redirection models
are required to be precise in redirecting and to produce photo-
realistic and consistent images. Correspondingly, the evaluation
metrics need to be able to assess these aspects. Similarly to He et
al. [13], we use the mean squared error (MSE), Learned Perceptual
Image Patch Similarity (LPIPS) [42] and Gaze Estimation Error [26],
as the metrics to measure the similarity, perception quality and
gaze direction error, respectively.

5.2 Gaze Redirection

Baseline Model. We adopt DeepWarp [10] and a recent GAN-
based method [13] as our baselines. We did not compare with recent
GazeAdaptation [41] and GazeDirector [36] since their implemen-
tations are not publicly available.

Qualitative Evaluation. Figure 6 shows the generated gaze im-
ages examples. The reference image for certain gaze direction is
randomly selected. Although both DeepWarp [10] and He et al. [13]
are capable of redirecting the gaze, the generated images have sev-
eral obvious defects. For example, DeepWarp [10] prodeces blurry
textures and boundaries such as skin and eyebrows, and the shapes
of certain areas, such as the edges of eyelid, iris and eyeglasses,
are distorted; the generated gaze images of He et al. [13] are more



Table 2: Comparison of some popular gaze datasets.

Dataset Real High Res Constrained Annotation Type Num. Image Head Pose Gaze Range
CMU Multi-Pie [11] ✓ ✗ ✓ Facial landmarks 755,370 ✓ Small
Gaze Capture [17] ✓ ✗ ✗ 2D position on screen >2.5M ✗ Small
SynthesEyes [37] ✗ ✓ ✗ Gaze vector 11,382 ✓ Full
UnityEyes [34] ✗ ✓ ✗ Gaze vector 1,000,000 ✓ Full

MPII Gaze [43, 44] ✓ ✗ ✗ Gaze vector 213,659 ✓ Small
UT Multi-View [30] ✓ ✗ ✓ Gaze vector 1,152,000 ✓ Large

Columbia [29] ✓ ✓ ✓ Gaze vector 5,880 ✓ Medium
Ours ✓ ✓ ✓ Gaze vector 29,250 ✓ Large

faithful to the input images, but suffer from unnatural pupil when
redirecting to extreme angles as shown in the last row of Figure 6.
In contrast, our method achieves better performance on visual
plausibility and redirection precision.

Quantitative Evaluation. Quantitative evaluation is summarized
in Table 3. We can see that our method achieves the lowest LPIPS
score [42] at every correction angle, which indicates that ourmethod
can generate gaze images that are perceptually more similar to the
ground-truth images. This observation is consistent with the quali-
tative evaluation.

User Study.We ask 21 users to pick the gaze image that looks more
realistic than the other. The generated gaze images are split into
three groups as in [13], [4.9◦, 15.0◦], (15.0◦, 25.0◦], (25.0◦, 35.9◦].
In each group, we randomly choose 19 images generated by both
methods with the same input image and gaze direction. For ours,
we randomly choose a gaze image with the desired direction as the
reference image. Three images are displayed alongside and shuffled
randomly. The results are shown in Table 4.

5.3 Gaze Interpolation
The results of continuous gaze interpolation is shown in Figure 5,
where 𝑥𝑠 (green rectangles) and 𝑥𝑡 (blue rectangles) are two gaze
images randomly sampled from the same person, and moving from
source image 𝑥𝑠 toward target image 𝑥𝑡 in the latent space gradually
produces continuous realistic images 𝑥𝑔 . Given different control
vectors 𝒗, we can select the strength of intermediate results. For
example, the first and third rows change only gaze directions with
constant head pose, while the second and forth rows perform the
opposite. It can be seen that other attributes like eyebrow, glass,
hair and skin color are well-preserved in the redirected gaze images,
which means that our model works consistently well in generat-
ing person-specific gaze images. We also gradually increase the
strength of the last dimension of 𝒗 to produce multi-modal results,
as shown in the third row. Furthermore, our method can also per-
form extrapolation, as demonstrated in the last column of Figure 5.
This indicates that the encoder has unfolded the natural image
manifold, leading to a well-learned flat and smooth latent space
that allows precise control including redirection, interpolation and
extrapolation.

Table 3: Comparison with the state-of-the-arts in terms of
the MSE, LPIPS and Gaze Estimation Error of different di-
rection groups. ↓means the lower the better.

Method MSE ↓ LPIPS↓ Gaze Error↓
Deepwarp [10] 126.71 0.083 15.3◦
He et al. [13] 72.15 0.066 8.7◦

Ours 56.90 0.037 6.3◦

Table 4: Voting results from the user study comparing Deep-
Warp [10] andHe et al. [13]with ourmethod. Each row sums
up to 100%.

Group DeepWarp [10] He et al. [13] Ours
[4.9◦, 15.0◦] 4.7% 28.6% 66.7%
(15.0◦, 25.0◦] 14.3% 33.3% 52.4%
(3.2◦, 29.8◦] 9.5% 42.9% 47.6%

6 CONCLUSION
In this paper, we have introduced interpGaze, a framework for
controllable gaze redirection that can easily achieve both precise
redirection and continuous interpolation, and even extrapolation
by altering a control vector. Through the proposed feature disentan-
glement and control mechanism, we have unified two completely
different tasks into the same framework, while avoiding the de-
ficiencies in covering the gaze space of vector-based redirection
methods. With our elaborate network design and our new dataset
of large range gaze directions, our method can cover a large space
of directions for gaze redirection and interpolation.
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