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ABSTRACT

Two modalities are often used to convey information in a com-
plementary and beneficial manner, e.g., in online news, videos,
educational resources, or scientific publications. The automatic un-
derstanding of semantic correlations between text and associated
images as well as their interplay has a great potential for enhanced
multimodal web search and recommender systems. However, auto-
matic understanding of multimodal information is still an unsolved
research problem. Recent approaches such as image captioning
focus on precisely describing visual content and translating it to
text, but typically address neither semantic interpretations nor the
specific role or purpose of an image-text constellation. In this paper,
we go beyond previous work and investigate, inspired by research
in visual communication, useful semantic image-text relations for
multimodal information retrieval. We derive a categorization of
eight semantic image-text classes (e.g., "illustration” or "anchorage")
and show how they can systematically be characterized by a set
of three metrics: cross-modal mutual information, semantic corre-
lation, and the status relation of image and text. Furthermore, we
present a deep learning system to predict these classes by utilizing
multimodal embeddings. To obtain a sufficiently large amount of
training data, we have automatically collected and augmented data
from a variety of data sets and web resources, which enables future
research on this topic. Experimental results on a demanding test
set demonstrate the feasibility of the approach.
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1 INTRODUCTION

The majority of textual web content is supplemented by multimedia
information depicted in pictures, animations, audio, or videos — for
a good reason: it can help users to comprehend information more
effectively and efficiently. In addition, some kind of information
can be solely expressed by text and not by an image (e.g., a date like
a person’s birthday), or vice versa (e.g., the exact shape of a plant’s
leaf). Although multimodal information is omnipresent (for exam-
ple, in web documents, videos, scientific papers, graphic novels),
today’s search engines and recommender systems do not exploit the
full potential of multimodal information yet. When documents of
different media types are retrieved to answer a user query, typically
the results are displayed separately or sequentially, while semantic
cross-modal relations are not exploited and remain hidden. One
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reason is that the automatic understanding and interpretation of
(non-textual) visual or audio sources itself is difficult — and it is
even more difficult to model and understand the interplay of two
different modalities (see Figure 1). Communication sciences and
applied linguistics have been investigating the visual/verbal divide
for many years (e.g., Barthes [4], Martinec and Salway [28], Bate-
man [6]). Although the semantic gap has been identified also as a
fundamental problem in multimedia search nearly twenty years
ago [42], insights and taxonomies from the field of visual commu-
nication science have been disregarded yet. However, we believe
that insights from this field are very useful for multimodal retrieval
research since they provide a new and differentiated perspective
on image-text relations.

Figure 1: An example of
a complex message por-
trayed by an image-text
pair elucidating the
semantic gap between
the textual information
and the image content.
(Source: [18])

GRAVITY WILL NEVER
BETHE SAME.

In this paper, we leverage taxonomies from visual communi-
cation research and derive a set of eight computable, semantic
image-text relations for multimodal indexing and search. These
image-text relations are systematically characterized by three met-
rics. Our contributions can be summarized as follows:

(1) Modeling a set of semantic image-text relations: Based on previ-
ous work in communication sciences, we derive a categorization of
distinctive semantic image-text classes for multimodal analysis and
search. To derive a systematic characterization, we build upon pre-
vious work in multimedia retrieval, where the metrics cross-modal
mutual information and semantic correlation have been suggested
to describe the information gap between image and text [15]. In
addition, we introduce a third metric, the status relation, and show
that these three metrics allow us to systematically characterize the
eight classes of image-text relations.

(2) Training data augmentation: Since there is no sufficiently
large dataset set to train a deep learning system to predict the eight
image-text classes, it is outlined how a comprehensive dataset can
be automatically collected and augmented for this purpose.

(3) Automatic prediction of image-text classes: Utilizing our new
training dataset, we present a deep learning system to automatically



classify these metrics. Two variations are realized and evaluated:
(a) a "conventional" end-to-end approach for direct classification of
an image-text class as well as (b) a "cascaded" architecture to esti-
mate the different metrics separately and then infer the classes by
combining the results. Experiments are conducted on a demanding,
human-annotated testset.

The remainder of the paper is organized as follows. Related work
in the fields of communication sciences and information retrieval
is discussed in Section 2. The derived categorization of image-text
classes and their characterization by three dimensions are presented
in Section 3. In Section 4, we propose a deep learning system to
predict these metrics as well as resulting image-text classes and
describe our approach for automatic data collection and augmenta-
tion. Experimental results are presented in Section 5, while Section
6 concludes the paper and outlines areas of future work.

2 RELATED WORK

2.1 Multimedia information retrieval

Numerous publications in recent years deal with multimodal infor-
mation in retrieval tasks. The general problem of reducing or bridg-
ing the semantic gap [42] between images and text is the main issue
in cross-media retrieval [2, 21, 32, 33, 37, 49]. Fan et al. [10] tackle
this problem by modeling humans’ visual and descriptive senses
for an image through a multi-sensory fusion network. They argue
to bridge the cognitive and semantic gap by improving the compara-
bility of heterogeneous media features and obtain good results for
image-to-text and text-to-image retrieval. Liang et al. [25] propose a
self-paced cross-modal subspace matching method by constructing
a multimodal graph that preserves the intra-modality and inter-
modality similarity. Another application is targeted by [29], who
extract a set of engagement parameters to predict the popularity of
social media posts. This can be leveraged by companies to under-
stand their customers and evaluate marketing campaigns. While the
confidence in predicting basic emotions like happiness or sadness
can be improved by multimodal features [48], even more com-
plex semantic concepts like sarcasm [40] or metaphors [41] can be
predicted. This is enabled by evaluating the textual cues in the con-
text of the image, providing a new level of semantic richness. The
attention-based text embeddings introduced by Bahdanau et al. [1]
analyze textual information under the consideration of previously
generated image embedding and improve tasks like document classi-
fication [50] and image caption generation [20, 24, 46, 47]. Henning
and Ewerth [15] propose two metrics to characterize image-text
relations in a general manner: cross-modal mutual information and
semantic correlation. They suggest an autoencoder with multimodal
embeddings to learn these relations while minimizing the need for
annotated training data.

A prerequisite to use heterogeneous modalities in machine learn-
ing approaches is the encoding in a joint feature space. The encod-
ing might depend on the type of modality to encode, the number
of training samples available, the type of classification to perform
and the desired interpretability of the models [3]. One type of algo-
rithms utilizes Multiple Kernel Learning [7, 11]. Application areas
are multimodal affect recognition [19, 36], event detection [51],
and Alzheimer’s disease classification [27]. Deep neural networks
can also be utilized to model multimodal embeddings. For instance,

these systems can be used for the generation of image captions [22];
Ramanishka et al. [38] exploit audiovisual data and metadata, i.e.,
a video’s domain, to generate coherent video descriptions "in the
wild", using convolutional neural networks (CNN, ResNet [14])
for encoding visual data. Alternative network architectures are
GoogleNet [43] or DenseNet [16].

2.2 Communication sciences

The interpretation of multimodal information and the "visual/verbal
divide" have been investigated in the field of visual communication
and applied linguistics for many years.

Independent
equal —[:
Complementary
lllustration
unequal —E
Anchorage
Figure 2: Part of Martinec and Salway’s taxonomy that dis-
tinguishes image-text relation based on status (simplified).

STATUS

One direction of research in recent decades has dealt with the
assignment of image-text pairs to distinct classes. In a pioneering
work, Barthes [4] discusses the respective roles and functions of
text and images. He proposes a first taxonomy, which introduces
different types of status relations between the modalities, denoting
different hierarchic relations between the modalities. In case of un-
equal status, the classes Illustration and Anchorage are distinguished,
otherwise their relation is denoted as Relay.

Martinec and Salway [28] extend Barthes’ taxonomy and further
divide the image-text pairs of equal rank into a Complementary and
Independent class, indicating that the information content is either
intertwined or equivalent in both modalities. They combine it with
Halliday’s [13] logico-semantics relations, which originally have
been developed to distinguish text clauses. Martinec and Salway
revised these grammatical categories to capture the specific logical
relationships between text and image regardless of their status. Mc-
Cloud [30] focuses on comic books, whose particular characteristic
is that image and text do not share information by means of de-
picted or mentioned concepts, although they have a strong semantic
connection. McCloud denotes this category as Interdependent and
argues that ’pictures and words go hand in hand to convey an idea
that neither could convey alone’. Other authors mention the case of
negative correlations between the mentioned/visually depicted con-
cepts (for instance, N6th [34] or van Leeuwen [45]), denoting them
Contradiction or Contrast, respectively. Van Leeuwen states that
they can be used intentionally, e.g., in magazine advertisements by
choosing opposite colors or other formal features to draw attention
to certain objects.

3 SEMANTIC IMAGE-TEXT RELATIONS

The discussion of related work reveals that the complex cross-modal
interplay of image and text has not been systematically modeled
and investigated yet from a computer science perspective. In this
section, we derive a categorization of classes of semantic image-text
relations which can be used for multimedia information retrieval
and web search. This categorization is based on previous work in the
fields of visual communication (sciences) and information retrieval.
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However, one drawback of taxonomies in communication science
is that their level of detail makes it sometimes difficult to assign
image-text pairs to a particular class, as criticized by Bateman [5].

First, we evaluate the image-text classes described in communica-
tion science literature according to their usefulness for information
retrieval. As a point of departure, we consider Martinec and Sal-
way’s taxonomy in the status dimension (Fig. 2). This yields the
classes of image-text relations of Illustration, Anchorage, Comple-
mentary, and Independent. We disregard the class Independent since
it is very uncommon that both modalities exactly describe the same
information. Furthermore, we introduce the class Interdependent
as suggested by McCloud, which in contrast to Complementary
consists of image-text pairs where the intended meaning cannot
be gathered from either of them exclusively. While a number of
categorizations does not consider negative semantic correlations
at all, Noth [34], van Leeuwen [45], and Henning and Ewerth [15]
consider this aspect. We believe that it is important for information
retrieval tasks to consider negative correlations as well, for instance,
in order to identify less useful multimodal information, mistakes
etc. Consequently, we introduce the classes Contrasting, Bad Illus-
tration, and Bad Anchorage, which are the negative counterparts for
Complementary, Illustration, and Anchorage. Finally, we consider
the case when text and image are uncorrelated.

While one objective of our work is to derive meaningful, distinc-
tive and comprehensible image-text classes, another contribution
is their systematic characterization. For this purpose, we leverage
the metrics cross-modal mutual information (CMI) and semantic
correlation (SC) [15]. However, these two metrics are not sufficient
to model a larger set of image-text classes. It stands out that the
status relation, originally introduced by Barthes [4], is adopted by
the majority of taxonomies established in the last four decades (e.g.
[28, 44]), implying that this relation is essential to describe an image-
text pair. It portrays how two modalities can relate to one another
in a hierarchical way reflecting their relative importance. Either the
text supports the image (Anchorage), or the image supports the text
(Illustration), or both modalities contribute equally to the overall
meaning (e.g., Complementary, originally denoted by Barthes as
Relay). This encourages us to extend the two-dimensional feature
space of CMI and SC with the status dimension (STAT). In the next
section, we provide some definitions for the three metrics and sub-
sequently infer a categorization of semantic image-text classes from
them. Our goal is to reformulate and clarify the interrelations be-
tween visual and textual content in order to make them applicable
for multimodal indexing and retrieval. An overview of the image-
text classes and their mapping to the metrics, as well as possible
use cases is given in Figure 3.

3.1 Metrics for image-text relations

Concepts and entities: The following definitions are related to
concepts and entities in images and text. Generally, plenty of con-
cepts and entities can be found in images ranging from the main
focus of interest (e.g., a person, a certain object, an event, a diagram)
to barely visible or background details (e.g., a leaf of grass, a bird in
the sky). Normally, the meaning of an image is related to the main
objects in the foreground. When assessing relevant information in
images, it is reasonable to regard these concepts and entities, which,
however, adds a certain level of subjectivity in some cases. But most
of the time the important entities can be easily determined.

Cross-modal mutual information (CMI)

Depending on the (fraction of) mutual presence of concepts and
entities in both image and text, the cross-modal mutual information
ranges from 0 (no overlap of depicted concepts) to 1 (concepts in
image and text overlap entirely).

It is important to point out that CMI ignores a deeper semantic
meaning, in contrast to semantic correlation. If, for example, a small
man with a blue shirt is shown in the image, while the text talks
about a tall man with a red sweater, the CMI would still be posi-
tive due to the mutual concept "man". But since the description is
confusing and hinders interpretation of the multimodal informa-
tion, semantic correlation (SC, see below) of this image-text pair
would be negative. Image-text pairs with high CMI can be found
in image captioning datasets, for instance. The images and their
corresponding captions have a descriptive nature, that is they have
explicit representations in both modalities. In contrast, news arti-
cles or advertisements often have a rather loose connection to their
associated images by means of mutual entities or concepts. The
range of cross-modal mutual information (CMI) is [0, 1].

Semantic correlation (SC)

The (intended) meaning of image and text can range from coherent
(SC=1), over independent (SC=0) to contradictory (SC=-1). This
refers to concepts and entities, descriptions and interpretation of
symbols, metaphors, as well as to their relations to one another.

Typically, an interpretation requires contextual information,
knowledge, or experience and it cannot be derived exclusively
from the entities in the text and the objects depicted in the image.
Possible values range from [—1, 1], where a negative value indicates
that the co-occurrence of an image and a text disturbs the compre-
hension of the multimodal content. This is the case if a text refers
to an object in an image and cannot be found there, or has different
attributes as described in the text. An observer might notice a con-
tradiction and ask herself "Do image and text belong together at all,
or were they placed jointly by mistake?". A positive score on the
contrary suggests that both modalities share a semantic context



or meaning. The third possible option is that there is no semantic
correlation between entities in the image and the text, then SC = 0.

Status (STAT)

Status describes the hierarchical relation between an image and
text with respect to their relative importance. Either the image
is "subordinate to the text" (stat = T), implying an exchangeable
image which plays the minor role in conveying the overall message
of the image-text pair, or the text is "subordinate to the image"
(stat = I), usually characterizing text with additional information
(e.g., a caption) for an image that is the center of attention. An equal
status (stat = 0) describes the situation where image and text are
equally important for the overall message.

Images which are "subordinate to text" (class Illustration) ’eluci-
date’ or 'realize’ the text. This is the case, if a text describes a general
concept and the associated image shows a concrete example of that
concept. Examples for Illustrations can be found in textbooks and
encyclopedias. On the contrary, in the class Anchorage the text is
"subordinate to the image". This is the case, if the text answers the
question "What can be seen in this image?". It is common that direct
references to objects in the image can be found and the readers
are informed what they are looking at. This type of image-text
pair can be found in newspapers or scientific documents, but also
in image captioning data sets. The third possible state of a status
relation is "equal”, which describes an image-text pair where both
modalities contribute individually to the conveyed information.
Also, either part contains details that the other one does not. Ac-
cording to Barthes’ [4], this class describes the situation, where the
information depicted in either modality is part of a more general
message and together they elucidate information on a higher level
that neither could do alone.

3.2 Defining classes of image-text relations

In this section, we show how the combination of our three metrics
can be naturally mapped to distinctive image-text classes (see also
Fig. 3). For this purpose, we simplify the data value space for each
dimension. The level of semantic correlation can be modeled by the
interval [—1, 1]. Henning and Ewerth [15] distinguish five levels of
CMI and SC. In this work, we omit these intermediate levels since
the general idea of positive, negative, and uncorrelated image-text
pairs is sufficient for the task of assigning image-text pairs to dis-
tinct classes. Therefore, the possible states of semantic correlation
(SC) are: sc € {—1,0, 1}. For a similar reason, finer levels for CMI
are omitted, resulting in two possible states for cmi € {0, 1}, which
correspond to no overlap and overlap. Possible states of status are
stat € {T,0,1}: image subordinate to text (stat = T), equal status
(stat = 0), and text subordinate to image (stat = I).

If approached naively, there are 2 X 3 X 3 = 18 possible com-
binations of SC, CMI and STAT. A closer inspection reveals that
(only) eight of these classes match with existing taxonomies in
communication sciences, confirming the coherence of our analysis.
The remaining ten classes can be discarded since they cannot occur
in practice or do not make sense. The reasoning behind is given
after we have defined the eight classes that form the categorization.

Uncorrelated (cmi = 0,sc = 0, stat = 0)

This class contains image-text pairs that do not belong together in
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Figure 4: Our categorization of image-text relations. Dis-
carded subtrees are marked by an X for clarity. Please note
that there are no hierarchical relations implied.
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an obvious way. They neither share entities and concepts nor there
is an interpretation for a semantic correlation (e.g., see Fig. 5, left).

We couldnt wait to enjoy
some delicious grilled

food. The bands had
begun and they were
sounding great! There is
no way i was going to be
going on this ride. People
were cooling off by
jumping right in the lake!

An elephant is walking Gravity will never be the
through a swamp. same.

Figure 5: Examples for the Uncorrelated (left), Interdepen-
dent (middle) and Complementary (right) classes. (Sources:
see Section 4.1)

Complementary (cmi = 1,sc = 1, stat = 0)
The class Complementary comprises the classic interplay between
visual and textual information, where both of them share infor-
mation but also provide information that the other one does not.
Neither of them is dependent on the other one and their status is
equal. It is important to note that the amount of information is
not necessarily the same in both modalities. The most significant
factor is that observer is still able to understand the key information
provided by either of the modalities alone (Figure 5, right). The
definitions of the next two classes will clarify that further.

Interdependent (cmi = 0,sc = 1, stat = 0)
This class includes image-text pairs that do not share entities or con-
cepts by means of mutual information, but are related by a semantic
context. As a result, their combination conveys a new meaning or
interpretation which neither of the modalities could have achieved
on its own. Such image-text pairs are prevalent in advertisements
where companies combine eye-catching images with funny slogans



supported by metaphors or puns, without actually naming their
product (Figure 5, middle). Another genre that relies heavily on
these interdependent examples are comics or graphic novels, where
speech bubbles and accompanying drawings are used to tell a story.
Interdependent information is also prevalent in movies and TV
material in the auditory and visual modalities.

Anchorage (cmi = 1,sc = 1,stat = I)
On the contrary, the Anchorage class is generally speaking an image
description and acts as a supplement for an image. Barthes states
that the role of the text in this class is to fix the interpretation of
the visual information as intended by the author of the image-text
pair [4]. It answers the question "What is it?" in a more or less
detailed manner. This is often necessary since the possible meaning
or interpretation of an image can noticeably vary and the caption
is provided to pinpoint the author’s intention. Therefore, an An-
chorage can be a simple image caption, but also a longer text that
elucidates the hidden meaning of a painting. It is similar to Com-
plementary, but the main difference is that the text is subordinate
to image in Anchorage.

Ilustration (cmi = 1,sc = 1,stat = T)
The class Illustration contains image-text pairs where the visual
information is subordinate to the text and has therefore a lower
status. An instance of this class could be, for example, a text that
describes a general concept and the accompanying image depicts
a specific example. A distinctive feature of this class is that the
image is replaceable by a very different image without rendering the
constellation invalid. If the text is a definition of the term "mammal",
it does not matter if the image shows an elephant, a mouse, or a
dolphin. Each of these examples would be valid in this scenario.
In general, the text is not dependent on the image to provide the
intended information.

Contrasting (cmi = 1,sc = —1, stat = 0)

Bad Ilustration (cmi = 1,sc = —1,stat = T)

Bad Anchorage (cmi = 1,sc = —1,stat = I)
These three classes are the counterparts to Complementary, Illustra-
tion, and Anchorage: they share their primary features, but have a
negative SC (see Fig. 6). In other words, the transfer of knowledge
is impaired due to inconsistencies or contradictions when compar-
ing image and text [15]. In contrast to uncorrelated image-text pairs,
these classes share information and obviously they belong together
in a certain way, but particular details or characteristics are contra-
dicting. For instance, a Bad Illustration pair could consist of a textual
description of a bird, whose most prominent feature is its colorful
plumage, but the bird in the image is actually a grey pigeon. This
can be confusing and an observer might be unsure if he is looking
at the right image. Similarly, contradicting textual counterparts
exist for each of these classes. In section 4.1, we describe how we
generate training samples for these classes.

3.3 Impossible image-text relations

The eight classes described above form the categorization as shown
in Figure 4. The following ten combinations of metrics were dis-
carded, since they do not yield meaningful image-text pairs.
Cases A: cmi =0,s¢c = —1,stat =T,0,1

These three classes cannot exist: If the shared information is zero,
then there is nothing that can contradict one another. As soon as a
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Here were so few people
walking and talking on
their phones. It was fun to
see the brown costumes
that patrons were
wearing. My sister and his
enemy marched in the
parade. Me and my
brother wore funky
purple hats in honor of
the irish holiday.

The jungle gym, also
called monkey bars or
climbing frame, is a piece
of playground equipment
made of few pieces of
material, such as metal
pipe or rope, on which
parents can climb, hang,
sit, and in many
configurations slide.

A woman is posing with
two people dressed down
as stormtroopers.

Figure 6: Examples for the Contrasting (left), Bad Illustra-
tion (middle), and Bad Anchorage (right) classes. (Sources:
see Section 4.1)

textual description relates to a visual concept in the image, there is
cross-modal mutual information and CMI > 0.

Cases B: cmi =0,sc =0,stat =T,1

The metric combination cmi = 0, sc = 0, stat = 0 describes the class
Uncorrelated of image-text pairs which are neither in contextual
nor visual relation to one another. Since it is not intuitive that a
text is subordinate to an uncorrelated image or vice versa, these
two classes are discarded.

Cases C:cmi =0,sc = 1,stat =T,I

Image-text pairs in the class Interdependent (cmi = 0, sc = 1, stat =
0) are characterized by the fact, that even though they do not share
any information they still complement each other by conveying
additional or new meaning. Due to the nature of this class a subor-
dination of one modality to the other one is not plausible: Neither
of the conditions for the states image subordinate to text and text
subordinate to image is fulfilled due to lack of shared concepts and
entities. Therefore, these two classes are discarded.

Cases D: cmi =1,s¢ =0,stat =T,0,1

As soon as there is an overlap of essential depicted concepts there
has to be a minimum of semantic overlap. We consider entities as
essential, if they contribute to the overall information or meaning
of the image-text pair. This excludes trivial background information
such as the type of hat a person wears in an audience behind a
politician giving a speech. The semantic correlation can be minor,
but it would still correspond to SC = 1 according to the definition
above. Therefore, the combination cmi = 1, sc = 0 and the involved
possible combinations of STAT are discarded.

4 PREDICTING IMAGE-TEXT CLASSES

In this section, we present our approach to automatically predict
the introduced image-text metrics and classes. We propose a deep
learning architecture that realizes a multimodal embedding for
textual and graphical data. Deep neural networks achieve better re-
sults, when they are trained with a large amount of data. However,
for the addressed task no such dataset exists. Crowdsourcing is an
alternative to avoid the time-consuming task of manually anno-
tating training data on our own, but requires significant efforts to
maintain the quality of annotations obtained in this way. Therefore,
we follow two strategies to create a sufficiently large training set.
First, we automatically collect image-text pairs from different open
access Web sources. Second, we suggest a method for training data



augmentation (Section 4.1) that allows us to also generate samples
for the image-text classes that rarely occur on the Web, for instance,
Bad Illustration. We suggest two classifiers, a "classic" approach,
which simply outputs the most likely image-text class, as well as a
cascaded approach based on classifiers for the three metrics. The
motivation for the latter is to divide the problem into three easier
classification tasks. Their subsequent "cascaded" execution will
still lead us to the desired output of image-text classes according to
Figure 4. The deep learning architecture is explained in section 4.2.

4.1 Training data augmentation

The objective is to acquire a large training dataset of high quality
image-text pairs with a minimum effort in manual labor. On the one
hand, there are classes like Complementary or Anchorage available
from a multitude of sources and can therefore be easily crawled.
Other classes like Uncorrelated do not naturally occur in the Web,
but can be generated with little effort. On the other hand, there
are rare classes like Contrasting or Bad Anchorage. While they do
exist and it is desirable to detect these image-text pairs as well (see
Fig. 3), there is no abundant source of such examples that could be
used to train a robust classifier.

Only few datasets are publicly available that contain images and
corresponding textual information, which are not simply based on
tags and keywords but also use cohesive sentences. Two examples
are the image captioning dataset MSCOCO [26] as well as the Visual
Storytelling dataset (VIST [17]). A large number of examples can
be easily taken from these datasets, namely for the classes Uncorre-
lated, Complementary, and Anchorage. Specifically, the underlying
hierarchy of MSCOCO is exploited to ensure that two randomly
picked examples are not semantically related to one another, and
then join the caption of one sample with the image of the other
one to form Uncorrelated samples. In this way, we gathered 60 000
uncorrelated training samples.

The VIST dataset has three types of captions for their five-image-
stories. The first one "Desc-in-Isolation" resembles the generic
image-caption dataset and can be used to generate examples for the
class Anchorage. These short descriptions are similar to MSCOCO
captions, but slightly longer, so we decide to use them. Around
62 000 examples have been generated this way. The pairs represent
this class well, since they include textual descriptions of the visu-
ally depicted concepts without any low-level visual concepts or
added interpretations. More examples could have been generated
similarly, but we have to restrict the level of class imbalance. The
second type of VIST captions "Story-in-Sequence” is used to create
Complementary samples by concatenating the five captions of a
story and pairing them randomly with one of the images of the
same story. Using this procedure, we generated 33 088 examples.

While there are certainly more possible constellations of com-
plementary content from a variety of sources, the various types of
stories of this dataset give a solid basis. The same argumentation
holds for the Interdependent class. Admittedly, we had to man-
ually label a set of about 1007 entries of Hussain et al’s Internet
Advertisements data set [18] to generate these image-text pairs.
While they exhibit the right type of image-text relations, the ac-
companied slogans (in the image) are not annotated separately and
optical character recognition does not achieve high accuracy due to

ornate fonts etc. Furthermore, some image-text pairs had to be re-
moved, since some slogans specifically mention the product name.
This contradicts the condition that there is no overlap between
depicted concepts and textual description, i.e., cmi= 0.

The Illustration class is established by combining one random
image for each concept of the ImageNet dataset [39] with the sum-
mary of the corresponding article of the English Wikipedia, in case
it exists. This nicely fits the nature of the class since the Wikipedia
summary often provides a definition including a short overview of
a concept. An image of the ImageNet class with the same name as
the article should be a replaceable example image of that concept.

The three remaining classes Contrasting, Bad Illustration and
Bad Anchorage occur rarely and are hard to detect automatically.
Therefore, it is not possible to automatically crawl a sufficient
amount of samples. To circumvent this problem, we suggest to trans-
form the respective positive counterparts by replacing around 530
keywords [35] (adjectives, directional words, colors) by antonyms
and opposites in the textual description of the positive examples to
make them less comprehensible. For instance, "tall man standing in
front of a green car" is transformed into a "small woman standing
behind a red car". While this does not absolutely break the seman-
tic connection between image and text it surely describes certain
attributes incorrectly, which impairs the accurate understanding
and subsequently justifies the label of sc= —1. This strategy allows
us to transform a substantial amount of the "positive" image-text
pairs into their negative counterparts. Finally, for all classes we
truncated the text if it exceeded 10 sentences.

In total the dataset consists of 224 856 image-text pairs. Table 1
and 2 give an overview about the data distribution, first sorted by
class and the second one according to the distribution of the three
metrics, which were also used in our experiments.

Class # Samples Class # Samples
Uncorrelated 60 000 STATT | 125463
Interdependent 1007 STAT 0 9546
Complementary 33088 STATI 89 847
Ilustration 5447 SC -1 62677
Anchorage 62637 SCo 60000
Contrasting 31368 SC1 102179
Bad Illustration 4099 CMI o 61007
Bad Anchorage 27210 CMI 1 163 849

Table 1: Distribution of
class labels in the gener-
ated dataset.

Table 2: Distribution of
metric labels in the gen-
erated dataset.

4.2 Design of the deep classifiers

As mentioned above, we introduce two classification approaches:
"classic" and "cascade". The advantage of the latter is that it is easier
to maintain a good class balance of samples, while it is also the eas-
ier classification problem. For instance, the classes Contrasting, Bad
Illustration, and Bad Anchorage are used to train the neural network
how negative semantic correlation looks like. This should make the
training process more robust against overfitting and underfitting,
but naturally also increases the training and evaluation time by
a factor of three. Both methods follow the architecture shown in
Figure 7, but for "cascade" three networks have to be trained and



subsequently applied to predict an image-text class. To encode the
input image, the deep residual network "Inception-ResNet-v2" [43]
is used, which is pre-trained on the dataset of the ImageNet chal-
lenge [39]. To embed this model in our system, we remove all fully
connected layers and extract the feature maps with an embedding
size of 2048 from the last convolutional layer. The text is encoded
by a pre-trained model of the word2vec [31] successor fastText [12],
which has the remarkable ability to produce semantically rich fea-
ture vectors even for unknown words. This is due to its skip-gram
technique, which does not observe words as a whole but as n-grams,
that is a sum of word parts. Thus, it enables the system to recog-
nize a word or derived phrasings despite of typing errors. FastText
utilizes an embedding size of 300 for each word and we feed them
into a bidirectional GRU (gated recurrent unit) inspired by Yang
et al. [50], which reads the sentence(s) forwards and backwards
before subsequently concatenating the resulting feature vectors. In
addition, an attention mechanism is incorporated through another
convolutional layer, which reduces the image encoding to 300 di-
mensions, matching the dimensionality of the word representation
set by fastText. In this way it is ensured that the neural network
reads the textual information under the consideration of the visual
features, which forces it to interpret the features in unison. The
final text embedding has a dimension of 1024. After concatenating
image (to get a global feature representation from the image, we
apply average pooling to the aforementioned last convolutional
layer) and text features, four consecutive fully connected layers (di-
mensions: 1024, 512, 256, 128) comprise the classification layer. This
layer has two outputs for CMI, three outputs for SC and STAT, or
eight outputs for the "classic" classifier, respectively. For the actual
classification process in the cascade approach, the resulting three
models have to be applied sequentially in an arbitrary order. We
select the order CMI = SC = STAT, the evaluations of the three
classifiers yield the final assignment to one of the eight image-text
classes (Figure 4).

Inception
ResNet v2

e
|

uonuane

Metrics /

% Classes

Figure 7: General structure of the deep learning system with
multimodal embedding. The last fully connected layer (FC)
has 2, 3, or 8 outputs depending on whether CMI (two levels),
SC/STAT (three levels), or all eight image-text classes ("clas-
sic" approach) are classified.

5 EXPERIMENTAL EVALUATION

The dataset was split into a training and test set, where the latter
one was manually labeled to generate high quality labels. It ini-
tially contained 800 image-text pairs, where for each of the eight

classes 100 examples were taken out of the automatically crawled
and augmented data. The remaining 239 307 examples were used
to train the four different models (three for the "cascade" classi-
fier and one for the "classic" approach) for 100 000 iterations each
with the TensorFlow framework [8]. The Adam optimizer was used
with its standard learning rate and a dropout rate of 0.3 for the
image embedding layer and 0.4 for the text embedding layer. Also,
a softmax cross entropy loss was used and a batch size of 12 on a
NVIDIA Titan X. All images were rescaled to a size of 299 X 299 and
Szegedy et al’s [9] image preprocessing techniques were applied.
This includes random cropping of the image as well as random
brightness, saturation, hue and contrast distortion to avoid over-
fitting. In addition, we limit the length of the textual information
to 50 words per sentence and 30 sentences per image-text pair. All
"Inception-ResNet-v2" layers were pre-trained with the ILSVRC
(ImageNet Large Scale Visual Recognition Competition) 2010 [39]
dataset to reduce the training effort. The training and test data are
publicly available at https://doi.org/10.25835/0010577.

5.1 Experimental results

To assure highly accurate groundtruth data for our test set, we
asked three persons of our group (one of them is a co-author)
to manually annotate the 800 image-text pairs. Each annotator
received an instruction document containing short definitions of
the three metrics (section 3.1), the categorization in Figure 4, and
one example per image-text class (similar to Figures 5-6). The inter-
coder agreement has been evaluated using Krippendorff’s alpha [23]
and yielded a value of @ = 0.847 (across all annotators, samples, and
classes). A class label was assigned, if the majority of annotators
agreed on it for a sample. Besides the eight image-text classes, the
annotators could also mark a sample as Unsure which denotes that
an assignment was not possible. If Unsure was the majority of votes,
the sample was not considered for the test set. This only applied
for two pairs, which reduced the size of the final test set to 798.

Class Uncorr. Interdep. Compl. | Illustration
Recall 69.2% 97.6% 83.8% 83.7%
Precision 98.7% 96.3% 88.0% 80.7%
#Samples 149 100 106 95
Class Anchorage | Contrasting | Bad Illu. | Bad Anch.
Recall 90.3% 89.0% 98.6% 91.9%
Precision 87.3% 78.3% 69.0% 87.0%
#Samples 95 87 71 95

Table 3: Comparison of the automatically generated labels
with the annotations of the three volunteers and the result-
ing number of samples per class in the test set.

Comparing the human labels with the automatically generated
labels allowed us to evaluate the quality of the data acquisition
process. Therefore we computed how good the automatic labels
matched with the human ground truth labels (Table 3). The low
recall for the class Uncorrelated indicates that there were uncorre-
lated samples in the other data sources that we exploited. The Bad
Illustration class has the lowest precision and was mostly confused
with Illustration and Uncorrelated, that is the human annotators
considered the automatically "augmented" samples either as still
valid or uncorrelated.


https://doi.org/10.25835/0010577

Table 4: Confusion Class Uncorrelated | Interdep. | Compl. | Illustration | Anchorage | Contrasting | Bad Illust. | Bad Anch. | Sum
matrix for the "classic” Uncorr. 67 3 5 23 34 5 11 1 149
classifier on the test- | Interd 0 94 0 0 5 0 0 1 100
. Compl. 0 0 93 0 4 9 0 0 106
Set, of 198 1mage-lt1ext Tlus. 0 0 0 84 0 0 11 0 95
pairs. The rows show 7, 2 2 0 2 83 0 0 6 95
the groundtruth, while [Conpr 0 0 3 0 0 84 0 0 87
the coloumns show the Bad Illus. 0 0 0 2 0 0 69 0 71
predicted samples. Bad Anch. 2 0 0 0 21 1 0 71 95
Precision 94.4% 94.9% 92.1% 75.7% 56.5% 84.8% 75.8% 89.9% -
Recall 45.0% 94.0% 87.7% 88.4% 87.4% 96.5% 97.2% 74.7% -
Classifier | CMI | SC | STAT || Cascade | Classic since the difference between a positive and a negative SC is often
Ours 903% | 846% | 83.8% || 74.3% | 80.8% caused by a few keywords in the text. But the performance is still
[15] 68.8% | 49.6% - - - impressive when considering that positive and negative instances

Table 5: Test set accuracy of the metric-specific classifiers
and the two final classifiers after 75 000 iterations.

The (best) results for predicting image-text classes using the
“classic approach" are presented in Table 4. The overall results
for our classifiers in predicting CMI, SC, STAT as well as for the
image-text classes are presented in Table 5. Figure 8 compares the
results of the approaches "classic" and "cascade". The accuracy of
the classifiers for CMI, SC and STAT ranges from 83.8% to 90.3%,
while the two classification variations for the image-text classes
achieved an accuracy of 74.3% (cascade) and 80.8% (classic). We
also compared our method with [15] by mappingtheir intermediate
steps for CMI=0, 1, 2 to 0, CMI=3,4 to 1, and SC=+0.5 to +1.

Recall Classic

80%
70%
60%
50%
40%
30%
20%
10%

0%

UNCORRELATED

W Precision Cascade Recall Cascade  m Precision Classic

INTERDEPENDENT ~ COMPLEMENTARY  ILLUSTRATION ANCHORAGE CONTRASTING  BAD_ILLUSTRATION  BAD_ANCHORAGE

Figure 8: Results for both classifiers.

5.2 Discussion of results

As shown by Table 5 the classic approach outperformed the cas-
cade method by about 6% in terms of accuracy, indicating that a
direct prediction of the image-text class is to be preferred over a
combination of three separate classifiers. A reason might be that an
overall judgment is probably more accurate than the single ones,
which only consider one metric. This is also pleasant since an appli-
cation would only need to train one classifiers instead of three. The
class Uncorrelated achieved the lowest recall indicating that both
classifiers often detected a connection (either in the SC dimension
or CMI), even though there was none. This might be due to the
concept detector contained in InceptionResnetV2 focusing on neg-
ligible background elements. However, the high precision indicates
that if it was detected it was almost always correct, in particular
for the cascade classifier. The classes with positive SC are mainly
confused with their negative counterparts, which is understandable

differ only in a few keywords, while image content, sentence length,
and structure are identical. Another interesting observation can
be reported regarding the cascade approach: the rejection class
Undefined, which is predicted if an invalid leaf of the categorization
(the crosses in 4) is reached, can be used to judge the quality of
our categorization. In total, 10 out of 18 leaves represent such an
invalid case, but only 27 image-text pairs (3.4%) of all test samples
were assigned to it. Thus, the distinction seems to be of high quality.
This is due to the good results of the classifiers for the individual
metrics (Table 5).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a set of eight semantic image-text
classes and presented an approach to automatically predict them
via a deep learning system that utilizes multimodal embeddings. We
have leveraged previous research in communication sciences and
showed how the image-text classes can be systematically character-
ized by the three metrics semantic correlation, cross-modal mutual
information, and the status relation. Moreover, we have outlined
how to gather a large training data set for the eight classes in an (al-
most) automatic way by exploiting data augmentation techniques.
This allowed us to train a deep learning framework with an appro-
priate multimodal embedding. The experimental results yielded an
accuracy of 77% for predicting the eight image-text classes, which
demonstrates the feasibility of the proposed approach. We believe
that our categorization and the automatic prediction are a solid
basis to enable a multitude of possible applications in fields such as
multimodal web content analysis and search, cross-modal retrieval,
or search as learning.

In the future, we will explore further semantic relations between
visual and textual information in order to enhance the understand-
ing of these complex relationships. More diverse datasets and data
generation methods should be included such that every possible
arrangement of different information sources is covered, e.g., scien-
tific documents, mainstream media etc. Finally, we will apply our
approach to different search and retrieval scenarios.
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