
Explainable Clustering and Application to Wealth
Management Compliance

Enguerrand Horel
Kay Giesecke

ehorel@stanford.edu
giesecke@stanford.edu

Stanford University

Victor Storchan
Naren Chittar

victor.storchan@jpmchase.com
naren.chittar@jpmchase.com

J.P. Morgan

ABSTRACT
Many applications from the financial industry successfully leverage
clustering algorithms to reveal meaningful patterns among a vast
amount of unstructured financial data. However, these algorithms
suffer from a lack of interpretability that is required both at a business
and regulatory level. In order to overcome this issue, we propose a
novel two-steps method to explain clusters. A classifier is first trained
to predict the clusters labels, then the Single Feature Introduction
Test (SFIT) method is run on the model to identify the statistically
significant features that characterize each cluster. We describe a
real wealth management compliance use-case that highlights the
necessity of such an interpretable clustering method. We illustrate
the performance of the method using simulated data and through an
experiment on financial ratios of U.S. companies.

CCS CONCEPTS
• Computing methodologies → Feature selection; Cluster analy-
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1 INTRODUCTION AND RELATED WORK
The large amount of data and diversity of sources (financial time
series, customers characteristics, financial statements, etc.) from
the financial industry, create many applications where unsupervised
learning techniques can be leveraged successfully. Clustering meth-
ods especially, can find meaningful patterns among this unstructured
data and provide support for decision making. Applications of clus-
tering techniques to financial cases can be found in risk analysis [7],
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credit scoring [13], financial time series analysis [4], [3], portfolio
management [8] and financial statements’ anomalies detection [9].
In all these applications, being able to interpret the obtained clusters
and explain the rational behind their construction is necessary to
trust them and provide transparency to regulators.

Some previous works tackle the problem of interpreting clusters
by visualizing them across two or three dimensions typically found
by a PCA analysis [11]. This has the disadvantage of restricting the
number of dimensions used to explain and in addition, the principal
components are no more directly interpretable. Another group of
methods uses the centroid or a selected set of points to represent
the cluster [10]. These methods, while successful in some cases,
are very sensitive to the geometry of the clusters. Distinct from
these previous methods that directly interpret the clusters, two-steps
methods explain the clusters through an interpretable model that
learns how to classify them. The cluster assignment of each point can
be used to label the data and train a classifier on them. Classification
trees [2] are often used in practice [5]. Because the model has to
be interpretable, this prevent the use of a larger class of models
such as deep neural networks that could potentially provide better
classification accuracy. Another work proposes to directly generate
interpretable tree-based clustering models [1]. It has the inconvenient
of restricting the type of clustering algorithm that can be used and it
has been showed that such tree-based algorithm can under-perform
other algorithms like K-means in several cases [1].

To overcome these limitations, we propose to interpret a classifier
trained on the clusters by using the SFIT method [6]. This method
identifies the statistically significant features of the model as well as
feature interactions of any order in a hierarchical manner. It can be
applied to any classification model and is computationally efficient.
Hence, by combining a two-steps approach with this general model
interpretability method, we do not have to restrict the choice of
clustering technique nor the choice of classifier to predict the clusters
assignment. This provides a general interpretability framework that
can be applied to any clustering algorithm and type of data.

The structure of this paper is as follow. In section 2, we describe
a real use-case from the financial industry that illustrates the prob-
lem of interpreting clusters and present our approach to solve this
problem. We describe in section 3, our approach’s key component:
the SFIT method used to interpret the cluster classifier. Simulation
results confirms the efficiency of our method in section 4. Because
the data of the described use-case are highly sensitive, we could not
use them directly. As a replacement, we illustrate our method on a
dataset of U.S. companies clustered using their financial ratios in
section 5.
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2 EXPLAINABLE CLUSTERING FOR
COMPLIANCE MONITORING

2.1 An overview of the business case
In banks, Wealth Management teams help customers to meet their
financial goals by managing their financial assets. An account is
associated to each client and an investment strategy is designed by
the account manager according to the risk aversion of the client.
Using financial performance metrics as features, the efficiency of an
account’s strategy can be monitored. Comparison with benchmarks
or indices are examples of such performance metrics.

When an account is under-performing based on these features, it
is directed to the Compliance team. As a matter of fact, the Com-
pliance team has to spend a considerable amount of time manually
reviewing accounts across all monitoring activities and across all
global regions to catch the problematic ones. They typically use
criteria learned from previous cases to identify the accounts that
will require further investigation. This is usually done in an ad-hoc
manner based on a small number of features. As a consequence,
systematic and generalizable explanations of why an account was
flagged as problematic are missing in most cases.

In order to automatise this procedure and identify all the different
cases that result in an under-performing behavior, a clustering algo-
rithm is implemented as a solution. Clustering has the advantage of
being performed using a large number of different risk factors. This
enables to group accounts that behave similarly and bring under-
standing on the underlying reasons of poor performance. Clustering
accounts can also be used to sample from the cluster distribution and
estimate the frequency of one particular type of under-performance.
However, in order for this clustering method to be confidently de-
ployed, it has to be fully understandable by the Wealth Management
Compliance team. They need to explain what are the significant
features that characterize each cluster and ensure that it is aligned
with their expertise and domain knowledge.

2.2 A proposal to mitigate the compliance
monitoring challenge

As mentioned in the previous section, our goal is to design an in-
terpretable clustering capability for Compliance Monitoring teams
that can then be used to identify under-performing accounts. Our
proposed approach relies on two successive steps.

The Clustering Step. A clustering algorithm (such as K-means,
DBSCAN, or agglomerative clustering, etc.) is run over the set of
all under-performing accounts.

The Explaining Step. A label is assigned to every cluster which
allows to label the whole set of accounts. We can then train a classi-
fier in a supervised way using this dataset. This classifier learns to
predict the cluster of a given account. The SFIT procedure can now
be applied on the trained classifier. A single model has been trained
to classify all clusters, but we ultimately want to interpret each clus-
ter independently. To interpret a specific cluster, the SFIT method
is run using only the accounts belonging to this cluster. This allows
us to provide for each cluster, a set of features that are significantly
characterizing it.

3 PRESENTATION OF THE SFIT METHOD
SFIT [6], is a method that assesses the statistical significance and
importance of features of machine learning models. It is based on a
novel application of a forward-selection approach. Given a trained
model and one of its features, it compares the predictive perfor-
mance of the model that uses only the intercept with the model that
uses both the intercept and the feature. The performance difference
captures the intrinsic contribution of the feature in isolation which
leads to an informative notion of feature importance. This approach
has the advantage of being robust to correlation among features.
Other advantages of our method include: (1) it does not assume any
assumptions on the distribution of the data nor assumptions on the
specification of the model; (2) it can be applied to both continuous
and categorical types of features; (3) in addition to assessing the
contribution of individual features, it can also identify higher order
interactions among features in a hierarchical manner.

Formally, a set of n i.i.d. accounts Z1, ...,Zn ∼ P with Zi =
(Xi ,Yi ). Xi is a vector of size (p + 1) that contains the p features
measuring the performance of the account plus an intercept at the
first coordinate. The features can be a mix of continuous and categor-
ical variable with the latter assumed to be binary variables through
one-hot encoding. Yi represents the index of the cluster {1, 2, ...,C}
where C represents the total number of clusters. We randomly split
the accounts {1, ...,n} into two subsets I1 and I2 and denote the two
corresponding split of the data as Dk = {(Xi ,Yi ) : i ∈ Ik }, k = 1, 2.

We denote by µ̂, the cluster classifier trained on D1. To evaluate
the contribution of the individual feature j removed from the poten-
tial interaction that it could have with the remaining features, we
define the transformed input vector X (1, j)

i which is obtained from Xi

where all entries except for the jth coordinate and the intercept are
replaced with 0. Similarly,X (1)

i is the transformed input vector where
all entries except for the intercept are set to zero. This transformed
input prevents us from having to refit a new model for each input.
Then, given the loss function L(Y , µ(X )) used to train the classifier
(like the cross entropy loss for instance), we can define

∆ij = ∆j (Xi ,Yi ) = (1 − β)L
(
Yi , µ̂

(
X
(1)
i

) )
− L

(
Yi , µ̂

(
X
(1, j)
i

) )
the difference between (1−β)% of the prediction loss from the model
using the intercept term only and the loss from the model using the
intercept plus the feature j. (1 − β) times the baseline loss and not
the loss value itself is considered to make this test more robust to
non-informative variables and control its type-I error. More details
about this parameter and how to optimally select can be found in
[6].

Let’s now define m̂j , the metric that is used to assess the signifi-
cance of feature j:

m̂j = mediani ∈D2∆
i
j

for 2 ≤ j ≤ p + 1. m̂j is defined as the median over the inference
set D2 of the differences of predictive performance. Intuitively, m̂j
represents the predictive power of variable j compared to a baseline
model that only has an intercept term, the bigger it is, the more
predictive power the variable contains.
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The statistic m̂j is used to construct a finite-sample significance
test for feature j. We assume that the distribution of ∆j (X ,Y ) condi-
tional on the training set D1 is continuous and consider its median,

mj = median(X ,Y )
[
∆j (X ,Y )|D1

]
.

We obtain a finite-sample confidence interval for mj and perform
the following one-sided hypothesis test of significance:

H0 : mj ≤ 0 versus H1 : mj > 0 (1)

using the statistic m̂j . The validity of this test and its uniformly most
powerful property are derived in [6].

The SFIT procedure is described in details in Algorithm 1.

Algorithm 1: First-order SFIT
Input: Model µ, dataset D2 = {Xi ,Yi }i ∈I2 , significance level

α , β , function BINOMTEST(#successes, #trials,
hypothesized probability of success, alternative
hypothesis) that outputs the p-value of a binomial test

Output: Set of first order significant variables S1 and their
related confidence intervals C1

S1 = ∅, C1 = ∅, generate the masked dataset {X (1)
i : i ∈ I2} ;

for j = 2 to p + 1 do
Generate the masked dataset {X (1, j)

i : i ∈ I2} ;

Compute ∆ij = (1 − β)L
(
Yi , µ

(
X
(1)
i

) )
− L

(
Yi , µ

(
X
(1, j)
i

) )
for

all i ∈ I2 ;
n+j =

∑
i ∈I2 1{∆ij>0} ;

if BinomTest(n+j ,n2, 1/2, greater) < α then
S1 = S1 ∪ {j} ;

C1[j] = [∆ ⌊ n2+1
2 −q1−α /2

√n2
2 ⌋

j ,∆
⌈ n2+1

2 +q1−α /2

√n2
2 ⌉

j ] ;
end

end

This method is generalized to higher-order interactions between
features as explained in more details in [6].

4 SIMULATION EXPERIMENTS
4.1 Data
In this section, we analyze the performance of our method using
the Fundamental Clustering Problems Suite (FCPS) [12]. This suite
consists of 9 synthetic datasets commonly used as a benchmark for
clustering algorithms. Each dataset consists of either 2 or 3 features
along with the cluster labelling for each data point. The datasets can
be visualized in Figure 1.

4.2 Method
The purpose of our method is to provide explanations on the clusters
returned by a given clustering algorithm. The user can choose any
clustering algorithms considered as relevant for the task at hand.
The core of our method lies in the explaining step where a classifier
trained on the cluster labels is explained through feature importance
and significance analysis. In order to assess the performance of our
explaining method independently of the chosen clustering algorithm,
we decide to use the true cluster labelling provided in the FCPS.

Figure 1: Scatter plot representations of the 9 FCPS datasets.

We train a 3 hidden layers fully connected neural-network to per-
form classification on the clusters. This network has ReLU activation
functions, a first hidden size of 50, a second hidden size of 25 and
a third of 10. The network is trained for at most 50 epochs using
Adam optimizer and early stopping. Each dataset is randomly split
into a training set used to fit the model and a test set which is used
to run the SFIT method.
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Table 1: Significance and importance of features and interac-
tions of features returned by SFIT method applied on the 2D
datasets of FCPS.

Dataset Significant
features

X1 X2 (X1, X2)

EngyTime 1, 2 0.692 0.996 1.18
Lsun 1, 2 0.167 0.248 0.292

Target 1,2 5e-4 3e-4 1e-3
TwoDiamonds 1 1.302 NS 1.342

WingNut 1 1.909 NS 1.899

Table 2: Significance and importance of features and interac-
tions of features returned by SFIT method applied on the 3D
datasets of FCPS.

Dataset Significant
features

X1 X2 X3

Atom 1, 2, 3 0.002 0.002 0.002
Chainlink 1, 2, 3 0.056 0.442 0.174

Hepta 1, 2, 3 0.003 0.006 0.006
Tetra 1, 2, 3 0.311 0.483 0.676

Dataset (X1, X2) (X2, X3) (X1, X3) (X1, X2, X3)

Atom 0.004 0.003 0.002 0.006
Chainlink 1.036 1.404 2.878 2.986

Hepta 0.027 0.067 0.0529 0.0799
Tetra 1.511 1.299 2.167 2.574

4.3 Results
Table 1 presents the results of the SFIT method applied to the neural
networks trained on the 2D datasets of FCPS. For each dataset, we
identify which are the significant features and measure the relative
importance of single features and interactions. The two datasets
TwoDiamonds and WingNut only have the first feature as relevant
for classification over the clusters. Our method correctly identifies
this pattern. Indeed, only the first feature is returned as significant
and the interaction term does not add significant predictive power
over the first feature alone in both cases. The three other 2D datasets
EngyTime, Lsun and Target all require the combination of the two
features to classify the data according to their clusters. As shown in
Table 1, our procedure indeed consider both features as significant
and the predictive importance of the interaction term is always bigger
than the importance of single features in all cases.

Table 2 presents the results of the SFIT method applied to the
neural networks trained on the 3D datasets of FCPS. In all these
cases, all features are descriptive and the combination of all three
is necessary to identify the different clusters. Our method is able to
correctly uncover these patterns since every features are returned
as significant in all cases and the interaction effect that involves all
three features is always the most important one.

Overall our method is able to successfully explain data grouped
into clusters. The user can identify what are the features that signifi-
cantly describe the clusters and hence that can be used to distinguish
them from one another. In addition, comparing the importance of
single features with the importance of interaction of features sheds
light into the structure and geometry of the clusters.

5 EMPIRICAL APPLICATION: FINANCIAL
RATIOS CLUSTERING

5.1 Data
To illustrate our explainable clustering method on a real dataset,
we use the Financial Ratios Firm Level dataset from Wharton Re-
search Data Services (WRDS). This dataset provides, for all U.S.
companies, 71 commonly used financial ratios grouped into the fol-
lowing seven categories: capitalization, efficiency, financial sound-
ness/solvency, liquidity, profitability and valuation. From this data-
base, we extract a subset of 682 companies which corresponds to
all the unique companies listed over the last 10 years. In addition,
we have for each company, its NAICS (North American Industry
Classification System) and description. The data are centered and
scale to unit variance as a pre-processing step.

5.2 Results
We cluster our dataset of companies into 5 clusters using an ag-
glomerative hierarchical clustering algorithm. This algorithm works
in a bottom-up fashion: each observation starts in its own cluster,
and then, clusters are successively merged together. We use a Ward
linkage that minimizes the sum of squared differences within all
clusters, and euclidean distance. We obtain the following clusters:

• cluster 1: 201 samples (manufacturing, retails),
• cluster 2: 277 samples,
• cluster 3: 139 samples (energy, resources),
• cluster 4: 60 samples (telecommunication, technology),
• cluster 5: 5 samples.

Because cluster 5 does not have a significant enough size to per-
form meaningful analysis, we choose to discard it. By looking at
the industry code of the companies of each cluster, we notice that
the largest cluster contains a mix of various industries while the 3
remaining clusters are fairly specialized as listed above.

We then label each company using its cluster assignment. We
train a 3 hidden layers fully connected neural network to perform
classification on the clusters. The dataset is split into three parts, a
training set of size 480, a validation set of size 125 and a test set of
size 77. We optimize the architecture of the network through random
search over the validation set. We end up using ReLU as activation
function and a first hidden size of 100, a second hidden size of 50
and a third of 25. The network is trained for at most 50 epochs
using Adam optimizer and early stopping. We obtain a classification
accuracy of 0.88 on the test set.

We finally run on the trained network one SFIT method per cluster,
i.e. by only using the data of this cluster, and returns the five most
important features. For the first cluster, the first five features are:
gross profit margin, asset turnover, long term debt, current debt and
net profit margin, the value of their corresponding test statistic along
with their 95% confidence interval can be found in Table 3. For the
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Table 3: Cluster 1 top 5 most significant variables along with
their corresponding test statistics and 95% confidence intervals
(CI).

Variable Median CI lower bound CI upper bound

gpm 0.755 0.657 0.835
at_turn 0.677 0.554 0.850
lt_debt 0.556 0.366 0.615

curr_debt 0.542 0.391 0.728
npm 0.532 0.509 0.568

second cluster, they are: book/market, free cash flow/operating cash
flow, pre-tax return on total earning assets, sales/invested capital,
total debt/ebitda as displayed in Table 4. For the third cluster: total
debt/ebitda, operating profit margin before depreciation, pre-tax
return on total earning assets, free cash flow/operating cash flow,
return on assets as shown in Table 5. And for the last cluster: research
and development/sales, cash balance/total liabilities, gross profit
margin, cash ratio, operating cf/current liabilities as displayed in
Table 6. From these, we can see that the most predictive features
are not the same for each cluster. They capture what makes a cluster
distinct from the others. This is an efficient way to interpret and
explain what are the intrinsic characteristics of a cluster. These
results are also consistent with the main types of industries present
in each cluster. For instance, the research and development/sales ratio
is the most significant feature of the cluster that mainly contains
telecommunication and technology companies.

We compare the results obtained from our procedure with the
method that consists of representing a cluster by its centroid. Both
methods are comparable in the sense that they can both be applied
to any clustering algorithms. We define the centroid as the mean of
all observations within a cluster. In our case, this returns a vector of
dimension 71 that describes the average behavior of the cluster. To
make this result more comparable with our, we look for the features
of the centroid whose values are the furthest from the mean value
over the whole dataset. Formally, for each centroid c and each feature
j, we compute a score of difference:

Dc
j =

|X̄ c
j − X̄ j |
σ̂j

where X̄ j is the mean value of feature j over the whole dataset, X̄ c
j is

the mean value of feature j over cluster c which is also equal to the
value of variable j of the centroid of the cluster and σ̂j is the standard
deviation of feature j over the whole dataset. We display in Tables 7
to 10 the top 10 features having the largest score of difference Dc

j
for each cluster. In these tables, the features whose name appear in
bold are also part of the top 5 most significant variables as identified
by our method. Over the 4 clusters, it can be seen that there is a
large overlap between these two selected subsets of features with
in average 4 out of the 5 most important features selected by SFIT
that are also present in the top 10 features as measured by the score
of difference. The SFIT has the advantage of providing rigorous
significance statistical tests that can be used for feature selection and
confidence intervals of the metric that measure feature importance.

Table 4: Cluster 2 top 5 most significant variables along with
their corresponding test statistics and 95% confidence intervals
(CI).

Variable Median CI lower bound CI upper bound

bm 0.114 0.102 0.126
fcf_ocf 0.057 0.055 0.059

pretret_earnat 0.043 0.024 0.061
sale_invcap 0.037 0.035 0.040
debt_ebitda 0.031 0.021 0.039

Table 5: Cluster 3 top 5 most significant variables along with
their corresponding test statistics and 95% confidence intervals
(CI).

Variable Median CI lower bound CI upper bound

debt_ebitda 0.856 0.746 0.987
opmbd 0.692 0.360 0.903

pretret_earnat 0.518 0.489 0.545
fcf_ocf 0.419 0.235 0.656

roa 0.382 0.337 0.422

Table 6: Cluster 4 top 5 most significant variables along with
their corresponding test statistics and 95% confidence intervals
(CI).

Variable Median CI lower bound CI upper bound

rd_sale 1.89 1.70 2.02
cash_lt 1.23 1.09 1.54

gpm 0.718 0.564 0.796
cash_ratio 0.449 0.333 0.527

ocf_lct 0.283 0.119 0.598

Table 7: Cluster 1 top 10 features with highest score of differ-
ence Dc

j .

Variable Score of difference Dc
j

opmbd 0.830108
at_turn 0.815331

opmad 0.793995
cfm 0.767334

sale_invcap 0.725865
ps 0.687671

curr_debt 0.685457
npm 0.660184
gpm 0.658285
ptpm 0.656759
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Table 8: Cluster 2 top 10 features with highest score of differ-
ence Dc

j .

Variable Score of difference Dc
j

bm 0.477207
pretret_earnat 0.471108

pretret_noa 0.390561
fcf_ocf 0.309577

ptb 0.273166
aftret_invcapx 0.268130

lt_debt 0.268081
roa 0.264315

lt_ppent 0.227883
roce 0.227369

Table 9: Cluster 3 top 10 features with highest score of differ-
ence Dc

j .

Variable Score of difference Dc
j

curr_debt 0.959909
fcf_ocf 0.950367

debt_ebitda 0.900283
GProf 0.855419

at_turn 0.738199
opmbd 0.675834

bm 0.674283
pretret_earnat 0.672521

cfm 0.652589
roa 0.630866

Table 10: Cluster 4 top 10 features with highest score of differ-
ence Dc

j .

Variable Score of difference Dc
j

cash_lt 2.143874
rd_sale 2.126812

cash_ratio 2.011226
quick_ratio 1.714341

gpm 1.399909
curr_ratio 1.329093

ps 1.254171
cash_debt 1.102644

ptpm 1.085758
debt_assets 1.085222

We propose in this paper a novel two-steps method that can
interpret any clustering algorithms. For each cluster, this method
identifies the statistically significant features that characterize it
as well as feature interactions. We justify the necessity of such a
method by describing a Wealth Management Compliance use-case
that requires explaining clusters of under-performing accounts. We

demonstrate its effectiveness on simulated data and a real dataset of
financial ratios of U.S. companies.
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