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Self-adaptation can be realized in various ways. Rule-based approaches prescribe the adaptation to be executed
if the system or environment satisfies certain conditions. They result in scalable solutions but often with
merely satisfying adaptation decisions. In contrast, utility-driven approaches determine optimal decisions by
using an often costly optimization, which typically does not scale for large problems. We propose a rule-based
and utility-driven adaptation scheme that achieves the benefits of both directions such that the adaptation
decisions are optimal, whereas the computation scales by avoiding an expensive optimization. We use this
adaptation scheme for architecture-based self-healing of large software systems. For this purpose, we define
the utility for large dynamic architectures of such systems based on patterns that define issues the self-healing
must address. Moreover, we use pattern-based adaptation rules to resolve these issues. Using a pattern-based
scheme to define the utility and adaptation rules allows us to compute the impact of each rule application on
the overall utility and to realize an incremental and efficient utility-driven self-healing. In addition to formally
analyzing the computational effort and optimality of the proposed scheme, we thoroughly demonstrate its
scalability and optimality in terms of reward in comparative experiments with a static rule-based approach as
a baseline and a utility-driven approach using a constraint solver. These experiments are based on different
failure profiles derived from real-world failure logs. We also investigate the impact of different failure profile
characteristics on the scalability and reward to evaluate the robustness of the different approaches.
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1 Introduction

There are various ways of realizing self-adaptation adopting the MAPE-K feedback loop [Kephart
and Chess 2003] and in particular the analysis and planning phases. On the one hand, rule-based
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approaches [Fleurey et al. 2009; Kephart and Das 2007] combine both phases. Adaptation is executed
for specific events and under specific conditions by adaptation rules. In such approaches, events
trigger the rules that subsequently check their conditions. If the conditions are fulfilled, the actions
of the rules are applied and result in the envisioned changes. Thus, the applicable rules are identified
(matched) and executed to adapt the system configuration at runtime. The main strengths of such
approaches are the readability, elegance, and the efficient processing of the rules. The drawbacks are
the fact that the adaptation decisions are often only satisfying and the limited expressiveness of rules
since rules typically just relate events to actions [Fleurey and Solberg 2009] without defining and
performing any further computation for analysis and planning (e.g., to identify optimal actions). On
the other hand, utility-driven approaches [Esfahani et al. 2013; Kephart and Walsh 2004] determine
optimal adaptation decisions by using optimization techniques for planning that are guided by a
utility function. A utility function determines how valuable each possible system configuration
is, and the optimization aims at identifying optimal configurations. However, the optimization
usually prevents the approaches from scaling well for large configuration spaces. Scalability is
further impeded by complex utility functions, as used in constraint solver-based approaches, so
that mostly linear functions are used [Fleurey and Solberg 2009].

Therefore, we present in this article a combined rule-based and utility-driven adaptation scheme
that is scalable and guarantees optimal adaptation decisions with respect to the utility of the system
and adaptation costs. The combined approach achieves the individual benefits of both rule-based
and utility-driven approaches, but it avoids the corresponding drawbacks with respect to the
optimality of adaptation decisions and scalability. Optimal adaptation decisions are achieved by
selecting the best adaptation rules with respect to their impact on the overall utility and executing
them in such a manner that rules with highest impact on the utility are prioritized. If adaptation
rules have an equal impact on the overall utility, the ones with lower adaptation costs (i.e., the
estimated time to execute a rule) are prioritized. This guarantees an optimal reward, which is
gaining highest utility over time. Scalability is achieved by an incremental approach that leverages
events and patterns to efficiently identify adaptation issues and make adaptation decisions. Our
approach is incremental, as its complexity is independent of the size of the system architecture and
only influenced by the number of applicable adaptation rules and number of issues to be addressed
by self-adaptation.

Our scheme particularly targets the architecture-based self-healing of large software systems—
that is, resolving runtime failures by dynamically adapting the system architecture. For this purpose,
we integrate our scheme in a MAPE-K feedback loop that operates on a causally connected runtime
model of the system’s runtime architecture. Such self-healing systems are usually characterized by
restrictions (e.g., adaptation is only needed if failures occur) that we exploit to guarantee optimal
adaptation decisions. Achieving optimality for self-healing requires finding the optimal adaptation
rule to resolve a single failure, and the optimal ordering of executing such rules when multiple
failures must be resolved at the same time. Whereas the former guarantees that each individual
failure is handled by its best adaptation rule in terms of utility increase, the latter guarantees
that rules achieving a larger increase of the utility or the same utility increase faster are executed
first. Thus, the scheme achieves optimality in terms of the final utility achieved after adaptation
and the utility over time (reward) gained during and after adaptation. To achieve optimality,
we use our former work to define the utility function in a pattern-based way for large dynamic
architectures [Ghahremani et al. 2016], and we further define the adaptation rules in a pattern-based
way. This joint use of patterns allows us to combine the utility and adaptation rules, and therefore
to compute the impact of each rule application on the utility. Based on these impact values for the
rules and the knowledge about the estimated costs (execution time) of applying each rule, we can
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incrementally and efficiently determine and execute at runtime the optimal sequence of optimal
adaptation rules.

We demonstrate these benefits of our adaptation scheme by comparing it to two alternative solu-
tions in simulations of mRUBIS [Vogel 2018]. We show that our scheme is only slightly slower but
reaches a higher utility over time (reward) than a static rule-based solution. We further demonstrate
that our scheme always makes optimal adaptation decisions similar to an alternative solution using
a constraint solver. However, our scheme requires considerably less time than the solver, especially
for large architectures. As our approach is incremental, it faces less overhead and therefore scales
better. As argued by Ghezzi [2012], incremental solutions are highly desirable for self-adaptive
systems. In our earlier work [Vogel and Giese 2010; Vogel et al. 2009, 2010], we presented an
incremental scheme for the monitoring and execution phases of the feedback loop operating on
architectural runtime models. The results of this work complement these earlier results by enabling
the incremental analysis and planning with architectural runtime models, adaptation rules, and
utility functions. Therefore, we focus in this article on the analysis and planning phases of the
feedback loop.

The idea of applying utility to pre-defined adaptation strategies or rules has been formerly prac-
ticed. For instance, RAINBOW [Cheng and Garlan 2012] employs utility theory to rank strategies
taking into consideration their expected costs and benefits but without investigating scalable and
timely adaptation decisions when facing large architectures and a multitude of issues (e.g., failures)
to be addressed. We further distinguish our work from RAINBOW based on our incremental de-
tection of multiple runtime failures and pattern-based runtime computation of the impact of the
adaptation rules on the overall utility. Thus, we propose a scalable solution that guarantees to find
the optimal adaptation decisions for large architectures in a timely manner, which maximizes the
system utility over time (reward).

The presented work extends our previous work [Ghahremani et al. 2017] with the following
novel contributions. First, we present formal algorithms for the analysis and planning phases of our
self-healing scheme and a formal discussion of their computational effort and optimality. Second,
we strengthen the evaluation by using realistic failure profile models that are based on real-world
data and that differ in scale and volatility to evaluate the scalability and optimality (reward) of our
scheme in real-world settings. In this context, we also extend the evaluation from single to multiple
MAPE-K runs. Third, we evaluate the robustness of our scheme by investigating the impact of
different characteristics of failure profile models such as failure group size (FGS), inter-arrival time
(IAT), and failure density on the scalability and optimality of the scheme. Fourth, we discuss and
justify assumptions of our scheme thoroughly with respect to optimality. Moreover, we analytically
discuss and report on novel experiments of how potential violations of the assumptions impact
the scalability and optimality of the scheme. Finally, we improve the work by providing a more
detailed discussion of the threats to validity and of related work with respect to timeliness and
optimality of adaptation decisions.

The rest of the article is structured as follows. We introduce architectural self-adaptation with
runtime models and the pattern-based definition of utility in Section 2. We detail our approach with
its general scheme and its application in a feedback loop in Sections 3 and 4. We formally discuss
the computational effort, optimality, and assumptions of our approach in Section 5. In Section 6, we
evaluate our approach by comparing it to two self-healing approaches with respect to scalability
and optimality, and we discuss threats to validity. The evaluation uses synthetic and realistic
failure profile models for single and multiple MAPE-K runs, and also considers the violations of
assumptions. Finally, we review related work in Section 7 and conclude with an outlook on future
work in Section 8.
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Fig. 1. Simplified metamodel of the architectural runtime model.

2 Prerequisites
2.1 Architectural Self-Adaptation and Runtime Models

To realize self-adaptation, a software system is equipped with a MAPE-K feedback loop that monitors
and analyzes the system and, if needed, plans and executes an adaptation of the system, which
is all based on knowledge [Kephart and Chess 2003]. In this context, many researchers consider
the software architecture as an appropriate abstraction level (e.g., Garlan et al. [2009]; Oreizy et al.
[1999]) because self-adaptation can be generally achieved by adding, removing, and reconfiguring
components as well as connectors among components in the system [Magee and Kramer 1996]. For
this purpose, the feedback loop maintains a runtime model as part of its knowledge to represent
the architecture of the system. This model is causally connected to the system—that is, any relevant
change of the system is reflected in the model and vice versa [Blair et al. 2009]. Thus, the MAPE
phases operate on the runtime model to perform self-adaptation. Moreover, a runtime model allows
these phases to use model-driven engineering (MDE) techniques [France and Rumpe 2007]. In
earlier work [Vogel and Giese 2010; Vogel et al. 2009, 2010], we presented incremental monitoring
and execution phases that use MDE techniques and runtime models and that are the basis for
this work.

As the running example, we use mRUBiS—an online marketplace that hosts an arbitrary number
of shops, each consisting of 18 components [Vogel 2018]. Each shop can be configured differently
and runs isolated from the other shops. We are particularly interested in self-healing to automatically
repair runtime failures by architectural self-adaptation. This allows us to consider general repair
rules that adapt the architectural configuration of mRUBIS. Therefore, we equip mRUBIS with
a MAPE-K feedback loop that uses an architectural runtime model of mRUB;S. Specifically, the
model represents the runtime architecture of mRUBIS according to the deployment of mRUBIS in
an application server. For this purpose, the metamodel of the runtime model captures the mRUBIS
Architecture with a set of ComponentTypes that require and provide InterfaceTypes (Figure 1).
For each Shop, the same component types are instantiated to Components with their Provided-
and RequiredInterfaces. A Connector links a required and a provided interface if both are of the
same InterfaceType. Using a ProvidedInterface of a component may result in Failures in terms of
exceptions. The ComponentLifeCycle defines the state of a Component. These elements allow us
to describe the runtime architecture of mRUBIS and the occurred exceptions. The elements colored
gray are relevant for self-adaptation and described later.

Using (meta)models and MDE techniques, we realize the analysis rules with model queries and
the adaptation rules with in-place model transformations. For self-healing, the analysis rules query
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the architectural runtime model to identify issues such as failures in mRUBIS. The adaptation rules
determine how to modify the model and thus how to adapt the architecture to repair these issues.
To specify a model query, we use a pattern P of a set of patterns # describing a structural fragment
of the architecture G. Since the architecture is represented by the runtime model, we also use G to
refer to the model. An occurrence of a pattern P in the model G corresponds to a match m of P in
G (we write G |=,, P). For instance, a match identifies a failure in the architecture. An adaptation
rule r in the rule set R uses such patterns or already identified matches to localize a failure and
to change the model in-place to repair the failure. The automated matching of a pattern and the
subsequent repair constitute the self-healing.

2.2 Pattern-Based Architectural Utility

A utility function U is an objective policy that expresses how well each configuration of the system
in its domain satisfies the functional and non-functional goals of the system. For this purpose, U
assigns a real-value scalar desirability belonging to [—oo, +o0] to any possible architectural system
configuration G. Such scalar values allow us to compare different architectural configurations and
to select the one with the highest utility as the best adaptation decision. Furthermore, the reward,
which is the accumulated utility over time, supports comparisons over time.

Defining a valid utility function is of high importance in an optimization problem of finding
the best configuration since it is always the utility function and not the real utility of the system
that is maximized. There has been extensive research on utility-driven decision-making policies
and elicitation of user preferences (e.g., Poladian et al. [2004]). A typical approach for architectural
configurations is to compute for each non-functional property (e.g., reliability) the impact of
alternative components providing similar functionality at different quality levels on the overall
goals. A normalized linear utility function computes the weighted sum of these impact values over all
properties given a concrete architecture with concrete alternatives selected. The weights represent
the preferences of the user/developer, and the result is the utility of the given architecture [Floch
et al. 2006]. Such an approach can be used for planning self-adaptation to identify the target
architecture, to which the system should be adapted. Moreover, defining such utility functions is
particularly challenging for large and dynamic architectures [Cheng et al. 2006].

In the following, we outline our proposal to define utility functions for large, dynamic archi-
tectures based on patterns [Ghahremani et al. 2016]. Due to the pattern-based utility definition,
our utility functions can cope with dynamic architectural changes. We know that for a utility
function evaluating an architectural runtime models must hold that (i) the optimal architectural
configuration where all of the system goals are optimally fulfilled must gain the maximum utility
and that (ii) if any goal becomes violated, this must lead to a decrease of the latest utility.

According to (i), we include the impact of present architectural fragments in the utility. We define
such fragments by positive architectural utility patterns P* = {Pf, ..., P, } and capture their impact
on the utility by utility sub-functions U;. Fragments defined by such patterns can target single or
multiple components, and they can be both generic and component specific. The impact of a pattern
defined by U; may vary for each individual occurrence of the pattern in the architecture depending
on the specific context of the present components. Thus, U; takes the context into account.

As an example, Figure 2 shows the positive pattern P and the related utility sub-function U;.
This pattern conforms to the metamodel shown in Figure 1 and prescribes a started component that
is associated with a shop and therefore contributes to the shop’s functionality. Thus, this pattern
targets a single component and is generic as it refers to any started component. When matching
this pattern for one component in the runtime model, the utility of the associated shop increases by
U;. We define U; (G, m) := criticality of the component X reliability of the corresponding component
type X connectivity of the component. If we match all components of a shop, the utility of the shop is
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criticality = 2 criticality = 5 criticality = 3 criticality = 7

Fig. 4. Excerpt of the architectural runtime model with two matches of P} for each shop.

the sum of the corresponding sub-utilities U; (G, m) for all of these components. Finally, the pattern is
applied to all shops of mRUBIS to obtain the utility for each shop. Concerning the parts of U; (G, m),
each component has a criticality (cf. Figure 1) denoting its relevance for a shop. For instance, the
Authentication is more critical than the Reputation component since the former is necessarily
required by a shop to close a deal, whereas the latter is not. Additionally, each component type has
a reliability (cf. Figure 1). For certain functionalities, alternative component types with different
reliabilities exist (e.g., local vs. various third-party authentication services). Hence, selecting the
most reliable alternative results in a higher utility increase. The connectivity of a component as the
number of associated Connectors indicates the importance and accordingly influences the utility
of the component. Thus, the pattern P; with its utility sub-function U; determines the context of
a matched component in terms of criticality, reliability, and connectivity, which all influence the
impact of an occurrence of the pattern on the utility. In general, any data observable at runtime and
represented in the runtime model can serve as the context of an architectural fragment (component)
and be used for computing the impact on utility. At runtime, the context of a matched fragment is
dynamically obtained from the runtime model when evaluating U;.

According to (ii), we include the negative impact of undesirable situations defined by negative
architectural utility patterns P~ = {P,_ |, ..., P, } in the utility. These patterns negatively affect the
architecture such that they decrease the overall utility according to their utility sub-functions Us;.
Examples of such negative patterns are occurrences of failures (e.g., exceptions). As before, the
impact may vary for each individual occurrence of a negative pattern depending on the specific
context in the architecture. As an example, Figure 3 shows the negative architectural utility pattern
P, for mRUBIS, which describes the case when five or more failures in terms of exceptions were
thrown by a started component. Each occurrence of this negative pattern decreases the utility of
the associated shop by U,. We define U,(G, m) := —U;(G, m) so that U, is negative.

Consequently, the positive patterns capture the possible utility gained by the current architectural
configuration, whereas the negative patterns represent whether this potential is actually realized.
If it is not realized, negative patterns occur in the architecture and correspondingly decrease the
utility. In mRUBIS, adding a new shop with its components corresponds to a positive pattern
that increases the utility. The number of the available shops and the relevant attributes of their
comprising components (e.g., criticality, connectivity) dynamically determine the overall utility
of the architecture. Occurrences of five or more failures (exceptions) in a component, component
crashes, component removals, and connector crashes (cf. Figure 1) are examples of negative patterns
that reduce the utility. Figure 4 shows an excerpt of the architectural runtime model with two
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matches of the positive pattern P (cf. Figure 2) for each of the two shops—that is, with two started
components in each shop. These two matches of the positive pattern P are highlighted by different
shades of gray for each shop. For instance, the elements s1 and reputationS1 denote one match,
and s1 and authenticationS1 denote the other match of P in shop s1. Each match increases the
utility of the shop by Ui (G, m) taking the characteristics of the specific component into account
(e.g., the different criticality values of reputationS1 and authenticationS1). The utility of a shop is
the sum of U;(G, m) for all components of the shop, whereas the utility of the whole system is the
sum of the utilities of all shops. Similarly, matches for negative patterns decrease the utility of the
shops and thus of the system (not illustrated in Figure 4).

Therefore, considering M;(G) = {m|G |=,, P;} as the set of matches for the pattern P; in the
current architectural configuration G, the overall utility function U(G) accumulates all effects due
to the matches of all n patterns P = {Py, ..., P,}":

n

UG) =y > U(Gm) (1)

i=1 meM;(G)

Analysis and adaptation rules can refer to such patterns. On the one hand, rules should identify
and repair occurrences of negative patterns in the architecture. On the other hand, they should not
affect existing positive patterns but rather enable new occurrences of positive patterns by repairing
occurrences of negative patterns.

When matching a pattern, the concrete context is dynamically identified for each match in the
runtime model. The context corresponds to a fraction of the runtime model that is navigated to
obtain the required information to calculate U; at runtime. The definition of the pattern-based
utility takes the context into account. Each pattern P; specifies a context that influences the utility
sub-function U; and thus the increase or decrease of utility. For instance, each of the patterns P}
(cf. Figure 2) and P; (cf. Figure 3) specifies the criticality of the component and the associated shop
as the context. This context could be extended, for instance, by taking the component type into
account so that the pattern would only match to components of a certain type (e.g., components
realizing the authentication or user reputation).

Finally, the individual context of each occurrence of a pattern could cause variations in the utility
after adaptation. In our example of P/ and P;, consider an occurrence of P, with an absolute

2
decrease in the utility of |U,|. An adaptation resolving this occurrence of P, and enabling an
occurrence of P;" could achieve an increase of the utility U; that is larger than |Us|. This is the case
if the adaptation, for instance, replaces the faulty component with an alternative, more reliable
component since the reliability of a component is a factor effecting the utility (see definitions of U

and Us).

3 Utility-Driven Rule-Based Adaptation Scheme

We propose a utility-driven scheme to evaluate large, dynamic software architectures. As discussed
in Section 2.2, utility functions map each architectural configuration of a software system to a
scalar value indicating how well the configuration satisfies the goals. The need for evaluating
dynamic architectures is motivated by architectural self-adaptation. If adaptation is required, the
feedback loop has to identify a suitable or even the optimal target configuration and select the
adaptation rules that move the system to this configuration. For this purpose, a feedback loop can
use the proposed scheme. With this scheme, we are particularly interested in self-healing—that is,

f we do not have to distinguish between positive and negative patterns, we omit the superscript + and — for the patterns
Pep.
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Time

Fig. 5. Target configuration and different paths.

the automatic repair of runtime failures by general rules that perform architectural adaptation and
reconfiguration.

In this context, we express issues (i.e., runtime failures) for an architecture as model patterns
such that concrete issues with different impacts on the overall utility U(G) relate to occurrences
(matches) of these patterns in the runtime model G. Additionally, we can express an adaptation rule
r = (P,...) that is applied on the runtime model if the condition described by a model pattern P is
satisfied—that is, for each match of P in the model. We denote for r = (P, ... ) that a match m for P
in the model G; exists and that applying the rule results in a modified model G; by G; =, G;.

Our scheme can be mapped to a MAPE-K feedback loop operating on the runtime model. The
monitoring phase observes the current system configuration and updates the model. During analysis
and planning, the scheme requires two decisions: the first decision is the target configuration of
the system, and the second one is the rules and their matches that move the system to the target.
These two decisions are inspired by the idea of model-predictive control that first defines a target
and then predicts the optimal path to reach the target [Seborg et al. 2011]. This is illustrated in
Figure 5 showing one target with three alternative paths to reach the target.

Considering self-healing, selecting an architecture where issues are repaired is equivalent to
defining the target configuration. During the repair, selecting the best sequence of adaptation rules
and their matches that resolve all issues is equivalent to building the path toward the target. Paths
that achieve earlier a larger increase of the utility are preferred. Finally, the last step of the feedback
loop executes these rules for their matches on the running system.

For a target configuration G;, it must hold that its utility U(G;) must be higher than or equal to
the utility U(Gy) of all possible next and intermediate configurations G; that are the outcomes
of resolving issues in the current faulty configuration G;. For self-healing, the target G; is always
reachable unless there are resource limitations. To avoid enumerating the complete search space
(i-e., all configurations reachable from G;), our scheme computes the impact of each possible rule
application for a match on the related utility sub-function and thus on the overall utility (U(G;) —
U(G;)). After defining the target G;, a set of adaptation rules with their matches has to be selected
to reach G;. A sequence of rule applications changes the configuration G; toward G;, which we
denote as G; =, m, Gir — ... —r.m; Gj. Based on the impact of each rule application on the
utility, we determine the path. To resolve a single issue, alternative rules are applicable and an
estimation of their impacts on the utility allows us to select a conflict-free subset of them. We
assume that for all such sets, we can compute the utility impacts regardless of the order in which
the rules are executed. Our scheme is capable of doing so, since we assume that the impacts of the
adaptation rules on the utility are independent of each another. Our scheme guarantees that (i)
executing the selected rules eventually leads to the target G; with utility U(G;) and (ii) executing
them in the right order results in the highest achievable reward (utility accumulated over time
as represented by the area under curve in Figure 5). To fulfill (i), when there are two or more
alternative rules to resolve the same issue, the scheme selects the rule with the highest impact on
the utility. To achieve (ii), the selected rules are executed in a decreasing order of their impact on
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Fig. 6. Different phases of the MAPE-K feedback loop realizing the proposed self-healing scheme.

the utility. We claim and will show that our scheme is optimal regarding the final utility U(G;) and
the achieved reward. To maximize the reward (utility over time), our scheme offsets the designated
utility increase with the estimated time of executing each rule. Reward optimality in the context of
(i) is achieved by selecting the best rule in terms of utility increase for each issue. In the context of
(ii), the approach is optimal since it prioritizes those rules from the selected rules that have larger
impact on utility. In both cases, if multiple rules have the same impact on utility, faster rules are
selected or prioritized as time (besides utility) also affects the reward.

4 Realizing the Adaptation Scheme in a Feedback Loop

The utility functions for runtime architectures as defined in Section 2.2 allow us to follow an
optimization-based approach that searches the configuration space and computes the utility for
each possible configuration. However, such a solution for making adaptation decisions does not scale
if the utility is computed for each configuration completely anew. In contrast, the proposed utility-
driven and rule-based scheme determines at runtime the impact of each possible rule application
on the utility. Based on these impacts, it selects the optimal adaptation rule for each issue and
identifies the optimal sequence of the rules for execution to maximize the reward.

This scheme is realized by a MAPE-K feedback loop as shown in Figure 6. The execution of
the feedback loop is triggered by every event that notifies about changes of the system under
adaptation. The feedback loop is not reentrant so that all events that occur during a feedback loop
run are queued. When the current feedback loop run is finished, the next run is triggered if there is
at least one queued event, and this next run processes all of the currently queued events. Thus, there
is no static frequency determined manually for executing the feedback loop. All of the four MAPE
activities operate on the architectural runtime model. During monitoring, the model is updated to
reflect changes of the system. The analysis deletes the old issues (i.e., matches of negative patterns
that have been identified by a previous run of the loop) that are not valid anymore from the model.
In addition, it detects the new issues and marks them in the model. The subsequent planning
considers all possible adaptation rules that can address the existing issues. For each applicable
rule, the impact on the utility and cost of execution are calculated. For each issue, the best rule
regarding this impact and cost is selected. The selected rules over all issues are sorted according to
their utility impact and cost, and stored in the model. In the execution phase, the sorted list of rules
is executed on the model and thus to the running system. In the following, we provide a detailed
description of the MAPE-K feedback loop activities realizing our scheme.

4.1 Monitor

During monitoring, change events emitted by the system are processed and reflected in the runtime
model. Thus, the model is updated to represent the current architectural system configuration
(cf. Vogel et al. [2009, 2010]). In our example, we observe the lifecycle state of a component (e.g.,
to monitor whether a component has stopped, crashed, or been removed) and failures such as
exceptions that occur when using a ProvidedInterface (cf. metamodel in Figure 1).
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Fig. 7. Annotating an occurrence (match) of a negative pattern in the runtime model.

4.2 Analyze

In this phase, the updated runtime model is analyzed to check whether known matches of negative
patterns (i.e., old issues) are still valid; otherwise, the annotations representing these issues are
removed from the model. Moreover, the updated runtime model is analyzed to detect new matches
of negative patterns (i.e., new issues) that enrich the known set of matches. This analysis is driven
by events notifying about model updates (cf. event-property-change mechanism).

As a first step, we compute the utility incrementally rather than for each configuration anew.
Given a former runtime model G and an updated version G’, the set of new matches for the utility
pattern P; is MY = M;(G")\M;(G). Similarly, lei“’l = M;(G) \ M;(G’) contains the matches for
the pattern P; that are no longer valid. We can therefore calculate the corresponding change of the
overall utility U(G’) — U(G) by the utility change function Ux(G’, G):

_i ZUi(G’m)+i ZUi(G’,m) )

P P new
i=1 mEMl‘.iEl i=1 meM;

Besides computing the change of the utility, we keep track of the identified matches for negative
patterns (the issues). In the case of self-healing, all of the architectural utility patterns that need to be
matched and resolved are the negative patterns = = {P,_, , ..., P, }. For this purpose, the analysis
phase adds Annotations to the runtime model. It checks the model for occurrences of negative
patterns, which are then annotated in the model as Issues pointing to the affectedComponent.
We consider the following issues: crashes (CF1) and removals (CF3) of components, occurrences
of Failures in terms of exceptions (CF2), and connector crashes (CF4) (cf. Figure 1). For instance,
Figure 7 shows an analysis rule realized by a story pattern [Fischer et al. 1998] that detects the
negative pattern P, (cf. Figure 3). The occurrence of this pattern results in a drop in the shop’s
utility by U,. This rule creates the CF2 annotation with the computed utilityDrop that points to the
affected component. Here, we omit the details to avoid multiple annotations for the same issue.

4.3 Plan

Based on the annotations representing new or remaining matches for negative patterns and
thus issues in the runtime model, our approach incrementally proceeds during the planning by
(1) computing the set of all possible adaptation rule applications (matches) that resolve each issue,
(2) selecting the best rule application for each issue based on the impact on utility and cost, and
(3) finally ordering the best rule applications across all issues to minimize the lost reward.

4.3.1 Compute All Possible Adaptation Rule Matches. In self-healing, applying an adaptation
rule always leads to an improved utility as it resolves an issue that has previously caused a drop in
the utility. For this case, we will show that adaptation rules have to be linked to negative patterns.
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Moreover, knowing the matches for these patterns allows us to incrementally compute all relevant
adaptation rule matches—that is, all rules that are applicable to resolve the issues.

For any self-healing adaptation scheme with pattern-based utility functions, all of the patterns
that need to be matched and resolved are the negative ones and the following observations must
hold: (1) if there are no matches of negative patterns, there is no need for adaptation and no
improvement of the utility is possible, and (2) any improvement of the utility must necessarily
resolve identified matches of negative patterns, as otherwise no improvement is possible.

Thus, we can safely assume that (A1) for any adaptation rule r; = (P;,...) in the set of all
adaptation rules R, it must hold that a negative pattern P; exists such that any match m; for P; (m;
makes r; applicable) includes a match m; for P;” (m; denotes an occurrence of the negative pattern
P7). Thus, any adaptation rule must be linked to a negative pattern such that the rule can only be
applied if there is an occurrence of the negative pattern. Otherwise, the rule could be applied even
though there is no occurrence of a negative pattern, and no utility improvement can be achieved,
which contradicts observation (1). It can be the case that the pattern P; of r; has a larger context
and is thus more restricted than the negative pattern P; . However, both patterns are exactly the
same in the presented examples.

Furthermore, we can plausibly assume that (A2) for rule r; = (P},...) in R and any match m;
for P; with the included match m; for the related negative pattern P, it holds that applying r;
for m; will make the match m; invalid. This means that executing an applicable rule resolves the
related occurrence of the negative pattern by repairing the issue. Otherwise, r; does not handle the
identified occurrence of the negative pattern P;” and therefore does not lead to the improvement of
the utility as expected by observation (2). To keep our considerations simple, we consider the case
where each rule covers exactly one negative pattern. Based on these assumptions, we can compute
all matches for rules incrementally given the set of new matches M*" for the related negative
pattern P; by the analysis phase.

In general, performing an adaptation with MAPE-K consists of a planning and an execution
part. The planning decides which adaptation rules among all possible ones should be applied.
The execution part actually applies the selected rules to prescribe an adaptation in the runtime
model that is subsequently propagated to the system (cf. causal connection in Section 2.1). In our
case, the planning selects the adaptation rules to be executed by enriching the model with Rule
annotations that will handle the identified Issues (cf. Figure 1). These rules are finally enacted
by the execution phase. As adaptation rules, we support restarting, redeploying, and replacing
components, as well as recreating connectors (cf. Figure 1). For the redeployment, there are two
variants. The light-weight variant keeps the latest configuration, whereas the heavy-weight variant
adapts the configuration (e.g., parameters) of the redeployed component. To realize the planning
rules, we use story diagrams as shown in Figure 8. Using story diagrams, we can structure story
patterns (nodes of the rule) in a control flow that complies with UML activity diagrams (cf. Fischer
et al. [1998]). Considering Figure 8, the first node of the planning rule matches the CF2 annotation
created by the analysis phase, and it creates the new adaptation rule of type RestartComponent as a
Rule annotation to repair the CF2 instance. Such a planning rule exists for each adaptation rule (e.g.,
component restart) and for each issue (e.g., CF2) to which the adaptation rule is applicable. The
decision for the adaptation rules to be executed is made by selecting the best among all applicable
rules for each issue.

4.3.2  Select the Best Adaptation Rule Match for Each Negative Pattern Match. FEach issue in
terms of a negative pattern match can be repaired by alternative adaptation rules. Thus, the planning
must select one rule for execution. To determine the best among all matched adaptation rules for
each issue, we compute the impact on the utility and the costs of executing each of these rules.
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Fig. 8. Rule for planning an adaptation.

Formally, for a single rule r; = (P}, . ..) where P; extends the negative pattern P7, it holds that each
time r; is applied to mj, the match m; for a negative pattern P; is removed (see A2). We further
assume that (A3) r; does not result in any new match or removed matches besides m; for any
negative pattern. Then, we conclude for any G, G’ resulting from applying rule r; to G for match
m; (G =, m; G') that:

UY(G,m;) == Un(G', G) = Ui(G, m;) (3)

This way, we can compute locally the impact of adaptation rules on the utility if the assumptions
(A1) through (A3) hold. If further assumption (A4) holds that rule r; does not affect any utility
sub-function for any match my of another negative pattern P, then applying r; for a match m;
does not affect the impact on the utility of any other rule r for match my. Thus, if (A1) through (A4)
hold, we can independently and locally compute the utility impact of each rule. However, there can
be cases where the side effect of applying a rule r; (i.e., G =, m; G’) results in new matches for
one or more positive patterns. In such cases, the impact on the utility by the corresponding positive
utility sub-function of these matches is added to UArj (G, m;) in Equation (3). For this reason, it must
hold that all of the potential positive patterns are completely within the scope of the application
condition and side effect of r; and do not match only partially (A5). Otherwise, matches for the
positive patterns cannot be enabled by applying r;. Thus, the impact can be considered in UArj (G, mj)
because the resulting formula for the corresponding increase of the utility can be determined at
development time. An example for such a case is when replacing the local authentication component
of mRUBIS with a third-party service while each available service results in a different increase on
the utility depending on the reliability of the service. Similarly, the costs in terms of execution time
for adaptation rules can be estimated by a cost function Cost™/ (G, m;) for each application of a rule.
Thus, the estimated execution time may depend on the match m; with its context in G.

Hence, for each issue, the planning rules determine the expected utilitylncrease UArj (G, m;) and
costs Cost"/ (G, m;) of executing each applicable adaptation rule to the system, and they select
the best among all applicable adaptation rules. For instance, Figure 8 shows a planning rule for
repairing a CF2 issue by restarting the affected component. Following the analysis phase capturing
matches of negative patterns with annotations such as CF2 (cf. Figure 7), all planning rules of R

ACM Trans. Autonom. Adapt. Syst., Vol. 14, No. 3, Article 12. Publication date: February 2020.



Improving Scalability and Reward of Utility-Driven Self-Healing for Large Dynamic Architectures 12:13

are checked if they match such annotations. The ones that match are able to plan how an issue
should be handled by enriching the model with annotations for adaptation rules. In the example in
Figure 8, the first node (story pattern) of the planning rule matches the CF2 annotation and creates
the Rule annotation of type RestartComponent. It further determines the utilitylncrease and costs
of restarting the component (see attributes of newrule:RestartComponent). For this purpose, the
utility sub-function U;—as discussed in Section 2.2—is used to calculate the expected utilitylncrease
and thus the positive impact of executing the rule on the utility. This utility sub-function takes the
context of the match and thus runtime information into account (e.g., the reliability and criticality
of the affected component). Moreover, cost functions such as estRestartCost() for each adaptation
rule type estimate the costs of executing the rule such as restarting a component in the system. In
our work, the cost estimation for each rule type is static, context independent, and based on past
measurements of the time that is needed to execute the corresponding change to a running system.
However, the cost functions can be more elaborate, taking the context of the match into account
(e.g., it is more costly to replace a component with a higher connectivity, i.e., a larger number of
associated connectors). By using the utilitylncrease and costs of all applicable adaptation rules for
an issue, our scheme selects the best rule. For this reason, the planning checks for each applicable
adaptation rule (e.g., newrule:RestartComponent in Figure 8) whether this new rule results in a
higher utilitylncrease than the rule that has been determined as the best one so far within this
run of the feedback loop (see oldrule:Rule in Figure 8). In the case that both rules achieve an equal
utilitylncrease, the approach checks if the new rule has lower costs. If this old rule (i.e., the rule
that has been determined as the best rule so far) does not exist, the planning selects the new rule to
handle the CF2 issue (see story pattern Assign restart rule). Otherwise, if the new rule is better
than an already selected rule (i.e., the old rule) with respect to utilitylncrease and costs, the old
rule is deleted and the new rule is selected (see story pattern Remove old rule and assign restart
rule in Figure 8). For the case when the old rule is better than the new rule, the planning proceeds
with the old rule and deletes the annotation for the new rule (see story pattern Delete restart rule).
Thus, the planning rules select for each issue the best adaptation rule that is going to be executed
and that is associated to the issue by the handles/handledBy association in the runtime model
(cf. Figure 1).

4.3.3  Order the Execution of All Selected Adaptation Rule Matches. The final planning step
determines the order in which the issues should be resolved if multiple issues occur at the same time.
We assume that k issues could be repaired and thus k adaptation rules could be executed within one
cycle of the feedback loop. Therefore, the k best adaptation rules (see the previous planning step)
are sorted in descending order regarding their impact on the overall utility divided by the costs.
This metric combining the benefits and costs of an adaptation rule is reflected by the ratio attribute
of a Rule (see Figure 1) and computed by the planning rules (see Figure 8). Applying the adaptation
rules in this order, as maintained by the association Annotations.bestRules in the runtime model
(see Figure 1), guarantees in the execution phase that the maximal utility is re-established as fast as
possible and that the loss of reward is minimized. As depicted in Figure 5, prioritizing the adaptation
rules with a higher impact on utility (i.e., rules with higher slopes) maximizes the area under the
curve (a curve being a path to the target configuration) that is recognized as utility over time or
reward.

4.4 Execute

Given the sorted list of adaptation rules from the planning phase, this phase executes these rules
accordingly in a sequential manner. Thus, each issue is handled with the most appropriate rule, and
the rules are executed in the order such that those with the best trade-off (ratio) of utilitylncrease
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Fig. 9. Rule for executing a component restart.

and costs are executed first. Similar to monitoring, this phase follows an incremental scheme in
executing adaptation rules on the runtime model and propagating the corresponding changes
through the causal connection to the running system [Vogel and Giese 2010]. Figure 9 illustrates
an adaptation rule for executing a restart of a component to address CF2. Based on the analysis
and planning phases (see Figures 7 and 8), an adaptation rule, in this case restartComponent,
has been selected to handle CF2 affecting the specific component (see the first node in Figure 9).
This component is then restarted by setting its lifecycle state to DEPLOYED (i.e., stopped) and
then to STARTED (see the second and third nodes). After that, the runtime model is cleaned by
removing (destroying) the observed exceptions (failures) and the annotations for the executed rule
(restartComponent) and the handled issue (CF2).

5 Analysis and Discussion

We now analyze and discuss the computational effort and the optimality of the utility and reward
for our scheme. We will present the generic algorithms for the analysis and planning and show that
their computation is done incrementally and the resulting adaptation leads to an optimal reward.
Finally, we discuss limitations concerning our assumptions.

5.1 Detailed Algorithms for the Analysis and Planning

The analyze() and plan() algorithms of our approach use a global data structure (a runtime model)
defined by the metamodel in Figure 1. The singleton object annotations of type Annotations captures
the current matches for issues with its issues association of type Issue. Annotations also captures
the best k matches for rules to repair the issues with its bestRules association of type Rule. Both
can be accessed by annotations.getAlllssues() and annotations.getAllBestRules(). Additionally, the
association handledBy between the matches for issues and matches for rules maintains the best
rule match for each issue. For an Issue, we assume that a test check() exists that checks in constant
time whether the match is still valid. To maintain matches for issues in a global list without double
entries, we assume constant-time operations annotations.existsIssue(), annotations.addIssue(),
and annotations.deletelssue(). This is possible when using index data structures with unique
matches as index. Similarly, we require constant-time operations annotations.addBestRule() and
annotations.resetBestRule() to maintain and clear a list of the best k matches for rules with respect
to their ratio. Here, k is chosen large enough to cover as many rule applications as possible to fit into
the time window of a single MAPE-K run. The dedicated time window of a MAPE-K run is a design
decision. A shorter window allows more frequent planning. As a result, rules achieving a high
impact on the utility are executed earlier and not blocked by rules that achieve lower increases but
are already scheduled to be executed by a previous MAPE-K run. This is beneficial if the planning
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ALGORITHM 1: analyze(C)

1 forall issue € annotations.getAlllssues() do // iterate over all old issues of ¢

2 if !issue.check() then // delete old issue if no longer valid

3 ‘ annotations.deletelssue(issue) ; // delete issue from global list

4 end

5 end

6 forall ¢ € C do // iterate over all modified or created elements in the model

7 forall P; € P containing a node that may be matched toc do // consider all relevant patterns
P;

8 forall m: G |=p, P;i A m contains c do // find all new issues for P;

9 if lannotations.existsIssue(P;, m) then // check if issue for P; and m already exists

10 ‘ annotations.addIssues(new Issue(P;, m)) ; // add new issue to the global list

1 end

12 end

13 end

14 end

is time efficient. For a selected time window, k can be determined using estimates of planning time
of the scheme and rule execution time. Thus, k can vary for different time windows. Since at most
k adaptation rules are applied in a single MAPE-K run, k is a constant upper bound on the rule
elements that have to be stored and ordered in the runtime model. A run of the feedback loop is
finished after the k*" adaptation rule has been executed. The remaining failures that have not been
addressed in this run will be handled in the subsequent run of the feedback loop.

Given a set C of elements in the runtime model that have been changed by the moni-
toring, the analyze() procedure shown in Algorithm 1 (1) removes any old issue stored in
annotations.getAllIssues() that are no longer valid (lines 1-5) and then (2) iterates over all changes
¢ € C (lines 6-14) for all patterns in P relevant for c (lines 7-13) and for all possible new issues
whose matches contain ¢ (lines 8-12) to check whether these issues are new (line 9) so that they
are added to the global list (line 10). Thus, after executing analyze(C), the set of issues stored in
annotations.issues is up-to-date.

In addition, the plan() procedure shown in Algorithm 2 checks for all current issues in
annotations.getAllssues() (lines 2—14), for all rules that may resolve the match of the issue (lines 3-
11), and for all matches of these rules that extend the match of the issue (lines 4-10) whether the
identified rule match is better than the currently best rule match captured by issue.getHandledBy()
(i.e., the utility increase is larger, or if the utility increase is the same, the costs are smaller). If so,
the currently best rule match is replaced by the newly found rule match. Thus, for each issue, the
best rule match is determined and added to the global list of k best rules in line 13. Note that this
global list is initially erased in line 1.

In our example, we exploit the fact that each issue is always linked to one unique component
(cf. Figure 1) to realize the annotations.existsIssue() test. The test just checks whether the same
issue already exists for the related component.

5.2 Computational Effort for the Analysis and Planning

For the analyze() and plan() procedures in Algorithms 1 and 2, the patterns of the issues and rules
do not need to be found by a global search, but by a local search starting from a change or an
existing match. It is assumed that (1) patterns have a constant upper bound concerning their size
and (2) the links for associations that have to be traversed by a local search for matches have a
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small constant upper bounds (assumption (A6)). As a result, finding a single match for an issue
or rule requires only a constant computational effort. Based on this final additional assumption
(A6) that typically holds, we will establish that the analyze() and plan() procedures only require an
incremental computational effort in O(A + A’), where A’ is the number of unprocessed issues and
A is the number of changes in the runtime model.

In the analyze() procedure (Algorithm 1), the first main loop from line 1 to 5 requires O(A’)
steps to check for A” many old, unprocessed issues stored in annotations.issues whether they are
still valid or not. Conducting such a single check requires constant time. The second main loop
from line 6 to 14 iterates over all changes ¢ € C with |C| = A and thus results in O(A) iterations.
The inner loop from line 7 to 13, which considers all patterns in # potentially matching c, has a
constant number of iterations because of the small numbers of patterns, a constant subset of which
can actually be matched to c. The other inner loop from line 8 to 12, which considers all matches
for such patterns that actually include c, is bounded by the number of changes |C|. Therefore, it
requires O(A) iterations. Thus, the analyze() procedure requires an incremental computational
effort in O(A + A’), and the resulting list of current issues is in O(A + A”).

The plan() procedure (Algorithm 2) at first erases the list annotations.bestRules() of k best rule
matches from the last cycle in constant time (see annotations.resetBestRules() in line 1). Then,
up to O(A + A’) many current issues are handled in the loop from line 2 to 14. For each iteration
processing an issue, constant many rules that may resolve this issue are considered in the loop from
line 3 to 11. In the worst case, the number of these rules is equal to |R| (O(1))—that is, the number
of the adaptation rules in the finite set R. Thus, the number of the considered rules is limited by
this constant upper bound. As a result, constant many rule matches (each considered rule either
matches or not) that extend the match of the issue are considered in the loop from line 4 to 10.
While iterating through all applicable rules for an issue (bounded by |R|), one best rule regarding
the utility increase and cost is selected. Therefore, only constant many times the best rule match
for an issue is updated and stored in issue.getHandledBy() in line 8.

ALGORITHM 2: plan()

1 annotations.resetBestRules() ; // erase all entries form the list of best rules and matches

2 forall issue € annotations.getAlllssues() do

3 forall r; € R that can resolve issue do

4 forall m: G |=p, ri withm 2 issue.match() do

5 rule := new Rule(m) ; // create new rule with utilityIncrease and costs

6 oldrule := issue.getHandeledBy() ; // get rule with best utilityIncrease and costs
identified up to now

7 if oldrule = NULL || rule.utilityIncrease > oldrule.utilityIncrease || (rule.utilitylncrease ==
oldrule.utilityIncrease && rule.utilityIncrease/rule.cost > oldrule.utilityIncrease/oldrule.cost)
then

8 issue.setHandeledBy(rule) ; // rule is better concerning utilityIncrease and costs

than the old one

9 end

10 end

11 end

12 rule := issue.getHandeledBy() ;  // get rule with the overall best utilityIncrease and costs

13 annotations.addBestRules(rule, rule.utilityIncrease/rule.cost) ; // keep k best rule for all issues

according to the ratio

14 end
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Once for each match of an issue, at the end of the loop from line 2 to 14, the best rule match to
resolve this issue as stored in issue.getHandledBy() (line 12) is considered in line 13. Restricting
the number of issues that can be resolved within a feedback loop run to k, only k and thus
constant many best rule matches are kept with annotations.addBestRule() (line 13). Thus, this step
has a constant computational effort. Consequently, the plan() procedure requires an incremental
computational effort in O(A + A’), and the resulting list of best rule matches contains k elements
(O(1)).

The monitoring and execution can be done event based and incrementally (cf. Vogel and Giese
[2010]; Vogel et al. [2009, 2010]). The analyze() and plan() procedures require incremental compu-
tational efforts. Overall, we conclude that the whole MAPE-K loop can operate in a highly efficient,
incremental manner. The proposed scheme requires O(A + A’) steps with A’ being the number of
unprocessed issues and A the number of changes of the runtime model.

5.3 Optimality of a Single MAPE-K Run

In this section, we discuss why the presented scheme guarantees an optimal adaptation behavior
concerning utility and reward in a single MAPE-K run, given the assumptions we made and an
appropriate selection of k (cf. Section 5.1 for appropriate selection of k).

Executing all k selected matches for adaptation rules in annotations.bestRules guarantees a max-
imal increase of the overall utility because it removes all matches of negative patterns (assumption
(A2)) and it does not affect any other matches for such patterns (assumptions (A3) and (A4)). Thus,
the finally achieved utility is maximal after executing all selected rules. This effect on the overall
utility remains in the system as long as the system is operating, and any other selection of rules that
would lead to a lower utility will also result in a lower reward even though its costs might be lower.
Thus, a faster adaptation achieving a lower final utility does not pay off since the system continues
operating with a lower utility. Such a system will be affected by any future failures equally to
the system after the optimal adaptation that operates at a higher utility level. Furthermore, the
ordering of the k adaptation rules in annotations.bestRules ensures for the time window when
the rules are executed that the resulting reward is maximal. The reason is that any reordering of
two rule matches with different ratios results in a lower reward (i.e., smaller area under the curve
in Figure 5). Any more complex reordering can be achieved by iteratively exchanging two rule
matches, which would eventually also lead to a lower reward. Thus, the correctly ordered sequence
results in the maximal reward.

Thus, when k is larger or equal to the number of identified issues and all of these issues can be
resolved within the time window of a single MAPE-K run, executing the k rules in the given order
results in the maximal reward. In this case, all identified issues can be repaired by one run of the
feedback loop. However, if k is smaller than the number of identified issues, the resulting reward
of executing the chosen sequence of adaptation rule matches is still optimal given the rationale
for defining k (cf. Section 5.1). This would avoid blocking the execution of rules achieving a high
impact on the utility by rules that achieve lower increases but are already scheduled to be executed
by a previous MAPE-K run.

5.4 Discussion of the Assumptions

In the following, we consider the assumptions we made (Table 1) and discuss their justifications and
the consequences if they do not hold. A violation of assumption (A1) indicates that the adaptation
rules can be applied even if there is no match for a negative pattern. This can be ruled out for
self-healing systems where we consider only rules that repair occurrences of negative patterns.
However, it might be an issue for self-optimizing systems where adaptation rules are continuously
applied to maximize the utility while a notion of negative patterns might not exist.
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Table 1. List of Assumptions

(A1)  For any in-place model transformation rule r; = (P}, ... ) in the adaptation rule set R,
it must hold that a negative pattern P, exists such that any match m; for P; includes a
match m; for P;.

(A2) Forany ruler; = (Pj,...)in the rule set R and any match m; for P; and the included
match m; for the related negative pattern P}, it holds that applying r; for m; will make
the match m; for P; invalid.

(A3)  Applying r;j does not result in any new match or removed matches besides m; for any
negative pattern.

(A3a) Applying r; does not result in any new match for any negative pattern.

(A3b) Applying r; does not result in any removed matches besides m; for any negative pattern.

(A4)  Applying r; does not affect any utility sub-function for any match m; for another negative
pattern P, then applying a rule r; for a match m; does not affect the impact on the
utility for any other rule ry and match my.

(A5)  All of the potential positive patterns are completely within the scope of the application
condition and side effect of r; and do not match only partially.

(A6)  The links for associations that have to be traversed for local search of matches have
always small constant upper bounds.

Assumption (A2) states that any adaptation rule, if applied, is effective and therefore resolves the
corresponding issue. A violation of (A2) implies that adaptation rules are not always effective—that
is, applying a rule does not always resolve the issue. We can rule out this case given a deterministic
behavior of adaptation rules.

Adaptation rules that cause new issues are not reasonable so that we can safely accept assump-
tion (A3a). We suggest designing the rules in such a way that they immediately resolve all additional
issues they might cause. In the proposed scheme, if a rule accidentally causes a new match of a
negative pattern, which will trigger another rule (violation of (A3a)), the new match will be detected
and resolved in the next feedback loop run. In contrast, a violation of assumption (A3b) results in a
case where applying rules impacts the applicability of other rules. An example of such a violation is
applying a rule that replaces a faulty component, which makes the repair rule of the related faulty
connectors inapplicable, for instance, because the new version of the component needs different
types of connectors and thus a different rule to re-establish the connectors. In this case, the issue of
the faulty component overlaps with the issue of the faulty connectors, and the issue of the faulty
connectors will not be resolved in this but in the subsequent feedback loop run if it can be matched
by a negative pattern. However, we suggest designing the rules in a way that avoids such unwanted
dependencies between rules. One way is to define the scopes of the rules such that each issue type
is completely treated by one rule and the scopes do not overlap. This requires that the scopes of
different types of issues do not overlap; otherwise, overlapping issue types should be combined to
one type. For the example, such a design results in a scope for the rule replacing a faulty component
that also covers the related faulty connectors. Meanwhile, the scope for the connector repair rule
would be restricted to faulty connectors that are not associated to faulty components.

Assumption (A4) excludes cases where executing a rule affects the impact of executing another
rule on the overall utility. A violation of (A4) implies dependencies between the rules similar to
a violation of (A3). Again we suggest designing the rules in a way that avoids such unwanted
dependencies (cf. previous paragraph). If the adaptation rules influence each other regarding the
impact on the utility (violation of (A4)), our proposed scheme would not necessarily find the optimal
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rule for each issue and consequently the optimal ordering of all rules since it does not take such
dependencies into account. However, all issues would still be resolved, although not necessarily
with the “best” rules.

Assumption (A5) indicates that executing a repair rule achieves the intended improvement of
the utility. If it does not hold, then the utility function or the context to calculate the impact of the
rules on the utility is not appropriate. This requires a more expressive utility function or a larger
context. Although it can be challenging to define an appropriate utility function (cf. [Ghahremani
et al. 2018]), establishing a larger context is in principle always possible by splitting such rules
into multiple, more specialized rules that have a larger context to achieve the overlap with the
positive patterns.

Assumption (A6) comprises the constant upper bound of the size of the patterns and the local
search for matches of patterns/rules. This is justified based on the simple nature of the patterns
that we encountered. Nevertheless, if the assumption does not hold, other schemes such as pure
rule-based ones might also have high execution costs.

To summarize, the assumptions listed in Table 1 are usually justified for rule-based self-healing
approaches because rules that are not triggered by any issue or that do not resolve any issue do not
make any sense (see (A1) and (A2)). Rules that cause new issues are not reasonable and could thus
be excluded (see (A3a)). Rules that affect other issues or other rules are not useful and should thus
be avoided (see (A3b) and (A4)). Rules that do not completely cover the positive patterns should
be avoided (see (A5)). Rules and patterns that are large or that do not allow a local search are not
usual (see (A6)). In this context, we can often assume a deterministic behavior of adaptation rules.
However, there might be cases in which rules will not always succeed in repairing issues. We will
therefore investigate such cases by considering a likelihood for the success of each adaptation rule
in Section 6.3.

6 Evaluation

To evaluate our scheme, we use the mRUBiS simulator [Vogel 2018], a variant of RUBIS that is
frequently used for validating self-adaptation targeting performance [Patikirikorala et al. 2012].
mRUBIS is a marketplace on which users sell or auction items. The simulator emulates the market-
place and provides fault injection capabilities. It emulates failures in mRUBIS by reflecting them in
the architectural runtime model as it would be otherwise done by monitoring the faulty system. To
determine the injected traces of failures, we use synthetic and realistic failure profile models.?

Specifically, mRUBIS can host different numbers of shops (1 to 1,000), each containing 18 com-
ponents with different criticality and connectivity values. The utility of a shop is the sum of the
sub-utilities of all of the components in the shop. As described in Section 2.1, we equipped mRUBiS
with a MAPE-K feedback loop. The three issues CF1, CF2, and CF3 are the negative patterns that
affect the system. The rule set R includes the adaptation rules, each representing a repair plan.
Each rule has three attributes: costs, utilitylncrease, and ratio (see Figure 1). Costs refers to the
expected execution time of the rule, utilitylncrease is the impact on the utility when applying the
rule, and ratio is the fraction of utilitylncrease/costs.

In Section 6.1, we validate the scalability and optimality of our scheme with analytical and real
experiments using a synthetic failure profile model to generate failure traces. In these experiments,
we compare our scheme to two alternative self-healing approaches for a single MAPE-K run. The
evaluation is extended in Section 6.2 by looking at multiple MAPE-K runs and by using various

2 All experiments and simulations were conducted on a machine with OS X 10.10 and an Intel Core i5 2.6-GHz processor
with 9 GB of memory. All measurements were conducted following benchmarking guidelines by Sestoft [2013].

ACM Trans. Autonom. Adapt. Syst., Vol. 14, No. 3, Article 12. Publication date: February 2020.



12:20 S. Ghahremani et al.

realistic failure profile models. Experiments regarding the violation of the assumptions listed in
Table 1 are discussed in Section 6.3. Finally, we discuss the threats to validity in Section 6.4.
Overall, the evaluation compares three self-healing approaches: static, solver, and u-driven.

Static. This approach is purely rule based and uses static priorities for rules without any utility
function. Thus, the costs and utilitylncrease of the repair rules are defined at design time so that a
rule is selected statically for each CF. The utilityDrop caused by each CF is also estimated at design
time leading to a fixed order in which the issues are resolved.

Solver. This approach is purely utility based and uses the IBM ILOG CPLEX constraint solver [IBM
2018] for planning. Specifically, it uses the utility function described in Equation (1) for the sequence
of rule applications as its objective function. The tasks of assigning proper adaptation rules to each
CF and ordering them are defined as optimization problems. This approach maximizes the objective
function as the overall utility of the system after each decision.

U-driven. As described in Section 4, our approach computes the impact of different adaptation
rules at runtime using the utility function shown in Equation (1). It selects the rule with the largest
impact on the overall utility and the lowest costs in the case of identical impacts. The order in which
CFs are addressed is determined by the ratio of utilitylncrease/costs, which are all dynamically
computed based on the runtime observations regarding the affectedComponent of the CFs.

Thus, the three approaches have different planning phases while they share the same incremental
behavior—as suggested for our approach—for the other MAPE-K phases. For instance, the solver
approach uses the constraint solver only to solve the planning problem of selecting the best repair
rules and their order for execution. Possible ways of how to monitor and modify the system/runtime
model are completely pre-defined and identical for all approaches.

6.1 Experiments for Single MAPE-K Runs

In the following, we conduct a set of analytical experiments that separately evaluate the two
main steps of our approach for a single MAPE-K run: (1) selecting the best adaptation rules and
(2) ordering them for execution. Then, we discuss experiments for different sizes of the mRUBiS
architecture to investigate the scalability and experiments with different failure traces extracted
from a synthetic failure profile model to investigate the optimality in terms of reward.

6.1.1 Analytical Experiments. We consider mRUBiS with 100 shops (1,800 components). The
experiments start with occurrences of three failures of type CF1, CF2, and CF3 causing the utility of
the system to drop. These utility drops are followed by a single MAPE-K run that resolves the three
CFs by executing three repair rules. Here, we show that the u-driven approach makes the optimal
decision during rule matching for CFs by selecting the rule that results in the maximum increase
in the overall utility. In contrast, the static approach fails to do so and hence is non-optimal. We
also show how the order in which the adaptation rules are executed impacts the achieved reward.

When a match for an issue is detected, our approach computes the utilitylncrease and the costs
of all possible matches among the adaptation rules. The effect on the increase in the utility achieved
by applying each rule remains in the system as long as the same component is not affected again
by another issue. However, the costs of applying a rule has only a short-term effect on the overall
utility. Cost defines when the expected increase of the utility can be realized. Thus, in our approach,
rules with the highest utilitylncrease are prior to those with lower increase but less costs. The
type of the occurred issue and the specific component that is affected by the issue determine the
utilityIncrease and costs.
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Fig. 10. Lost reward of the static approach compared to the u-driven approach due to non-optimal rule
selection (a) and rule ordering (b).

Figure 10(a) shows a case where the static approach fails to reach the maximum utility due to
non-optimal rule selection. Both the static and u-driven approaches select CF3 to be resolved first.
The static approach performs a Heavy Weight (HW) Redeployment while the u-driven approach
Replaces the affected component and reaches a higher utility. Here, the static approach selects a
rule with less cost and thus achieves the utility increase earlier than the u-driven approach (cf. the
hachure region), but it obtains a considerably smaller reward. The impact of this non-optimal rule
selection remains in the system during the whole experiment and results in a lower reward for the
static approach equal to the area of the gray-colored regions. As the second decision, the static
approach resolves CF1 by a Light Weight (LW) Redeployment while the u-driven approach decides
to resolve CF2 by a Restart of the component that has a higher impact on the overall utility. As
the last decision, the static approach resolves CF2 by a Restart and reaches the same increase in
utility as the u-driven approach in the second rule execution, but with a delay and thus with a
lower reward as the utility is lower during the execution time. The u-driven scheme finishes the
adaptation by repairing CF1 with a Restart rule. The static approach is slightly faster than the
u-driven approach due to avoiding all of the runtime computations. The gray and hachured regions
respectively represent the lost and gained reward of the static approach compared to the u-driven
approach. The reward gained by the static approach due to less overhead and choosing the cheaper
HW Redeployment over the Replace rule does not compensate for the loss of reward due to making
non-optimal decisions.

To back our claim for optimality of the u-driven approach, this approach executes the adaptation
rules in the optimal order so that the maximum utility over time is achieved. We investigate this
aspect in Figure 10(b). The order in which our approach resolves the issues is such that those repair
rules resulting in larger utility increase to cost ratio are prioritized. The static approach decides for
the order at design time. This can be done considering the type of the issues. A reasonable order of
rules based on the three issues in our example is (1) removals of components (CF3); (2) crashes of
components that, however, might still be operating to a certain extent (CF1); and (3) occurrences
of Failures in terms of exceptions (CF2). This ordering fails to take into account the actual utility
provided by the affectedComponent that is a function of criticality, connectivity, and reliability
(cf. Section 2.2). These properties can dynamically change such that they are only known at runtime.
Figure 10(b) illustrates a case where the static approach fails to address the issues in the right order.
Despite the fact that the static approach makes the optimal decision regarding the rule selection and
that both the u-driven and static approaches achieve the same final utility, which is not necessarily
always the case (cf. Figure 10(a)), the static approach loses reward due to the suboptimal ordering
(gray regions) and gains only a slight improvement due to the lower overhead in planning time
(hachured region).

Considering Figure 10(b), the u-driven approach first repairs CF2 and the static one CF3. The
static approach applies a HW Redeployment reaching a slightly higher utility but with considerably
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Fig. 11. Lost reward of the solver approach compared to the u-driven approach due to longer planning time.

larger costs than the u-driven approach that Restarts the affected component. Because of the large
cost of the rule selected by the static approach, the static approach loses utility that is equal to
the area of the first gray region. In contrast, it gains utility that is equal to the hachured area over
the u-driven approach due to repairing a different issue first. As the second repair decision, the
static approach resolves CF1 by a Restart while the u-driven approach resolves CF3 by a HW
Redeployment. Finally, the static approach resolves CF2 by a Restart and reaches the same increase
in utility as the u-driven approach but loses utility over time due to the suboptimal execution order.
The u-driven approach saves the repair of CF1 by a Restart for the last repair decision because in
this scenario, repairing a CF1 has less impact than CF2 and CF3 on the utility.

We conducted the same experiments as in Figure 10(b) to compare the solver and u-driven
approaches. Both approaches make identical decisions regarding the rule matching and ordering
of the adaptation rules so that both reach the optimal configuration and achieve the same final
utility (Figure 11). However, the solver approach achieves it after a considerable delay due to its
computational planning overhead, which depends on the size of the architecture and number of
the issues. Despite the fact that both approaches select each time the same rules with identical
costs and utilitylncrease, and decide on the same ordering of the rules, the planning overhead of
the solver approach causes a delay that results in the lost reward compared to the the u-driven
approach (see the dotted area in Figure 11).

6.1.2  Experiment Design. The following experiments for scalability and reward share the same
experiment design. We use a synthetic failure profile model to generate synthetic failure traces.
These traces are synthetic because the distribution of the failure profile model is not based on
real-world data. Particularly, we generate four different failure traces. Each trace has a fixed failure
group size (FGS)—that is, the number of failures occurring before each MAPE-K run (cf. Gallet et al.
[2010]), of either 1, 10, 100, or 1,000. Moreover, the different CF types of the failures are equally
distributed for each trace. The failure exposure time (FET) is the time window within which the
failures belonging to the same FGS (i.e., before one MAPE-K run) occur. For an FGS larger than 1,
we assume that all of the failures of this group occur at once—that is, FET is only an instant and
therefore is considered as 0. The inter arrival time (IAT) is the time between occurrences of two
groups of failures. In the synthetic failure profile model, we assume a long enough IAT between
the MAPE-K runs such that all of the current failures are resolved before the failures of the next
group occur. The failure density of each trace is the overall number of failures injected by the trace.
For example, considering four MAPE-K runs, the failure density of a trace with FGS of 10 (i.e., 10
failures occur before each MAPE-K run) is 40.

6.1.3 Experiments for Scalability. To compare the planning time and scalability of the three
self-healing approaches, we tested them on mRUBIS with four different sizes of the architecture
(18, 180, 1,800, and 18,000 components) and with four synthetic failure traces (FGS of 1, 10, 100, and
1,000 failures). For each experiment, we consider single MAPE-K runs, one self-healing approach,
one size of the architecture, and one trace to measure the planning time of the approach. Each
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Table 2. Planning Time of the Three Self-Healing Approaches (in milliseconds)
1 failure 10 failures 100 failures 1,000 failures
# Comp. | Static U-driven Solver | Static U-driven Solver | Static U-driven Solver | Static U-driven  Solver
18 0.76 0.89 5.02 | 10.37 14.36  55.68 - - - - - -
180 0.68 0.89 5.01 9.71 13.58 59.07 | 14.22 17.70  219.54 - - -
1,800 0.61 0.74 4.83 | 10.60 13.47 58.24 | 13.82 26.65 211.09 | 54.50 60.09 3,216.60
18,000 0.65 0.71 4.90 | 10.14 13.87 71.93 | 21.80 26.38  271.51 | 127.80 17131 3,611.95
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Fig. 12. Planning time of the three approaches.  Fig. 13. Reward of the three approaches over 50

MAPE-K runs.

experiment is repeated 300 times or until the standard deviation of the planning time is below 5%.
The measurements follow benchmarking guidelines [Sestoft 2013], and we report the mean of the
results. For the experiments, we only consider meaningful combinations of architecture size and
number of failures. Thus, we do not inject a large number failures to small architectures. Therefore,
we do not present any data where more than 10 (100) failures occur in a system with 18 (180)
components. Since we are interested in the planning phases of the three self-healing approaches
that have the same monitoring, analysis, and execution phases, we only present the data for the
planning phases in Table 2.

As the number of injected failures increases, the planning time of all approaches typically
increases as well. However, this growth is more extreme for the solver that has to solve larger
optimization problems. For all of the combinations of numbers of failures and architecture sizes in
Table 2, we consider the planning time of the static approach as the baseline. The planning time
of the solver is at least 447% (10 failures, 18 components) and at most 5,802% (1,000 failures, 1,800
components) larger than the baseline. For the u-driven approach, the minimum difference compared
to the baseline is 9% (1 failure, 18,000 components) and the maximum is 92% (100 failures, 1,800
components). The solver approach always reaches the same optimal configuration as our u-driven
approach, but it has an extreme planning overhead in terms of execution time of the planning phase
for large numbers of failures and large architectures. Figure 12 visualizes the planning time of the
self-healing approaches for the synthetic failure traces. To achieve a more precise interpolation,
we added additional data points to the ones in Table 2. For this purpose, we extracted additional
synthetic failure traces with an FGS of 200, 300, ..., 900 from the synthetic failure profile model
and conducted further experiments for these traces. The results show that the solver approach does
not scale in contrast to the static and u-driven approaches.

6.1.4 Experiments for Reward. To compare the reward—that is, the utility over time of the
self-healing approaches—we tested them on mRUBIS with 1,800 components. We conducted the
experiments for reward on multiple MAPE-K runs (50) to make these experiment consistent with
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the other reward experiments in Sections 6.2.4 and 6.3.4. Since we are looking into longer simulation
runs (50 MAPE-K runs), we observe rather large numbers for the reward. The reward of each
approach is measured for each of the four synthetic failure traces with an FGS of either 1, 10, 100,
or 1,000 (cf. Section 6.1.2). In our earlier work [Ghahremani et al. 2017], we report on the reward
of the self-healing approaches for synthetic failure traces and for single MAPE-K runs. We now
extend the single MAPE-K run to map on multiple MAPE-K runs. For this purpose, we consider
a duration of 24 hours during which 50 groups of failures occur while the 50 MAPE-K runs are
uniformly distributed over 24 hours. This results in an IAT of 1,728 seconds (24 hours divided by
50). We manually confirmed that 1,728 seconds is long enough for the IAT for the most expensive
case—that is, the solver approach for the failure trace with an FGS of 1,000 and thus with the largest
failure density.

Figure 13 depicts the results of the experiments in terms of reward of the three self-healing
approaches for each of the four failure traces. The results refer to 50 MAPE-K runs, and the IAT
is 1,728 seconds. As the FGS increases, the difference between the reward of the u-driven and
solver approaches becomes larger. This is due to planning overhead of the solver as discussed in
the context of Figure 11. Larger numbers of failures cause more overhead and therefore a larger
loss of reward for the solver approach. This effect is not visible in traces with a smaller FGS of
1 and 10. For all traces and FGS, the reward of the static approach is less than the reward of the
u-driven approach. Non-optimal decisions and wrong ordering of the adaptation rules in the static
approach cause the loss of reward as discussed earlier with Figures 10 and 11. The loss of reward
due to non-optimal decisions can be very severe for a large IAT since the system is performing
with the non-optimal utility for a considerable long time. Similarly, the solver approach obtains for
all traces a higher reward than the static approach because it always has enough time (i.e., the IAT
is large enough) to optimally resolve the current failures within one feedback loop run before the
next group of failures occurs.

6.2 Experiments for Multiple MAPE-K Runs

The experiments in Sections 6.1.3 and 6.1.4 reflect on the scalability and reward of the self-healing
approaches for the failure traces extracted from a synthetic failure profile model. Although these
traces are useful for a preliminary analysis of the scalability and reward, the results of the evaluation
are difficult to generalize because they are only based on a single failure profile model. In addition,
this failure profile model is synthetic and not based on any real-world data.

As described in Section 6.1, an assumption of the synthetic failure profile model is that IAT is
large enough so that all occurring failures can be resolved by a MAPE-K run before a new group
of failures will occur. However, there is no guarantee that this assumption always holds, and it
is a simplification of realistic failure traces. To have more robust and generalizable findings and
to explore more diverse characteristics of failure profile models, we use several realistic failure
profile models with various IAT values to generate realistic failure traces for the experiments in
this section.

In the following, we first elaborate on the importance of certain characteristics of failure profile
models for the reward using an analytical experiment. We then introduce several realistic failure
profile models that we use for the experiments and describe how we generate realistic failure
traces from them. Finally, we investigate how the scalability and reward of different self-healing
approaches are influenced by different realistic failure profile models.

6.2.1 Analytical Experiment. This analytical experiment investigates the impact of characteris-
tics of failure profile models for the reward. The experiment uses mRUBIS with 100 shops (1,800
components) and randomly injects multiple failures of type CF1, CF2, and CF3 as a failure group
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Fig. 14. Lost reward of the solver approach compared to the u-driven approach due to longer planning time
for a short IAT.

causing a drop of the utility of mRUBIS. The utility drop is followed by one MAPE-K execution.
This MAPE-K run plans for and resolves all of the existing failures. In the case that new failures
are occurring while the MAPE-K cycle is running, the planner will not take these failures into
account. Nevertheless, these newly occurring failures still cause a utility drop even if they are not
yet considered by the planner.

Figure 14 shows a variant of the experiment presented in Figure 11 regarding the loss of reward
of the solver approach compared to the u-driven approach because of the solver’s overhead in
planning time. In this experiment, this overhead is so large that new failures occur before the solver
finishes the current planning. Thus, IAT is shorter than the time required by the solver approach to
resolve all existing failures. Considering Figure 14, the first drop in utility is followed by the first
MAPE-K execution where all of the approaches plan for repairing the detected failures. Both the
static and the u-driven approaches are fast enough to resolve the failures before the next group
of failures occurs. Due to the longer planning time of the solver, the solver approach misses the
on-time detection of the second group of failures. Therefore, the utility drop caused by the new
group of failures remains in the system until they are detected and resolved during the second,
delayed MAPE-K run. In contrast, the static and u-driven approaches have already resolved the first
group of failures and obtained the increase in the utility by the time the second group of failures
occur. The dotted areas in Figure 14 represent the lost reward of the solver approach compared to
the u-driven approach. The gray regions represent the lost utility of the static approach compared
to the u-driven approach, whereas the hachured regions depict the gained utility of the static
approach compared to the u-driven approach. This experiment clarifies that in situations where
IAT is shorter than the repair time, there will be an additional loss of reward if the planning or the
subsequent execution phase overlaps in time with the occurrences of failures. This is because newly
occurring failures in the system are temporarily neglected and hence make the system perform
with a lower utility.

6.2.2 Experiment Design. As revealed by the foundational work on characterizing failure
profile models in computer systems [Castillo et al. 1982; Iyer et al. 1982; Tang and Iyer 1993],
failures in such systems often have a bursty characteristic due to the effects of failure propagation.
A single failure in the system triggers a sequence of failures in other system components within a
short period of time. Numerous fault-tolerant algorithms make the assumption that failures occur
independently [Heath et al. 2002; Zhang et al. 2005]. This assumption contradicts bursty failure
profile models and neglects that occurrences of failure bursts often result in correlated availability
behaviors of different components. losup et al. [2006] showed that ignoring the bursty character of
failure profile models results in overestimating the transient reward rate by an order of magnitude,
even if only as few as 10% of the failures conform to a bursty profile model.

In the following, we describe realistic failure profile models that are based on failure traces
of real-world computer systems and that we will use for the evaluation. Table 3 compares the
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Table 3. General Characteristics of Different Failure Profile Models

Synthetic Failure Profile Model Realistic Failure Profile Models

Failure Group Size (FGS) Constant Varies for each MAPE-K run
Inter Arrival Time (IAT) Large enough Varies for each MAPE-K run
Failure Exposure Time (FET) 0 Larger than 0
- J 77777777 Failure
Failure N  distribution
Group IAT ! ! within each
Size —A L’””‘} burst
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Fig. 15. Failure group size (FGS), failure exposure time (FET), and inter arrival time (IAT) of failure profile
models.

characteristics of the synthetic failure profile model used in Section 6.1 to the realistic models used
in this section. FGS and IAT of the failure traces derived from the realistic failure profile models vary
for each MAPE-K run while they are constant and large enough in the synthetic model. The FET is
larger than 0 in the realistic failure profile models so that failures take some time to propagate in
the system. In contrast, the FET is 0 in the synthetic failure profile model so that all failures of a
group occur at once.

Realistic failure profile models. To investigate the impact of realistic failure profile models on the
scalability and reward of the self-healing approaches, we studied three different models. These
models are constructed from real-world failure traces provided by Gallet et al. [2010], originate
from different computer systems, and differ in scale and volatility. As mentioned previously, failure
traces are derived from failure profile models for a certain duration, and the failure density of a
trace refers to the overall number of failures within this duration.

Of all failure profiles models [Gallet et al. 2010], we selected three models with different failure
densities and sizes of the originating system: Grid5000, LRI, and DEUG. The Grid5000 model
originates from the Grid5000 system, in which a significant fraction of failures occurs in bursts.
Grid5000 is an experimental grid environment with more than 2,500 processors and 1,288 nodes
[Tosup et al. 2007], which is comparable to the size of mRUBIS with 100 shops (1,800 components).
The event data for Grid5000 has been gathered over 1.5 years of monitoring [Kondo et al. 2010].
The other models, DEUG and LRI, are constructed from application-level traces of real enterprise
desktop grids that contain bursts of failures [Gallet et al. 2010] and have been collected over 1
month from about 100 (DEUG) and 40 (LRI) hosts [Kondo et al. 2007].

All three failure profile models fit statistical distributions to IAT and FGS. The latter is the failure
group size that corresponds to the number of failures that occur in a burst—that is, in a group of
failures. Moreover, Gallet et al. [2010] consider different window sizes for monitoring and detecting
the failure occurrences in each model. This window size is equivalent to the failure exposure
time (FET) illustrated in Figure 15. Thus, each burst occurs within the FET. However, Gallet et al.
[2010] do not clarify how the failures are distributed within each burst. Therefore, we assume that
failures propagate following a normal distribution during each burst (cf. Figure 15). Table 4 lists the
distributions proposed by Gallet et al. [2010] for IAT and FGS for the three failure profile models
along with the considered FET.

From each realistic failure profile model LRI, DEUG, and Grid5000, we extracted a short and a
long failure trace. As shown in Table 4, the short traces include n = 50 occurrences of bursts. Their
durations are different (41.2, 21.4, and 24 hours) for each model due to different distributions of
IAT. The long traces last for 30 days and differ in the number of bursts (1,355, 2,843, and 1,678) for
each model. Finally, Table 4 lists the failure densities of the traces.
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Table 4. Characteristics of the Realistic Failure Profile Models LRI, DEUG, and Grid5000 and the Variants
Uniform, Single, and Bigburst of the Grid5000 Model.

LRI DEUG Grid5000 (Burst) ‘ Uniform Single Bigburst
FGS LOGN(1.32,0.77)  LOGN(2.15,0.70)  LOGN(1.88,1.25) | N(22.85,20.68) 1 N(238,97.3)
IAT (seconds) LOGN(-1.46,1.28) LOGN(—2.28,1.35) LOGN(-1.39,1.03) 1728 77.4 N(3521.4,5418.6)
FET (seconds) 100 150 250 250 N/A 250
No. of bursts n (short trace) 50 50 50 50 1,116 6
No. of bursts n (long trace) 1,355 2,843 1,678 - - -
Duration (hours) (short trace) 41.2 21.4 24 24 24 24
Duration (days) (long trace) 30 30 30 - - -
Failure Density d (short trace) 318 666 1,116 1,116 1,116 1,116
Failure Density d (long trace) 7,568 32,895 25,279 - - -
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Fig. 16. Failure group size (FGS) distributions for the variants of the Grid5000 failure profile model.
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Variations of realistic failure profile models. To ensure a fair and meaningful comparison between
the experiment results for the different models, we extracted traces from these models that have the
same failure density of d = 1,116 (as in the short trace of the original Grid5000 model in Table 4). We
modified parameters of the Grid5000 failure profile model (cf. Table 4) to obtain more variants with
extreme characteristics. Using these variants, we study the impact of extreme characteristics of
failure profile models on the scalability and reward of different self-healing approaches. In addition,
using more and extreme failure traces for the experiments allows us to evaluate the robustness of
the approaches and results. Based on the original Grid5000 model that is named the burst model
(cf. Gallet et al. [2010]), we constructed three modified failure profile models listed in Table 4: (1) the
uniform model in which failures are uniformly distributed, (2) the single model with a single failure
at each burst, and (3) a bigburst model with only large bursts.

Burst model. For the original Grid5000 failure profile model as provided by Gallet et al. [2010],
we generate the same short trace as shown in Table 4 with n = 50 occurrences of failure bursts.
Given the statistical distribution of IAT, it takes 24 hours for the 50 failure bursts. Figure 16 shows
the generated FGS distribution for the burst model.

Uniform model. We construct a uniform failure profile model from the Grid5000 model, which has
the same failure density d during 24 hours as the burst model, and which has a uniform distribution
for IAT and FGS. To construct this model, we consider the original set of 50 failure groups extracted
from the Grid5000 model for the short trace (see Table 4) as the set S. A normal sample distribution
is extracted from S using statistical bootstrapping [Davison and Kuonen 2002; Efron and Tibshirani
1993]. For this purpose, we randomly re-sampled S using statistical bootstrapping and formed a new
set §’ of the mean values of each sample set. A normal distribution N(us', 20%,) is used to generate
random values for FGS. The resulting set consists of uniformly distributed values within a certain
margin extracted from the original set S. Applying this distribution, we generated a sequence of
normally distributed values for FGS while keeping the same number of bursts n as in the burst
model. Thus, the uniform model takes all d failures within 24 hours and distributes them among n
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Fig. 17. Planning time for all failure profile Fig. 18. Reward for short traces of realistic failure pro-
models. file models.

occurrences by using the extracted uniform distribution. Figure 16 sketches the range of the original
FGS (in the burst model) that is also present in the uniform model. The IAT is the average of the
IAT values in the burst model. Therefore, the uniform model is a sequence of failure groups with
normally distributed sizes that occur in equal intervals. As mentioned earlier, the failure density d
is the same as in the burst model (see Table 4).

Single model. To consider a naive failure profile model that—to the best of our knowledge—has
been used in many existing work on self-healing (e.g., Angelopoulos et al. [2014]; Carzaniga et al.
[2008]; Casanova et al. [2013]; Di Marco et al. [2013]; Magalhaes and Silva [2015]; Perino [2013]),
we construct the single failure profile model. In this model, failures are not correlated so that they
arrive individually and not in groups. Thus, FGS = 1 (cf. Figure 16). In the failure trace extracted
from this model, individual failures are equally distributed within the 24 hours keeping the same
failure density d. The number of occurrences of bursts n equals d since each burst includes exactly
one failure (see Table 4).

Bigburst model. We also consider the other end of the spectrum—that is, occurrences of large
failure bursts with 150 to 450 failures at each burst. Similar to the construction of the uniform
model, we use statistical bootstrapping to extract a corresponding set from the original set S. To
achieve large FGS, only the part of S that is above a certain threshold (i.e., FGS > 100) has been
re-sampled for bootstrapping (see Figure 16). To keep the same failure density d, the number of
bursts decreases to n = 6 since the failures occur only in large group sizes. Hence, IAT increases
accordingly. The IAT values for this model are extracted by bootstrapping from the randomly
re-sampled IAT values where IAT > 1,000 seconds from the IAT values of the original Grid5000
model (see Table 4).

6.2.3 Experiments for Scalability. In the following, we investigate whether using the traces
extracted from the realistic failure profile models and their modified variants (see Table 4) confirm
the scalability results that we obtained for the synthetic models in Section 6.1.3. We used mRUBiS
with 100 shops (1,800 components) and conduct the same scalability experiments as before. The
results are as follows.

Figure 17 shows the planning time for each of the three self-healing approaches considering
all of the six short failure traces, each generated from the different failure profile models listed in
Table 4. These results are the averages of the planning time in milliseconds over 300 repetitions for
each of the six traces. Employing failure traces of the single or uniform model results in a large
population of data points (i.e., planning time measurements for certain FGS values) for FGS < 50
(see FGS distributions for the uniform and single models in Figure 16). Therefore, in Figure 17, to
avoid optimizing the interpolation curve for the range of 1 < FGS < 50, we randomly sampled for
all three self-healing approaches the data points for FGS < 50. Consistent with the results for the
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synthetic failure profile models (cf. Section 6.1.3), the u-driven approach has a lower overhead in
terms of planning time than the solver approach, and it is close to the static approach that does
not require much runtime planning effort. This also holds for large numbers of failures. Similar
to Figure 12, both the static and u-driven approaches have linear growth in planning time as the
FGS increases. However, the planning time of the solver approach increases with a polynomial
gradient as the FGS increases. Therefore, we can confirm the tendency observed for the synthetic
failure traces in Figure 12 by the results shown for the realistic failure traces in Figure 17: the solver
approach does not scale well in contrast to the static and u-driven approaches.

6.2.4 Experiments for Reward. The following experiments compare the reward of the three
different self-healing approaches using the realistic failure profile models and mRUBIS with 100
shops (1,800 components). Each simulation is conducted for the short (n = 50 occurrences of bursts
lasting roughly between 21 and 41 hours) and long (30 days with different but fixed numbers of
occurrences) traces generated from the LRI, DEUG, and Grid5000 failure profile models, as well as
the short traces generated from the uniform, single, and bigburst models of Grid5000 (cf. Section 6.2.2
and Table 4).

Figure 18 shows the reward of the self-healing approaches for the short traces of the LRI, DEUG,
and Grid5000 models. Since these models have different characteristics (e.g., the generated traces
have different failure densities for each model), the results cannot be compared across them.
However, we can compare the results in terms of the reward achieved by the three self-healing
approaches within each model and trace. As shown previously, if many failures occur, the solver
approach considerably requires more time for planning than the u-driven and static approaches.
Consequently, for the short Grid5000 trace with a total of 1,116 failures, the solver approach achieves
the lowest reward compared to the other two approaches (see Figure 18). In contrast, for the short
DEUG and LRI traces with a total of 666 and 318 failures, the solver approach performs slightly better
than the static approach. Thus, the different failure densities of the traces (cf. Table 4) influence the
performance of the different self-healing approaches.

Moreover, if the IAT is shorter than the time an approach needs to resolve the failures, there will
be a more severe loss of reward (cf. Figure 14). This effect applies to the solver approach because of
the costly planning, which is a further reason that this approach achieves a considerably lower
reward than the other approaches for the Grid5000 trace with a high failure density while not to
such an extent for LRI and DEUG traces with lower failure densities. For the LRI model that has the
lowest failure density, the performance of the solver approach is close to the u-driven approach,
whereas this gap is larger for the DEUG and Grid5000 traces that have higher failure densities (see
Figure 18).

Figure 19 shows the reward of the self-healing approaches for the long traces generated from
the LRI, DEUG, and Grid5000 models. Using these traces covering roughly a period of 30 days,
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we can observe the longer execution of the approaches. Particularly, we observe that the static
approach loses severely more reward than the other two approaches for all failure profile models.
As discussed for the analytical experiments in Section 6.1.1, the impact of non-optimal decisions
made by the static approach on the reward can remain permanently in the system. Therefore, the
reward loss due to non-optimal decisions remains and propagates through 30 days of execution,
which considerably reduces the achieved reward. Similar to the results in Figure 18, the solver
approach achieves less reward than the u-driven approach due to the planning overhead. However,
the difference is that the reward achieved by the solver approach is considerably larger than the
reward achieved by the static approach. The reward loss due to the overhead of the solver approach
seems to be compensated over time and does not severely impact the system.

As the failure densities of the traces differ (cf. Table 4), the reward achieved by the self-healing
approaches for one trace cannot be compared to the reward for a different trace. To enable a
comparison across traces, we use traces with an equal failure density. Therefore, we use the modified
variants of the Grid5000 model to generate traces with the same failure density (cf. Section 6.2.2).
The reward achieved by the self-healing approaches for the modified variants (single, uniform, and
bigburst) and the original Grid5000 model (burst) is presented in Figure 20. As discussed for the
analytical experiment in Section 6.2.1 and confirmed by these results, certain characteristics of the
failure profile models influence the reward of the self-healing approaches. The solver approach
achieves the lowest reward among all of the three approaches for the burst and bigburst models
whose traces have a large FGS. Although the difference between the reward of the u-driven and
static approaches is small, the u-driven is still achieving a larger reward for these two models. For
the bigburst model, the overhead of the u-driven approach causes the reward loss compared to
the burst model. The difference between the reward of the solver and static approaches is also
larger for bigburst than for the burst model. The performance of the solver approach is negatively
dominated by the planning overhead. The static approach achieves a larger reward than the solver
approach, although it is not optimal, as confirmed in Section 6.1.

For the uniform model, the solver approach achieves more reward than the static but less than
the u-driven approach. In this case, the FGS is smaller than in the burst and bigburst models so
that the impact of the solver’s costly planning is less severe. However, there is still some loss of
reward compared to the u-driven approach because of the lower overhead of the u-driven approach.
The single model does not affect the reward of the solver and u-driven approaches because it is a
simple model (i.e., at each arrival of failures, there is only a single failure to repair). In this case, the
static approach achieves the lowest reward among the three approaches (cf. Figure 20) since it is
not optimal in selecting the best adaptation rule for the failure (this corresponds to the impact of
non-optimal decisions shown in Figure 10(a)).

Summing up, the experiments with the realistic failure profile models having different charac-
teristics regarding FGS, IAT, FET, failure density, and duration (cf. Table 4) show that the static
and u-driven approaches scale well in contrast to the solver approach and that the u-driven ap-
proach outperforms—in terms of achieved reward—the static approach in general and the solver
approaches in cases where failures occur in bursts. Only in the single model do the u-driven and
solver approaches achieve the same reward (cf. Figure 20), because no costly planning is required
when there is only a single issue to resolve. These results confirm the results obtained for the
synthetic failure profile model in Section 6.1.

6.3 Possible Violation of Assumptions

In this work, we made several assumptions, as listed in Table 1. We discussed in Section 5.4 that
these assumptions are usually justified for rule-based self-healing approaches. For instance, we
assume a deterministic and effective behavior of adaptation rules that is always able to repair the
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Fig. 21. Analytical experiment with probabilistic adaptation rules.

occurred failures (assumption (A2)). However, there might be cases in which rules will not always
succeed in repairing failures, which violates assumption (A2). We will therefore investigate such
cases by considering probabilistic adaptation rules—that is, each rule has a likelihood for its success
in resolving a failure. If a rule is not successful, the failure remains in the system and is dealt with
during the next MAPE-K run.

6.3.1 Analytical Experiments. For the analytical experiments, we use mRUBiS with 100 shops
(1,800 components). The experiment starts with random occurrences of multiple failures of type
CF1, CF2, and CF3 as one failure group, which causes a drop of the utility of mRUBIS. The utility
drop is followed by one or more MAPE-K runs.

Figure 21(a) shows the case where the first MAPE-K run plans for and resolves all of the existing
failures. All of the applied adaptation rules are 100% effective so that they successfully resolve the
failures. Thus, mRUBIS continues operating with the similar level of utility as before the failures
have occurred. Figure 21(b) repeats the same experiment, but the success likelihood of all adaptation
rules is now set to 50%. After the first MAPE-K run, all approaches fail to bring back the utility of
mRUB;S to the level before the failures have occurred. The failures that could not be resolved remain
in the system and require additional attempt(s) (MAPE-K runs) to repair them. Each MAPE-K run
has one attempt of executing the selected adaptation rules. This delays the point in time until all
failures are resolved.

Considering Figure 21(b), the dotted area is the lost reward of the solver approach compared to
the u-driven approach. The gray (hachured) areas represent the reward loss (gain) of the static over
the u-driven approach. In general, the longer a failure remains in the system—for instance, because
of ineffective adaptation rules—the larger is the reward loss. Moreover, as confirmed in Sections 6.1
and 6.2, the solver approach has a larger planning time and thus requires more time to resolve the
failures than the other approaches. Thus, the reward loss is larger for the solver approach.

6.3.2 Experiment Design. The experiments in this section are designed according to Sec-
tion 6.2.2, but they are limited to the short trace extracted from the Grid5000 model. We selected
this trace since it has the highest failure density among the short traces (cf. Table 4). We consider
different success likelihoods of either 100%, 75%, 50%, or 25% for all adaptation rules and mRUBiS
with 100 shops (1,800 components).

6.3.3 Impact on Scalability. Reduced success likelihoods of the adaptation rules require addi-
tional MAPE-K runs during the IAT to resolve the remaining failures in mRUBIS. Unless IAT is very
short such that not enough repair attempts in additional MAPE-K runs can be done, the violation
of assumption (A2) will not affect the scalability of the self-healing approaches because the size
of the planning problem does not change. A violation of assumption (A3a) results in adaptation
rules causing new issues (cf. Section 5.4). This effect introduces additional failures to the originally
detected ones. Therefore, it can impact scalability by increasing the size of the failure groups. Such
an effect influences all of the self-healing approaches, although not equally. Those with a more
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Fig. 22. Reward achieved by self-healing approaches with probabilistic rules and different success likelihoods.

costly planning, such as the solver approach, are more likely to suffer from this effect. The violation
of assumptions (A3b) and (A4) imply the existence of dependencies between the adaptation rules.
Detecting and resolving such dependencies can complicate the planning phase and require more
exhaustive solutions, such as model checkers, to address this problem. This would impact negatively
the scalability of the approach. Since this effect is directly related to the adaptation rules and not to
the overall self-healing approaches, the impact will be the same for all approaches particularly if
they all use the same technique to resolve these dependencies. Violation of assumption (A6) can
potentially influence the scalability of the proposed scheme, but this will affect all self-healing
approaches evenly since it will add increased costs equally to all approaches.

Finally, a violation of the remaining assumptions (A1) and (A5) will not have any impact on the
scalability of the approaches. As discussed in Section 5.4, the violation of assumption (A1) does not
hold for the case of self-healing systems, and the violation of assumption (A5) indicates the need
to extend the context for adaptation rules. This happens at design time and does not impact the
runtime scalability of the self-healing approaches.

6.3.4 Experiments for Reward. In this section, we demonstrate the impact of violating assump-
tion (A2) on the reward. Figure 22 shows the reward achieved by the self-healing approaches with
different likelihoods of success for the adaptation rules. In the case of 100% success likelihood,
assumption (A2) holds. As the success likelihood decreases, all self-healing approaches gain a lower
reward since failures remain in the system for longer time until they are finally resolved. The solver
approach, however, loses more reward compared to the static and u-driven approaches because of
its costly planning. As the rules fail to resolve the failures, the MAPE-K loop keeps re-planning
for the remaining failures with additional runs. Meanwhile, new failures might occur, increasing
the number of failures to be repaired and thus the size of the optimization problem to plan the
self-healing. Particularly, the performance of the solver approach is mostly affected by the number
of failures (cf. Figures 17 and 18). Thus, the most severe impact of the success likelihood can be
observed for the solver approach due to its costly planning. In cases with small success likelihoods
(i.e., 25%), more frequent planning is required to resolve the remaining issue and the expected
reward of the solver approach drops drastically. The u-driven approach, despite its minor overhead,
still manages to outperform the static approach that has no planning overhead. Thus, the u-driven
approach outperforms the static and solver approaches considering different success likelihoods of
adaptation rules and therefore in settings where assumption (A2) is violated.

6.4 Threats to Validity

6.4.1 Internal Validity. Threats to internal validity concern how we performed the experiments
and interpreted the results. To address such threats, we systematically investigated the scalability
and reward of the static, solver, and u-driven self-healing approaches by using the controlled
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simulation environment mRUBIS [Vogel 2018] for the experiments. Particularly, we are interested
in the effects of different planning mechanisms on the scalability and reward. To focus on the effects
of planning, the three self-healing approaches that we compare to each other share the identical
monitoring, analysis, and execution phases of the MAPE-K feedback loop, and they use the same
architectural runtime model and utility function (knowledge). Moreover, the experiments are driven
by deterministic failure traces, constructed from failure profile models, that enable replicating a
simulation for the different approaches and over multiple runs. This allows us to fairly compare the
approaches and to take variations of the measured execution time for the planning into account.
Thus, we used various failure profile models and traces to investigate different effects of planning
on scalability and reward. For instance, to investigate scalability, we focused on scaling the FGS of
injected failures through the traces and the size of the mRUBIS architecture through the mRUBiS
simulator.

Moreover, we conducted multiple specific experiments that aim for either an analytical purpose,
scalability, or reward, that consider either single or multiple MAPE-K runs, and that satisfy either
all or only a subset of the assumptions so that the results and their interpretation are always focused
to concrete questions without confounding different effects and aspects of our overall evaluation.
Finally, we followed the benchmark guidelines proposed by Sestoft [2013] in all experiments to
obtain trustworthy measurements and results.

6.4.2 External Validity. Threats to external validity may restrict the generalization of our
evaluation results outside the scope of our experiments. Such threats are the use of only one system
under adaptation, the specific failure profile models, the specific utility function, and the three
self-healing approaches. To mitigate these threats, we use mRUBIS as the system under adaptation
that allows the injection of generic architectural failures and the repair of these failures by generic
architectural adaptation rules. We can consider mRUBIS as a generic and representative exemplar
for architectural self-healing. Besides the synthetic, we especially use realistic failure profile models
that originate from real-world systems [Gallet et al. 2010] and thus characterize how software
system failures occur and propagate in practice. We even extended these realistic models to cover
edge cases such as single, isolated failures or big bursts with up to about 450 failures. Thus, we have
some confidence that our evaluation results hold for real-world failure behavior. The threat of using
a specific utility function is negligible in our opinion since the same function is used for all three
self-healing approaches. Thus, the utility function does not cause any effect that differs between the
approaches, which could otherwise influence the results, so that we expect similar results with any
other utility function. We compared our u-driven approach to two other self-healing approaches in
our experiments so that the relative results cannot be generalized to other approaches. We selected
these two approaches since they cover edge cases: the static approach scales very well but often
achieves non-optimal rewards, whereas the solver approach typically achieves optimal rewards but
does not scale due to the costly solving of the optimization problem. Still, considering these edge
cases, we can conclude that our u-driven approach is both scalable and optimal in creating plans
for self-healing.

Finally, a major threat to external validity is the use of simulation instead of an actual system.
However, to the best of our knowledge, simulation is the only means to evaluate the performance
of self-healing systems in research.?

3Examples of approaches that use simulation to evaluate self-healing systems are: Anaya et al. [2014]; Angelopoulos et al.
[2014]; Camara and de Lemos [2012]; Carzaniga et al. [2008]; Casanova et al. [2013]; Chan and Bishop [2009]; Di Marco
et al. [2013]; Ehlers et al. [2011]; Garlan and Schmerl [2002]; Griffith et al. [2009]; Haesevoets et al. [2009]; Hassan et al.
[2015]; Haupt [2012]; Ippoliti and Zhou [2012]; Magalhaes and Silva [2015]; Neti and Mueller [2007]; Perino [2013]; Piel
et al. [2011]; Qun et al. [2005]; Salehie and Tahvildari [2006]; Schmitt et al. [2011].
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In this context, we can categorize the state of the art in self-healing systems as work that relies
on simulation and does not use failure traces at all* or work that relies on simulation and uses
failure traces although these traces are not real-world traces®. Thus, as shown in our previous
work [Ghahremani and Giese 2019], we can at first conclude that simulation is the dominating
approach in the literature to evaluate self-healing systems, which confirms the general finding for
self-adaptive systems by Weyns et al. [2012]. Second, our findings indicate the lack of appropriate
methods to evaluate self-healing systems, as we did not find any approach with performance claims
that provides a complete failure profile either as representative real-world test traces or models
for occurrences of failures. This distinguishes our work from existing work, as we use realistic
failure profile models for occurrences of failures, allowing us to systematically and extensively
evaluate our approach using real-world data. Thus, our comparative study is more comprehensive
than state-of-the-art evaluations for self-healing systems.

6.4.3 Construct Validity. The major threats to construct validity are the correctness of the
simulation environment, our implementation of the self-healing approaches, our adaptation of the
realistic failure profile models, and our construction of the failure traces from these models. To
address these threats, we use mRUBIS as our simulation environment, which has been accepted as
an exemplar by the research community on self-adaptive software and has been extensively tested
by students in the scope of four courses on self-adaptive software [Vogel 2018]. Moreover, the
implementations of the three self-healing approaches have been tested with the mRUBIS simulator,
whereas the adapted failure profile models and the traces constructed from all failure profile models
have been double-checked by two authors of the article.

7 Related Work

As related work of this study, we discuss how the trade-off between aiming for an optimal repair and
settling for a quick and efficient adaptation is practiced by planning mechanisms of self-adaptive
software. On the one end of the spectrum, there are optimization-based approaches using runtime
reasoning. All potential adaptation decisions are determined and then evaluated at runtime by an
objective function, which encounters scalability and efficiency issues [Fleurey and Solberg 2009; Kim
and Park 2009]. Employing utility functions and utility-driven decision-making schemes have been
extensively investigated. Franco et al. [2016] addresses the runtime disruption of non-functional
goals by predicting their expected values for each adaptation strategy. The quantitative prediction
is based on a mathematical model translated from a model of the software architecture. We use
an analytically defined utility function to compute the impact of the adaptation rules at runtime.
Although the values for the parameters of our utility function are captured and updated at runtime
(in the runtime model), the function itself is defined at design time. In recent work [Ghahremani
et al. 2018], we learn a prediction model for the utility values instead of defining a utility function
analytically. Besides utility, our scheme also considers the execution time of individual adaptation
rules when selecting and ordering such rules. Currently, we do not distinguish the execution
time and latency of rules (i.e., the time until an adaptation shows an effect in the system after
its execution) as we assume immediate adaptation (repair) effects. To explicitly consider latency

4Examples of such work are: Camara and de Lemos [2012]; Ehlers et al. [2011]; Haupt [2012]; Neti and Mueller [2007]; Qun
et al. [2005]; Salehie and Tahvildari [2006]; Schmitt et al. [2011].

5Such approaches either use observed and manually adjusted failure traces (e.g., Garlan and Schmerl [2002]; Haesevoets
et al. [2009]; Ippoliti and Zhou [2012]), probabilistic or simple random failure traces (e.g., Anaya et al. [2014]; Chan and
Bishop [2009]; Piel et al. [2011]), or deterministic failure traces (e.g., Angelopoulos et al. [2014]; Carzaniga et al. [2008];
Casanova et al. [2013]; Di Marco et al. [2013]; Griffith et al. [2009]; Hassan et al. [2015]; Magalhaes and Silva [2015]; Perino
[2013]).

ACM Trans. Autonom. Adapt. Syst., Vol. 14, No. 3, Article 12. Publication date: February 2020.



Improving Scalability and Reward of Utility-Driven Self-Healing for Large Dynamic Architectures 12:35

similarly to Moreno et al. [2016], the latency of each repair rule needs to be estimated and then
added to the execution time of the rule.

MOSAICO targets the trade-off between quality and computation cost by discretizing the system
and environment states, and offline synthesis of adaptation plans for the different discretization
points [Camara et al. 2018]. The synthesis is realized by probabilistic model checking. Similar to
our work, a utility profile steers the synthesis of plans. However, our adaptation scheme is event
based rather than state based. This enables an incremental utility calculation that is based only on
the events (changes) and not on the whole state (architecture), which achieves low computation
costs.

MADAM/MUSIC is an adaptive middleware for component-based applications that plans ar-
chitectural adaptation by exploiting quality properties of alternative implementations of compo-
nents [Floch et al. 2006; Rouvoy et al. 2009]. A QoS-aware runtime model provides the knowledge
for planning adaptation that aims for maximizing the utility of the application’s architecture. Using
properties and property predictor functions of alternative components, each reconfiguration is
planned and then evaluated for the current execution context by a utility function. The reconfigu-
ration with the highest utility is selected for execution. Kim and Park [2009] use reinforcement
learning for online planning. FUSION [Esfahani et al. 2013] also uses learning to solve the optimiza-
tion problem of finding the optimal set of features that maximizes the utility. Such learning-based
approaches suffer from a slow learning curve and achieve suboptimal utility or QoS during the
time when the learning has not converged yet. Furthermore, probabilistic model checking has
been used to solve complex optimization problems at runtime [Camara et al. 2015, 2016; Sykes
et al. 2007]. The time complexity of model checking typically results in solutions that do not
scale for large configuration spaces and that cannot be applied in systems requiring instantaneous
adaptation decisions. To improve runtime efficiency, techniques such as caching, pre-computation,
and near-optimality have been applied [Gerasimou et al. 2014], and computations are performed
as much as possible offline to reduce the planning efforts online [Moreno et al. 2016]. Moreover,
Moreno et al. [2017] propose a method for combinatorial optimization based on cross-entropy and
an any-time algorithm with random sampling from the solution space. Such solutions considerably
reduce the computation time; however, they are not guaranteed to find an optimal adaptation
plan. Summing up, utility-driven approaches pursue a search-based optimization in the solution
space, which typically do not scale well for complex systems with large configuration spaces. Such
approaches can manage to find the optimal configuration, but there is no guarantee to reach the
result within a reasonable time. Executing an optimization algorithm for each adaptation decision
at runtime causes a large overhead degrading the performance.

In our earlier work [Tichy and Giese 2004], we suggested reducing the search space to speed
up adaptation and avoid long delays. In contrast, the self-healing scheme proposed in this article
computes the utility for each possible adaptation option incrementally at runtime taking into
account the actual issues and their contexts (i.e., runtime knowledge influencing the utility). Due
to the incremental computation, our scheme is scalable without having to reduce the search space
for self-healing while achieving optimal repair plans in terms of achieved utility and reward.

Although utility-driven, optimization-based approaches are the one end of the spectrum for
decision making in self-adaptive software, whereas the other hand refers to pure rule-based ap-
proaches [Fleurey and Solberg 2009]. Rule-based approaches are recognized to be efficient and
stable in predictable domains and support early validation [Fleurey et al. 2009]. They provide a
quick recovery from a goal violation. However, they often result in sub-optimal adaptation decisions
because they do not handle situations that have not been foreseen at design time [Cheng 2008].
In this context, RAINBOW applies utility theory in combination with a stochastic model of the
possible outcomes of the reasoning process [Cheng and Garlan 2012]. Whereas in our approach the
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effect of all possible adaptation rules on the utility is dynamically computed at runtime to select the
best rules for execution, RAINBOW considers the success rate of rules in the past to rank them and
to eventually make a decision. For that, RAINBOW uses pre-defined adaptation strategies based on
the current state in the configuration space—for instance, for each observed configuration, there is
a specific adaptation plan assigned at design time. In our approach, additionally to the dynamic
properties of the rules in terms of utility impact and execution costs, the actual failures and their
contexts (i.e., the affected components) are considered to make an adaptation decision.

We distinguish our approach from rule-based approaches because we add runtime properties to
the adaptation rules and make them event based (event-condition-action rules) rather than state
based, meaning that the adaptation rules capture the change events instead of being pre-assigned
to certain system configurations. In our approach, each adaptation rule has an initial condition,
enabled by a change (event) in the system. This condition needs to be satisfied so that the rule
becomes applicable. However, the condition does not provide enough information to drive the
adaptation process. Thus, as opposed to any static rule-based approach, we dynamically assign
applicable rules to issues based on the runtime estimations of their execution costs and their impacts
on the utility.

A hybrid planning approach is proposed by Pandey et al. [2016] by combining a fast, deterministic
planner with a slow but optimal planner. The rationale is that the fast planner generates immediate
responses while a Markov decision process planner runs in the background to look for optimal
plans. The need for adaptation is detected by periodical evaluation of the system utility. For both
planners, the adaptation plans are generated based on the current state by choosing among a
set of pre-defined tactics that are applicable in the current state. Although the idea of making a
trade-off between timeliness and optimality is explored by both Pandey et al. [2016] and our work,
we distinguish our work based on the following grounds. Our scheme is event driven by reacting
to change events so that it avoids a continuous utility evaluation to detect adaptation needs. A
complete evaluation of the system utility can be costly if the architecture is large. Our proposed
scheme seeks timeliness by using techniques for the incremental detection of adaptation issues and
pattern-based computation of utility changes driven by change events. We compute the impact of
different adaptation plans (rules) at runtime regarding the change events and plan the adaptation
accordingly. Due to these characteristics of our scheme, we can guarantee optimal decisions and
scalability at runtime independent of the size of the architecture.

The second ground based on which we distinguish our work from Pandey et al. [2016] is the
treatment of time and guarantees of optimality in time-restricted adaptation loops. Using estimates
for inter-arrival rates of future adaptation issues (requests in [Pandey et al. 2016]) defines a timing
threshold to switch between the planners. In our scheme, the estimates of rule execution times (costs)
and the planning time can be used to enforce the notion of time in terms of allowing only execution
of k adaptation actions. Short planning times in the approach proposed by Pandey et al. [2016] can
prevent the switching to the optimal planner, and hence the system operates with non-optimal
utility. However, in our scheme, even with short planning times, we manage to address the failures
in an optimal manner (i.e., selecting optimal rules and preserving optimal ordering). The limited
time will only affect the number of the failures that we resolve in one feedback run but not the
optimality of the solution.

Finally, our approach is distinguished from existing work because it is scalable and optimal.
Scalability is achieved by using rules and optimal decisions are guaranteed by using a utility
function to drive the adaptation. Unlike other optimization-based approaches, the utility-driven
process in our approach scales as the utility is computed incrementally.
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8 Conclusion and Future Work

Achieving optimal adaptation decisions online within a reasonable time is an important challenge
addressed by this work. We presented a novel adaptation scheme for architectural self-healing that
combines concepts of utility-driven and rule-based approaches to achieve the benefits of each of
them—that is, achieving optimal adaptation decisions and being scalable. As a consequence, our
combined adaptation scheme improves the scalability and reward in self-healing.

This contribution is achieved by defining the utility function and the adaptation rules in a
pattern-based way, which allows us to combine the utility and the rules and therefore to compute
the impact of applying each adaptation rule on the overall utility. Based on these computations
and the knowledge about the execution costs of each adaptation rule, we determine and execute at
runtime the optimal sequence to apply adaptation rules for self-healing. To evaluate the benefits
of our adaptation scheme, we conducted experiments with synthetic and realistic failure profile
models using the mRUBIS simulator, in which our scheme competes with a static (rule-based) and
a solver-based (utility-driven) approach to self-healing. These experiments demonstrate that our
scheme achieves a considerably improved reward compared to the static approach while only
having a negligible overhead. Moreover, we demonstrate that our scheme drastically reduces the
computation efforts for planning self-healing compared to the solver approach when both perform
optimal adaptation decisions. Being incremental makes our adaptation scheme more scalable as
it faces less overhead, which becomes especially relevant for large architectures or when many
failures occur, for instance, in bursts.

Finally, the incremental analysis and planning scheme presented in this article complements
our earlier work on incremental monitoring and execution phases with architectural runtime
models [Vogel and Giese 2010; Vogel et al. 2009, 2010] so that we can close the feedback loop and
achieve incremental self-adaptation throughout the feedback loop.

The presented adaptation scheme has limitations that we will address in future work. First
of all, the limitations refer to our assumptions (cf. Section 5.4). We want to explore whether
similar or sufficiently good (not necessarily optimal) results can be achieved by relaxing these
assumptions. We already started this line of research by relaxing assumption (A2) with probabilistic
adaptation rules in Section 6.3, and we plan to continue this line by relaxing the other assumptions.
Moreover, our scheme uses a utility function that has been manually and analytically defined
at design time. However, constructing a utility function in such a way is challenging due to
various sources of uncertainty, such as non-linearities, complex dynamic architectures, and black-
box models. To address this issue, we train prediction models for the utility of systems to replace
the manually and analytically defined utility functions [Ghahremani et al. 2018], and we want
to study how such prediction models can be integrated into our scheme to learn and evolve
utility functions online for dynamic architectures. Finally, we want to investigate the concurrent
execution of adaptation rules and to broaden the spectrum of self-adaptive systems to which our
scheme could be applied by studying other systems than mRUBIS and other self-* properties than
self-healing.
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