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Useful knowledge, embedded in a database, is likely to change over time. Identifying recent changes in

temporal databases can provide valuable up-to-date information to decision-makers. Nevertheless, techniques

for mining high-utility patterns (HUPs) seldom consider recency as a criterion to discover patterns. Thus,

the traditional utility mining framework is inadequate for obtaining up-to-date insights about real world

data. In this paper, we address this issue by introducing a novel framework, named utility-driven mining of

Recent/trend high-Utility Patterns (RUP) in temporal databases for intelligent systems, based on user-specified

minimum recency and minimum utility thresholds. The utility-driven RUP algorithm is based on novel global

and conditional downward closure properties, and a recency-utility tree. Moreover, it adopts a vertical compact

recency-utility list structure to store the information required by the mining process. The developed RUP

algorithm recursively discovers recent HUPs. It is also fast and consumes a small amount of memory due to

its pattern discovery approach that does not generate candidates. Two improved versions of the algorithm

with additional pruning strategies are also designed to speed up the discovery of patterns by reducing the

search space. Results of a substantial experimental evaluation show that the proposed algorithm can efficiently

identify all recent high-utility patterns in large-scale databases, and that the improved algorithm performs

best.
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1 INTRODUCTION
Knowledge Discovery in Database (KDD) [1, 8, 14, 20] aims at extracting meaningful and useful

information frommassive amounts of data [3, 20, 23]. Frequent patternmining (FPM) and association

rule mining (ARM) [1, 3, 23] are some of the most important and fundamental KDD techniques [14],

which satisfy the requirements of applications in numerous domains. Mining frequent patterns

consists of discovering all the frequent patterns in a given database based on a user-specified

minimum support threshold. Different from the tasks of FPM and ARM, high-utility pattern mining

(HUPM) [6, 34, 38, 39, 48] takes into account both purchase quantities and profit values of items to

measure how “useful” items and patterns are. A pattern is considered to be a high-utility pattern

(HUP) if its utility in a database is no less than a user-specified minimum utility count. The “utility”

measure can be generally viewed as a measure of the importance of patterns to the user, for example,

in terms of cost, risk, or unit profit. Chan et al. [6] first established the framework of HUPM. Yao

et al. [48] then defined a unified framework for mining high-utility patterns (HUPs). HUPM is

useful as it can identify patterns that may be infrequent in transactions, but that are profitable,

and thus highly valuable to retailers or managers. HUPM is a key data analysis task that has been

widely applied to discover useful knowledge in different types of massive data. In order to improve

the mining efficiency of utility mining, many HUPM approaches have been proposed, such as

Two-Phase [39], IHUP [4], UP-growth+ [43], HUI-Miner [38], and EFIM [52]. In addition, many

interesting issues related to the effectiveness of utility-driven pattern mining have been extensively

studied, as summarized in [18].

However, an important drawback of previous studies is that they utilize the minimum utility

threshold as sole constraint for discovering HUPs, and ignores the temporal aspect of databases. In

general, knowledge found in a temporal database changes as time goes by. Extracting up-to-date

knowledge, especially from temporal data, can provide valuable information for many real-world

applications, such as decision making [7, 25] and event detection [5]. Although HUPs can reveal

information that is often more useful than frequent patterns, HUPM does not assess how recent

the discovered patterns are. As a result, the discovered HUPs may be irrelevant or even misleading

if they are out-of-date in many real-world use-cases. For example, if a pattern only appears in the

far past, it may possibly be invalid at present, and thus be useless for decision making. Hence, it

is unfair to measure the interestingness of a pattern without considering how recent the pattern

is. For monitoring and event detection problems [5], the temporal patterns in Electronic Health

Record (EHR) are potentially more useful for monitoring a specific patient’s condition. For market

basket analysis, obtaining information about recent or current sale trends is crucial, and much

more important than gaining information about previous sale trends. Managers and retailers may

use up-to-date patterns to take strategic business decisions, while out-of-date patterns may be

useless or even misleading for this purpose. For example, consider that transactions in a retail

store contain the following five items: {bread}, {ice cream}, {mitten}, {sweater} and {sunscreen}. Items

such as {ice cream} and {sunscreen} are generally best selling during the summer, while items such

as {mitten} and {sweater} have stronger sales during the winter. Hence, for the purpose of market

analysis, it is more valuable to discover up-to-date and interesting patterns that have sold well

recently indicating current hot sale trends, than patterns that have mostly appeared in the past.

Because high-utility patterns mostly sold in the past are generally irrelevant, traditional HUPM

algorithms are inappropriate for obtaining a set of up-to-date patterns representing recent trends.

Up to now, few studies have addressed the problem of mining recent HUPs by considering time

sensitive constraint. To address the lack of consideration for the temporal aspect of real-world

data in HUPM, the UDHUP-apriori and UDHUP-list algorithms [36] have been proposed. These

algorithms find up-to-date patterns having high utilities in databases. To the best of our knowledge,
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UDHUP-apriori and UDHUP-list [36] are the first algorithms that address this important issue of

mining up-to-date high-utility patterns (UDHUPs). An UDHUP is a pattern which may not be a

HUP when considering an entire transaction database, but that has been recently highly profitable.

In other words, UDHUP mining algorithms focus on finding recently profitable patterns rather than

patterns that have been globally profitable. Discovering UDHUPs is a difficult problem as these

algorithms may face a “combinatorial explosion” of patterns since the number of recent patterns

may be very large, especially for databases having many long transactions or when the minimum

utility threshold is set low.

To resolve the problem of utility-driven efficiently and effectively mining of trend information for

intelligent system, a tree-based algorithm named mining Recent high-Utility Patterns in temporal

databases (RUP) for intelligent systems is presented in this paper. The major contributions of this

study are summarized as follows:

• A novel utility-driven mining approach named mining Recent high-Utility Patterns in tempo-

ral databases (RUP) is proposed to reveal useful and meaningful recent high-utility patterns

(RHUPs) by considering temporal factor. These patterns are more useful for real-life applica-

tions than discovering HUPs.

• The developed RUP approach spans a Set-enumeration tree named Recency-Utility tree

(RU-tree). Using the designed recency-utility list (RU-list) structure, RUP only performs two

database scans to find RHUPs and can avoid generating a huge number of candidate patterns.

• Two properties, named the global downward closure (GDC) property and the conditional

downward closure (CDC) property, ensures global and partial anti-monotonicity for mining

RHUPs in the RU-tree. Moreover, additional effective pruning strategies are integrated in

improved versions of RUP. RUP algorithm can greatly reduce the search space and thus speed

up the discovery of RHUPs.

• Substantial experiments show that the proposed RUP algorithm and its improved versions

can efficiently identify recent high-utility patterns appearing in recent transactions, and

that the developed algorithm outperform the conventional algorithm (e.g., FHM) for HUPM.

Moreover, it is shown that the improved variations of RUP outperforms the baseline.

Note that this paper is extended by a preliminary version [15]. The rest of this paper is organized

as follows. Related work is reviewed in Section 2. Preliminaries related to recent high-utility

pattern and the problem statement are described in Section 3. Section 4 presents the proposed

RUP algorithm. An experimental evaluation of its performance is provided in Section 5. Lastly, a

conclusion is drawn in Section 6.

2 RELATEDWORK
2.1 Efficiency Issue for Utility Mining
Based on the numerous studies, it has been shown that pattern mining is useful in many real-

world applications, such as decision making in intelligent systems (i.e., stock investment) [37],

condition monitoring [5], event detection [5], pattern-based prediction and classification [9]. HUPM

is different from frequent pattern mining (FPM) since it takes purchase quantities and unit profits

of items into account to determine the importance of patterns, rather than simply considering

their occurrence frequencies. Several studies have been carried out on HUPM. Chan et al. [6]

presented a framework to mine the top-k closed utility patterns based on business objectives. Yao

et al. [48] defined utility mining as the problem of finding profitable patterns while considering

both the purchase quantities of items in transactions (internal utilities) and their unit profits

(external utilities). Liu et al. [39] then presented a two phase algorithm, adopting the transaction-

weighted downward closure (TWDC) property to efficiently discover HUPs. This approach has
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been named the transaction-weighted utilization (TWU ) model. Tseng et al. [45] then proposed

the UP-growth+ algorithm to mine HUPs using an UP-tree structure. Different from previous

approaches, a novel utility-list-based algorithm named HUI-Miner [38] was designed to efficiently

discover HUPs without generating candidates. This algorithm greatly reduces the time required for

discovering HUPs by not generating candidates. Enhanced versions of HUI-Miner, called FHM [12]

and HUP-Miner [26], were respectively proposed, integrating additional effective pruning strategies.

Experiments have shown that both FHM [12] and HUP-Miner [26] significantly outperform the

existing HUPM algorithms for most static databases. Recently, several other novel approaches

called EFIM [52] and HMiner [27] were designed for mining HUPs. They were the state-of-the-art

algorithms and shown to outperform previous methods. Consider the sequential data, the topic of

high-utility sequential pattern mining also has been studied, such as USpan [49], HUS-Span [46],

ProUM [21], and HUSP-ULL [22]. Developing efficient high-utility pattern mining algorithms is an

active research area, and more recent studies can be referred to review literature [18].

2.2 Effectiveness Issue for Utility Mining
In addition to the above efficiency issue, many interesting effectiveness issues related to HUPM

have been studied [18, 33, 34]. A series of approaches for discovering HUPs in different types of

dynamic data [17, 31, 51] or uncertain data [34] have been presented. Recently, a lattice-based

method was presented for mining high-utility association rules [40]. The FHN [32] and GHUM

[28] algorithms were proposed to discover HUPs when considering both positive and negative unit

profit values. Lan et al. [29] first proposed a model for mining on-shelf HUPs, that is to discover

profitable sets of products while considering their shelf-time. Algorithms have also been proposed

to identify high utility occupancy patterns [19] and find the top-k HUPs [10, 44] without setting

minimum utility threshold. Lee et al. [30] proposed the task of mining utility-based association

rule with applications to cross-selling. Besides, the topic of utility mining with different discount

strategies in cross-selling has been studied [35]. Yun et al. [50] developed several approaches to

discover the high-utility patterns over data streams. Another popular extension of the task of

HUPM is to discover high average utility patterns, where the utility of a pattern is divided by the

number of items that it contains [24, 42, 47]. It has been argued that this measure provide a more

fair measurement of the utilities of patterns. Because the set of high-utility patterns does not mean

that they are correlated, Gan et al. then introduced the interesting topic of correlated-based utility

mining [16]. Up to now, some studies of privacy-preserving utility mining also have been addressed,

as reviewed in [13].

2.3 Comparative Analysis with Related Work
Information discovered by HUPM can be used to feed expert and intelligent systems and is more

valuable than frequent patterns traditionally found in the field of pattern mining. However, most

HUPM algorithms ignore time factor, and thus do not consider how recent patterns are. In real-world

situations, knowledge embedded in a database may change at any time. Hence, discovered HUPs

may be out-of-date and possibly invalid at present. Mining up-to-date information in temporal

databases can provide valuable information to decision-makers. A new framework for mining

up-to-date high-utility patterns (UDHUPs) [36] was proposed to reveal useful and meaningful

HUPs, by considering both the utility and the recency of patterns. The UDHUP algorithm extracts

patterns which may not be globally profitable but that have been highly profitable in recent

times. To the best of our knowledge, this is the first work to address the problem of mining up-

to-date high-utility patterns. Discovering UDHUPs is a difficult problem as algorithms can face

a “combinatorial explosion” of patterns since the number of recent patterns may be very large,
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especially for databases having many long transactions or when the minimum utility threshold is

set low. Thus, it is a critical and challenging issue to discover recent HUPs more efficiently.

3 PRELIMINARIES AND PROBLEM STATEMENT
3.1 Preliminaries
Let I = {i1, i2, . . ., im } be the set of the m distinct items appearing in a temporal transactional

database D = {T 1, T 2, . . ., Tn }, such that each quantity transaction, denoted as Tq ∈ D, is a subset of
I, and has a unique transaction identifier (TID) and a timestamp. Each item i j ∈ I is associated with

a unit profit value pr (i j ) representing the profit generated by the sale of a unit of item i j . Unit profit
values of items are stored in a profit-table ptable = {pr (i1), pr (i2), . . . , pr (im)}. Note that here the
profit can also be defined as risk, interestingness, satisfaction, and other factor. An itemset/pattern

X ∈ I having k distinct items {i1, i2, . . . , ik } is said to be a k-pattern. For an itemset/pattern X , the

notation TIDs(X ) denotes the TIDs of all transactions in D containing X .

Consider a time-varying e-commerce database
1
that containing a set of temporal purchase be-

haviors. Then we illustrate the concept of RHUP using a simple e-commerce database presented in

Table 1, which will be used as running example. This time-varying e-commerce database contains

10 purchase behaviors (transactions), sorted by purchase time. Moreover, assume that the corre-

sponding ptable of each product in Table 1 is defined as {pr(a): $6, pr(b): $1, pr(c): $10, pr(d): $7,

pr(e): $5}.

Table 1. An example transactional database
TID Timestamp Items with occurred quantities
T1 2016/1/2 09:30 a:2, c:1, d:2

T2 2016/1/2 10:20 b:1, d:2

T3 2016/1/3 19:35 b:2, c:1, e:3

T4 2016/1/3 20:20 a:3, c:2

T5 2016/1/5 10:00 a:1, b:3, d:4, e:1

T6 2016/1/5 13:45 b:4, e:1

T7 2016/1/6 09:10 a:3, c:3, d:2

T8 2016/1/6 09:44 b:2, d:3

T9 2016/1/6 16:10 c:1, d:2, e:2

T10 2016/1/8 10:35 a:2, c:2, d:1

Definition 3.1. The recency of a quantity transaction Tq is denoted as r (Tq) and defined as: r (Tq)
= (1−δ )(Tcurrent−Tq ), where δ is a user-specified time-decay factor (δ ∈ (0,1]),Tcurrent is the current
timestamp which is equal to the number of transactions in D, and Tq is the TID of transaction Tq .
Then the recency of an itemset/pattern X in a transaction Tq is denoted as r (X ,Tq) and defined

as: r (X ,Tq) = r (Tq) = (1 − δ )(Tcurrent−Tq ). The recency of an itemset/pattern X in a database D is

denoted as r (X ) and defined as: r (X ) = ∑
X ⊆Tq∧Tq ∈D r (X ,Tq).

Note that the time-decay factor δ is based on the prior knowledge. Thus, higher recency values

are assigned to transactions having timestamps that are close to the most recent timestamp. For

instance, assume that δ is set to 0.1. The recency values of T1 and T8 are respectively calculated

as r (T1) = (1 − 0.1)(10−1) = 0.3874, and r (T8) = (1 − 0.1)(10−8) = 0.8100. The recency values of all

transactions in D are r (T1) = 0.3874, r (T2) = 0.4305, r (T3) = 0.4783, r (T4) = 0.5314, r (T5) = 0.5905, r (T6)
1
https://recsys.acm.org/recsys15/challenge/
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= 0.6561, r (T7) = 0.7290, r (T8) = 0.8100, r (T9) = 0.9000, and r (T10) = 1.000. Therefore, the recency

of the 1-pattern (b) in T2 is calculated as r (b,T2) = r (T2) = 0.4305, and the recency of the 2-pattern

(bde) in T5 is calculated as r (bde,T5) = r (T5) = 0.5905. Consider patterns (be) and (bde) in D, their
recency values are respectively calculated as r (be) = r (be,T3) + r (be,T5) + r (be,T6) = 0.4783 + 0.5905

+ 0.6561 = 1.7249 and r (bde) = r (bde,T5) = 0.5905. To the best of our knowledge, incorporating

the concept of recency in temporal utility mining has not been previously explored in the utility

mining literature, except for the concept to of up-to-date high-utility pattern (UDHUP) [36].

Definition 3.2. The utility of an item i j appearing in a quantity transaction Tq is denoted as

u(i j ,Tq), and is defined as: u(i j ,Tq) = q(i j ,Tq) × pr (i j ), in which q(i j ,Tq) is the quantity of i j in Tq ,
and pr (i j ) is the unit price/utility of the item i j . The utility of an itemset/pattern X in a transaction

Tq is denoted as u(X ,Tq) and defined as: u(X ,Tq) =
∑

i j ∈X∧X ⊆Tq u(i j ,Tq). Let u(X ) denote the utility
of a pattern X in a database D, then it can be defined as: u(X ) = ∑

X ⊆Tq∧Tq ∈D u(X ,Tq).
For example, the utility of the item (c) in transaction T1 is calculated as u(c,T1) = q(c,T1) × pr (c)

= 1 × $10 = $10. And the utility of the pattern (ad) is calculated as u(ad,T1) = u(a,T1) + u(d,T1) =
q(a,T1) × pr (a) + q(d,T1) × pr (d) = 2 × $6 + 2 × $7 = 26. Correspondingly, the utility of the pattern

(acd) is calculated as u(acd) = u(acd,T1) + u(acd,T7) + u(acd,T10) = $36 + $62 + $39 = $137.

Definition 3.3. The transaction utility of a transaction Tq is denoted as tu(Tq) and defined as:

tu(Tq) =
∑

i j ∈Tq u(i j ,Tq), where j is the number of items in Tq . The total utility in a database D

is the sum of all transaction utilities in D and is denoted as TU . It is formally defined as: TU =∑
Tq ∈D tu(Tq).
For example, in Table 1, tu(T3) = u(b,T3) + u(c,T3) + u(e,T3) = $2 + $10 + $15 = $27. And the

transaction utilities of transactions T 1 to T 10 are respectively calculated as tu(T 1) = $36, tu(T 2) =

$15, tu(T3) = $27, tu(T4) = $38, tu(T5) = $42, tu(T6) = $9, tu(T7) = $62, tu(T8) = $23, tu(T9) = $34, and

tu(T 10) = $39. The total utility in D is the sum of all transaction utilities in D, which is calculated as:

TU = ($36 + $15 + $27 + $38 + $42 + $9 + $62 + $23 + $34 + $39) = $325.

Definition 3.4. A pattern X in a database is a high-utility pattern (HUP) iff its utility is no less

than the minimum utility threshold (minUtil) multiplied by the total utility of database, that is:

HUP ← {X |u(X ) ≥ minUtil ×TU }. (1)

Definition 3.5. A pattern X in a database D is said to be a recent high-utility pattern (RHUP) if it

satisfies two conditions:

RHUP ← {X |r (X ) ≥ minRe ∩ u(X ) ≥ minUtil ×TU }, (2)

whereminUtil andminRe are respectively called the minimum utility threshold and the minimum

recency threshold. These two parameters are specified by the user according to his/her preference

and prior knowledge.

Although the definition of HUP is similar to that of RHUP, a key difference is that RHUPs are

discovered in databases where transactions are sorted by ascending order of timestamps and that

this information is used to evaluate how recent patterns are. Note that a different transaction

ordering would result in a different set of RHUPs. The ascending order of timestamps is adopted

because based on the definitions of RHUPs, recent patterns are considered to be more interesting

than old ones.

Next, we analyze the relationship between HUPs and RHUPs. For the running example, assume

thatminRe andminUtil are respectively set to 1.50 and 10%. The pattern (abd) is a HUP since its

utility is u(abd) = $57 > (minUtil × TU = $32.5), but not a RHUP since its recency is r (abd) (=
0.5314 < 1.5). All HUPs are shown in Table 2, where RHUPs are colored in red.
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Table 2. Derived HUPs and RHUPs
Pattern r(X ) u(X ) Pattern r(X ) u(X )

(a) 2.9145 $66 (ce) 1.2405 $45

(c) 3.6235 $100 (de) 1.3414 $57

(d) 4.3626 $112 (abd) 0.5314 $37

(e) 2.3624 $35 (acd) 1.9048 $137

(ac) 2.3831 $140 (ade) 0.5314 $39

(ad) 2.4362 $111 (bde) 0.5314 $36

(bd) 1.6479 $69 (cde) 0.81 $34

(be) 1.5524 $34 (abde) 0.5314 $42

(cd) 2.7148 $119

3.2 Problem Statement
Definition 3.6. Given a quantitative transactional database (D), a ptable, a user-specified minimum

recency threshold (minRe) and a minimum utility threshold (minUtil), the goal of RHUPM is to

efficiently identify the complete set of RHUPs by considering both the recency and utility constraints.

Thus, the problem of RHUPM is to find the complete set of RHUPs, in which the utility and recency

of each pattern X are respectively no less thanminUtil ×TU and minRec.

Hence, the goal of RHUPM is to efficiently enumerate all RHUPs in a database, while considering

both the recency and utility constraints. To achieve this goal, and reduce the size of the search

space, items that cannot generate recent patterns and high-utility patterns should be excluded from

the mining process. According to [36], the concept of UDHUP is defined as below:

Definition 3.7. The total utility of the database with its past lifetime to the current one is to sum

transaction utilities from transactions β to n, which is denoted as: TU[β,n] =
∑n
q=β tu(Tq) [36], in

which 1 ≤ β ≤ n, and n is the number of transactions in D. A pattern X in a database D is called an

up-to-date high-utility pattern (UDHUP) [36] if:

UDHUP ← {X |u(X )[β,n] ≥ minUtil ×TU[β,n]}, (3)

with its lifetime from β to n, which can be thus represented as {X : u(X ), [β,n]}.
Thus, UDHUP mining aim at discovering not only HUPs in the entire databases but also the

up-to-date HUPs within its lifetime from the past timestamp to the current one, the so-called

high-utility of an UDHUP relies on the summation utility of the transactions which appear in the

recent interval w.r.t. lifetime. Based on the above analysis, it can be seen that the proposed RHUP

is quite different from the UDHUP, the relationship between HUP, UDHUP, and RHUP is RHUP ⊆
HUP ⊆ UDHUP, as illustrated in Fig. 1.

The benefit of RHUPM over HUPM is that the former can extract less but more valuable patterns

from temporal databases for decision making by considering the recency of patterns. The recent

high-utility patterns can be more useful than the frequent patterns in many real-world applications,

such as decision making in intelligent systems (e.g., stock investment) [37], condition monitoring

[5], event detection [5], pattern-based prediction and classification [9].

4 PROPOSED RUP ALGORITHM FOR MINING RHUPS
In this section, we investigate the properties of RHUPs, propose a recency-utility list (RU-list)

structure, and present an efficient tree-based utility mining algorithm named RUP. RUP mines

RHUPs using a novel recency-utility (RU)-tree, RU-list structure, and two downward closure

properties of RHUPs. Details are given thereafter.
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UDHUP

RHUP

HUP

Fig. 1. The relationship between HUP, UDHUP, and RHUP.

4.1 The Proposed RU-tree Structure
The RU-tree is a tree-based data structure designed for mining the set of RHUPs. Its construction

can be done by scanning the database once. The RU-tree maintains information about the recency

and utility values of items so that RHUPs can be discovered efficiently. To avoid missing RHUPs,

the recency and utility values are stored for each occurrence of a pattern, in the RU-tree.

Definition 4.1 (Total order ≺ on items). Assume that there exists a total order ≺ on items, defined

as the ascending order of transaction-weighted utilization (TWU ) [39]. Let TWU (X ) denote the
sum of all transaction utilities containing X and defined as TWU (X ) = ∑

X ⊆Tq∧Tq ∈D tu(Tq) [39].

For example, the ascending order of TWU for items in the running example is TWU (e): $112 <
TWU (b): $116 < TWU (a): $217 < TWU (c): $236 < TWU (d): $251. Hence, the total order ≺ on items

in the RU-tree is e ≺ b ≺ a ≺ c ≺ d .

Definition 4.2 (Recency-utility tree, RU-tree). A recency-utility tree (RU-tree) is a variation of

set-enumeration tree [41], it incorporates both recency and utility factors and the total order ≺ is

applied on items.

Definition 4.3 (Extension nodes in the RU-tree). The extensions of a pattern X (X is presented as a

node in the RU-tree) are obtained by appending one ore more item y to X such that y succeeds all

items in X according to the total order ≺. Thus, the extensions of X are its descendant nodes.

Consider the RU-tree of the running example, the extension (descendant) nodes of the node (ea)
are (eac), (ead), and (eacd), while the supersets of the node (ea) are (eba), (eac), (ead), (ebac), (ebad),
(eacd), and (ebacd). Hence, the set of extension nodes of a node is a subset of its supersets.

Note that the RU-tree is just a conceptual representation of the search space of our addressed

problem. Indeed, it does not need to be a physical tree in memory. Each node in a RU-tree is a set in

the power set of I , where the root node is the empty set. Each node in a RU-tree stores the following

information: a pattern, its recency-utility-list (RU-list), and its links. The RU-list of a pattern is a

vertical data structure, which stores information about the transactions where the pattern appears.

The RU-list structure will be presented in the next subsection. Finally, links contains pointers to

the child nodes that have the same pattern as prefix. Nodes representing patterns containing a

single item are constructed by scanning the database. Other nodes representing larger patterns

are constructed by extracting information from already constructed nodes, without scanning the

database, as it will be explained. The RUP algorithm constructs a RUP-tree as it explores the search

space of patterns in the database. When the algorithm has finished building the RU-tree, all RHUPs

in the database have been output.
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Lemma 4.4. The complete search space of the proposed RUP algorithm for the task of RHUPM can

be represented by a RU-tree where items are sorted by ascending order of TWU.

Proof. According to the definition of a Set-enumeration tree [41], all 2
m − 1 non-empty patterns

that can be formed using the items in I are represented by nodes in the tree, where m is the

number of items in I . Thus, this structure can be used to systematically enumerate all subsets of I .
For example, the complete conceptual RU-tree contains all subsets of I = {a,b, c,d, e}, and all the

patterns that can be obtained by combining these items are represented by nodes in the tree. Thus,

all the supersets of the root node (empty set) can be enumerated according to the TWU-ascending

order of items by exploring the tree using a depth-first search. This representation is complete and

unambiguous; the developed RU-tree can be used to represent the whole search space explored by

the proposed algorithm. □

Lemma 4.5. The recency of a node in the RU-tree is no less than the recency of any of its child nodes

(extensions).

Proof. Assume that there exists a node X k−1
in the RU-tree, containing (k − 1) items. Let

X k
be a child node of X k−1

. Hence, the pattern X k
contains k items, and has (k − 1) items in

common with X k−1
. Since X

k−1 ⊆ X
k
, and TIDs(X

k) ⊆ TIDs(X
k−1), it can be proven that: r (X k )

=

∑
X k ⊆Tq∧Tq ∈D r (X k ,Tq) ≤

∑
X k−1⊆Tq∧Tq ∈D r (X k−1,Tq). Thus, r (X k ) ≤ r (X k−1), the recency of a

node in the proposed RU-tree is always no less than the recency of any of its extension nodes. □

The designed RU-tree is a compact prefix-tree based representation of the database. It contains

all the information required for mining high-utility patterns without scanning the original database.

The size of the RU-tree is bounded by, but usually much smaller than, the total number of item

occurrences in the database. In general, tree-based mining algorithms such as RUP proceed as

follows: they first construct the nodes representing single items in the global tree, then the rest of

the tree w.r.t. the search space is explored, then the pruning and mining operations are performed to

prune branches of the tree and output the desired set of patterns. In the developed RU-tree structure,

only the promising patterns and their RU-lists are needed explored. This structure provides the

interesting property that it can be explored/built on-the-fly during the mining process.

Exploring all subsets is time-consuming for large databases. Thus, it is desirable to use pruning

strategies to avoid exploring all patterns. In FPM, pruning is carried out using the well-known

downward closure property of the support. Since this property does not hold in HUPM, the

traditional TWDC property of the TWU model was proposed as an alternative to prune the search

space [18, 39]. Nevertheless, if an algorithm for RHUPM only uses this property to prune the search

space, it may be inefficient. The following lemmas present novel ways of pruning unpromising

patterns, specific to RHUPM. These lemmas are based on a novel data structure called recency-utility

list (RU-list), which compactly stores information about a pattern. Using this structure, it can be

ensured that all RHUPs can be derived while pruning numerous unpromising items. The RU-list

structure is defined as follows.

4.2 The RU-list Structure
The recency-utility list (RU-list) structure is a new vertical data structure, which incorporates the

concepts of recency and utility. It is used to store all the necessary information for mining RHUPs.

Let there be a pattern X and a transaction (or pattern) T such that X ⊆ T . The set of all items in

T that are not in X is denoted as T\X, and the set of all items appearing after X in T (according

to the ≺ order) is denoted as T /X . For example, consider that X = {bd} and T is the transaction T5
depicted in Table 1. T5\X = {ae}, and T5/X = {e}. Thus, T /X ⊆ T\X.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 3, Article 18. Publication date: July 2019.



18:10 W. Gan et al.

Definition 4.6 (Recency-Utility list, RU-list). The RU-list of a pattern X in a database is denoted

as X.RUL. Inspired by the utility-list [38], RU-list contains an entry (element) for each transaction

Tq where X appears (X ⊆ Tq ∧Tq ∈ D). An element corresponding to a transaction Tq has four

fields: (1) the tid of Tq ; (2) the recency of X in Tq (rec); (3) the utility of X in Tq (iu); and (4) the

remaining utility of X in Tq (ru), in which ru is defined as X .ru(Tq) =
∑

i j ∈(Tq/X ) u(i j ,Tq).

For example, the RU-list of item d is shown in Fig. 2 (right). All the important information for

discovering RHUPs can be compressed into the designed RU-list structure by performing only

one database scan. The proposed RUP algorithm initially builds the RU-lists of single items by

scanning the database. Then, the RU-list of any larger k-pattern (k > 1) is obtained by joining the

RU-list of its parent node with the RU-list of an uncle node (which are (k-1)-patterns). This process
can be applied recursively to obtain the recency and utility information of any pattern without

rescanning the database. The detailed procedure for constructing the RU-list of a k-pattern is given

in Algorithm 3. RU-lists are constructed according to the ascending order of TWU. For the running

example, recall that this order is e ≺ b ≺ a ≺ c ≺ d . Hence, the constructed RU-lists for single

items are as shown in Fig. 2.

(a)

tid rec iu ru

1 0.3874 $12 $24

4 0.5314 $18 $20

5 0.5905 $6 $28

7 0.7290 $18 $44

10 1.0000 $12 $27

(b)

tid rec iu ru

2 0.4305 $1 $14

3 0.4783 $2 $10

5 0.5905 $3 $34

6 0.6561 $4 0

8 0.8100 $2 $21

(e)

tid rec iu ru

3 0.4783 $15 $12

5 0.5905 $5 $37

6 0.6561 $5 $4

9 0.9000 $10 $24

(d)

tid rec iu ru

1 0.3874 $14 0

2 0.4305 $14 0

5 0.5905 $28 0

7 0.7290 $14 0

8 0.8100 $21 0

9 0.9000 $14 0

10 1.0000 $7 0

(c)

tid rec iu ru

1 0.3874 $10 $14

3 0.4783 $10 0

4 0.5314 $20 0

7 0.7290 $30 $14

9 0.9000 $10 $14

10 1.0000 $20 $7

TWU(e) < TWU(b) < TWU(a) < TWU(c) < TWU(d)

Fig. 2. The constructed RU-lists of 1-patterns.

Using the developed RU-list structure provides several benefits: (1) the information required

for mining RHUPs is stored in a lossless structure; (2) the structure is compact and thus does not

requires a large amount of memory; and (3) the important information about any (k-1)-pattern can

be quickly obtained by joining the RU-lists of some of its prefix (k-1)-patterns. Furthermore, key

information can be derived from the RU-list of a pattern, as explained thereafter.

Definition 4.7. Given a database D, the RU-list of a pattern X allows deriving the recency of X
(r (X )), denoted as X .RE, and calculated as: X .RE =

∑
X ⊆Tq∧Tq ∈D (X .rec).

Definition 4.8. Let the sum of the utilities of a pattern X in D be denoted as X .IU . Using the

RU-list of X , X .IU is calculated as follows: X .IU =

∑
X ⊆Tq∧Tq ∈D (X .iu).

Definition 4.9. Let the sum of the remaining utilities of a pattern X in D be denoted as X .RU .

Using the RU-list of X , X .RU is calculated as: X .RU =

∑
X ⊆Tq∧Tq ∈D (X .ru).

For example, consider pattern (b) in Table 1, (b) appears in transactions having the TIDs

{2, 3, 5, 6, 8}. The value b .RE is calculated as (0.4305 + 0.4783 + 0.5905 + 0.6561 + 0.8100) = 2.9654,

b .IU is calculated as ($1 + $2 + $3 + $4 + $2) = $12, and b .RU is calculated as ($14 + $10 + $34 +

$0 + $21) = $79. Consider the pattern (bd). It appears in transactions with TIDs {2, 5, 8}. The value
(bd).RE is calculated as (0.4305 + 0.5905 + 0.8100) = 1.831, (bd).IU = ($1 + $14) + ($3 + $28) + ($2 +

$21) = $69, and (bd).RU = $0.
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4.3 The Global and Conditional Downward Closure Properties
Based on the RU-list structure and some properties of the recency and utility measures, five novel

search space pruning strategies are designed. Those strategies allow the RUP algorithm to prune

unpromising patterns early to reduce the search space, and thus improve its efficiency.

Lemma 4.10. The actual utility of a node/pattern in the RU-tree is 1) less than, 2) equal to, or 3)

greater than the utility of any of its extension (descendant) nodes.

Given the above lemma, the downward closure property of ARM cannot be used in HUPM to

mine HUPs. In traditional HUPM, the TWDC property [39] was proposed to reduce the search

space. However, this property does not consider the recency measure. To address this issue, the

following lemmas and theorems are proposed based on the RU-list structure and properties of

the recency and utility measures. These lemmas and theorems are designed to be used with the

designed RU-tree structure to prune the search space.

Definition 4.11. A pattern X in a database D is said to be a recent high transaction-weighted

utilization pattern (RHTWUP) if it satisfies two conditions: 1) r (X ) ≥ minRe; 2) TWU (X ) ≥
minUtil ×TU , whereminUtil is the minimum utility threshold andminRe is the minimum recency

threshold.

Theorem 4.12 (Global downward closure property, GDC property). Let there be a k-pattern
(node) X k

in the RU-tree, and X k−1
be a (k-1)-pattern (node) such that its first k-1 items are the same

as X k
. The global downward closure (GDC) property guarantees that: TWU (X k ) ≤ TWU (X k−1) [39]

and r (X k ) ≤ r (X k−1).
Proof. Let X

k−1
be a (k-1)-pattern, and X

k
be a superset of X

k−1
, containing k items. Since

X
k−1 ⊆ X

k
, TWU (X k ) = ∑

X k ⊆Tq∧Tq ∈D tu(Tq) ≤
∑

X k−1⊆Tq∧Tq ∈D tu(Tq). Thus, we have TWU (X k )
≤ TWU (X k−1) [39]. Besides, it can be found that r(X

k−1
) ≥ r(X

k
). Therefore, if X

k
is a RHTWUP,

any subset X
k−1

of X
k
is also a RHTWUP. □

Theorem 4.13 (RHUPs ⊆ RHTWUPs). A RU-tree is a Set-enumeration tree where the total order ≺
is applied. Assuming that order, it follows that RHUP ⊆ RHTWUP, which means that if a pattern is

not a RHTWUP, none of its supersets is a RHUP.

Proof. Let X k
be an k-pattern such that X k−1

is a subset of X k
. Based on the property of TWU

concept [39], we know that u(X ) ≤ TWU (X ). Moreover, by Theorem 4.13, r (X k ) ≤ r (X k−1) and
TWU (X k ) ≤ TWU (X k−1). Thus, if X k

is not a RHTWUP, none of its supersets is a RHUP. □

Lemma 4.14. The TWU of any node in the RU-tree is greater than or equal to the utility of any of

its descendant nodes, and more generally greater than the utility of any of its supersets (which may

not be its descendant nodes).

Proof. Let X k−1
be a node in the RU-tree, and X k

be a children (extension) of X k−1
. According

to the TWU concept [39], the relationship TWU (X k−1) ≥ TWU (X k ) holds, and thus this lemma

holds. □

Theorem 4.15. In the RU-tree, if the TWU of a tree node X is less thanminUtil ×TU , X is not a

RHUP, and all its supersets (not only its descendant nodes) are not RHUPs.

Proof. This theorem directly follows from Theorem 4.13. □

To ensure that the RUP algorithm discovers all RHUPs, it utilizes the utility and remaining utility

of a pattern to calculate an overestimation of the utility of any of its descendant nodes in the

RU-tree. This upper bound by defined in the following lemma.
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Lemma 4.16. Let there be a pattern X k
appearing in a database D. Furthermore, let X k−1

be a child

node of X k
in the RU-tree. The sum of X k−1.IU + X k−1.RU (calculated using the RU-list of X k−1

) is

an upper bound on the utility of X k
, i.e., X k .IU ≤ X k−1.IU + X k−1.RU .

Proof. According to [34, 38], this lemma holds. The utility of X k
in D is always less than or

equal to the sum of actual utility and remaining utility of X k−1
(w.r.t. X k−1.IU + X k−1.RU ). □

Theorem 4.17 (Conditional downward closure property, CDC property). For any node X
in the RU-tree, the sum of X .IU and X .RU in its RU-list is larger than or equal to the utility of any of

its descendant nodes (extensions). Thus, this upper-bound provides a conditional anti-monotonicity

property for pruning unpromising patterns in the RU-tree.

Proof. According to the definition of a Set-enumeration tree [41] and Lemma 4.16, this theorem

holds. Thus, the utility of a pattern appearing in a database D is always less than or equal to the

sum of the utilities and remaining utilities of any of its ancestor nodes. □

The above lemmas and theorems can be used to reduce the search space for mining RHUPs, while

ensuring that no RHUPs will be missed. We incorporate the results of all these lemmas and theorems

into a novel utility-driven mining algorithm, called RUP. The designed GDC and CDC properties

guarantee the completeness and correctness of the proposed RUP algorithm. By utilizing the

GDC property, the algorithm only needs to initially construct the RU-lists of promising patterns

(the RHTWUPs containing a single item, denoted as RHTWUPs
1
) to then explore the other patterns

recursively. Furthermore, the following pruning strategies are proposed in the RUP algorithm to

speed up the discovery of RHUPs.

4.4 The Proposed Pruning Strategies
As mentioned in subsection 4.1, the size of the search space for the problem of RHUPM is 2

m
- 1

patterns (wherem is the number of items in I ), by systematically enumerating all subsets of I . If no
powerful pruning strategies are used, the search space for discovering the desired RHUPs is huge.

Therefore, inspired by previous studies, several efficient pruning strategies are integrated in the

designed RUP algorithm to prune unpromising patterns early. Those strategies are based on the

above lemmas and theorems, and generally allows to explore a much smaller part of the search

space. Details are given thereafter.

Strategy 1 (TWU pruning strategy). By scanning the database once, the recency and TWU

values of each item can be obtained. If the TWU of an item i (i.e., TWU (i)) and the sum of all the

recencies of i (i.e., r (i)) do not satisfy the two conditions of a RHTWUP, this item can be directly

pruned, because none of its supersets is a RHUP.

Example 4.18. By Theorem 4.13, all subsets of a RHTWUP are also RHTWUPs. Since {r(e): 2.3624,
TWU (e): $112; r(b): 2.9654, TWU (b): $116; r(a): 2.9145, TWU (a): $217; r(c): 3.6235, TWU (c): $236;
r(d): 4.3626, TWU (d): $251}, all five items satisfy the two necessary conditions to be RHTWUPs.

The 1-pattern RHTWUPs are shown in Table 3. Any of their supersets can be a RHUP and thus the

branches in the RU-tree corresponding to each of these patterns cannot be pruned.

Strategy 2 (recency pruning strategy). When traversing the RU-tree using a depth-first

search, if the sum of all the recency values of a node X (i.e., X .RE) in its constructed RU-list is less

than the minimum recency threshold, then none of its child nodes is a RHUP.

Example 4.19. As shown in Fig. 3, the recency of the pattern (ea) is no less than that of its

extensions (eac), (ead) and (eacd), which are respectively calculated as r (ea) = 0.5905, r (eac) = 0,
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Table 3. Derived 1-pattern RHTWUPs
Pattern r(X ) TWU (X ) u(X ) r(X ) TWU (X )
(a) 2.9145 $217 (d) 4.3626 $251

(b) 2.9654 $116 (e) 2.3624 $112

(c) 3.6235 $236

r (ead) = 0.5905, and r (eacd) = 0. Thus, the recency of (eac), (ead) and (eacd) are all less than or

equal to the recency of (ea). The pattern (ea) is neither a RHTWUP nor a RHUP since TWU (ea) =
$42> $32.5, but r (ea) = 0.5905 < 1.5. Thus, when the designed algorithm processes the supersets of

(ea), it can skip processing all patterns that are descendant (extension) nodes of (ea). This means

that the patterns {(eac), (ead), (eacd)} can be directly pruned (the sub-branches of X do not need

to be explored).

da cbe

eba ebc

ebac ebad ebcd

ebd

eb ec ed

ecd bac bad

eacd bacd

ebacd

ba bc bd ac ad cd

acdbcdeac ead

skipped node

pruned node

ea

(d)

tid re iu ru

1 0.3874 $14 0

2 0.4305 $14 0

5 0.5905 $28 0

7 0.7290 $14 0

8 0.8100 $21 0

9 0.9000 $14 0

10 1.0000 $7 0

root

Fig. 3. Application of the pruning strategies on the conceptual RU-tree.

By Lemma 4.12 and Theorem 4.16, upper bounds on a pattern’s utility can be used to reduce

the search space, as described in Strategy 3. Furthermore, an effective EUCP (Estimated Utility

Co-occurrence Pruning) strategy [12] is also integrated in the RUP algorithm to speed up the

discovery of RHUPs. It is defined as follows: if the TWU of a 2-pattern is less than theminUtil
threshold, any superset of this pattern is neither a RHTWUP nor a HUP [12]. According to the

definitions of RHTWUP and RUP, this can be applied in the proposed RUP algorithm to further

filter unpromising patterns. To effectively apply the EUCP strategy, a structure named Estimated

Utility Co-occurrence Structure (EUCS) [12] is built by the proposed algorithm. It is a matrix that

stores the TWU values of 2-patterns. This structure is employed by strategy 4.

Strategy 3 (upper bound on utility pruning strategy). When traversing the RU-tree based

on a depth-first search strategy, if the sum of X .IU and X .RU of any node X is less than the

minimum utility count, any of its child node is not a RHUP, and can thus be directly pruned (the

sub-branches of X do not need to be explored).

Strategy 4 (EUCP strategy). Let X be a pattern (node) encountered during a depth-first search

on a RU-tree. If the TWU of a 2-pattern Y ⊆ X according to the constructed EUCS is less than the
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Table 4. The constructed EUCS

Item a b c d e
b $42 - - - -

c $175 $27 - - -

d $179 $80 $171 - -

e $42 $78 $61 $76 -

minimum utility threshold, X is neither a RHTWUP nor a RHUP. As a consequence, none of its

child nodes is a RHUP. The construction of the RU-lists of X and its children thus does not need to

be performed.

Example 4.20. Consider the RU-tree built for the running example, depicted in Fig. 3. The pattern

(bc) is not a RHTWUP since TWU (bc) = $27 < $32.5. Thus, by applying the EUCP strategy, the

supersets of (bc), including (bcd), (ebc), (bac), (ebac), (ebcd), (bacd), and (ebacd), can be skipped.

Strategy 5 (RU-list checking strategy). Let X be a pattern (node) visited during a depth-first

search on a RU-tree. After constructing the RU-list of X , if X .RUL is empty or the X .RE value is

less than the minimum recency threshold, X is not a RHUP, and none of its child nodes is a RHUP.

As a consequence, the RU-lists of the child nodes of X do not need to be constructed.

Example 4.21. Consider the RU-tree depicted in Fig. 3 and the pattern (eac). The RU-list of this
pattern is empty since it does not appear in any transactions of the running example database.

Thus, RU-lists of descendant (extension) nodes of (eac) do not need to be constructed and these

patterns are skipped. As shown in Fig. 3, the search space of the running example contains (2
m

- 1) = 2
5
- 1 = 31 patterns if all patterns are explored, while the number of nodes visited by the

proposed algorithm is 19 (12 nodes are skipped). Among them, 8 nodes are visited and pruned

without exploring their descendant nodes since they are not RHUPs according to the pruning

strategies. The final set of RHUPs is shown in Table 2.

4.5 The RUP Algorithm
Based on the above properties and pruning strategies, the pseudo-code of the proposed RUP

algorithm is presented in Algorithm 1. The RUP algorithm first sets X .RUL, D.RUL and EUCS to

the empty set (Line 1). Then, RUP scans the database to calculate theTWU (i) and r (i) values of each
item i ∈ I (Line 2) to then identify those that may be RHUPs (Line 3). After sorting I ∗ according to

the total order ≺ (the ascending order of TWU, Line 4), the algorithm scans D again to construct the

RU-list of each 1-item i ∈ I ∗ and build the EUCS (Line 5). The RU-lists of all extensions of each item

i ∈ I ∗ are then recursively processed using a depth-first search procedure named RHUP-Search

(Line 6) and then the final set of RHUPs is returned (Line 7). It is important to notice that the

RU-tree is a conceptual presentation of the search space of the RUP algorithm. RUP only need to

construct the original RU-lists of 1-patterns and then generate the k-patterns with their RU-lists

for determining RHUPs. Thus, the RUP algorithm does not contain details of RU-tree generation.

The RHUP-Search procedure is given in Algorithm 2. It takes as input a pattern X , a set of child

nodes of X (extendOfX ), theminRe andminUtil thresholds and the EUCS. This procedure processes
each pattern Xa in the set extendOfX to discover RHUPs (Lines 2-5). Two constraints are then

applied to determine if child nodes of Xa should be explored by the depth-first search (Lines 6-18).

If a pattern is promising, theConstruct(X ,Xa ,Xb ) procedure (cf. Algorithm 3) is called to construct

the RU-lists of all 1-extensions of Xa (i.e., extendOfXa ) (Lines 8-16). Each constructed 1-extension

Xab of the pattern Xa is put in the set extendOfXa to be used by the later depth-first search. The

RHUP-Search procedure is then recursively called to continue the depth-first search (Line 17).
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ALGORITHM 1: The RUP algorithm

Input: D, ptable, δ ,minRe ,minUtil .
Output: The set of recent high-utility patterns (RHUPs).

1 X .RUL← ∅,D.RUL← ∅,EUCS ← ∅;
2 scan D once to calculate the TWU (i) and re(i) values of each item i ∈ I ;
3 find I∗ (TWU (i) ≥ minUtil ×TU ) ∧ (r (i) ≥ minRe), i.e. RHTWUP1;

4 sort I∗ according to the total order ≺ (ascending order of TWU );

5 scan D to construct the X.RUL of each item i ∈ I∗ and build the EUCS;

6 call RHUP-Search(ϕ, I∗,minRe,minUtil ,EUCS);

7 return RHUPs

ALGORITHM 2: The RHUP-Search procedure

Input: X , extendO f X ,minRe ,minUtil , EUCS .
Output: The set of RHUPs.

1 for each pattern Xa ∈ extendOfX do
2 obtain the Xa .RE, Xa .IU and Xa .RU values from the built Xa .RUL;

3 if (Xa .IU ≥ minUtil ×TU ) ∧ (Xa .RE ≥ minRe) then
4 RHUPs ← RHUPs ∪ Xa ;
5 end
6 if (Xa .IU + Xa .RU ≥ minUtil ×TU ) ∧ (Xa .RE ≥ minRe) then
7 extendO f Xa ← ∅;
8 for each Xb ∈ extendO f X such that a ≺ b do
9 if ∃TWU (ab) ∈ EUCS ∧TWU (ab) ≥ minUtil ×TU then

10 Xab ← Xa ∪ Xb ;
11 Xab .RUL← construct(X ,Xa ,Xb );
12 if Xab .RUL , ∅ ∧ (Xa .RE ≥ minRe) then
13 extendO f Xa ← extendO f Xa ∪ Xab .RUL;

14 end
15 end
16 end
17 call RHUP-Search (Xa , extendO f Xa ,minRe,minUtil ,EUCS);
18 end
19 end
20 return RHUPs

In summary, the RUP algorithm utilizes several pruning strategies and calculate tight upper-

bounds on the utility of descendant nodes of each visited node, using the RU-list, to prune un-

promising patterns. As a result, the search space and the time required to traverse the RU-tree can

be reduced. Based on the designed RU-tree and the top-down depth-first spanning mechanism, the

developed RUP algorithm can directly mine all RHUPs in a database by scanning the database twice,

and without generating and maintaining candidates. Although RUP adopts the Estimated Utility

Co-occurrence Structure (EUCS) which is originally proposed in FHM, note that RUP is different

from FHM, as shown in the following aspects: 1) the mining task is different; 2) the used data

structures (i.e., RU-tree, RU-list) are novel and different from utility-list; 3) the pruning strategies

with both recency and utility as constraints are also different from FHM that only utilizes utility

factor; and 4) the discovered results (RHUPs vs HUPs) are different.
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ALGORITHM 3: The RU-list construction procedure

Input: X , a pattern; Xa , an extension of X with an item a; Xb , an extension of X with an item b (a , b).
Output: Xab .RUL, the RU-list of a pattern Xab .

1 set Xab .RUL← ∅;
2 for each element Ea ∈ Xa .RUL do
3 if ∃Ea ∈ Xb .RUL ∧ Ea .tid == Eb .tid then
4 if X .RUL , ∅ then
5 find E ∈ X .RUL, E.tid = Ea .tid ;

6 Eab ←< Ea .tid,Ea .re,Ea .iu + Eb .iu − E.iu,Eb .ru >;
7 end
8 else
9 Eab ←< Ea .tid,Ea .re,Ea .iu + Eb .iu,Eb .ru >;

10 end
11 Xab .RUL← Xab .RUL ∪ Eab ;
12 end
13 end
14 return Xab .RUL

Complexity analysis. The complexity of RUP is analyzed as follows. To keep consistent, we

assume that there are n transactions andm distinct items in the temper database D. RUP requires a

single database scan and takes O(n ×m) time in the worst case to calculate the TWU (i) and re(i)
values of each item i ∈ I . Sorting I ∗ needsO(mloдm) time and constructing |I ∗ | RU-lists of 1-pattern
in I ∗ needs O(n ×m) time and O(n × I ∗) space. Due to the length of the longest transaction in the

database is maxL =max{|Tq |,Tq ∈ D} and may be up tom. It indicates this longest transaction has

allm items such as maxL =m, in the worst case. Thus, there is up to 2
m
- 1 patterns in the search

space of RUP. Without loss of generality, we assume that all them items are promising and their

RU-lists have n entries. Thus, the worst case time complexity of the RUP algorithm is O(2m − 1) in
theory.

5 EXPERIMENTAL RESULTS
This section describes substantial experiments conducted to evaluate the effectiveness and effi-

ciency of the proposed RUP algorithm. Note that only one study was previously published on

the topic of mining recent HUPs. In that study, the UDHUP-apriori and UDHUP-list algorithms

were presented [36]. However, as previously mentioned, the concept of UDHUP patterns is quite

different from the RHUP patterns considered in this paper. Thus, this experimental evaluation

considers the well-known conventional HUPM algorithm (i.e., FHM [12]) as benchmark to discover

HUPs for evaluating the effectiveness of the proposed RUP algorithm. It is important to notice that

RHUPM and traditional HUPM are two different mining tasks. Although the state-of-the-art HUPM

algorithms (i.e., FHM [12], HUP-Miner [26], EFIM [52], HMiner [27] and others) are available at the

SPMF website
2
, but they are not suitable to be compared for evaluating the efficiency, i.e., execution

time. Due to the requirement of reviewer, RUP was compared by some of these conventional HUPM

algorithms. Furthermore, to evaluate the efficiency of the proposed pruning strategies, versions of

the RUP algorithm without pruning strategies are also considered in this experimental evaluation.

The notation RUPbaseline, RUP1, and RUP2 respectively indicates RUP without the pruning strategies

4 and 5, without strategy 5, and with all strategies.

2
http://www.philippe-[]fournier-[]viger.com/spmf/
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The experiments were conducted on a personal ThinkPad T470p computer with an Intel(R)

Core(TM) i7-7700HQ CPU@ 2.80 GHz 2.81 GHz, 32 GB of RAM, and with the 64-bit Microsoft Win-

dows 10 operating system. Three real-life datasets obtained from the public FIMI repository
3
(retail,

chess, and mushroom), foodmart [11], and two synthetic datasets (T10I4D100K and T40I10D100K)

were used in the experiments.

• foodmart: it contains 1,559 distinct items appearing in 21,556 customer transactions, where

the average and maximal transaction length are respectively 4 and 11 items.

• retail: this dataset is a large sparse dataset having 88,162 transactions and 16,470 distinct items,

representing approximately five months of customer transactions. The average transaction

length in this dataset is 10.3 items, and most customers have bought 7 to 11 items per shopping

visit.

• chess: this dense dataset contains the legal moves of a chess game, with 75 distinct items,

3,196 transactions, and an average transaction length of 37 items.

• mushroom: this dataset contains 119 distinct items, and 8,124 transactions, each having 23

items. This is a dense dataset.

• T10I4D100K and T40I10D100K: they were generated using the IBM Quest Synthetic Data

Generator [2] using various parameter values.

A simulation model [16, 39, 43] was developed to generate purchase quantities and unit profit

values of items in transactions for all datasets except foodmart which already has real quantities

and unit profit values. A log-normal distribution was used to randomly assign quantities in the

[1,5] interval, and item profit values in the [1,1000] interval, as in previous work [16, 43]. These

datasets have varied characteristics and represents the main types of data typically encountered in

real-life scenarios (dense, sparse and long transactions).

5.1 Pattern Analysis
The first experiment consisted of comparing the derived HUP and RHUP patterns using a fixed time-

decay threshold δ to analyze the relationship between these two types of patterns, and determine

whether the proposed RHUPM framework is acceptable. Note that HUPs are discovered using the

FHM algorithm, and RHUPs are found by the proposed RUP algorithm. A recency ratio of high-

utility patterns is defined as: recencyRatio =
|RHU Ps |
|HU Ps | × 100%. Correspondingly, an outdated ratio is

defined as outdatedRatio =
|HU Ps−RHU Ps |

|HU Ps | × 100% = ( 100% - recencyRatio). In general, the outdated

patterns do not make sense for decision making, pattern-based prediction and classification. Thus,

recencyRatio but not outdatedRatio can facilitate the process of discovering and validating the

patterns by user.

In this experiment, to make the comparison fair, theminRe threshold was first fixed and the

minUtil threshold was varied. The parameters were set as follows: foodmart (δ = 0.001%,minRe
= 1), retail (δ = 0.01%, minRe = 10), chess (δ = 0.5%, minRe = 60), mushroom (δ = 0.1%, minRe
= 15), T10I4D100K (δ = 0.01%,minRe = 5), and T40I10D100K (δ = 0.05%,minRe = 20). Then, the

minUtil threshold was fixed and the minRe threshold was varied. The parameters were set as

follows: foodmart (δ = 0.001%, minUtil = 0.001%), retail (δ = 0.01%, minUtil = 0.015%), chess (δ =

0.5%,minUtil = 18%), mushroom (δ = 0.1%,minUtil = 7%), T10I4D100K (δ = 0.01%,minUtil = 0.005%),

and T40I10D100K (δ = 0.05%, minUtil = 0.2%). The results in terms of number of HUPs and RHUPs

for various minUtil values and a fixedminRe threshold, and for variousminRe values and a fixed

minUtil threshold, are respectively shown in Table 5 and Table 6, respectively.

3
http://fimi.uantwerpen.be/data/
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Table 5. Number of patterns when minUtil is varied andminRe is fixed.

Dataset Notation
# pattern under various thresholds

test1 test2 test3 test4 test5 test6

minUtil 0.002% 0.003% 0.004% 0.005% 0.006% 0.007%

(a) foodmart HUPs 492,041 386,509 267,164 165,304 93,467 49,848

(δ : 0.001%, minRe: 1) RHUPs 41,539 38,552 33,188 26,788 20,515 15,238

recencyRatio 8.44% 9.97% 12.42% 16.21% 21.95% 30.57%

minUtil 0.013% 0.014% 0.015% 0.016% 0.017% 0.018%

(b) retail HUPs 2489,385 22,657 15,713 14,126 12,813 11,705

(δ : 0.01%, minRe: 10) RHUPs 7,203 6,965 6,732 6,499 6,299 6,080

recencyRatio 0.29% 30.74% 42.84% 46.01% 49.16% 51.94%

minUtil 17% 18% 19% 20% 21% 22%

(c) chess HUPs 198,921 89,933 39,281 16,848 7,141 2,969

(δ : 0.5%, minRe: 60) RHUPs 94,666 48,809 23,798 14,177 5,070 2,249

recencyRatio 47.59% 54.27% 60.58% 84.15% 71.00% 75.75%

minUtil 5% 6% 7% 8% 9% 10%

(d) mushroom HUPs 176,549 34,431 34,331 22,121 13,953 7,601

(δ : 0.1%, minRe: 15) RHUPs 79,577 30,868 15,321 9,714 5,745 2,886

recencyRatio 45.07% 89.65% 44.63% 43.91% 41.17% 37.97%

minUtil 0.005% 0.006% 0.007% 0.008% 0.009% 0.010%

(e) T10I4D100K HUPs 4,168,007 310,769 148,090 114,938 94,448 80,939

(δ : 0.01%, minRe: 5) RHUPs 52,230 50,841 49,495 48,158 46,921 45,603

recencyRatio 1.25% 16.36% 33.42% 41.90% 49.68% 56.34%

minUtil 0.15% 0.20% 0.25% 0.30% 0.35% 0.40%

(f) T40I10D100K HUPs 790,225 143,591 35,676 6,275 2,654 1,429

(δ : 0.05%, minRe: 20) RHUPs 80,191 17,936 7,579 4,541 2,643 1,427

recencyRatio 10.15% 12.49% 21.24% 72.37% 99.59% 99.86%

In Table 5 and Table 6, it can be observed that for normal, sparse or dense datasets, the number of

RHUPs is always smaller than the number of HUPs under different parameter settings. The reason

is that although numerous HUPs are discovered when only the utility of patterns is considered,

few HUPs are recent patterns since the recency constraint is ignored in traditional HUPM. For

example, on foodmart (δ = 0.001%,minRe = 1.0), whenminUtil is set to 0.002%, 492,041 HUPs are

found but only 41,539 are RHUPs, and whenminUtil is set to 0.007%, 49,848 HUPs are found but

only 15,238/49,848 = 30.57% is the interesting RHUPs. This indicates that many HUPs have low

recency values. Hence, those HUP patterns may not be helpful for decision-making (e.g., for a

manager or retailer) and may be generally uninteresting for users in real-world applications. As

previously explained, the concept of RHUP patterns was introduced in this paper to find patterns

that are both highly profitable and have recently appeared in transactions. Thus, the discovered

RHUPs can be considered more valuable than the HUPs found by traditional HUPM algorithms for

tasks such as product recommendation and promotion.

It can be observed that the compression achieved by mining RHUPs instead of HUPs, indicated

by the recencyRatio, is very high when the minUtil orminRe thresholds are varied. For instance,
on the T10I4D100K dataset withminRe = 6, a low recencyRatio of 1.09% is obtained (as shown in

Table 6), which means that numerous redundant and meaningless patterns have been effectively

eliminated (outdated patterns). In other words, fewer patterns are found by mining HUPs, but those

patterns are up-to-date. As more constraints are applied in the mining process, fewer but more

meaningful patterns are discovered. It can also be observed that the recencyRatio/outdatedRatio

produced by the RUP algorithm increases/decreases when minUtil/minRe is increased/decreased.

More specifically, the number of HUPs remains unchanged when minRe is increased, while the
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Table 6. Number of patterns whenminRe is varied and minUtil is fixed.

Dataset Notation
# pattern under various thresholds

test1 test2 test3 test4 test5 test6

minRe 0.80 0.85 0.90 0.95 1.00 1.05

(a) foodmart HUPs 492,041 492,041 492,041 492,041 492,041 492,041

(δ : 0.001%, minUtil: 0.001%) RHUPs 492,041 386,976 267,034 154,384 41,539 41,539

recencyRatio 100.00% 78.65% 54.27% 31.38% 8.44% 8.44%

minRe 5 6 7 8 9 10

(b) retail HUPs 15,713 15,713 15,713 15,713 15,713 15,713

(δ : 0.01%, minUtil: 0.015%) RHUPs 11,444 10,307 9,233 8,320 7,456 6,732

recencyRatio 72.83% 65.60% 58.76% 52.95% 47.45% 42.84%

minRe 20 40 60 80 100 120

(c) chess HUPs 89,933 89,933 89,933 89,933 89,933 89,933

(δ : 0.5%, minUtil: 18%) RHUPs 89,383 79,253 48,809 18,873 3,949 446

recencyRatio 99.39% 88.12% 54.27% 20.99% 4.39% 0.50%

minRe 5 10 15 20 25 30

(d) mushroom HUPs 34,331 34,331 34,331 34,331 34,331 34,331

(δ : 0.1%, minUtil: 7%) RHUPs 33,762 31,862 15,321 14,618 13,766 12,892

recencyRatio 98.34% 92.81% 44.63% 42.58% 40.10% 37.55%

minRe 1 2 3 4 5 6

(e) T10I4D100K HUPs 4,168,007 4,168,007 4,168,007 4,168,007 4,168,007 4,168,007

(δ : 0.01%, minUtil: 0.005%) RHUPs 4,050,086 112,383 79,782 61,910 52,230 45,276

recencyRatio 97.17% 2.70% 1.91% 1.49% 1.25% 1.09%

minRe 10 12 14 16 18 20

(f) T40I10D100K HUPs 143,591 143,591 143,591 143,591 143,591 143,591

(δ : 0.05%, minUtil: 0.2%) RHUPs 141,346 135,215 118,684 37,872 25,955 17,936

recencyRatio 98.44% 94.17% 82.65% 26.37% 18.08% 12.49%

number of RHUPs decreases. For example, on the chess dataset as shown in Table 5(c), whenminUtil

is increased from 17% to 22%, the numbers of patterns generated by RUP-based algorithms decreases

from 94,666 to 2,249 patterns, and the recencyRatio increases from 47.59% to 75.75%. Furthermore,

when minUtil is fixed and minRe is varied from 20 to 120, as shown in Table 6(c), the number of

HUPs remains 89,933, and the recencyRatio decreases from 99.39% to 0.50%. This is reasonable

since traditional HUPM does not consider the minimum recency threshold, while mining RHUPs is

done by considering both the utility and recency constraints. It is thus not surprising that fewer

RHUPs are produced for high recency threshold values and a fixed minimum utility threshold. The

above observations generally hold when the minimum utility threshold is set to large values. When

the minRe threshold is increased, fewer RHUPs are produced by the proposed RUP algorithms

compared to the number of HUPs discovered by traditional HUPM algorithms. This is because the

proposed algorithms discover RHUPs by considering both the recency and utility measures. The

FHM algorithm however only considers the utility measure to discover HUPs. From these results,

it can be concluded that few interesting patterns satisfy high minimum recency threshold values

(RHUPs). Thus, a high recencyRatio can be obtained when the user-specified minimum recency

threshold is high.

Therefore, the analysis of patterns found by the proposed RUP algorithm and existing HUPM

algorithm has shown that the RHUPM task can effectively discover fewer but more useful and

up-to-date HUPs than the traditional HUPM framework, which only considers the minimum utility

threshold. The proposed algorithm can not only dramatically reduce the number of patterns found,

but also make the high-utility pattern mining task more suitable for real-life applications.
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5.2 Runtime Analysis
In the second experiment, the performance of three variants of the proposed RUP algorithm was

compared in terms of runtime. Three conventional algorithms of HUPM (including FHM, HMiner,

and EFIM) were also compared as a benchmark. Parameters were set as in the previous subsection.

Results when the minimum utility threshold is varied and the minimum recency threshold is fixed,

and whenminRe is fixed and minUtil is varied, are respectively shown in Fig. 4 and Fig. 5.
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Fig. 4. Runtime when minUtil is varied andminRe is fixed.

In Fig. 4, it can be observed that the proposed RUP-tree based algorithms outperforms the

FHM algorithm, and that versions of the RUP algorithms integrating additional pruning strategies

outperform the baseline RUPbaseline algorithm whenminUtil is varied andminRe is fixed. In general,

RUP2 is about one to two times faster than FHM, but slower than the state-of-the-art EIFM algorithm.

This is reasonable since both the utility and recency constraints are taken into account by the

RU-list-based RUP algorithm to find RHUPs, while only the utility constraint is considered by the

utility-list-based FHM algorithm to find HUPs. When more constraints are applied, the search

space can be further reduced and fewer patterns can be discovered. Besides, the pruning strategies

used in the two improved algorithms are more efficient than those used by the baseline RUPbaseline

algorithm. The GDC and CDC properties are much more effective at pruning the search space than

RUPbaseline and other conventional HUPM algorithms. When minUtil is decreased, it can be further

observed that the gap in terms of runtime between FHM and the proposed RUP-based algorithms

sharply increases, while the runtimes of the three proposed algorithms are similar. For example, on

the retail dataset andminUtil = 0.015% (as shown in Fig. 4(b)), the runtime of HMiner is 143 seconds,

but the three other RUP-based algorithms only require 17 seconds, 10 seconds and 9.8 seconds;

the gap is quite larger than when minUtil is set to 0.013%. The reason is that more HUPs can be

discovered for lowerminUtil values, but most of these patterns are not up-to-date, so the runtime of

HMiner and FHM is greater than RUP-based algorithms, which aim at discovering recent patterns.

In Fig. 5, it can be seen that both the proposed RUP1 and RUP2 algorithms outperform the

RUPbaseline and FHM for various minRe values, except for the foodmart dataset. It can be further

observed that when minRe is increased, the runtime of the two proposed algorithms remain steady,

while the runtimes of the RUP1 and RUP2 algorithms sharply decrease, and the runtime of the
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Fig. 5. Runtime when minRe is varied and minUtil is fixed.

FHM algorithm remains the same. For example, consider the results obtained for the dense chess

dataset, depicted in Fig. 5(c). When the minRe threshold is varied from 20 to 120, the runtime of

the FHM algorithm remains 115 seconds, while the runtimes of the RUPbaseline, RUP1 and RUP2

algorithms decrease from about 112 seconds to 2 seconds. More specifically, the two improved

algorithms are generally faster than the FHM algorithm. This is reasonable for two reasons. On one

hand, when the minRe threshold is set high, the search space can be reduced and fewer RHUPs are

produced by the RUP algorithms, while the traditional algorithms (i.e., FHM, HMiner, and EFIM) for

mining HUPs is not influenced by the minimum recency threshold. Hence, discovering RHUPs is

faster when the minRe threshold is set higher, but the runtime of FHM, HMiner, and EFIM remains

the same. On the other hand, based on the proposed RU-tree and RU-list structures, the partial

anti-monotonicity provided by the CDC property and the global anti-monotonicity of the GDC

property are more effective at pruning the search space, and thus the runtime of the proposed RUP

algorithm is greatly reduced.

In Fig. 4(a) and Fig. 5(a), it can be seen that for the foodmart dataset, the RUPbaseline algorithm

performs slightly better than the RUP1 algorithm, and that both of them are slower than the

RUP2 algorithm. The reason is that for very sparse datasets such as foodmart, where the average

transaction length is 4.4 items, the TWU upper-bound of each transactions is close to the utility

of each item in the transaction. Thus, numerous unpromising patterns can be directly pruned

by the TWDC property in the RUPbaseline algorithm. In these cases, the EUCP strategy does not

allow pruning much more patterns, but constructing the EUCS is time-consuming. Hence, the

enhanced RUP1 algorithm is slightly slower than the baseline algorithm (which does not utilize

the EUCP strategy) on the foodmart dataset. For very dense datasets (e.g., chess and mushroom),

the two enhanced algorithms have similar performance, as shown in Fig. 4(c), Fig. 4(d), Fig. 5(c),

and Fig. 5(d). This is reasonable because all 2-patterns in the EUCS have high TWU values for

very dense datasets. In this case, the EUCP strategy cannot efficiently reduce the search space.

Therefore, it can be concluded that the EUCP strategy is inefficient for very sparse or very dense

datasets. In summary, the proposed RU-list-based RUP algorithm performs well compared to the

FHM algorithm for HUPM, and the improved versions of the RUP algorithm are faster than the

baseline algorithm in most cases.
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5.3 Effect of Pruning Strategies
In a third experiment, we evaluated the effectiveness of the novel pruning strategies, integrated

in the designed RUP algorithms. Henceforth, the numbers of nodes visited in the RU-tree by the

RUPbaseline, RUP1, and RUP2 algorithms are respectively denoted as N1, N2, and N3. Experimental

results when minUtil is varied and minRe is fixed are shown in Fig. 6, and results when minRe is

varied and minUtil is fixed are shown in Fig. 7.
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In Fig. 6, it can be observed that the various pruning strategies can reduce the search space

represented by the RU-tree. In addition, it can also be observed that the pruning strategy 1, which
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relies on the TWU upper-bound and recency values, can prune several unpromising candidates

early. This is very useful since the construction of numerous RU-lists of items and their supersets

can be avoided. For example, there are 6470 distinct items in the retail dataset. Thus, 2
6470 − 1 nodes

are in the search space for this dataset. When minRe = 10 and minUtil = 0.015%, however, the total

number of visited nodes by the RUPbaseline, RUP1, and RUP2 algorithms for the retail dataset are

respectively 2350414, 1411859 and 1393223, which is quite less than 2
6470

- 1. Moreover, pruning

strategies 4 and 5 also play a positive role in pruning unpromising patterns on most datasets when

minUtil is varied. In both Fig. 6 and Fig. 7, the relationship N1 ≥ N2 ≥ N3 always hold. Given these

results, the developed pruning strategies used in the proposed RUP algorithms can be considered

effective.

It can also be concluded that the pruning strategy 5, integrated in the RUP2 algorithm, can prune

a huge number of unpromising patterns when applied on sparse datasets, as shown on foodmart.

Contrarily to strategy 5, for very sparse and dense datasets, the pruning strategy 4 is no longer

effective for pruning unpromising patterns since those are efficiently filtered using strategies 1 to 3,

as shown on foodmart (Fig. 6(a) and Fig. 7(a)), chess (Fig. 6(c) and Fig. 7(c)), and mushroom (Fig.

6(d) and Fig. 7(d)). For these datasets, the number N1 is close to N2 but never smaller. Consequently,

it is empirically observed that the relationship N1 ≥ N2 ≥ N3 holds on all datasets and for various

parameter values.

5.4 Scalability
In this subsection, the scalability of the three proposed algorithms is compared on the synthetic

T10I4N4KD|X|K dataset. This dataset has been generated using the IBM Quest synthetic data

generator [2] with various number of transactions X (from 100K to 500K, with an increment of

100K w.r.t. 100,000 transactions in each test). Note that the parameters δ , minRe and minUtil are set

in this experiment to 0.0001, 5, and 0.005%, respectively. The results in terms of runtime, memory

consumption, the number of derived patterns, and the number of visited nodes, are shown in Fig.

8(a) to Fig. 8(d), respectively.
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In Fig. 8, it can be observed that the three proposed algorithms always have good scalability for

various dataset sizes, in terms of runtime, memory consumption, and number of visited nodes in

the RU-tree. The baseline algorithm consumes the smallest amount of memory but has the longest

runtime, and its actual search space in the RU-tree (N1) is also the largest. The improved RUP2

algorithm is always faster than the baseline and RUP1 algorithms but consumes slightly more

memory than RUP1. Moreover, it is observed that the runtimes of the three variants of proposed

algorithm increase linearly as the dataset size is increased, as shown in Fig. 8(a). Hence, the proposed

algorithm scales well for large-scale datasets. Clearly, as the size of the database increases, the

overall tree construction and mining time increases. From the above results, it can be concluded that

the proposed RUP approach and its improved versions have acceptable performance for real-world

applications.

6 CONCLUSIONS
Up-to-date knowledge is more interesting and useful than outdated knowledge. How to efficiently

and effectively mining of utility-driven trend information is challenge. In this paper, an efficient

utility mining algorithm named RUP has been designed to discover recent high-utility patterns

(RHUPs) in temporal databases by taking into account both the recency and utility constraints. This

addresses an important limitation of traditional HUPM algorithms that is to produce numerous

invalid and outdated patterns. To discover RHUPs, this paper has proposed a compact recency-utility

tree (RU-tree) structure, used to store the information about patterns that is required to discover

RHUPs. The RUP algorithm performs a depth-first search to explore the conceptual RU-tree and

construct the RU-lists. A substantial experimental evaluation has shown that the proposed RUP

algorithm and its improved versions can efficiently identify a set of recent high-utility patterns in

time-sensitive databases. The developed RUP-based algorithms perform better than the conventional

utility mining algorithms. Moreover, it was observed that the two improved variants perform better

than the baseline one.
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