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ABSTRACT

Sound event detection (SED) is a hot topic in consumer and smart
city applications. Existing approaches based on deep neural net-
works (DNNs) are very effective, but highly demanding in terms of
memory, power, and throughput when targeting ultra-low power
always-on devices.

Latency, availability, cost, and privacy requirements are pushing
recent IoT systems to process the data on the node, close to the
sensor, with a very limited energy supply, and tight constraints
on the memory size and processing capabilities precluding to run
state-of-the-art DNNG.

In this paper, we explore the combination of extreme quantiza-
tion to a small-footprint binary neural network (BNN) with the
highly energy-efficient, RISC-V-based (8+1)-core GAP8 microcon-
troller. Starting from an existing CNN for SED whose footprint
(815 kB) exceeds the 512kB of memory available on our platform,
we retrain the network using binary filters and activations to match
these memory constraints. (Fully) binary neural networks come
with a natural drop in accuracy of 12-18% on the challenging Ima-
geNet object recognition challenge compared to their equivalent
full-precision baselines. This BNN reaches a 77.9% accuracy, just
7% lower than the full-precision version, with 58 kB (7.2X less) for
the weights and 262 kB (2.4X less) memory in total. With our BNN
implementation, we reach a peak throughput of 4.6 GMAC/s and
1.5 GMAC/s over the full network, including preprocessing with
Mel bins, which corresponds to an efficiency of 67.1 GMAC/s/W
and 31.3 GMAC/s/W, respectively. Compared to the performance of
an ARM Cortex-M4 implementation, our system has a 10.3% faster
execution time and a 51.1X higher energy-efficiency.
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1 INTRODUCTION

Cloud computing is the most widely-adopted paradigm for deploy-
ing artificial intelligence (AI) and specifically DNNs to extract useful
information from sensors in the internet-of-things (IoT) era [12].
However, this cloud-centric approach has several drawbacks: high
latency due to communication delays, availability and reliability
limited by the communication infrastructure, privacy issues due
to the streaming of sensitive data to a remote site, and high en-
ergy cost for data transmission [29]. Edge computing is the novel
alternative to address these limitations by pushing Al close to the
sensors, transmitting only relevant information and alerts [8]. Typ-
ically, IoT end-nodes are battery-powered and target a long battery
life—ideally aiming at self-sustainable operation with the help of
energy harvesters, whose collected energy is far from sufficient
to power high-performance processors or GPUs [1]. Microcon-
trollers (MCUs), with their low power consumption and low cost,
are the platform of choice to enable the migration of Al to the
edge. The leading MCU architecture is the ARM Cortex-M series
with power consumption in the range of milliwatts and throughput
in the order of MOPS. To overcome this constrain, over the last
few years, many researchers put effort into specialized hardware
and optimized inference algorithms to run such DNNs on power-
constrained devices. On the software side, network complexity
reduction while preserving the quality of predictions is of signifi-
cant interest in porting deep and complex architectures on a heavily
constrained IoT node. There are several approaches to target this
goal, e.g., knowledge distillation [15], network pruning [13], or net-
work quantization [21]. However, only a few implementations of
DNNSs on microcontrollers are presented in the literature [3, 19, 39].
An extreme case of quantization is Binary Neural Network (BNN),
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in which all the weights and activations are described by a sin-
gle bit representing the value of -1 or 1 [30]. As a consequence,
BNNss significantly reduce the amount of memory required and
compress 32 MAC operations in just two operations without signif-
icantly compromise the accuracy [30]. These two advantages make
BNNs a promising approach when resource-constrained devices
are involved in edge computing.

On the hardware side, new approaches enabling near-threshold
parallel computing in the MCU space have been explored by re-
searchers, industry, and academia [7]. For instance, a novel parallel
processor, based on the RISC-V ISA has been launched recently [36].
GAPS is a commercial processor, implemented from the Parallel
Ultra Low Power (PULP) open-source project!. This processor has
similar power requirements of the Cortex-M family (hundreds of
mW) with up to 20 times higher computation performance for ma-
chine learning applications [36]. Furthermore, it features RISC-V ex-
tensions providing accelerating the BNN processing. The popcount
instruction boosts the processing significantly for BNNs and other
quantified neural networks.

Looking at applications, scene understanding, and context anal-
ysis are among the application domains where edge processing can
be crucial. They often rely on computer vision. However, the com-
bination with audio processing can highly improve the accuracy
of event detection and activity recognition, complementing vision
where line-of-sight occlusions or environmental light changes oc-
cur [37]. Furthermore, the use of audio detection alone can partially
solve privacy concerns. Thus, sound event detection (SED) is a
powerful tool for many applications such as traffic monitoring [27],
crowd monitoring [22], measurement of occupancy levels for smart
and energy-efficient buildings [35], and emergencies detection [11].

This paper proposes a novel Binary Neural Network (BNN) for
resource constrain and low power microcontrollers for SED appli-
cations, i.e. classifying which sound event is present in an audio
record. The proposed BNN has been implemented on the Green-
wave’s GAPS.

The main contribution of this paper is as follow:

(1) We propose, train, and efficiently implement a novel BNN
architecture for SED, comparing it with a full-precision base-
line network.

(2) We present the design of a full system, based on the low-
power and instruction set architecture (ISA) optimized for
GAPS8 microcontroller. The full pipeline is developed from
audio acquisition with a low-power microphone, over the
Mel bins feature extraction to the on-board classification.
We present a detailed analysis of throughput and energy
trade-off in a variety of supported configurations as well as
on-board measurements.

(3) We demonstrate that binarization of weights and activations
are the key factor in matching hardware constraints. Exper-
imental evaluation shows that our implementation on the
PULP platform is 51x more efficient and 10x faster than the
implementation of the same network in the Cortex-M4 based
counterpart.

https://www.pulp-platform.org
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2 RELATED WORK

The most used techniques to address SED and in general audio pro-
cessing, are employing Mel-frequency cepstral coefficients (MFCC)
features followed by a GMM, HMM, or SVM classifier [23, 34, 42].
Recently, DNNs [24], convolutional neural networks (CNNs) [14],
and recurrent neural networks (RNNs) [2] have been used instead.
However, those models require a large amount of memory to per-
form high-performance predictions: for instance, DNNs for SED
such as L3 [6] and VGGish [14] require approximately 4M and 70M
parameters, respectively.

Achieving a reduction of the structure size of an existing network
for SED has been largely investigated in the recent literature. In
particular, knowledge distillation has been deployed to compress
the L3 network to edge-L3 in [6], and VGGish is further compressed
to baby VGGish in [2].

By replacing the fully connected layer of an existing CNN with
average max-pooling, Meyer et al. [25] reduced the number of
parameters while increasing the accuracy for the targeted dataset.
Still, Meyernet is not suitable for our very constrained IoT use-case.
Therefore further model compression is required to match these
constraints.

In addition to model structure modification, recent works on
CNN have investigated quantization to reduce the storage and com-
putational costs of the inference task [17, 20, 21]. As an extreme
case of quantization, BNNs reduce the precision of both weights
and neuron activations to a single-bit [5, 30]. BNNs work on simple
tasks like MNIST, CIFAR-10, and SVHN without drop in accuracy
[16]. On the challenging ImageNet dataset, BNNs/TNNs have a
drop of 12%/6.5% [32, 40]. Recent approaches use multiple binary
weight bases, or part of the convolutions are done in full-precision.
An accuracy drop down to 3.2% has been achieved [41]; unfortu-
nately, these approaches increase the weight memory footprint and
computational complexity.

BNNSs are suitable to be implemented on resource-constrained
platforms, thanks to their reduced memory requirements and their
potential to convert multiplications in hardware-friendly XNOR op-
erations.

Peak throughput and energy efficiency are achieved by ASIC ac-
celerators. Particularly, BinarEye [26] achieves an energy efficiency
of 115 TMAC/s/W. But these accelerators are not available on the
market, and are usually fixed to few network types.

Several works have implemented CNNs with fixed-point format
and operations, in video domain [3, 28] and in audio domain, where
keyword spotting in Cortex-M4 based microcontroller [39], Cortex-
MO+, and Raspberry Pi based platforms [19].

One of the challenges in this field is the development of energy-
efficient Neural Network (NN) firmware implementation for em-
bedded systems.

Wang et al. [38] developed a library for neural network porting
from the FANN framework to ARM MCUs and PULP platforms.
In this case, the hardware is fully utilized, but there is support
only for multilayer perceptrons. Garofalo et al. developed a custom
library for quantized convolutional neural networks on PULP [10].
However, their focus has been on the precision-throughput trade-
off, thereby omitting several optimizations specific to the corner
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case of binary neural networks and limiting the evaluations to a
synthetic single-layer benchmark.

To the best of our knowledge, this is the first BNN proposed and
implemented on a parallel RISC-V based microcontroller.

3 FEATURE EXTRACTION AND BNN

The idea behind BNNSs is to approximate the multi-bit filter weights
and inputs with binary values in NNs. Binary weights and acti-
vations imply a significant decrease in memory usage as well as
computational cost [30]. In this section, we describe the structure of
the network, starting from the audio stream to the final prediction.

3.1 Feature Extraction (Mel Bins)

The preprocessing part computes the short-time Fourier transform
(STFT) in windows of 32ms every 8 ms. Then, we apply the Mel
filters to generate 64 Mel bins. The 400 features are then assembled
to create the Mel-spectrogram for 3.2s of audio. The resulting
matrix with a shape of 64 X 400 is the input to the neural network.

3.2 First Layer and Binarization

The input data to the network is non-binary and has, therefore, to
be treated separately. A robust approach is to keep the first network
layer in full-precision, like in Courbariaux et al. [5]. In this way,
the network learns the binarization function from the training set.

After the convolution, batch normalization is applied, which can
be replaced in inference by a bias and a scaling factor, and is finally
followed by the signum activation function for binarization.

To avoid floating-point operations, all the operations described
in this section are done in fixed-point. Fixed-point operations are
more efficient in terms of execution time and energy consumption
without significant loss of performance [21] also in floating-point
embedded systems, and will be evaluated more in detail in the
experimental result section.

On the other hand, fixed-point quantization requires additional
effort in finding the correct amount of integer and fractional bits for
each parameter representation. For doing this, we check the range
of the parameters, and we choose the number of integer decimals
that represents most of the numbers (99.9%) without overload error.

3.3 Binary Convolution

BNNs constrain weights and inputs to I € {—1, 1}"»*P*0 and W €
{1, 1}7tourXinxkyxks Tq ayvoid using two bits, we represent —1
with 0, whereas the actual binary numbers are indicated with a hat
(ie. i = (i+1)/2). It turns out that multiplications become xnor
operations @ [30]. Formally the output o of an output channel
k € {0, ..., nour — 1} can be described as?:

nin—1 nin—1
op = sgn( Z in * Wk,n) = sgn( Z 2 (in * Wi n) — kykx)

n=0 n=0

nin 1 A A Ay,Ax
sl 3 Y e e, ) 1

n=0 (Ax,Ay)

Whereas Ay and Ax are the relative filter tap positions (e.g., (Ay, Ax) €
{=1,0,1}? for 3 x 3 filters). As calculating single-bit operations on

2For simplicity, we omit bias and scaling factor in the formula.
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microcontroller is not efficient, we pack several input channels into
a 32-bit integer (e.g., the feature map pixels at (y + Ay, x + Ax) in
spatial dimension and input channels 32n to (32(n + 1) — 1) packed

in ig;nA f’;;mx), while the Multiply Accumulates (MACs) can be
implemented with popcount and xnor operations.

Furthermore, as common embedded platforms like GAP8 do not
have a built-in xnor operator, the xor operator & is used and the
result is inverted. Therefore, the final equation for the output chan-

nel is oy =

y+Ayx+Ax . Ay Ax
sgn Z Z 32 — 2popcnt (132n:+32 ®Wk,32n:+32
n=0 (Ax,Ay)

3.4 Batch Normalization and Binarization

A batch normalization layer follows each binary convolutional layer.
As the output of binary layers are integer values, and the signum
function can be written as a comparison function, the activation
function is simplified to:

0, ifx-sgn(y’) > L%J
1, ifx-sgn(y’) < {f—:J .

whereas y’ is the scaling factor and §’ is the bias based on the batch
normalization parameters. While exporting the model, we compute

binAct(x) = (1)

the integer threshold value L%J in advance. In inference, one sign
comparison and one threshold comparison have to be calculated
for each activation value.

3.5 Last Layer and Prediction

In the last layer, the fixed-point values from the last binary layer
are convolved with the fixed-point weights, and N output channels
are calculated, where N is the number of classes. Finally, the net-
work performs an average pooling over the whole image giving N
predictions for each class.

3.6 Neural Network Architecture

Tbl. 1 summarizes the architecture of the NN. The neural network
consists of 7 hidden layers, 5 of which are binary. The first and last
layers are real-valued. Their required computations are significantly
smaller than in the binary layers (e.g., 7 MMAC in the first layer
compared to 109 MMAC in the second layer), and therefore they
minimally contribute to the overall computational effort. The reason
for having real-valued layers is the high loss of accuracy with
entirely binarized neural networks [30].

4 EMBEDDED IMPLEMENTATION

The Mel bins extraction and BNN are implemented on GAP8. The
application scenario for this device is low-latency low-power signal
processing. The device has a tunable frequency and voltage supply.
Fig. 1 shows the main block of the chip: GAP8 has two main pro-
grammable components, the fabric control (FC), and the cluster. The
FC is the central microcontroller unit, and it is meant to manage
peripherals and offload workloads to the cluster. The cluster is com-
posed of eight parallel RISC-V cores, a convolution accelerator, and
shared memory banks. The two domains share the same voltage
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Table 1: Kernel size, channel, and computational effort for
each layer.

Layer Kernel Size Channel Stride MACs
First (real-valued) 3x3 32 1 ™
1. Binary Layer 3%x3 64 2 109M
2. Binary Layer 3X3 128 1 405M
3. Binary Layer 3%x3 128 2 186M
4. Binary Layer 3%x3 128 1 154M
5. Binary Layer 1x1 128 1 17M
Last (real-valued) 1x1 28 1 6M
Total: 884M

<
=
)
2
=

Figure 1: Architecture of GAP8 embedded processor [9]

source but keep two different frequencies: On-chip DC-DC convert-
ers translate the voltage, and two independent frequency-locked
loops (FLLs) generate the two different clock domains. The FC is
a single-core in-order microcontroller implementing the RISC-V
instruction set. To customize the core for signal processing appli-
cation, GAP8 extends the RISCV-IMC instruction set for signal
processing application. In addition to integer, multiplication, and
compressed instruction (IMC), GAPS8 ISA supports Multiply and
Accumulate, Single Instruction Multiple Data (SIMD), Bit manip-
ulation, post-increment load/store, and Hardware Loops. The FC
is directly interconnected to an L2 memory of 512 kB SRAM. The
cluster has eight cores identical to the FC. The cores share the 64 kB
L1 SRAM scratchpad memory, equipped with a logarithmic inter-
connect that supports single-cycle concurrent access from different
cores requesting memory locations on separate banks.

The cores fetch instructions from a multi-ported instruction
cache to maximize the energy efficiency on the data-parallel code.
Moreover, an efficient DMA (called uDMA) enables multiple direct
transfers from peripherals and L1 to the L2 memory. The cluster
has a hardware synchronizer for event management and efficient
parallel threads dispatching. The FC and cluster communicate with
each other by an AXI-64 bidirectional bus. The software running on
the FC overviews all tasks offloaded to the cluster and the ukDMA.
At the same time, a low-overhead runtime on the cluster cores
exploits the hardware synchronizer to implement shared-memory
parallelism in the fashion of OpenMP [4].
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5 EXPERIMENTAL RESULTS

To accurately evaluate the BNN, we designed a full system. Thus,
the power and energy-efficient measurements are performed on
the hardware platform.

5.1 Dataset

In this work, we use the dataset of Takahashi et al. [33], which is
based on the Freesound database, an online collaborative sound
database. It consists of 28 different event types, e.g., instruments,
animals, mechanical sounds. Each clip has a variable length, and
the total length of all 5223 audio files is 768 minutes. All audio
samples have a sampling rate of 16 kHz, a bit depth of 16, and are
single-channel. The dataset is split into training (75%) and test set
(25%). We compute the STFT in windows of 512 samples every 128
samples, respectively 32 ms and 8 ms. Then we apply 64 Mel-filters
to generate 64 Mel bins. 400 features are then tiled together to
create the Mel-spectrogram for 3.2 s of audio (see Sec. 3.1). For the
training set, we split each audio clip in consecutive chunks of 3.2 s.

Chunks shorter than 3.2s are discarded, or zero-padded if it is
the only chunk. In the test set, we extract one single patch of 3.2s,
starting from half of the clip.

5.2 Firmware Details

To cope with L1 memory constraints, we run the prediction on 4
tiles in which the image is split. The tiles have an overlap of 20 pixels
to take into account the receptive field of convolutional kernels at
the border of the tiles. The firmware implements a double buffering
for the weight loading: before the program processes the input of a
specific layer, the cores configure the DMA to load the weights of
the next layer, from the L2 memory to the single-cycle accessible L1
memory. An interesting feature of GAPS8 is the built-in popcount
instruction, which takes just one cycle and decreases the execution
time significantly in binary layers, thus useful for BNN calculation.
The single 3x3XC kernel application gains speed thanks to loop
unrolling. Finally, the code parallelization over the eight cores is
implemented using the OpenMP APL

5.3 Accuracy

We start from MeyerNet [25] and use the Additive Noise Annealing
(ANA) algorithm [32] to train the network with binary weights and
activations. Tbl. 2 provides an overview of the original MeyerNet
and the BNN. The BNN-GAP8 network keeps the first and the last
layer in 16-bit fixed-point, whereas the other layers are binary. For
the accuracy of Meyernet, we consider its 16-bit quantized version
because it is expected® to be the same the FP32 baseline.

The BNN achieves an accuracy of 77.9%, which is 7.3% below the
full-precision baseline and is in-line with state-of-the-art binary
and ternary networks (i.e., 12% binary and 6.5% ternary neural
networks for ImageNet [32, 40]).

Tbl. 2 shows that the BNN matches with the memory constraints
of 512 kB of L2 memory in GAPS chip, in contrast to the fixed-point
baseline.

3DNNs are robust to quantization down to 16 bit [18, 20, 28]
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Table 2: Accuracy and Memory Footprint for the Baseline
CNN (16-bit Fixed-Point precision), BNN with first/last layer
in 16-bit Fixed-Point.

CNN [25] BNN-GAPS
Accuracy 85.1% 77.9%
Memory for weights [kB] 815 58
Memory for input [kB] 204 204
Memory requirement [kB] 10194 262

It does not fit into the 512 kB SRAM of the GAP8 microcontroller.
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Figure 2: Throughput and energy efficiency at different sup-
ply voltages and operating frequencies. All of the measured
settings fulfill the requirement of one classification every
3.2s (see the grey dashed line).

5.4 Energy Efficiency

In the following section, we are discussing the throughput and
energy efficiency trade-off. First, we sweep the independent cluster
and fabric control frequency (f¢1, f7c) € {30, 50, 85,100, 150} MHz X
{10,30,50, 100, 150} MHz for 1V, and (f.1. ff.) € {50,100, 150, 200,
250} MHz x {10, 30, 50, 100, 150} MHz for 1.2V, supported by the
GAPS8 microcontroller. We set the real-time constraint to 0.3125
frames per second due to the 3.2 s long audio samples.

Fig. 2 shows clearly that the 1.0 V corners pareto-dominate the
faster 1.2V corners. It can be seen that the most energy-efficient
corner is at 100 MHz for the FC, and 150 MHz for the cluster, where
the system achieves an energy efficiency of 31.3 GMAC/s/W, and a
throughput of 1.5 GMAC/s.

5.5 Execution Time and Power Consumption

We profile time and throughput as well as the energy-efficiency of
each layer of the NN. The network architecture is shown in Tbl. 1
together with the amount of multiply-accumulate (MAC) required
for each layer at the most energy-efficient corner according to
the analysis in the previous section (i.e., Vgg = 1.0V, (fe1, frc) =
(150 MHz, 100 MHz)).

The measurements are performed with the Rocketlogger [31].
Voltage and current of the system-on-chip (SoC) are logged. We
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Table 3: Duration and energy consumption for each layer
as well as throughput and energy efficiency compared to
MAC:s.

Layers MACs Time Energy Through. Efficiency

[ms] [mJ]] [MAC/s] [MAC/s/W]
Mel bins - 77.0 2.64 - -
First Layer M 130.8 5.94 54M 1.2G
1. Bin Layer 109M 73.3 3.57 1494M 30.6G
2. Bin Layer 404M  168.0 8.86 2404M 45.6G
3. Bin Layer 185M 51.2 2.94 3628M 63.2G
4. Bin Layer 154M 40.3 2.29 3822M 67.1G
5./6. Layer* 21IM 47.4 1.93 1724M 1.9G
Total/Average  882M  588.0 28.18 1503M 31.3G

| 11 GAP8/single-core o +popent 1o GAP8/multi-core B +popent
g 20 - -1 80 §
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S 151 2 = Jeo &
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Figure 3: Improvement in throughput and energy efficiency
compared to the ARM Cortex-M4 implementation.

evaluate the power and duration of measurements and calculate
the energy consumption. The results for each layer are listed in
Tbl. 3.

Binary layers are the most efficient ones; this is because of the
combination of xor and popcount instructions processing 32 pixels
in just 2 instructions. The efficiency peak is at 67.1 GMAC/s/W in the
fourth binary layer, and the average efficiency is 34.5 GMAC/s/W.
The most efficient configuration meets the real-time constraint, and
the entire network runs within 0.511s.

For a further investigation of the improvement in throughput
and energy efficiency thanks to the capabilities of the GAP8 SoC,
we have implemented the BNN on the STM32F4691 Discovery board.
Fig. 3 gives an overview of the improvements of the GAP8 imple-
mentations compared to the single-core ARM Cortex-M4F imple-
mentation, which has popcount implemented in software. We port
the SW-popcount (i.e., 12 cycles) to GAP8 and run the code on a
single core, and all 8 cores. The GAP8 compared to the STM32F469],
running both the BNN on a single-core and without HW-popcount,
shows a 7.9% better energy efficiency, but with a 1.6x lower through-
put due to the higher operating frequency of the ARM core. En-
abling the HW-popcount gives a significant improvement in energy
efficiency (2.8x) and speed in computation (4.3x). Running the BNN
on all 8 cores gives an improvement of 6.9/2.4x in throughput and
energy efficiency. Finally, the popcount ISA extension gives another
boost of 2.4x and 2.6X%, respectively.

Overall the GAP8 implementation that uses all the functionality
of the core (i.e., popcount instruction and multi-core) is 10X faster
and 51X more efficient than running the same network on the
Cortex-M4F.
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Figure 4: Power trace of running the BNN on one tile on the
GAPS platform.

Fig. 4 shows the power trace of the layers in the same setup in
Tbl. 3. As described in Sec. 5.2, we split the input data into tiles to
match the memory constraints. The traces refer to one tile out of
four. Thus the execution time is approximately one-fourth of the
one presented in Tbl. 3. Between layers, the FC offloads the cluster
for configuring the next layer: it switches the input and output
buffer, allocates memory for the next weights, configures the DMA,
and so on. This behavior is visible in the drop of power traces
because the cluster is in sleep, and the activity of the FC consumes
less. Similar behavior can be observed inside binary layers, where
the processing is split in chunks of 32 channels.

6 CONCLUSIONS

Starting from the best-performing DNN for sound event detection
on our target dataset, we have proposed and trained a DNN with the
same topology but binary weights and activations. The proposed
BNN matches the memory and resource-constraints of milliwatt
range of the target embedded platforms. The resulting BNN has an
accuracy of 77.9%, a drop of 7.2 percent point from the full-precision
baseline which is in line of similar state-of-the-art BNNs/TNNss (i.e.,
6.5-19%). The overall program requires 230 kB of RAM, 3.9% less
than the system using 16-bit quantized baseline CNN. Due to this
compression, the network fits in the GAP8 PULP Platform. We
evaluated energy efficiency with experimental measurement of
the power consumption of the full system. The classification of
3.2s of audio requires 511 ms and 25.54 mJ, with a peak energy
efficiency of 67.1 GMAC/s/W and average 34.5 GMAC/s/W. The
performance on the GAP8 board has been shown to be 10X faster
and 51X more energy-efficient than on an ARM Cortex-M4F plat-
form, which comes from multi-core capabilities (i.e., 4.3/19.3x), the
build-in popcount instruction (i.e., 2.4/2.6X).
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