
47

Whisper: Fast Flooding for Low-Power Wireless Networks

MARTINA BRACHMANN, RISE Research Institutes of Sweden, Sweden
OLAF LANDSIEDEL, Kiel University, Germany & Chalmers University, Sweden
DIANA GÖHRINGER, Technische Universität Dresden, Germany
SILVIA SANTINI, Università della Svizzera italiana (USI), Switzerland

This paper presents Whisper, a fast and reliable protocol to flood small amounts of data into a multi-hop
network. Whisper makes use of synchronous transmissions, a technique first introduced by the Glossy flooding
protocol. In contrast to Glossy, Whisper does not let the radio switch from receive to transmit mode between
messages. Instead, it makes nodes continuously transmit identical copies of the message and eliminates
the gaps between subsequent transmissions. To this end, Whisper embeds the message to be flooded into a
signaling packet that is composed of multiple packlets – where a packlet is a portion of the message payload
that mimics the structure of an actual packet. A node must intercept only one of the packlets to detect that
there is an ongoing transmission and that it should start forwarding the message. This allowsWhisper to speed
up the propagation of the flood, and thus, to reduce the overall radio-on time of the nodes. Our evaluation on
the FlockLab testbed shows that Whisper achieves comparable reliability but 2x lower radio-on time than
Glossy. We further show that by embedding Whisper in an existing data collection application, we can more
than double the lifetime of the network.

CCS Concepts: • Networks → Network protocol design;Wireless personal area networks.

Additional Key Words and Phrases: Low-power wireless networks, synchronous transmissions, periodic and
event-based traffic, consecutive packet transmissions, energy-efficient sampling

ACM Reference Format:
Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini. 2019. Whisper: Fast Flooding
for Low-Power Wireless Networks. ACM Trans. Sensor Netw. 15, 4, Article 47 (October 2019), 26 pages.
https://doi.org/10.1145/3356341

1 INTRODUCTION
Many application scenarios for low-power wireless networks require the reliable and fast exchange
of small data values. Examples include the dissemination of parameters – e.g., the set-point of a
valve – in industrial control systems or smart buildings. In these settings, the communication is
either periodic or event-driven. Approaches like Glossy [15] or LWB [14] can be used to reliably
and quickly share data periodically in a low-power wireless network. Crystal [17, 18] and other
approaches [13, 18, 23, 25, 28, 35, 40] extend Glossy to event-driven systems by periodically sampling
the network for potential events.

In this paper, we present Whisper, a novel communication primitive that addresses the challenge
of quickly and efficiently sharing small amounts of information in either periodic or event-based
application scenarios. Whisper relies on synchronous transmissions to provide fast and energy-
efficient communication in low-power wireless multi-hop networks. First, Whisper integrates the

Authors’ addresses: Martina Brachmann, Networked Embedded Systems, RISE Research Institutes of Sweden, Stockholm,
Sweden, martina.brachmann@ri.se; Olaf Landsiedel, Distributed Systems, Kiel University, Kiel, Germany &, Chalmers
University, Gothenburg, Sweden, ol@informatik.uni-kiel.de; Diana Göhringer, Adaptive Dynamic Systems, Technis-
che Universität Dresden, Dresden, Germany, diana.goehringer@tu-dresden.de; Silvia Santini, Faculty of Informatics,
Università della Svizzera italiana (USI), Lugano, Switzerland, silvia.santini@usi.ch.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Transactions on Sensor Networks, https://doi.org/10.1145/3356341.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

ar
X

iv
:1

80
9.

03
69

9v
2

 [
cs

.N
I]

 2
7

M
ay

 2
02

1

https://doi.org/10.1145/3356341
https://doi.org/10.1145/3356341

47:2 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

flood – consisting of multiple replicated packets as in Glossy – into a single packet transmission.
This reduces the duration of a flood, eliminates gaps, i.e, the radio turnaround time, and thereby
allows Whisper to reduce radio-on time and energy consumption. Second, its compact flooding
format and the lack of gaps between packets enable Whisper to introduce energy-efficient sampling
strategies, i.e, the ability to sample the channel for a packet and not, as done in Glossy, LWB, Crystal
and most others protocols to rely on idle listening of the radio.

Whisper can be used as “standalone” dissemination protocol for small data and as service for other
protocols, e.g., as an efficient wake-up primitive to reduce the protocol’s idle listening overhead.
The latter is the case in the event-based transmission of large data packets. In such scenarios,
the nodes listen to potential packets for a predefined interval before turning the radio off. Using
Glossy-like protocols, the length of this interval depends on the packet size, the number of hops in
the network, and the number of packet repetitions 𝑁𝑡𝑥 . For example, it would take Glossy almost
67 ms to disseminate a 127 byte packet in a 6-hop network with 𝑁𝑡𝑥 = 3. Thus, all nodes must
keep the radio turned on for this amount of time, even when no packet is disseminated. Using
Whisper, the nodes keep their radio on for at most a Whisper slot, which is less than 3 ms in a
6-hop network. Only if they have received a packet during the Whisper slot, they await the actual
data packet afterward. Otherwise, they keep their radio turned off. Thus, using Whisper, nodes
only communicate when they have an event to share.

In summary, Whisper is designed around three cornerstones:

• Whisper compacts the network flood into a single packet without “gaps” to reduce latency
and radio-on time and to enable efficient sampling.

• Whisper employs strategies for sampling so that nodes can energy-efficiently determine
whether there is data to exchange during a round or not.

• Whisper exploits synchronous transmissions for fast and reliable flooding.

We show the efficiency of Whisper as primitive for fast and reliable network-wide flooding of
small amounts of data by evaluating it on the publicly available FlockLab testbed. For example, in
Whisper nodes can determine whether a flood is ongoing within less than 3 milliseconds in a 6-hop
network, whereas in Crystal and in several solutions of the EWSN dependability competitions,
nodes are awake for the duration of the network flood, which on FlockLab, for example, commonly
takes 5 milliseconds. We further show that Whisper has an up to 50% higher network lifetime than
Glossy and it can increase the network lifetime of Crystal by a factor of 2.3 when used as wake-up
service within Crystal.

The remainder of this paper is structured as follows. We present a high-level overview ofWhisper
in Sec. 2 and discuss relevant details of its design in Sec. 3. Using our implementation for TelosB
nodes in Contiki, we compare Whisper in various dissemination scenarios with Glossy in Sec. 4
and use Whisper as wake-up primitive in Crystal in Sec. 5. A discussion of related work follows in
Sec. 6 and Sec. 7 concludes the paper.

2 WHISPER: HOW IT WORKS
At its core, Whisper is a communication primitive that allows to quickly and reliably flood data
into a multi-hop network. In the following, we describe the three building blocks of Whisper’s
design: packlets, direction-aware channel sampling, and synchronous transmissions.

Signaling packet and packlets. In Whisper, a node that needs to send data – hereafter referred
to as the sender – transmits a signaling packet, which looks as depicted in Fig. 1. It consists of

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:3

Preamble SFD LEN Counter
(0) Footer Preamble SFDLEN Counter

(1) SFD LEN Counter
(n) Footer FooterFooter Preamble…

Generated by hardware Generated by software

Packlet Packlet Packlet

Signaling packet

Payload of the signaling packet

Data Data Data

Fig. 1. Format of a signaling packet. The gray-shadowed footer at the end of the packet is created only when
the radio is used in buffered mode.

several1 packlets, whereas a packlet is a piece of message payload that has the structure of an actual
IEEE 802.15.4 packet, including preamble, start-of-frame delimiter (SFD) and footer. Whisper’s
signaling packet, thus, mimics a train of short, identical packets being sent continuously by the
radio, as illustrated in Fig. 2a.

This is a core difference between Whisper and, e.g., Glossy [15]. In Glossy – and in all protocols
that build upon it – the nodes continuously switch between sending and receiving mode, and
thus, leave “gaps” between two transmissions, as depicted in Fig. 2c. The absence of such gaps
significantly increases the speed at which the network flood can propagate and, thus, it reduces the
time nodes must keep their radio on.

It is also worth noting that there exist other techniques, e.g., [13, 23, 25], that modified Glossy to
make it transmit packets consecutively instead of alternating between reception and transmission.
These existing approaches, however, still suffer from the existence of the gaps because the radio
transceiver must perform the RX/TX turnaround each time after packet transmission completes.
By embedding packlets in the payload of a single signaling packet, Whisper completely eliminates
gaps between consecutive transmissions, because there is no RX/TX turnaround.

While Whisper can support payloads of arbitrary length, it is best suited to flood small amounts
of data, as we also discuss in Sec. 3.9. Small payloads occur frequently in real scenarios, e.g., when
a configuration parameter, which may be coded using just a few bits, must be communicated to all
nodes in a network. More importantly, Whisper can be used as a very efficient signaling primitive
to, e.g., notify to all nodes in a network that they must stay awake to help forwarding incoming
data packets. In this scenario, no data or only very little data is actually transmitted and thus a
small payload size does not represent a limiting factor.

Sampling strategy. For nodes to be able to detect the presence of a signaling packet, they must
regularly switch their radios on and check the channel for incoming transmissions. The more often
this channel check is performed – and the longer each check lasts – the higher is the duty cycle of
the nodes and thus their energy consumption. The possibility to design thrifty sampling strategies
– which is opened up by the use of packlets – is thus instrumental to reduce the overall radio-on
time and thus the duty cycle of nodes running Whisper.
A straightforward sampling strategy – to which we refer to as lazy sampling (see Fig. 2b) –

consists in making all nodes switch their radios on at the beginning of a communication slot. This
strategy is used in Glossy and other approaches such as LWB [14] or Crystal [17] and can be used
in Whisper too. When adopting lazy sampling, nodes must wait for an incoming transmission long
enough so that a message from the initiator can propagate through the entire network. This can,
however, take several milliseconds in a network of few hops and represents a high cost in terms of
energy consumption, especially if no packet is transmitted.

1While the number 𝑁𝑡𝑥 of packlets included in a signaling packet is a configurable parameter, our results show that a
default value of 𝑁𝑡𝑥 = 3 is sufficient to achieve very high reliability.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:4 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

(a) Whisper.

(b)Whisper with lazy sampling.

(c) Glossy.

Fig. 2. Whisper eliminates gaps. The time needed to switch the radio between receive (RX) and transmit (TX)
mode (and vice versa) causes communication “gaps” to occur in Glossy. By transmitting a log train of packlets,
Whisper does not need to perform the RX/TX turnaround and thus eliminates these gaps.

To cope with this problem, Whisper uses an alternative sampling strategy – which we dub
direction-aware sampling. It exploits the fact that in many practical scenarios the network topology
is usually fixed or changes slowly and that data traffic flows in one direction only – e.g., from an
initiator to all other nodes in a network in a data dissemination scenario or from a random node in
the network to a central sink node in case of event-driven aperiodic communication. Thus, nodes
can estimate their distance in hops from the sender or destination, respectively, and switch on their
radios only when a signaling packet is likely to “pass-by”, as shown in Fig. 2a.

Synchronous transmissions. To ensure a fast and reliable propagation of the signaling packet,
Whisper exploits synchronous transmissions. When a neighbor of the sender turns its radio on,
it needs to intercept only one of the packlets to detect the existence of a signaling packet. If no
packlet is detected, the node switches its radio off to save energy. If a packlet is instead successfully
received, the node keeps its radio on and helps propagating the signaling packet. It does so by

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:5

Sender Packlet c = 0 Packlet c = 1 Packlet c = 2

Packlet c = 2 Packlet c = 3 Packlet c = 4

Packlet c = 3 Packlet c = 4

Packlet c = 4

Transmitting

Receiving
Processing &
turnaround Transmitting

Receivers

t

Packlet c = 0

Packlet c = 1

Packlet c = 2

Processing &
turnaroundReceiving Transmitting

Packlet c = 5

Packlet c = 5 Packlet c = 6

Receiving Transmitting

Fig. 3. Whisper’s operation. Nodes receive a packlet, process it while turning their radio to transmit mode
and afterwards transmit their signaling packet.

joining the ongoing synchronous transmission with its own signaling packet, which is again a
single packet made of multiple packlets. To this end, a node that starts sending a signaling packet
must ensure that its own packlets overlap with the packlets that are already being transmitted by
other nodes.
Whisper takes special account of scenarios in which nodes share the same data, e.g., when

a controller disseminates a new configuration parameter or when Whisper is used as wake-up
primitive. In these cases, packlets sent by nearby nodes must fulfill two conditions: they must be
identical and must be sent at almost exactly the same time instant2, as schematically illustrated in
Fig. 2a. We discuss in Sec. 3 how Whisper manages to fulfill both these conditions.

Whisper also supports the concurrent transmission of different data. The procedures for sending
identical data packets and different data packets are identical. The latter case, however, relies on
the capture effect instead of constructive interference.

3 WHISPER: A CLOSER LOOK
After having presented the core design elements of Whisper in the previous section, we now discuss
in detail its most relevant features.

3.1 The signaling packet
The design of the signaling packet as shown in Fig. 1 makes Whisper able to send a train of packets
back-to-back, i.e., without any gaps between consecutive transmissions. We argue that this is an
essential stepping stone to: (a) lower the duration of a network flood; (b) enable sampling strategies
that reduce nodes’ duty cycle; and (c) simplify the timing of synchronous transmissions.

Whisper uses the payload of the signaling packet to simulate several packets being sent back-to-
back. This is achieved by the use of packlets, a technique inspired by the multi-header approach
presented in [21]. As illustrated in Fig. 1, a packlet in Whisper consists of at least five fields3: a
preamble, a 1-byte SFD, 1-byte length field, a 1-byte payload, and a 2-byte footer, which includes a
Frame Check Sequence (FCS). Nonetheless, the packlet format in Whisper is user-configurable and
can be changed or extended to contain, e.g., larger payloads. When a receiver starts listening for

2As known from Glossy [15], the temporal displacement between concurrently transmitted packets must (in IEEE
802.1.5.4) not exceed 0.5 𝜇s to allow for constructive interference to occur.

3The data field can have a length of zero, e.g., when running Whisper as wake-up primitive.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:6 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

incoming packets it only needs to intercept a single preamble and SFD of one of the packlets to
detect an ongoing transmission.
While the IEEE 802.15.4-compliant length of the preamble is 4 bytes, in some radios – e.g., the

CC2420 [39] – both the preamble length and the SFD are configurable parameters. To reduce the total
length of a signaling packet, and thus, decrease the radio-on time of the nodes, Whisper’s default
implementation sets the length of the preamble to 2 bytes. While this assumes that Whisper can
exploit low-level features of the transceiver and makes it non-IEEE 802.15.4-compliant, we believe
that it is important to explore the potential of Whisper’s design beyond current technological limits.
Several other authors have indeed explored before us non-IEEE 802.1.5.4-compliant techniques to
design energy-efficient protocols [7, 12, 30]. Nonetheless, Whisper can operate with a preamble
of arbitrary length and can thus, if required, also be used with a standard-compliant preamble of
4 bytes. While a longer preamble affects performance, we show in Sec. 4 that Whisper outperforms
Glossy also with a preamble length of 4 bytes.
Given the above description, a packlet is by default 7 bytes long. Since IEEE 802.15.4 radios

transmit at a rate of 250 kbit/s, the transmission of one packlet – henceforth denoted with 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡
– lasts 224 𝜇s. The sender sends 𝑁𝑡𝑥 packlets and its total transmission time with 𝑁𝑡𝑥 = 3 is
thus 672 𝜇s. The radio of other nodes in the network is instead active for at least the duration of
𝑁𝑡𝑥 + 2 packlets. This is because, as depicted in Fig. 2a, before being able to send its 𝑁𝑡𝑥 packlets
a node must first receive one packlet and then switch the radio from receive to transmit mode,
thereby adding the duration of 2 packlets to the total time needed to transmit 𝑁𝑡𝑥 packlets. Further,
nodes must sample the channel, which further adds to the time they must keep the radio on. With
direction-aware sampling, for instance, nodes persist in idle listening for the duration of roughly
one packlet, thus, bringing the otal radio-on time to (𝑁𝑡𝑥 + 2 + 1) ·𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 , i.e., 1,344 ms by setting
𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 = 224 𝜇s.

In contrast, nodes running Glossy in the same scenario must keep their radio on for at least 2𝑁𝑡𝑥

transmissions. This is because, as shown in Fig. 2c, a node in Glossy both receives and transmits
a packet 𝑁𝑡𝑥 times. Assuming that also Glossy sends packets with a 1-byte payload – and that a
Glossy packet is as long as a packlet – each node actively transmits or receives for 2𝑁𝑡𝑥𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 ,
i.e., 1.344 ms when 𝑁𝑡𝑥 = 3. Glossy must, however, also continuously switch between receive and
transmit mode, as illustrated in Fig. 2c. This RX/TX turnaround of the radio takes 192 𝜇s [16] and
nodes must turn the radio from receive to transmit mode 𝑁𝑡𝑥 − 1 times, which adds almost 1 ms
(i.e., 960 𝜇s) of additional radio on time. The radio-on time of Glossy is thus almost twice as long as
that of Whisper (2,304 ms vs. 1,344 ms) – even though we did not account for the time spent in idle
listening by nodes running Glossy nor for Glossy’s software delay, which should be added to the
RX/TX turnaround time. We also did not consider – neither in the calculation above nor in Fig. 2 –
the guard times that are present in both Whisper and Glossy. A guard interval is usually short4
and appears only once at the beginning of the idle listening phase. It, thus, has only little influence
on the computation presented above.
This back-of-the-envelope calculation shows that the superior performance of Whisper with

respect to Glossy – discussed in detail in Sec. 4.2 – is mainly due to the fact that Whisper eliminates
the gaps between consecutive transmissions. This advantage persists even if Whisper is used with
lazy sampling, as in this case the time spent in idle listening is roughly the same as for Glossy.

In the example discussed above, we assume Glossy packets with a payload of 1 byte. The payload
of standard Glossy packets is, however, 4 bytes: a 2 byte sequence number, a 1 byte Glossy header,

4The reference implementation of Glossy we use in the evaluation has a guard time of roughly 130 𝜇s (measured
experimentally). In [17], Istomin et al. showed that a guard time of 150 𝜇s is sufficient to compensate for clock drifts that
accumulate over 5 minutes.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:7

and a 1 byte relay counter [15]. We reduce the payload size to 1 byte (we keep only the field
relay_counter), to avoid penalizing Glossy due to its larger payload size. This also allows us to show
– in Sec. 4 – that shortening the payload size in Glossy is not sufficient to make it more efficient
than Whisper.

3.2 Sending identical packlets
Whisper natively takes special account for scenarios in which nodes share identical data. For these
cases, sending identical packets is a necessary condition for constructive interference to occur (or
more precisely for packets not to interfere destructively) when synchronous transmissions are used.
In Whisper, this translates in ensuring that all packlets sent at the same time are identical.

The only value that changes across different packlets in the same signaling packet is the counter 𝑐 ,
which is the 1-byte payload of each packlet. As illustrated in Fig. 1, the 1st packlet has counter
𝑐 = 0, the second 𝑐 = 1, and so on. When nodes start sending their own signaling packet, they
must properly set the value of the counter 𝑐 of the packlets. In particular – as also shown in Fig. 3 –
Whisper makes a node that receives a packlet with counter 𝑐 = 𝑖 set the counter of its first packlet
to 𝑐 = 𝑖 + 2. This is because while the 𝑐 = 𝑖 + 1th packlet is being transmitted, the node performs
the RX/TX turnaround of the radio. In this time frame the node “misses” a packlet and must wait
until the next one starts being sent before sending its own signaling packet.

Besides ensuring the values of the counter 𝑐 is identical for all synchronously transmitted packlets,
Whisper must also properly set the length field of the packlets. This field specifies the length in
bytes of the payload and the footer. For packlets that have a 1-byte payload, the length field must,
thus, be set to three. This can be easily done for all packlets but the first. As highlighted in gray in
Fig. 1, the packlet with counter 𝑐 = 0 “borrows” the preamble, SFD, and length field of the signaling
packet. The first byte of the signaling packet, however, specifies how many bytes the radio must
send before automatically ceasing to transmit. If Whisper would use this mode of operation (called
buffered mode in the CC2420 [39]), the (first) length field in the signaling packet would indicate the
total length of the signaling packet in bytes – which is different than three. This would cause the
length field of each signaling packet to collide with the length field of synchronously sent packlets.
As a consequence, destructive interference would occur and result in packet drops.

To avoid this problem, we exploit an alternative transmit mode available on certain IEEE 802.15.4
radio transceivers (including the CC2420 [39]): the TXFIFO looping mode. When set in this mode the
radio ignores the length field and just continuously reads data from the radio buffer and transmits
it. Once the content of the buffer has been sent, the radio wraps around and starts to read and
send the data from the beginning. This continues indefinitely until a timeout explicitly stops the
transmission. Since the value of the length field is ignored when the radio operates in TXFIFO
looping mode, Whisper can set the first length field to the length of a packlet – instead that to the
length of the signaling packet– thus completely overcoming the problem described above.
While this mode of operation may not be available on all IEEE 802.15.4 transceivers, which

limits the portability of Whisper, we believe that it is important to explore novel design ideas
notwithstanding current technological limits and protocol standards. We further plan to explore
an alternative approach to avoid the TXFIFO looping mode: using byte-wise transmission power
control to send the length field using the smallest possible transmit power [31]. When evaluating
the performance of Whisper in Sec. 4, we, nonetheless, explicitly consider a fully IEEE 802.15.4-
compliant version of the protocol, called Whisper (compliant), which we describe in Sec. 3.6.
Further, Whisper is not limited for sharing identical data. Related work has already shown the

efficiency of synchronously transmitting different data [5, 17, 20, 42] by relying on the capture
effect. Letting the nodes flood different data with Whisper, indeed, also relaxes the need for support

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:8 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

of the TXFIFO looping mode. The advantage of Whisper compared to existing solutions is, still, the
absence of gaps resulting in a short flooding duration and thus, efficient sampling.

3.3 Sending packlets synchronously
In the previous subsection wementioned that after receiving a packlet (with counter value 𝑐𝑖), a node
must wait for an entire 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 before sending its first packlet (with counter 𝑐𝑖 + 2). This is because
while packlet 𝑐𝑖 + 1 is on the air, the node must perform the RX/TX turnaround of the radio, which
lasts𝑇𝑡𝑢𝑟𝑛 = 192 𝜇s for IEEE 802.15.4 radios [16]. This leaves a wait time𝑇𝑤𝑎𝑖𝑡 = 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 −𝑇𝑡𝑢𝑟𝑛 −𝑇𝑑 ,
whereas 𝑇𝑑 is the time that elapses between the rising SFD edge of a sender during transmission
and the corresponding rising SFD edge of a receiver during reception.

The existence of𝑇𝑑 is due to the fact that the reception of a pack(l)et lasts slightly longer than its
transmission. This data delay is a common phenomenon in wireless radios, and each transceiver has
a specific latency of the RX and TX paths, which is reported in the data sheets. If not compensated
for, the existence of 𝑇𝑑 would make nodes start sending the next packlet before receivers have
completed the reception of the previous one. Including propagation delay, 𝑇𝑑 is reported to be
3 < 𝑇𝑑 ⩽ 3.6 𝜇s [19, 39, 41] and is, thus, non-negligible. In Whisper, we set 𝑇𝑑 = 3 𝜇s.

The existence of this fixed wait time is a further difference between Whisper and Glossy. Indeed,
Glossy aims at re-sending a packet as quickly as possible after receiving it (i.e., immediately after
the RX/TX turnaround). This is because the longer nodes wait to retransmit a packet, the stronger
MCU clock instabilities become relevant and can, thus, cause transmissions of different nodes to
misalign [15]. This so-called software delay in Glossy is 23 𝜇s. In Whisper, if we assume a payload
of 1 byte and a preamble of 2 bytes, then 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 = 224 𝜇s and, thus, 𝑇𝑤𝑎𝑖𝑡 = 29 𝜇s. Although the
values of 𝑇𝑤𝑎𝑖𝑡 and of Glossy’s software delay are relatively close to each other, the latter does not
depend on the length of the packet whereas it does in the case of Whisper. The wait time is, thus,
more critical for Whisper than for Glossy.
To cope with this issue we employ Flock, a recently presented clock compensation approach

for low-power nodes [6]. Flock compensates for instabilities in the digitally controlled oscillator
(DCO) that drives the MCU of many low-power hardware platforms. It, thus, makes Whisper able
to ensure that packlet transmissions align within the 0.5 𝜇s window notwithstanding the existence
of 𝑇𝑤𝑎𝑖𝑡 and even if 𝑇𝑤𝑎𝑖𝑡 is significantly longer than 29 𝜇s. This, in turn, makes Whisper robust
even with long packlets and in challenging environments with highly unstable DCO clocks, like
those considered in [4].

3.4 Lazy sampling
A straightforward way to maximize the probability that a node intercepts a signaling packet, even in
scenarios with high node mobility, consists in making the node keep its radio in idle listening for the
entire duration of aWhisper slot. This is the time interval during which a Whisper flood is executed
and during which – like in Glossy and other protocols based on synchronous transmissions – all
other application tasks executing the hosting platform are suspended.

The length of the slot – indicated as 𝑇𝑠𝑙𝑜𝑡 – is a protocol parameter and should be set depending
on the expected network diameter. In particular, it holds:

𝑇𝑠𝑙𝑜𝑡 = (2𝑑𝑛𝑒𝑡 + 𝑁𝑡𝑥) ·𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 , (1)

where 𝑑𝑛𝑒𝑡 is the network diameter and 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 is the time needed to send a packlet. The first
addend in Eq. 1 accounts for the fact that Whisper progress at a “speed” of 2 packlets per hop, as
illustrated in Fig. 2a. The second addend instead considers that at the last hop, after the first packlet
has been transmitted a node must still transmit 𝑁𝑡𝑥 − 1 packlets. If Whisper is used in a network
of 6 hops and with 𝑁𝑡𝑥 = 3 and 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 = 224 𝜇s (1 byte payload), a slot length of 4,48 ms would

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:9

be sufficient. In practical settings, however, it is recommendable to use a slightly larger value to
account for synchronization drifts and other issues. In the experiments presented in Sec. 4, for
instance, we use 𝑇𝑠𝑙𝑜𝑡 = 5 ms.
Irrespectively of the type of sampling used, once a Whisper slot ends nodes schedule their

next wake-up according to the needs of the application. If, for instance, it must be checked every
5 minutes if there is an update by the initiator, nodes will reschedule their wake-up accordingly at
a time instant 𝑡∗𝑠𝑡𝑎𝑟𝑡 that is 5 minutes away from the beginning of the slot. To account for possible
synchronization errors, Whisper uses as in Glossy a guard time – indicated as 𝑇𝑔𝑢𝑎𝑟𝑑 – and makes
the node actually switch their radio on at 𝑡∗𝑠𝑡𝑎𝑟𝑡 −𝑇𝑔𝑢𝑎𝑟𝑑 .

3.5 Direction-aware sampling
A significant drawback of the lazy sampling strategy sketched above is that it causes all nodes in
the network to stay in idle listening for an entire Whisper slot – even when no signaling packet
is sent. To reduce this idle listening time and thus the overall radio-on time, Whisper exploits a
different strategy, which we call direction-aware sampling.

The main idea behind this strategy is to let the nodes switch their radio on only shortly before the
flood is expected to “pass by”. In low-power networks, traffic often flows in one direction only, e.g.,
from an initiator towards all other nodes in the network in data dissemination scenarios [8, 9, 15]
or from all nodes to a sink in data collection [17]. If the direction of the traffic is known – hence
the name direction-aware sampling – Whisper can exploit this information to run an efficient
sampling strategy.
In the scenario considered in Glossy, for instance, traffic always flows from a fixed initiator

to all other nodes. If Whisper is used in this scenario, the counter 𝑐 of the packlet received by a
forwarding node depends on the distance in hops between the node and the initiator. If the topology
of the network can be assumed to be static or vary slowly, this distance – and thus, the counter 𝑐
– can also be assumed to be constant or to vary only a little across consecutive floods. Whisper
exploits this situation and lets each node keep in memory two values – 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 – which
are estimates of the counters of the packlets with the lowest and highest counter, and thus, the
“earliest” and “latest” packlet a node is expected to receive. Both values 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 are used by
the nodes to compute when to turn the radio on and off, respectively. The value of 𝑐𝑚𝑖𝑛 is set to the
lowest value of 𝑐 ever received. The value for 𝑐𝑚𝑎𝑥 can be computed as follows:

𝑐𝑚𝑎𝑥 = (𝑐𝑚𝑎𝑥 + 𝑐)/2 if: 𝑐 ≥ 𝑐𝑚𝑎𝑥 − 2 (2)

The term 𝑐𝑚𝑎𝑥 − 2 in the condition of Eq. 2 accounts for the progression speed of 2 in Whisper.
Thus, Eq. 2 allows the filtering of outliers that could result in a high sampling duration, and
thus, high energy consumption, while also being able to react to changing channel conditions.
Underestimating 𝑐𝑚𝑎𝑥 would, thus, cause a node to switch off its radio too early, which in the worst
case could stop the propagation of the flood. The strategy chosen to set both 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 are
very conservative and can definitely be improved in future work. The design of Whisper actually
opens up opportunities for designing further smart sampling strategies beyond the two – lazy and
direction-aware – discussed in this paper.
Once 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 are known, a node can compute the start and the duration of its sampling

interval as follows:
𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡∗𝑠𝑡𝑎𝑟𝑡 −𝑇𝑔𝑢𝑎𝑟𝑑 +𝑚𝑎𝑥 (0, 𝑐𝑚𝑖𝑛 − 1) ·𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 (3)

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = (⌊𝑐𝑚𝑎𝑥 ⌋ + (𝑁𝑡𝑥 + 1)) ·𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 (4)

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:10 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

In Eq. 3, 𝑡∗𝑠𝑡𝑎𝑟𝑡 indicates the time at which the sender is expected to start its transmission, whereas
𝑇𝑔𝑢𝑎𝑟𝑑 is the guard time that protects against possible synchronization drifts. When a node did not
yet receive its very first packlet, it sets 𝑐𝑚𝑖𝑛 = 0 and 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 𝑇𝑠𝑙𝑜𝑡 . When the first packlet with
counter 𝑐 is received, the node sets 𝑐𝑚𝑖𝑛 = 𝑐𝑚𝑎𝑥 = 𝑐 . Afterwards, the mechanisms mentioned above
are used to update 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 .
The discussion above assumes that Whisper is used in a data dissemination scenario. In Sec. 5,

we show how direction-aware sampling can be applied also in a data collection scenario.

3.6 Whisper (compliant)
The standard version of Whisper described above exploits low-level mechanisms of the radio
transceiver. For the sake of completeness, we consider in our evaluation also an IEEE-802.15.4-
compliant version of Whisper, called Whisper (compliant). This version uses a 4-byte preamble
and the radio in buffered mode, which has the following two consequences. First, the first length
field of the signaling packet must be set to the actual length of the payload and will, thus, collide
with the length field of synchronously sent packlets. This causes the first packlet of each signaling
packet to be dropped, and thus, slows down the progression of the flood. In particular, Whisper
(compliant) needs three instead of two packlets per hop to progress. Second, the radio hardware
will set the footer of the signaling packet, i.e., the gray-shadowed footer in Fig. 1. To avoid this
footer to collide with the footer of synchronously sent packlets, Whisper (compliant) makes that
all nodes stop sending at the same time, so that the footers of all signaling packets align.

3.7 Resilience against external interferences
As other approaches based on synchronous transmissions, Whisper is sensitive to external interfer-
ence. Common devices such as microwave ovens or Wi-Fi access points can disturb communication
and significantly reduce the reliability of the protocol. Several approaches already presented in
the literature show that introducing frequency diversity – in particular channel hopping – is an
effective countermeasure against external interference [18, 23, 33]. These techniques, especially
sending each flood on a different frequency [18], are straightforward to integrate in Whisper.

3.8 Porting Whisper to other radios
Whisper exploits low-level mechanisms that are, admittedly, not available for all radio transceivers.
However, the design of Whisper is still not limited to the CC2420 radio chip and the TelosB platform.
The CC2520 [36] that is used in the WiSMote [1] nodes also provides the TXFIFO looping mode.
Often, radio chips provide the TXFIFO looping mode functionality using a different name. For
example, the Atmel AT86RF215 [3] that is deployed in the OpenMote-B5 calls it frame based contin-
uous transmission or continuous transmission in the AT86RF231 chip [2] that the M3 Open Nodes6
and A8 Open Nodes7 are equipped with. The Semtech SX1211 [32] chip calls this functionality
buffered mode and the default mode is here called packet mode (not to be confused with the default
’buffered mode’ of the CC2420). The CC1101 [38] that is deployed in the MSP430-CCRF [29] nodes
provides three packet length modes that can be reprogrammed during receive and transmit: fixed
mode, variable mode, and infinite mode. Using these modes, the CC1101 supports packet lengths
that are longer than 127 bytes. Whisper can use them to avoid the transmission of the length field
of the signaling packet.
For radios that do not support the TXFIFO looping mode or similar options, a software-based

solution like the byte-wise transmission power control approach from Saha and Chan [31] – where
5http://www.openmote.com/blog/openmote-b-released/
6https://www.iot-lab.info/hardware/m3/
7https://www.iot-lab.info/hardware/a8/

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

http://www.openmote.com/blog/openmote-b-released/
https://www.iot-lab.info/hardware/m3/
https://www.iot-lab.info/hardware/a8/

Fast Flooding for Low-Power Wireless Networks 47:11

the length field is transmitted with the smallest possible transmit power – as mentioned in Sec. 3.2,
could be an interesting alternative approach that we plan to investigate in a future project.

3.9 Using Whisper with large payloads
This paper describes Whisper as quick yet energy-efficient flooding primitive for small amounts of
data. However, Whisper also supports the propagation of large data, i.e., packlet lengths of 127 bytes.
Using the TXFIFO looping mode, the radio returns to the beginning of the TXFIFO buffer when the
radio has reached the end of the buffer. The MCU has, thus, to continuously fill the buffer while the
radio continuously reads the buffer. This allows a sender to transmit packlets and signaling packets
of infinite length. However, the receivers operate in buffered mode in which the length of a packlet
is limited to 127 bytes (while the length of a signaling packet is still unlimited).

Even though Whisper also works for large data, the sampling strategies presented in this paper
are designed for small data. For example, in the direction-aware sampling strategy, the nodes
wake-up one packlet before the actually expected packlet. Transmitting and receiving a 127 byte
packlet takes about 4 ms. Thus, the nodes stay in idle listening for the entire 4 ms, which is power
inefficient. In applications with large data, a new sampling strategy should be designed, e.g., by
letting the nodes only sample at the beginning of a potential packlet arrival instead of the entire
packlet duration.
We show in Fig. 4 the theoretical radio-on time for different payloads and at different hops

for Whisper, Whisper (lazy), and Glossy. Glossy exceeds the radio-on time of Whisper and Whis-
per (lazy) for all payload sizes in the first hop, shown in Fig. 4a. However, at the third hop, Whis-
per (lazy) has a higher radio-on time compared to Glossy and Whisper with a payload of 40 bytes,
depicted in Fig. 4b and at the sixth hop at a payload of 15 bytes as shown in Fig, 4c. This is because
Whisper’s progression of 2 packlets per hop, and thus, a node in the third hop running Whis-
per (lazy) spends a duration of 4 packlets in idle listening. In comparison, a node running Glossy in
the same configuration only is in idle listening for 2 packets and 2-times the RX/TX turnaround.
Whisper using direction-aware sampling achieves a low radio-on time in all hops, showing that
Whisper can also be used for large data. For a more detailed comparison of the theoretical radio-on
time of Whisper, Whisper (lazy), and Glossy, we refer to Table 5 in Appendix A.

4 EVALUATINGWHISPER IN FLOODING SCENARIOS
In this section, we evaluate Whisper in extensive testbed experiments. In this set of experiments,
we consider scenarios in which Whisper disseminates periodically small data of a few byte like
configuration parameters. We find that Whisper has a 50% higher network lifetime compared to
Glossy while achieving a reliability which is close to 100%.

4.1 Evaluation setup
Implementation. We implemented Whisper for the Contiki operating system8. We embedded

the code base of Flock9 into Whisper and reused parts of the publicly available implementation of
Glossy10 in our code.

Metrics. We focus on two key performance metrics: reliability and radio-on time. We compute
the per-node reliability as the ratio of the total number of signaling packets successfully received
by a node and the total number of signaling packets sent during an experiment. We then derive the
network reliability as the average of the reliability of all nodes in the network. The radio on-time is

8http://www.contiki-os.org/
9https://github.com/martinabr/flock
10http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

http://www.contiki-os.org/
https://github.com/martinabr/flock
http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

47:12 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

R
a
d
io

-o
n

 t
im

e
 [

m
s]

Payload [byte]

(a) First hop.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

R
a
d

io
-o

n
 t

im
e
 [

m
s]

Payload [byte]

(b) Third hop.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

R
ad

io
-o

n
tim

e
[m

s]

Payload [byte]

Whisper Whisper (lazy) Glossy

(c) Sixth hop.

Fig. 4. The theoretical radio-on time for different payloads at different hops. The nodes in the first hop using
Whisper and Whisper (lazy) achieve a lower radio-on time compared to the nodes running Glossy for all
payload sizes. The nodes using Whisper (lazy) in the third hop exceed the radio-on time of the nodes using
Glossy at 40 bytes of payload and the nodes in the sixth hop running Whisper (lazy) exceed the nodes running
Glossy’s radio-on time at 15 bytes payload. Whisper achieves for all three network diameters and all payload
sizes a lower radio-on time compared to Glossy.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:13

the time the radio is turned on and active (including idle listening) during a Whisper (or Glossy)
slot. As for the case of reliability, the radio-on time of the network is computed as the average of
the radio-on time of each node.

Testbed. We run our experiments on the FlockLab testbed [22]. FlockLab is an indoor testbed with
27 nodes deployed in an office building of the ETH Zurich in Switzerland. The nodes available for our
experiments are the Tmote Sky, equipped with the MSP430F1611 low-power microcontroller [37]
and the CC2420 IEEE 802.15.4 transceiver [39].

Whisper and Glossy versions used in the evaluation. To illustrate the performance of Whisper
in detail, we implement different versions of the protocol. Whisper is the full-fledged protocol
that includes direction-aware sampling (see Sec. 3.5) and exploits the TXFIFO looping mode (see
Sec. 3.2). In Whisper, we further use a 2-byte preamble as mentioned in Sec. 3.1 and set 𝑁𝑡𝑥 = 3.
We also explore the performance of Whisper in a series of other configurations, e.g., with lazy

sampling instead of direction-aware sampling, with a 4-byte instead of 2-byte preamble, as well as
with different values of 𝑁𝑡𝑥 . In the plots, we indicate after the name of Whisper the specific change
with respect to the default implementation, i.e, “Whisper (lazy)” indicates a version of Whisper
that uses lazy sampling but keeps the TXFIFO looping mode, the 2-byte preamble and 𝑁𝑡𝑥 = 3.
Lastly, we also consider the fully IEEE 802.15.4-compliant version of Whisper described in Sec. 3.6.
Whisper (compliant) uses a 4-byte preamble, lazy sampling, 𝑁𝑡𝑥 = 14 and does not exploit the
TXFIFO looping mode.

As for Glossy, we use its publicly available code base10. As discussed in Sec. 3.1, we set the
payload of Glossy packets to 1 byte to avoid an unfair penalization of Glossy due to its larger
packet size. We provide experimental results obtained by running Glossy with both a 2 byte and a
4 byte preamble.

Table 1. Summary of scenarios description and configuration parameters.

Scenario Label Sender
[node id in FlockLab]

Dissemination with fixed sender diss. fixed 1
Dissemination with different senders diss. diff. 10, 22, 11, 16, 23, 19, 20, 31, 26, 7
Dissemination with concurrent, close-by senders diss. close 4, 2, 8, 1
Dissemination with concurrent, far-away senders diss. far 16, 19, 7, 1

Scenarios. We run experiments in different dissemination scenarios, as summarized in Table 1, in
which nodes flood small amounts of data into a multi-hop network. We test both dissemination
with only one sender and with different senders. We also consider the case in which different
senders transmit concurrently and differentiate between concurrent senders positioned close-by
each other or roughly evenly distributed across the network. A summary of our evaluation results
for the different scenarios can be found in Table 2. However, in the following, we describe our
results in more detail.

4.2 Whisper vs. Glossy
We first compare the performance of Whisper, Whisper (lazy) as well as Glossy and Glossy (2b
preamble) in a dissemination scenario with a single, fixed sender (diss. fixed). This scenario cor-
responds to, e.g., a controller that needs to signal the nodes to stay awake for an unscheduled
software update or to disseminate some configuration parameters to all nodes in the network. We

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:14 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Glossy (2b preamble)

Whisper (lazy)

Whisper

Glossy

2 3 4 6 7 8 10 11 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 31 32 33

Node ID

0.0

1.0

2.0

3.0

4.0

5.0

6.0

R
ad

io
-o

n
ti

m
e

[m
s]

(a) Performance during data dissemination. Comparing with Glossy reduce Whisper and Whisper (lazy) the
radio on-time by a factor of two while achieving a reliability near 100%. Nodes have learned their distance to
the source (node 1) and efficiently turn their radio on before the flood “passes-by”.

2 3 4 6 7 8 1011131415161718192022232425262728313233

Node ID

0.0

1.0

2.0

3.0

4.0

5.0

6.0

R
ad

io
-o

n
ti

m
e

[m
s] Whisper

(b) Radio on-time when no signaling packet is disseminated.Whisper achieves
a low radio on-time even when no signaling packet is disseminated. In
contrast, Whisper (lazy) and Glossy use a fixed timeout mechanism that
is set to 5 ms (marked as red line) to turn the radio off in case no packlet
has been received. Learning the distance to the source (node 1) allows for
energy-efficient channel checks.

Fig. 5. Performance of Whisper, Whisper (lazy), Glossy, and Glossy (2b preamble) at 0 dBm in FlockLab in a data
dissemination scenario with only a single, fixed sender (diss. fixed).Whisper outperforms Glossy in terms of
energy-efficiency during data dissemination as well as when no signaling packet has been sent.

find that nodes using Whisper achieve, with respect to Glossy, a comparable or higher reliability
and a significantly smaller radio-on time, both with and without data traffic.

Experiments. We run Whisper, Whisper (lazy), “standard” Glossy and Glossy (2b preamble) in
the following configuration. We select the node with identifier 1 as the sender. This node is located
on the outer edge of the FlockLab testbed, which allows us to obtain a large network diameter.
To vary the topology and in particular the number of hops between the sender and the farthest

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:15

receivers, we use two different transmit powers: -10 dBm and 0 dBm. This results in a network
diameter of 3 to 4 and 5 to 6 hops, respectively. Each experiment consists of 10’000 floods and we
repeat each experiment 3 times. For Whisper, we further measure the radio-on time over 5’000
slots during which the sender sends no signaling packet. The collected per-node data is averaged
over the three independent runs and the standard deviation is plotted as error bars in the figures.

Results. Fig. 5a details – for the case in which the sender disseminates a signaling packet in each
slot – the per-node reliability in the upper plot and the per-node radio-on time in the lower plot.
While the reliability of Whisper and Whisper (lazy) is comparable or slightly higher than that of
Glossy and Glossy (2b preamble), the radio-on time is significantly lower – on average half that of
Glossy – for Whisper and Whisper (lazy). Assuming that the protocols are scheduled every second,
Whisper has a 50% higher network lifetime than Glossy11. Fig. 5a also shows that Whisper and
Whisper (lazy) achieve a similar radio-on time. However, with increasing network diameter, the
radio-on time of Whisper (lazy) significantly increases compared to Whisper, as shown in Table 2
at -10 dBm.

Fig. 5b shows the per-node radio-on time of Whisper when no signaling packet is sent. The bold,
(red) line at 5 ms corresponds to the radio-on time of approaches like Whisper (lazy) or Glossy that
– in case of the absence of communication – keep nodes in idle listening for the entire slot. Whisper
can save radio-on time by a factor of 2 in this case thanks to the use of direction-aware sampling,
which makes nodes switch their radio off at most when the expected reception time of the packlet
with counter 𝑐 = 𝑐𝑚𝑎𝑥 + 𝑁𝑡𝑥 + 1 has elapsed. This characteristic of Whisper is particularly relevant
when nodes must frequently switch on their radios to limit delays in relaying data traffic – yet
often no packet is flooded, like in the data prediction scenario of Crystal [17].

4.3 Whisper in dissemination scenarios
To consider the case in which different nodes must disseminate data – possibly even concurrently –
we evaluate the performance of Whisper, Whisper (lazy) and Glossy in the three scenarios diss. diff.,
diss. close, and diss. far (see Table 2). We find that contention for the same slot causes less packet
collisions, and thus, results in higher reliability in Whisper and Whisper (lazy) compared to Glossy.

Experiments. We run Whisper, Whisper (lazy) and Glossy consecutively with transmit powers
-10 dbm and 0 dBm. In the diss. diff. scenario, each sender – shown in Table 1 – consecutively
transmits 1’000 signaling packets before handing over to the next sender. The senders in the
diss. close, and diss. far scenarios concurrently transmit signaling packets in every Whisper slot.
We execute 10’000 floods in each experiment (i.e., for each protocol) and we run each experiment
3 times.

Results. Fig. 6 shows the network reliability (upper plot, left), radio-on time (lower plot, right) and
the percentage of dropped packlets/packets per Whisper/Glossy slot. In all the considered scenarios,
Whisper and Whisper (lazy) achieve a higher reliability and a lower radio-on time than Glossy.

The difference in performance is more evident in scenarios with concurrent senders, i.e., diss. close
and diss. far. The reason is that interference due to concurrent floods has a stronger impact in Glossy
than in Whisper. More precisely, floods from different senders overlap with a slightly different
temporal displacement caused by (i) senders not being synchronized within sub-microseconds and
(ii) as stated in [26] “a combination of software, hardware, and signal propagation delays” caused

11The average radio-on time is 1.9 ms and 3.7 ms for Whisper and Glossy, respectively. We assume a battery capacity of
2000 mAh and consider only the energy-consumption during communication (i.e., 20 mA). The resulting network lifetime is
2193 days and 1126 days for Whisper and Glossy, respectively. Thus, the network lifetime of Whisper is 50% higher than the
one of Glossy.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:16 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

Table 2. Summary of evaluation results. Whisper and Whisper (lazy) outperform Glossy in terms of reliability
and radio-on time in various scenarios. Nodes using Whisper (lazy) and Glossy use a timeout mechanism to
turn the radio off in case they have not intercepted a packlet/packet within a given time. In this evaluation
the timeout is set to 5 ms.

Protocol Scenario Tx power Reliability Radio on Radio on
w/ signaling w/o signaling

[dBm] [%] [ms] [ms]

Whisper diss. fixed -10 99.980 2.055 2.546
0 99.980 1.936 2.474

Whisper
(lazy)

diss. fixed -10 99.817 2.477 5.0
0 99.983 1.962 5.0

diss. diff. -10 99.932 2.175 5.0
0 99.986 1.865 5.0

diss. close -10 99.887 2.438 5.0
0 99.952 2.129 5.0

diss. far -10 99.786 1.626 5.0
0 99.965 1.540 5.0

Glossy diss. fixed -10 99.738 4.253 5.0
0 99.828 3.756 5.0

Glossy
(2b pre-
amble)

diss. fixed -10 99.616 3.914 5.0
0 99.767 3.356 5.0

diss. diff. -10 98.369 3.805 5.0
0 98.963 3.351 5.0

diss. close -10 99.350 4.071 5.0
0 99.024 3.932 5.0

diss. far -10 98.881 3.680 5.0
0 98.559 3.721 5.0

-10dBm 0dBm

TX power [dBm]

0.0

0.5

1.0

D
ro

pp
ed

pa
ck

(l
)e

ts
[%

]

90.0

95.0

100.0

R
el

ia
bi

lit
y

[%
]

-10dBm 0dBm

TX power [dBm]

0.0

2.0

4.0

R
ad

io
-o

n
ti

m
e

[m
s]

Whisper (lazy, diss. diff.)

Whisper (lazy, diss. close)

Whisper (lazy, diss. far)

Whisper

Whisper (lazy)

Glossy (2b preamble)

Glossy (2b preamble, diss. diff.)

Glossy (2b preamble, diss. close)

Glossy (2b preamble, diss. far)

Fig. 6. Comparison in dissemination scenarios. Whisper and Whisper (lazy) achieve in all scenarios a two-fold
lower radio-on time compared to Glossy. At the same time, they achieve a higher reliability.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:17

by an increasing number of concurrent transmitters. While (i) affects both Whisper and Glossy
to an equal extent, (ii) intensifies for each gap between consecutive transmissions, resulting in
a stronger impact on Glossy compared to Whisper. The consequence is that nodes using Glossy
drop more packets on average, e.g., 0.5% in diss. far resulting in 1% lower reliability compared to
Whisper (lazy).

4.4 Impact of low-level mechanisms
We now investigate the impact of the individual low-level mechanisms used inWhisper. We thereby
consider a dissemination scenario with a single, fixed initiator (diss. fixed).

4.4.1 Impact of preamble length. We start by analyzing the effect of the preamble length on the
performance of Whisper (lazy) and Glossy. We find that a 2 byte preamble significantly reduces the
radio-on time for both protocols while causing a neglibile loss in terms of reliability.

Experiments. We runWhisper (lazy) and Glossy in the diss. fixed scenario using𝑁𝑡𝑥 = 3, preamble
length of both 2 bytes and 4 bytes, and transmit powers of -10 dBm and 0 dBm. We execute 10’000
Whisper/Glossy network floods for each protocol and collect data from 3 independent runs.

Results. Fig. 7a shows the network reliability in the upper plot and the achieved radio-on time in
the lower plot. One can observe a slight increase in reliability with the 4 byte preamble compared
to the 2 byte preamble. Comparing the gray-shadowed results corresponding to 𝑁𝑡𝑥 = 3 in Table 3a,
the network reliability with a 2 byte preamble drops about 0.1% for all protocols and transmit
powers, which corresponds to the loss of 10 packets out of 10,000, on average. The radio-on
time, however, increases with the longer preamble by 10% and 20% for Whisper (lazy) and Glossy,
respectively, as shown in Fig. 7a. To an almost negligible decrease of reliability, thus, corresponds
a significant improvement in terms of radio-on time. This can be explained considering that the
preamble and SFD byte are used by receivers to achieve symbol synchronization and to adjust
for frequency offsets [39]. The length of the preamble, however, only affects transmissions. The
receiver starts intercepting a packet as soon as it has found a single preamble byte followed by
the SFD. Transmitting a longer preamble is useful to increase the signal-to-noise ratio, and thus,
to help the receiver in detecting the preamble and SFD bytes. An increase of the preamble length
from 2 to 4 bytes leads, however, to almost negligible improvements, as illustrated above.

4.4.2 Impact of the number of transmissions 𝑁𝑡𝑥 . We now discuss how different values of 𝑁𝑡𝑥

affect the performances of both Whisper and Glossy. We find that both protocols achieve a similar
reliability. However, Whisper (lazy, 4b preamble) has a smaller radio-on time than Glossy and with
every 𝑁𝑡𝑥 , the effect on the radio-on time increases stronger in Glossy compared to Whisper (lazy,
4b preamble).

Experiments. We run Whisper (lazy, 4b preamble) and set 𝑁𝑡𝑥 = {2, 3, 4, 5}. We use transmit
powers -10 dBm and 0 dBm and execute 10’000 Whisper/Glossy network floods for each protocol
and collect data from 3 independent runs. We further run “standard” Glossy with a preamble length
of 4 byte in the same configuration.

Results. The upper plot of Fig. 7b shows that for different values of𝑁𝑡𝑥 Whisper (lazy, 4b preamble)
and Glossy achieve a comparable reliability. Apart from minor fluctuations, the reliability increases
as 𝑁𝑡𝑥 increases, as expected. The lower plot in Fig. 7b shows that Whisper outperforms Glossy in
terms of radio-on time even with lazy sampling and 4 byte preamble. More precisely, Table 3b shows
that in Whisper (lazy, 4b preamble) increasing 𝑁𝑡𝑥 by 1 causes an increase of the radio-on time of
roughly 288 𝜇s – which corresponds to 𝑇𝑝𝑎𝑐𝑘𝑙𝑒𝑡 for a packlet with a 4 byte preamble and a 1-byte
payload. In Glossy the radio on-time increases for each 𝑁𝑡𝑥 by the duration of one received and

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:18 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Whisper (lazy, -10dBm)

Whisper (lazy, 0dBm)

Glossy (-10dBm)

Glossy (0dBm)

2 4

Preamble length [byte]

0.0

2.0

4.0

6.0

8.0

R
ad

io
-o

n
ti

m
e

[m
s]

(a) Impact of preamble length. A 4 byte preamble in-
creases the overall reliability by 0.1% while increasing
the radio-on time by 20% and 10% for Whisper and
Glossy, respectively, compared to a 2 byte preamble.

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Whisper (lazy, 4b preamble, -10dBm)

Whisper (lazy, 4b preamble, 0dBm)

Glossy (-10dBm)

Glossy (0dBm)

2 3 4 5
Maximum number of pack(l)et transmissions Ntx

0.0

2.0

4.0

6.0

8.0

R
ad

io
-o

n
ti

m
e

[m
s]

(b) Impact of number of packlet/packet transmissions.
Glossy’s radio-on time increases stronger with 𝑁𝑡𝑥

compared to Whisper’s (lazy, 4b preamble). The rea-
son is the additional packet reception as well as the
RX/TX turnaround.

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

2 4 8 3 33 15 16 28 22 6 31 10 20 32 26 23 18 13 27 24 11 17 19 25 7 14

Node ID

0

2

4

6

8

10

12

R
ec

ei
ve

d
c

Whisper (compliant) Whisper (lazy, 4b preamble)

(c) Impact of length field. Colliding lenght fields in Whisper (compliant) have
a great impact on the progression speed of the flood.

Fig. 7. Impact of low-level mechanisms.

one transmitted packet à 288 𝜇s, the RX/TX turnaround time with 192 𝜇s and 23 𝜇s for the software
delay. As a consequence, the increase in radio-on time with increasing 𝑁𝑡𝑥 is more prominent in
Glossy than in Whisper.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:19

4.4.3 Impact of collisions due to different length fields. Lastly, we compare Whisper (compliant)
with Whisper (lazy, 4b preamble, 14 packlets). We find that collisions caused by the different length
fields in Whisper (compliant) have a significant, negative influence on the speed at which a flood
can progress.

Experiments. We run Whisper (compliant) with 14 packlets, which results in a signaling packet
of 122 bytes. We further run Whisper (lazy, 4b preamble, 14 packlets) and make all nodes stop
transmitting their signaling packets simultaneously. The signaling packets in Whisper (compliant)
and inWhisper (lazy, 4b preamble, 14 packlets) differ only in the length field of the first packlet. This
is the length of the signaling packet in Whisper (compliant) and the length of a packlet in the latter.

Results. Fig. 7c shows the per-node reliability on the upper plot and the received counter 𝑐 on the
lower plot. We find that each node achieves a reliability of 100% for both protocols. This is consistent
with the results discussed in the previous Sec. 4.4.2, where we found that the reliability increases
with each additionally transmitted packlet. This is also the case when nodes simultaneously stop
sending instead of ceasing after 𝑁𝑡𝑥 transmissions.
The lower plot of Fig. 7c reveals that nodes using Whisper (compliant) receive higher counter

values compared to Whisper (lazy, 4b preamble, 14 packlets). This is what causes a slower progres-
sion of the flood and is not unexpected given that in Whisper (compliant) (i) nodes drop packlets
whose length field is not set correctly, and (ii) the packlets are exposed to collisions due to the
different length fields. More precisely, the packlet with 𝑐 = 0 is dropped by the nodes in the first
hop (nodes with identifiers 2 to 15 in Flocklab), because the length field is not set to the length
of a packlet but to the length of the signaling packet. The nodes in the first hop receive packlet
𝑐 = 1 and consequently miss 𝑐 = 2 due to the RX/TX turnaround. They transmit packlet 𝑐 = 3,
which collides with the packlet of the sender. Thus, nodes on the second hop (identifiers 16 to 31)
successfully receive packlet 𝑐 = 4. This procedure continues until the last hop (node with identifier
14) receives packlet 𝑐 = 11. In comparison, the same node receives 𝑐 = 5 with Whisper (lazy, 4b
preamble, 14 packlets). This shows that the flood progresses faster with Whisper (lazy, 4b preamble,
14 packlets), and thus, requires less packlets to be sent in total, which reduces the radio-on time.

5 EVALUATINGWHISPER AS WAKE-UP PRIMITIVE WITHIN CRYSTAL
In the following, we evaluate Whisper used as wake-up primitive in Crystal [17, 18], a recently
proposed data collection protocol based on Glossy that targets data prediction scenarios. We show
the performance of Crystal and Crystal with integrated Whisper and find that Whisper increases
the network lifetime by a factor of 2.3 compared to “standard” Crystal.

Crystal and Crystal with Whisper. In the following, we briefly describe the operation of Crystal
and afterwards how Whisper is incorporated in Crystal.
Crystal uses Glossy-floods to let nodes transmit data to a sink node. When the sink node

has received a data packet, it acknowledges its reception. Otherwise, it disseminates a negative-
acknowledgment. The transmit (T) and acknowledgment (A) slots alternate until the sink has
disseminated a negative-acknowledgment twice. After the second negative-acknowledgment, the
nodes turn their radio off. Crystal runs periodically and organizes its operations in epochs. Fig. 8a
shows an example of a Crystal epoch. Each epoch starts with a synchronization (S) slot in which
the nodes re-synchronize to the sink node. After the synchronization slot follow the T- and A-slots
as described above. To increase resilience against interference, Crystal integrates a channel hopping
mechanism. The numbers above the communication slots in Fig. 8a indicate the channel at which
the nodes communicate. In particular, each TA-pair uses the same channel.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:20 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

Table 3. Summary of low-level mechanisms.

(a) Reliability.

4b preamble 2b preamble

Protocol Tx power 𝑁𝑡𝑥 = 2 = 3 = 4 = 5 𝑁𝑡𝑥 = 3
[dBm] [%] [%]

Whisper (lazy) -10 99.774 99.921 99.672 99.953 99.817
Whisper (lazy) 0 99.985 99.986 99.996 99.998 99.983

Glossy -10 99.204 99.738 99.870 99.888 99.616
Glossy 0 99.613 99.828 99.649 99.939 99.767

(b) Radio-on time.

4 byte preamble 2 byte preamble

Protocol Tx power 𝑁𝑡𝑥 = 2 = 3 = 4 = 5 𝑁𝑡𝑥 = 3
[dBm] [ms] [ms]

Whisper (lazy) -10 2.718 3.036 3.587 3.705 2.477
Whisper (lazy) 0 2.118 2.487 2.772 3.109 1.962

Glossy -10 3.367 4.253 5.303 6.363 3.914
Glossy 0 2.781 3.756 4.834 5.841 3.356

S

Node 1 S

t

11

11
AT

AT

18 18

18 18
AT

AT

25 25

25 25

Epoch

Node 2 S

S

11

11
AT

AT

18 18

18 18
AT

AT

25 25

25 25

(a) Crystal.

S W A AWT

Node 1

T

S W A AW

t

T T

1811 18 18 25 25 25

1811 18 18 25 25 25
S W A AWT T

S W A AWT T

1811 18 18 25 25 25

1811 18 18 25 25 25

Epoch

Node 2

(b) Crystal /w Whisper.

Fig. 8. A Crystal epoch with and without Whisper. The (W-), T- and A-slot alternate until the sink node has
disseminated a negative-acknowledgment twice during the A-slot. The numbers above the slots denote the
channel used for communication. The illustrations are based on Figure 5 in [18].

The sink node always disseminates packets in the S- and A-slot. However, there is infrequent
communication in the T-slot. For example, in Crystal’s temperature prediction scenario, there
is no data dissemination in over 80% of the T-slots. However, the duration of the T-slot must be
sufficiently long to support the packet size that is required by the application. As a consequence, the
nodes consume unnecessary energy. To reduce the idle listening time when no data communication

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:21

Table 4. Crystal’s configuration parameters.

Tx power 𝑁𝑆 𝑁𝑇 𝑁𝐴 𝑊𝑆 𝑊𝑇 𝑊𝐴

[dBm] [#] [#] [#] [ms] [ms] [ms]

0 3 2 3 10 9 7
-10 4 3 4 14 14 12

is needed, and thus, to reduce the energy consumption, Whisper can be integrated into Crystal as
wake-up primitive. Fig. 8b shows Crystal with Whisper. Whisper (W) runs before each T-slot. A
node that has data to share, transmits a signaling packet in the Whisper slot. The packlets in the
signaling packet only carry the counter 𝑐 as payload, and thus, the data field has a length of zero.
Nodes that intercept a packlet turn their radio on in the T-slot, otherwise they keep the radio turned
off until the following A-slot. In this setting, Whisper relies on the synchronization and channel
hopping mechanisms from Crystal. More precisely, Crystal initiates the start of the Whisper slot
and also provides the communication channel, which is the same as used for the TA-slots.

Experiments. In this experiment, we measure the duty cycle and the achieved reliability. In
particular, the duty cycle is the averaged per-node duty cycle that is the ratio of the sum of
the radio-on time for all slots during an epoch and the duration of the epoch. The reliability
indicates how many nodes that have transmitted an update in the current epoch also received an
acknowledgment from the sink. Thus, the measured reliability includes the packet reception rates
of the T-slot, the A-slot, and when used, also the Whisper (W)-slot.

Since Crystal is a collection protocol, we runWhisper using a “reversed” direction-aware sampling
strategy, henceforth called Whisper (coll.). Thereby, the nodes must know their distance in hops to
the sink, which they can learn through a short initialization phase. The nodes can then derive their
position in the collection tree by subtracting their distance in hops to the root from the network
diameter. We use Crystal’s bootstrapping period – which lasts 10 epochs – as initialization phase
for Whisper to let the nodes learn their position in the network tree. We run Crystal with an epoch
of 1.5 s and a data payload of 20 bytes. We use the default number of retransmissions 𝑁 for the
different slots and transmit powers, given in [17] and summarized in Table 4. As also shown in the
table, we further use the default duration𝑊 for the S- and A-slots. However, since we increase
the payload, we also adjust the duration for the T-slot. We run Crystal in FlockLab, with node 1 as
sink, and with updates 𝑢 = 0, 𝑢 = 2, and 𝑢 = 5. An update 𝑢 = 𝑋 implies that among the 27 nodes
in FlockLab, there are X events (or data packets) to share during a specific epoch. Crystal with
𝑢 = 0 indicates that no message is transmitted in the T-slots, and thus, in this case we measure
the idle listening time of Crystal. More precisely, 𝑢 = 0 indicates the minimal power consumption,
and we, thus, use it as baseline for other update configurations. After running Crystal 3 times for
60 minutes, we repeat the experiments with Crystal using Whisper (coll.).

Results. Fig. 9 shows the duty cycle in the upper plot and the reliability in the lower plot. We
find that Whisper reduces the duty cycle by a factor of two for all updates 𝑢. Considering only the
energy consumption during communication (i.e., 20 mA) and assuming a battery with a capacity
of 2000 mAh, Crystal with Whisper increases the nodes’ lifetime by a factor of 2.3 compared
to “standard” Crystal (278 days vs. 119 days of lifetime) in this experiment12. The factor of how

12Crystal (u=0) at 0 dBm transmission power has an average duty cycle of 3.46%. Accordingly the battery lasts for
120 days (2000 mAh/(3.46% · 20 mA · 24 h)). Crystal w/ Whisper (coll.) (u=0) at the same transmission power has a duty
cycle of 1.18% and thus, the battery lasts for 353 days (2000 mAh/(1.18% · 20 mA · 24 h)). As a result, in case of no data
transmission (i.e., 𝑢 = 0) Whisper used in Crystal increases the network lifetime by a factor of 2.9 compared to “standard”

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

47:22 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

much Whisper increases the network lifetime depends on the size of the packets sent in the T-slot
as well as the number of retransmissions. A large packet requires a long duration of the T-slot
compared to short packets. The longer the duration of the T-slot, the higher is the gain in terms of
energy-efficiency that Whisper is able to achieve.
However, one can also observe that Crystal with Whisper has a lower reliability compared to
“standard” Crystal (e.g., 95.7% vs. 98.4% at -10 dBm with 𝑢 = 5). Indeed, when the sink misses
a packlet in a Whisper slot, it keeps its radio turned off during the T-slot and thus, also misses
the data packet. Thus, Whisper requires high reliability when used as wake-up service. New
sampling strategies or a higher value for 𝑁𝑡𝑥 , as shown in Section 4.4.2, can help to increase
Whisper’s reliability.

0.0

1.0

2.0

3.0

4.0

D
ut

y
C

yc
le

[%
]

-10 0

TX power [dBm]

90.0

95.0

100.0

R
el

ia
bi

lit
y

[%
]

Crystal (u=0)

Crystal (u=2)

Crystal (u=5)

Crystal w/ Whisper (coll.) (u=0)

Crystal w/ Whisper (coll.) (u=2)

Crystal w/ Whisper (coll.) (u=5)

Fig. 9. Impact of Whisper on Crystal. Whisper halves the duty cycle of Crystal. However, a missed packlet in
Whisper also impacts the reliability of Crystal.

6 RELATEDWORK
The overall architecture of Whisper builds on the concepts introduced by Glossy. The novel
design elements that we introduce – in particular packlets and direction-aware sampling – make
Whisper significantly more efficient than Glossy, especially for small payload sizes. Whisper’s
superior performance is obtained by completely eliminating gaps between consecutive, synchronous
transmissions.

Lim et al. [23] modify Glossy so that a packet is transmitted multiple times after a single reception.
Consecutive packets are, however, not sent back-to-back as in Whisper but have gaps between
them. This is because they are transmitted as individual packets and, thus, the radio must still
perform a turnaround even between consecutive transmissions. This increases the overall transmit
time and strongly limits the use of sampling strategies as introduced in Whisper. Furthermore, due
to the instability of the DCO, the alignment of concurrently transmitted packets decreases quickly
Crystal. Considering 𝑢 = 5, i.e., among the 27 nodes in FlockLab, there are 5 data packets to transmit during an epoch, the
duty cycle of Crystal (u=5) is 3.49% and the duty cycle of Crystal w/ Whisper (coll.) (u=5) is 1.5%. Using the computation
described above, Crystal with Whisper has a 2.3 times higher network lifetime compared to Crystal without Whisper.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:23

with the number of packets. In Whisper, instead, the use of Flock [6] and the concept of packlets
guarantee that transmissions are precisely aligned.

Approaches that exploit scheduled Glossy floods to provide high-level protocols – e.g., LWB [14],
Crystal [17, 18], or LaneFlood [5] – could replace Glossy with Whisper to achieve a more efficient
operation. Other, more complex protocols like Splash [8] or Pando [9] could also benefit from
integrating Whisper’s design in their architecture.

Several authors proposed protocols to use some form of frequency diversity to make synchronous
transmissions more robust to interference. These include full-fledged protocols like Splash [8] or
Pando [9] but also improved versions of Glossy like the one proposed by Sommer and Pignolet [33].
While we have not yet implemented the use of multiple channels within Whisper, this is part of
our future work.
Other approaches related to Whisper are those that provide – or can be used to implement –

a network-wide wake-up service. Some basic techniques like Low-Power Listening [30] or Back-
cast [11] have been successfully used in Medium Access Control protocols to schedule nodes’
rendezvous [7, 10, 27, 30]. They are, however, contention-based approaches and are inherently less
performing – both in terms of reliability and latency – than approaches based on synchronous
transmissions.
Lastly, protocols that exploit wake-up radios – like, e.g., Zippy [35], ALBA-WUR [34], or the

approach proposed in [24] – are orthogonal to ours because they rely on specialized hardware to
be available on network nodes.

7 CONCLUSIONS
This paper introducesWhisper, a novel primitive to provide quick and reliable network floods. Whis-
per exploits synchronous transmissions as in Glossy but eliminates any gap between consecutive
transmissions of the packet to flood. This allows Whisper to halve the radio-on time of the nodes
with respect to Glossy while maintaining a comparable or even higher reliability – as demonstrated
through our experiments on the FlockLab testbed. Whisper can be used as a stand-alone primitive
to disseminate small values or be integrated in place of Glossy in protocols like, e.g., Crystal [17].
The source code of Whisper is publicly available at http://github.com/martinabr/whisper.

ACKNOWLEDGEMENTS
The authors would like to thank Timofei Istomin for his technical support with the implementation of
Crystal and the anonymous reviewers for the precious feedback. This work was supported by the ERCIM
Alain Bensoussan postdoc fellowship program, the Swedish Research Council VR through the ChaosNet and
AgreeOnIT projects, and the Swedish Foundation for Strategic Research SSF through the LoWi project and the
Smart Implicit Interaction project (RIT15-0046). The work described in this paper was performed while the
first author was a PhD student at the Faculty of Computer Science of TU Dresden.

REFERENCES
[1] Arago Systems. 2011. WiSMote datasheet. (2011).
[2] Atmel. 2009. AT86RF231 datasheet. (2009).
[3] Atmel. 2016. AT86RF215 datasheet. (2016).
[4] Carlo Alberto Boano, Marco Zúñiga, James Brown, Utz Roedig, Chamath Keppitiyagama, and Kay Römer. 2014.

TempLab: A Testbed Infrastructure to Study the Impact of Temperature on Wireless Sensor Networks. In Proceedings
of the Conference on Information Processing in Sensor Networks (ACM/IEEE IPSN). 95–106.

[5] Martina Brachmann, Olaf Landsiedel, and Silvia Santini. 2016. Concurrent Transmissions for Communication Protocols
in the Internet of Things. In Proceedings of the Conference on Local Computer Networks (IEEE LCN). 406–414.

[6] Martina Brachmann, Olaf Landsiedel, and Silvia Santini. 2017. Keep the Beat: On-The-Fly Clock Offset Compensation
for Synchronous Transmissions in Low-Power Networks. In Proceedings of the Conference on Local Computer Networks
(IEEE LCN). 303–311.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

http://github.com/martinabr/whisper

47:24 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

[7] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. 2006. X-MAC: A Short Preamble MAC Protocol for
Duty-cycled Wireless Sensor Networks. In Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 307–320.

[8] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong. 2013. Splash: Fast Data Dissemination with
Constructive Interference in Wireless Sensor Networks. In Proceedings of the Symposium on Networked Systems Design
& Implementation (USENIX NSDI). 269–282.

[9] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. 2015. When Pipelines Meet Fountain: Fast Data
Dissemination in Wireless Sensor Networks. In Proceedings of the Conference on Embedded Networked Sensor Systems
(ACM SenSys). 365–378.

[10] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and Andreas Terzis. 2012. A-MAC: A
Versatile and Efficient Receiver-initiated Link Layer for Low-power Wireless. ACM Transactions on Sensor Networks 8
(2012), 1–29. Issue 4.

[11] Prabal Dutta, Răzvan Musăloiu-E., Ion Stoica, and Andreas Terzis. 2008. Wireless ACK Collisions Not Considered
Harmful. In Proceedings of the Workshop on Hot Topics in Networks (ACM HotNets). 1–6.

[12] Amre El-Hoiydi and Jean Dominique Decotignie. 2004. WiseMAC: An ultra low power MAC protocol for the downlink
of infrastructure Wireless Sensor networks. In Proceedings of the Symposium on Computers and Communications (IEEE
ISCC). 244–251.

[13] Antonio Escobar, Fernando Moreno, Borja Saez, Antonio J. Cabrera, Javier Garcia-Jimenez, Francisco J. Cruz, Unai Ruiz,
Angel Corona, Jirka Klaue, and Divya Tati. 2018. Competition: BigBangBus. In Proceedings of the European Conference
on Wireless Sensor Networks (EWSN). 213–214.

[14] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. 2012. Low-power wireless bus. In Proceedings of
the Conference on Embedded Networked Sensor Systems (ACM SenSys). 1–14.

[15] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Efficient network flooding and time
synchronization with Glossy. In Proceedings of the Conference on Information Processing in Sensor Networks (ACM/IEEE
IPSN). 73–84.

[16] IEEE Computer Society. 2016. IEEE Standard for Low-Rate Wireless Networks. (2016).
[17] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza. 2016. Data Prediction + Synchronous Transmis-

sions = Ultra-low Power Wireless Sensor Networks. In Proceedings of the Conference on Embedded Networked Sensor
Systems (ACM SenSys). 83–95.

[18] Timofei Istomin, Matteo Trobinger, Amy L. Murphy, and Gian Pietro Picco. 2018. Interference-Resilient Ultra-Low
Power Aperiodic Data Collection. In Proceedings of the Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN). 84–95.

[19] Michael König and Roger Wattenhofer. 2016. Maintaining Constructive Interference Using Well-Synchronized Sensor
Nodes. In Proceedings of the Conference Distributed Computing in Sensor Systems (DCOSS). 206–215.

[20] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. 2013. Chaos: Versatile and Efficient All-to-All Data Sharing
and In-Network Processing at Scale. In Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 1–14.

[21] Chieh-Jan Mike Liang, Nissanka Bodhi Priyantha, Jie Liu, and Andreas Terzis. 2010. Surviving Wi-fi Interference in
Low Power ZigBee Networks. In Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys).
309–322.

[22] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Sommer, and Jan Beutel. 2013. FlockLab:
A Testbed for Distributed, Synchronized Tracing and Profiling of Wireless Embedded Systems. In Proceedings of the
Conference on Information Processing in Sensor Networks (ACM/IEEE IPSN). 153–166.

[23] Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele. 2017. Competition: Robust Flooding using Back-to-Back
Synchronous Transmissions with Channel-Hopping. In Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 270–271.

[24] Xuefeng Liu, Jiannong Cao, Shaojie Tang, and Jiaqi Wen. 2016. Enabling Reliable and Network-Wide Wakeup in
Wireless Sensor Networks. IEEE Transactions on Wireless Communications 15 (2016), 2262–2275. Issue 3.

[25] Xiaoyuan Ma, Peilin Zhang, Weisheng Tang, Xin Li, Wangji He, Fuping Zhang, Jianming Wei, and Oliver Theel.
2018. Competition: Using Enhanced OF𝜕COIN to Monitor Multiple Concurrent Events under Adverse Conditions. In
Proceedings of the European Conference on Wireless Sensor Networks (EWSN). 211–212.

[26] Mobashir Mohammad, Manjunath Doddavenkatappa, and Mun Choon Chan. 2017. Improving Performance of
Synchronous Transmission-Based Protocols Using Capture Effect over Multichannels. ACM Transactions on Sensor
Networks 13 (2017), 1–26. Issue 2.

[27] David Moss and Philip Levis. 2008. BoX-MACs: Exploiting Physical and Link Layer Boundariesin Low-Power Networking.
Technical Report. 1–12 pages.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

Fast Flooding for Low-Power Wireless Networks 47:25

[28] Beshr Al Nahas and Olaf Landsiedel. 2018. Competition: Aggressive Synchronous Transmissions with In-network
Processing for Dependable All-to-All Communication. In Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 209–210.

[29] Olimex Ltd. 2013. MSP430-CCRF development board. (2013). User’s manual.
[30] Joseph Polastre, Jason Hill, and David Culler. 2004. Versatile Low Power Media Access for Wireless Sensor Networks.

In Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 95–107.
[31] Sudipta Saha and Mun Choon Chan. 2017. Design and Application of a Many-to-One Communication Protocol. In

Proceedings of the Conference on Computer Communications (IEEE INFOCOM). 1–9.
[32] Semtech. 2015. SX1211 datasheet. (2015).
[33] Philipp Sommer and Yvonne-Anne Pignolet. 2016. Competition: Dependable Network Flooding Using Glossy with

Channel-Hopping. In Proceedings of the European Conference on Wireless Sensor Networks (EWSN). 303–303.
[34] Dora Spenza, Michele Magno, Stefano Basagni, Luca Benini, Mario Paoli, and Chiara Petrioli. 2015. Beyond Duty

Cycling: Wake-up Radio with Selective Awakenings for Long-lived Wireless Sensing Systems. In Proceedings of the
Conference on Computer Communications (IEEE INFOCOM). 522–530.

[35] Felix Sutton, Bernhard Buchli, Jan Beutel, and Lothar Thiele. 2015. Zippy: On-Demand Network Flooding. In Proceedings
of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 45–58.

[36] Texas Instruments. 2007. CC2520 datasheet. (2007).
[37] Texas Instruments. 2011. MSP430F1611 datasheet. (2011).
[38] Texas Instruments. 2013. CC1101 datasheet. (2013).
[39] Texas Instruments. 2013. CC2420 datasheet. http://www.ti.com/product/CC2420/. (2013).
[40] Matteo Trobinger, Timofei Istomin, Amy L. Murphy, and Gian Pietro Picco. 2018. Competition: CRYSTAL Clear:

Making Interference Transparent. In Proceedings of the European Conference on Wireless Sensor Networks (EWSN).
217–218.

[41] Dingwen Yuan and Matthias Hollick. 2013. Let’s Talk Together: Understanding Concurrent Transmission in Wireless
Sensor Networks. In Proceedings of the Conference on Local Computer Networks (IEEE LCN). 219–227.

[42] Dingwen Yuan, Michael Riecker, and Matthias Hollick. 2014. Making ’Glossy’ Networks Sparkle: Exploiting Concurrent
Transmissions for Energy Efficient, Reliable, Ultra-Low Latency Communication in Wireless Control Networks. In
Proceedings of the European Conference on Wireless Sensor Networks (EWSN). 133–149.

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

http://www.ti.com/product/CC2420/

47:26 Martina Brachmann, Olaf Landsiedel, Diana Göhringer, and Silvia Santini

APPENDIX A: THEORETICAL RADIO-ON TIME FOR LARGE PAYLOADS
Table 5 shows the radio-on time for Glossy, Whisper, and Whisper (lazy) for different payload sizes and
network diameters. The cells highlighted in gray indicate when the radio-on time of Whisper (lazy) exceeds
the one of Glossy. Thus, the non-highlighted cells in the columns for Whisper and Whisper (lazy) show when
they have achieved a lower radio-on time than Glossy.

Table 5. Theoretical radio-on time of Glossy, Whisper, and Whisper (lazy) for different payload sizes and hop
counts. Whisper has a lower radio-on time compared to Glossy. However, depending on the payload size and
the number of hops, the radio-on time for Whisper (lazy) may exceed the one of Glossy (the gray marked
cells). The values include a RX/TX turnaround time of 192 𝜇s for Glossy but neglect the software delay.

Payload Glossy Whisper Whisper (lazy)
size Hop 1 2 3 4 5 6 Hop 1 2 3 4 5 6 Hop 1 2 3 4 5 6
[byte] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

1 2.30 2.72 3.14 3.55 3.97 4.38 1.12 1.34 1.34 1.34 1.34 1.34 1.12 1.57 2.02 2.46 2.91 3.36
2 2.50 2.94 3.39 3.84 4.29 4.74 1.28 1.54 1.54 1.54 1.54 1.54 1.28 1.79 2.30 2.82 3.33 3.84
3 2.69 3.17 3.65 4.13 4.61 5.09 1.44 1.73 1.73 1.73 1.73 1.73 1.44 2.02 2.59 3.17 3.74 4.32
4 2.88 3.39 3.90 4.42 4.93 5.44 1.60 1.92 1.92 1.92 1.92 1.92 1.60 2.24 2.88 3.52 4.16 4.80
5 3.07 3.62 4.16 4.70 5.25 5.79 1.76 2.11 2.11 2.11 2.11 2.11 1.76 2.46 3.17 3.87 4.58 5.28
6 3.26 3.84 4.42 4.99 5.57 6.14 1.92 2.30 2.30 2.30 2.30 2.30 1.92 2.69 3.46 4.22 4.99 5.76
7 3.46 4.06 4.67 5.28 5.89 6.50 2.08 2.50 2.50 2.50 2.50 2.50 2.08 2.91 3.74 4.58 5.41 6.24
8 3.65 4.29 4.93 5.57 6.21 6.85 2.24 2.69 2.69 2.69 2.69 2.69 2.24 3.14 4.03 4.93 5.82 6.72
9 3.84 4.51 5.18 5.86 6.53 7.20 2.40 2.88 2.88 2.88 2.88 2.88 2.40 3.36 4.32 5.28 6.24 7.20
10 4.03 4.74 5.44 6.14 6.85 7.55 2.56 3.07 3.07 3.07 3.07 3.07 2.56 3.58 4.61 5.63 6.66 7.68
11 4.22 4.96 5.70 6.43 7.17 7.90 2.72 3.26 3.26 3.26 3.26 3.26 2.72 3.81 4.90 5.98 7.07 8.16
12 4.42 5.18 5.95 6.72 7.49 8.26 2.88 3.46 3.46 3.46 3.46 3.46 2.88 4.03 5.18 6.34 7.49 8.64
13 4.61 5.41 6.21 7.01 7.81 8.61 3.04 3.65 3.65 3.65 3.65 3.65 3.04 4.26 5.47 6.69 7.90 9.12
14 4.80 5.63 6.46 7.30 8.13 8.96 3.20 3.84 3.84 3.84 3.84 3.84 3.20 4.48 5.76 7.04 8.32 9.60
15 4.99 5.86 6.72 7.58 8.45 9.31 3.36 4.03 4.03 4.03 4.03 4.03 3.36 4.70 6.05 7.39 8.74 10.08
16 5.18 6.08 6.98 7.87 8.77 9.66 3.52 4.22 4.22 4.22 4.22 4.22 3.52 4.93 6.34 7.74 9.15 10.56
17 5.38 6.30 7.23 8.16 9.09 10.02 3.68 4.42 4.42 4.42 4.42 4.42 3.68 5.15 6.62 8.10 9.57 11.04
18 5.57 6.53 7.49 8.45 9.41 10.37 3.84 4.61 4.61 4.61 4.61 4.61 3.84 5.38 6.91 8.45 9.98 11.52
19 5.76 6.75 7.74 8.74 9.73 10.72 4.00 4.80 4.80 4.80 4.80 4.80 4.00 5.60 7.20 8.80 10.40 12.00
20 5.95 6.98 8.00 9.02 10.05 11.07 4.16 4.99 4.99 4.99 4.99 4.99 4.16 5.82 7.49 9.15 10.82 12.48
21 6.14 7.20 8.26 9.31 10.37 11.42 4.32 5.18 5.18 5.18 5.18 5.18 4.32 6.05 7.78 9.50 11.23 12.96
22 6.34 7.42 8.51 9.60 10.69 11.78 4.48 5.38 5.38 5.38 5.38 5.38 4.48 6.27 8.06 9.86 11.65 13.44
23 6.53 7.65 8.77 9.89 11.01 12.13 4.64 5.57 5.57 5.57 5.57 5.57 4.64 6.50 8.35 10.21 12.06 13.92
24 6.72 7.87 9.02 10.18 11.33 12.48 4.80 5.76 5.76 5.76 5.76 5.76 4.80 6.72 8.64 10.56 12.48 14.40
25 6.91 8.10 9.28 10.46 11.65 12.83 4.96 5.95 5.95 5.95 5.95 5.95 4.96 6.94 8.93 10.91 12.90 14.88
26 7.10 8.32 9.54 10.75 11.97 13.18 5.12 6.14 6.14 6.14 6.14 6.14 5.12 7.17 9.22 11.26 13.31 15.36
27 7.30 8.54 9.79 11.04 12.29 13.54 5.28 6.34 6.34 6.34 6.34 6.34 5.28 7.39 9.50 11.62 13.73 15.84
28 7.49 8.77 10.05 11.33 12.61 13.89 5.44 6.53 6.53 6.53 6.53 6.53 5.44 7.62 9.79 11.97 14.14 16.32
29 7.68 8.99 10.30 11.62 12.93 14.24 5.60 6.72 6.72 6.72 6.72 6.72 5.60 7.84 10.08 12.32 14.56 16.80
30 7.87 9.22 10.56 11.90 13.25 14.59 5.76 6.91 6.91 6.91 6.91 6.91 5.76 8.06 10.37 12.67 14.98 17.28
31 8.06 9.44 10.82 12.19 13.57 14.94 5.92 7.10 7.10 7.10 7.10 7.10 5.92 8.29 10.66 13.02 15.39 17.76
32 8.26 9.66 11.07 12.48 13.89 15.30 6.08 7.30 7.30 7.30 7.30 7.30 6.08 8.51 10.94 13.38 15.81 18.24
33 8.45 9.89 11.33 12.77 14.21 15.65 6.24 7.49 7.49 7.49 7.49 7.49 6.24 8.74 11.23 13.73 16.22 18.72
34 8.64 10.11 11.58 13.06 14.53 16.00 6.40 7.68 7.68 7.68 7.68 7.68 6.40 8.96 11.52 14.08 16.64 19.20
35 8.83 10.34 11.84 13.34 14.85 16.35 6.56 7.87 7.87 7.87 7.87 7.87 6.56 9.18 11.81 14.43 17.06 19.68
36 9.02 10.56 12.10 13.63 15.17 16.70 6.72 8.06 8.06 8.06 8.06 8.06 6.72 9.41 12.10 14.78 17.47 20.16
37 9.22 10.78 12.35 13.92 15.49 17.06 6.88 8.26 8.26 8.26 8.26 8.26 6.88 9.63 12.38 15.14 17.89 20.64
38 9.41 11.01 12.61 14.21 15.81 17.41 7.04 8.45 8.45 8.45 8.45 8.45 7.04 9.86 12.67 15.49 18.30 21.12

· · ·
124 25.92 30.27 34.62 38.98 43.33 47.68 20.8 24.96 24.96 24.96 24.96 24.96 20.8 29.12 37.44 45.76 54.08 62.4
125 26.11 30.5 34.88 39.26 43.65 48.03 20.96 25.15 25.15 25.15 25.15 25.15 20.96 29.34 37.73 46.11 54.5 62.88

ACM Trans. Sensor Netw., Vol. 15, No. 4, Article 47. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Whisper: How it works
	3 Whisper: A Closer Look
	3.1 The signaling packet
	3.2 Sending identical packlets
	3.3 Sending packlets synchronously
	3.4 Lazy sampling
	3.5 Direction-aware sampling
	3.6 Whisper (compliant)
	3.7 Resilience against external interferences
	3.8 Porting Whisper to other radios
	3.9 Using Whisper with large payloads

	4 Evaluating Whisper in flooding scenarios
	4.1 Evaluation setup
	4.2 Whisper vs. Glossy
	4.3 Whisper in dissemination scenarios
	4.4 Impact of low-level mechanisms

	5 Evaluating Whisper as wake-up primitive within Crystal
	6 Related work
	7 Conclusions
	References

