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ABSTRACT
Code search and comprehension have become more difficult in
recent years due to the rapid expansion of available source code.
Current tools lack a way to label arbitrary code at scale while main-
taining up-to-date representations of new programming languages,
libraries, and functionalities. Comprehensive labeling of source
code enables users to search for documents of interest and obtain a
high-level understanding of their contents. We use Stack Overflow
code snippets and their tags to train a language-agnostic, deep con-
volutional neural network to automatically predict semantic labels
for source code documents. On Stack Overflow code snippets, we
demonstrate a mean area under ROC of 0.957 over a long-tailed
list of 4,508 tags. We also manually validate the model outputs on
a diverse set of unlabeled source code documents retrieved from
Github, and obtain a top-1 accuracy of 86.6%. This strongly indi-
cates that the model successfully transfers its knowledge from Stack
Overflow snippets to arbitrary source code documents.
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1 INTRODUCTION
In recent years, the quantity of available source code has been
growing exponentially [10]. Code reuse at this scale is predicated on
understanding and searching through a massive number of projects
and source code documents. The ability to generate meaningful,
semantic labels is key to comprehending and searching for relevant
source code, especially as the diversity of programming languages,
libraries, and code content continues to expand.

The search functionality for current large code repositories, such
as GitHub [12] and SourceForge [31], will match queried terms in
the source code, comments, or documentation of a project. More
sophisticated search approaches have shown better performance in
retrieving relevant results, but they often insufficiently handle scale,
breadth, or ease of use. Santanu and Prakash [26] develop pattern
languages for C and PL/AS that allow users to write generic code-
like schematics. Although the schematics locate specific source
code constructs, they do not capture the general functionality of a
program and scale poorly to large code corpora. Bajracharya et al.
[3] develop a search engine called Sourcerer that enhances keyword
search by extracting features from its code corpus. Sourcerer scales
well to large corpora, but it is still hindered by custom language-
specific parsers. Suffering from a similar problem, Exemplar [24] is
a system that tracks the flow of data through various API calls in
a project. Exemplar also uses the documentation for projects/API
calls in order to match a user’s keywords. Recent applied works
have similar shortcomings [5] [17] [29] [32]. Creating a solution
that operates across programming languages, libraries, and projects
is difficult due to the complexity of modeling such a huge variety
of code.

As a step in that direction, we present a novel framework for
generating labels for source code of arbitrary language, length, and
domain. Using a machine learning approach, we capitalize on a
wealth of crowdsourced data from Stack Overflow (SO) [25], a fo-
rum that provides a constantly growing source of code snippets
that are user-labeled with programming languages, tool sets, and
functionalities. Prior works have attempted to predict a single la-
bel for an SO post [19] [33] using both the post’s text and source
code as input. To our knowledge, our work is the first to use Stack
Overflow to predict exclusively on source code. Additionally, prior
methods do not attempt multilabel classification, which becomes
a significant issue when labeling realistic source code documents
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Figure 1: An example prediction of our model. The input
code snippet is on the left, while the predicted labels and
their raw certainties are on the right. Keyword matching on
the predicted labels would not have been able to locate this
code.

instead of brief SO snippets. Our approach utilizes SO’s code snip-
pets to simultaneously model thousands of concepts and predict
on previously unseen source code, as demonstrated in Fig. 1.

We construct a deep convolutional neural network that directly
processes source code documents of arbitrary length and predicts
their functionality using pre-existing Stack Overflow tags. As users
ask questions about new programming languages and tools, the
model can be retrained to maintain up-to-date representations.

Our contributions are as follows:
• First work, to our knowledge, to introduce a baseline for
multilabel tag prediction on Stack Overflow posts.

• Convolutional neural network architecture that can handle
arbitrary length source code documents and is agnostic to
programming language.

• State-of-the-art top-1 accuracy (79% vs 65% [33]) for predict-
ing tags on Stack Overflow posts, using only code snippets
as input.

• Approach that enables tagging of source code corpora ex-
ternal to Stack Overflow, which is validated by a human
study.

We organize the rest of the paper as follows: section 2 discusses
related works, section 3 details data preprocessing and correction,
section 4 explains our neural network architecture and validation,
section 5 displays our results, section 6 presents challenges and
limitations, and section 7 considers future work.

2 RELATEDWORK
Due to the parallels between source code and natural language [14]
[1], we find that recent work in the natural language processing
(NLP) domain is relevant to our problem. Modern NLP approaches
have generated state-of-the-art results with long short-term mem-
ory neural networks (LSTMs) and convolutional neural networks
(CNNs). Sundermeyer, Schlüter, and Ney [34] have shown that
LSTMs perform better than n-grams for modeling word sequences,
but the vocabulary size for word-level models is often large, requir-
ing a massive parameter space. Kim, Jernite, Sontag, and Rush [16]
show that by combining a character-level CNN with an LSTM, they

can achieve comparable results while having 60% fewer parameters.
Further work shows that CNNs are able to achieve state-of-the-art
performance without the training time and data required for LSTMs
[8]. In the source code domain, however, prior work has utilized a
wide variety of methods.

In 1991, Maarek, Berry, and Kaiser [22] recognized that there
was a lack of usable code libraries. Libraries were difficult to find,
adapt, and integrate without proper labeling, and locating compo-
nents functionally close to a given topic posed a challenge. The
authors developed an information retrieval approach leveraging
the co-occurrence of neighboring terms in code, comments, and
documentation.

More recently, Kuhn, Ducasse, and Gírba [18] apply Latent Se-
mantic Indexing (LSI) and hierarchical clustering in order to analyze
source code vocabulary without the use of external documentation.
LSI-based methods have had success in the code comprehension
domain, including document search engines [4] and IDE-integrated
topic modeling [11]. Although the method seems to perform well,
labeling an unseen source code document requires reclustering
the entire dataset. This is a significant setback for maintaining a
constantly growing corpus of labeled documents.

In the context of source code labeling, supervised methods are
mostly unexplored. A critical issue in this task is the massive
amount of labeled data required to create the model. A few efforts
have recognized Stack Overflow for its wealth of crowdsourced
data. Saxe, Turner, and Blokhin [28] search for Stack Overflow posts
containing strings found in malware binaries, and use the retrieved
tags to label the binaries. Kuo [19] attempts to predict tags on SO
posts by computing the co-occurrence of tags and words in each
post. He achieves a 47% top-1 accuracy, which in this context is the
task of predicting only one tag per post.

Clayton and Byrne [33] also attempt to predict a tag for SO posts.
They invest a great deal of effort in feature extraction inspired by
ACT-R’s declarative memory retrieval mechanisms [2]. Utilizing
logistic regression, they achieve a 65% top-1 accuracy.

In this work, we generate a more complex machine learning
model than those present in previous attempts. Because we intend
to generalize our model to source code files, we make our tests
stricter by only using the actual code inside Stack Overflow posts
as inputs to the model. Despite the information loss from not taking
advantage of the entire post text, we still further improve on the
performance of prior work and obtain a 78.7% top-1 accuracy.

3 DATA
The primary goal of our work is to create a machine learning system
that will classify the functionality of source code. We achieve this
by leveraging Stack Overflow, a large, public question and answer
forum focused on computer programming. Users can ask a question,
provide a response, post code snippets, and vote on posts. The SO
dataset provides several advantages in particular: a huge quantity
of code snippets; a wide set of tags that cover concepts, tools, and
functionalities; and a platform that is constantly updated by users
asking and answering questions about new technologies. Due to
the complexity of the data, we use this section to discuss the data’s
characteristics and our preprocessing procedures in detail.
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Figure 2: A Stack Overflow thread with a question and an-
swer. The thread’s tags are boxed in red and the code snip-
pets are boxed in blue. For the purpose of training ourmodel,
the tags are the output labels and the code snippets are the
input features.We can see from this example that the longer
snippets look like valid code, while the shorter snippets are
not as useful.

Fig. 2 is an example of a Stack Overflow thread. Users who ask a
question are allowed to attach a maximum of five tags. Although
there is a long list of previously used tags, users are free to enter
any text. The tags are often chosen with programming language,
concepts, and functionality in mind. The tags for this example,
boxed in red, are “python," “list," and “slice." Additionally, any user
is allowed to block off text as a code snippet. In this example, the
user providing an answer uses many code snippets, which have
been boxed in blue. Although the code snippets may describe a par-
ticular functionality, they do not necessarily represent a complete
or syntactically correct program.

Our initial intuition is that the code snippets can simply be input
into a machine learning model with the user-created tags as labels.
This trained model would then be able to accept any source code
and provide tags as output. As we further analyze the data, several
questions need to first be resolved, including how to associate tags
with snippets, what constitutes a single code sample, and which
data should be filtered from the dataset.

Stack Overflow’s threads are the fundamental pieces of our train-
ing data. The publicly available SO data dump provides over 70
million source code snippets with labels that would be useful for

Figure 3: The distribution of snippet lengths in the full
dataset, with frequencies logarithmically scaled. Although
short code snippets are extremely common, they have lim-
ited value.

real world projects. Because the tags are selected at the thread level
while snippets occur in individual posts, we assign the thread’s
tags to each post in that thread. Since a single post can have many
code snippets, we choose to concatenate the snippets using newline
characters as separators in order to preserve a user’s post as a single
idea.

Although these transformations ensure that a post will suffice as
input to a language-level model, they do not guarantee the useful-
ness of the snippets themselves. The following section will address
several problems with short, uninformative code snippets, user
error in tagging posts and generating code with the correct func-
tionality, and the long-tailed distribution of unusable tags.

3.1 Statistics and Data Correction
As of December 15, 2016, the Stack Overflow data dump contains
24,158,127 posts that have at least one code snippet, 73,934,777
individual code snippets, and 46,663 total tags. Despite the large
amount of data, there is a severe long-tailed phenomenon that is
common in many online communities [13]. The distributions of
code-snippet length and number of tags per post are of particular
importance to our problem.

Fig. 3 shows the distribution of individual snippet lengths, mea-
sured in number of characters, throughout Stack Overflow. As one
would expect, the longer snippets are many orders of magnitude
less frequent than the shorter snippets. Fig. 4 further demonstrates
that, of the many short snippets, there is a huge quantity that are
empty strings or are only a few characters long. There are several
reasons why these snippets are poor choices for training data. First,
a single character is usually not descriptive enough to characterize
multiple tags. Saying that ‘x’ is a good indicator of python, machine
learning, and databases does not make sense. Going back to Fig. 2,
we can also see that the short snippets are often references to code,
but not valid code themselves.
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Figure 4: A zoomed view of the snippet length distribution,
with 1 bin equal to 1 character. There are many strings that
are empty or only a few characters long.

Figure 5: The mean and median number of punctuation
marks at different snippet lengths. At a snippet length of
10 characters, the mean and median number of punctua-
tionmarks is 1, indicating a reasonable choice forminimum
snippet length.

In order to avoid cutting out snippets at an uninformed threshold,
we investigate snippets of different lengths in more detail. We found
punctuation to be a good indicator of code usefulness in short
snippets. The occurrence of punctuation means that we are more
likely to see programming language constructs such as “variable
= value" or “class.method." However, simply removing all snippets
without punctuation is not viable because of valuable alphanumeric
keywords and punctuation-free code (“call WriteConsole”), so we
instead decide to filter based on a threshold length. Fig. 5 shows
the median and mean number of punctuation marks for different
snippet lengths. At a snippet length of 10 characters, the mean and

Figure 6: Distribution of tags per post. All posts on Stack
Overflowmust have at least one tag, but there is amaximum
of five tags, resulting in missing labels.

median are both greater than one, so we filter out all snippets that
are length 9 or below from the data.

Additionally, Fig. 6 shows the distribution of tags per post. As
stated previously, Stack Overflow allows a maximum of five tags
for any given post. Although most posts contain three tags, there
is still a significant number of posts with fewer tags. The combined
effect from a high quantity of posts that have few tags and an
enforced maximum creates a “missing label phenomenon." This
is the situation where a given post is not tagged with all of the
functionalities or concepts actually described in the post. This is a
non-trivial challenge for machine learning models because a code
snippet is considered a negative example for a given label if that
label is missing.

Users can also add errors to the training data by simply being
wrong about their tags or posted code on Stack Overflow. Because
users can vote based on the quality of a post, we can use scores
as an indicator for incorrectly tagged or poorly coded posts. Fig. 7
shows the distribution of scores for posts that have at least one code
snippet. We cut all posts with negative scores from the training
data. Although we considered cutting posts with zero score because
they had not been validated by other users via voting, we ultimately
choose to keep them because the score distribution shows that there
is a large amount of data with zero score.

After filtering the data for the snippet length and score thresh-
olds, one problem remained with the set of valid labels. Because
users are allowed to enter any text as a tag for their posts, there is a
long-tailed distribution of tags that are rarely used. Table 1 displays
the magnitude of the problem. In the first 4,508 tags, the amount of
posts per tag drops from 2.5 million to just 1,000. In order to enable
a 99% / 1% training/test split and still have 10 positive labels per
tag to estimate performance, we cut off tags with fewer than one
thousand positive samples.

In the following section, we explain howwe construct ourmodels
and perform validation using the snippet, score, and tag-filtered
data.
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Figure 7: The distribution of scores on Stack Overflow posts.
Negative scores are often the result of poorly worded ques-
tions, incorrectly tagged posts, or flawed code snippets, so
we filter them out of the training set. We keep zero-scored
snippets because they may not have been viewed enough to
be voted on.

Table 1: Rankings are based on the number of posts that are
labeled with a tag, after filtering data for snippet and score
thresholds. This shows that themajority of tags have too few
samples to train and validate a machine learning model.

Rank Tag # of Posts

1 javascript 2,585,182
8 html 1,279,137
73 apache 99,377
751 web-config 10,056

4,508 simplify 1,000
16,986 against 100
46,663 db-charmer 1

4 METHODOLOGY
Our motivations for using neural networks in this work are sev-
eralfold. As discussed in the introduction, convolutional neural
networks have shown state-of-the-art performance in natural lan-
guage tasks with less computation than LSTMs [16] [8]. Both natu-
ral language and source code tasks must model structure, semantic
meaning, and context.

Neural networks also have the ability to efficiently handle multi-
label classification problems: rather than training M classifiers for
M different output labels, the output layer of a neural network can
haveM nodes, simultaneously providing predictions for multiple
labels. This enables the neural network to learn features that are
common across labels, whereas individual classifiers must learn
those relationships separately.
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Figure 8: An overview of the neural network architecture. (a)
The characters from a given code snippet are converted to
real-valued vectors using a character embedding. (b) We use
stacked convolutional filters of different lengths with ReLU
activations over the matrix of embeddings. (c) We perform
sum-over-time pooling on the output of each stacked convo-
lution. (d) A flattened vector is fed into two fully-connected,
batch-normalized, dense layers with ReLU activations. (e)
Each output node uses a logistic activation function to pro-
duce a value from 0 to 1, representing the probability of a
given label.

4.1 Neural Network Architecture
Fig. 8 gives an overview of the neural network architecture. In part
(a) of Fig. 8, we use a character embedding to transform each print-
able character into a 16-dimensional real-valued vector. We chose
character embeddings over more commonly used word embeddings
for multiple reasons. Creating an embedding for every word in the
source code domain is problematic because of the massive set of
unique identifiers. Forming a dictionary from words only seen in
the training set will not generalize, and using all possible identi-
fiers will be infeasible to optimize. The neural network only needs
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Figure 9: A two-dimensional projection of the character em-
bedding vectors that are optimized during model training.
Themodel generates clear spatial relationships between var-
ious sets of characters. The separation between uppercase
letters, lowercase letters, symbols, and numbers is of par-
ticular interest. In general, meaningful spatial relationships
significantly improve the features extracted by the convolu-
tional layers.

to optimize 100 embeddings when using the printable characters.
Additionally, the character embeddings are able to function on any
text, allowing the model to predict on source code without the use
of language-specific parsers or features.

In order to provide an intuition of the character embedding, we
use PCA to project the 16-dimensional embedding vectors down
to two dimensions, as displayed in Fig. 9. This figure indicates
that the model generates salient spatial relationships between the
embedded characters during optimization, which is critical to the
performance of the convolutional layers. The convolutions are able
to preserve information about words and sequences by sliding over
the embedding vectors of consecutive characters. We stack two
convolutional layers of the same size for various filter lengths,
which generates a stacked convolution matrix. Using sum-over-
time pooling on the stacked convolution matrix allows us to obtain
a fixed-length vector regardless of the initial input size.

After two batch normalized dense layers, the last layer has a
logistic activation for each neuron in order to output the probabil-
ity of a tag occurring. The network is trained on binary vectors
containing a 1 for every tag that occurs for a given code snippet
and 0 otherwise. We use binary cross-entropy as our loss function.

4.2 Validation Setup
Since we train the model on Stack Overflow and predict on arbitrary
source code, we must validate the model in both domains. On the
SO data, we use a hold-out test-set strategy so that the model can be
evaluated on previously unseen data. In the source code domain, we

perform human validation to verify the accuracy of the modelâĂŹs
outputs.

4.3 Stack Overflow Validation
To validate the neural network on Stack Overflow, we tested a
number of multilabel test set stratification algorithms. Stratification
based on k-fold cross-validation, which is a standard technique
for binary and multiclass classification tasks, cannot be directly
applied to the SOmultilabel classification problem due to classes not
being disjoint. Furthermore, due to the class imbalance caused by
using a long-tailed tag distribution for labels, random stratification
produces partitions of the data that do not generate good estimates
for multilabel problems [30] [36]. In particular, the label counts
for the top tag and the 4,508th tag differ by 3 orders of magnitude,
which can result in classes with very few positive labels for the test
set.

Since deep CNN models take a long time to train and benefit
from large datasets, we want to avoid cross validation and use as
much of the dataset as possible to train our model. Our goal is to
generate a 98% / 1% / 1% train/validation/test split that still provides
a good estimate of performance. With an ideal stratification, this
would ensure that even the rarest tags (with 1000 samples each)
would have 10 samples in the validation and test sets, which is
sufficient for estimating performance. On our dataset, this would
result in about 240,000 samples in validation and test sets.

Multilabel stratification begins with them-by-q label matrix Y ,
wherem is the number of samples in the dataset D, q is the number
of labels in the set of labels Λ, and Y [i, j] = 1 where sample i has
label j , and Y [i, j] = 0 otherwise. The goal is to generate a partition
{D1, . . . ,Dk } ofD that fulfills certain desirable properties. First, the
size of each partition should match a designated ratio of samples,
in our case, |D train |, |D test |, |Dval |

|D | = (0.98, 0.1, 0.1). Additionally, the
proportion of positive examples of each label in each partition
should be the same; i.e.,

∀s ∈ {train, test ,val},∀j ∈ Λ :
∑
i ∈Ds Y [i, j]

|Ds | = c j

where c j is the proportion of positive examples of label j in D.
Labelset stratification [36] considers each combination of labels,

denoted labelsets, as a unique label and then performs standard k-
fold stratification on those labelsets. This works well for multilabel
problems where each labelset appears sufficiently often. However,
this does not optimize for individual label counts, which is a prob-
lem for datasets like SO that include rare labels and rare label
combinations. We found that iterative stratification [30], a greedy
method that specifically focuses on balancing the label counts for
rare labels, produced the best validation and test sets. To produce
our partition, we ran iterative stratification twice with a 99%/1%
split, which resulted in a 98.01%/0.99%/ 0.1% train/validation/test
split.

4.4 Source Code Validation
Validating the model’s performance on source code poses a different
challenge because of the lack of labeled documents. In order to
obtain results, we performed human validation on source code that
is randomly sampled from GitHub [12]. Specifically, we ran a script
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Figure 10: The GUI for human validation of model outputs
on source code documents.

Table 2: Mean, median, and standard deviation of tag AUCs
for each model.

Model Mean Median Stdev

Embedding CNN 0.957 0.974 0.048
Embedding Logistic Regression 0.751 0.759 0.099
N-gram Logistic Regression 0.514 0.502 0.093

to download the master branches of random GitHub projects via
the site’s API until we had 146,408 individual files. We sampled
20 files for each of the following extensions, resulting in a total of
200 source code documents: [py, xml, java, html, c, js, sql, asm, sh,
cpp]. Note that the extensions were not presented to the users and
that they do not inform the predictions of the model. We created
a GUI, displayed in Fig. 10, that presents the top labels and asks
users if they agree with, disagree with, or are unsure about each
label. There were a total of 3 reviewers, each of whom answered the
questions on the GUI for all 200 source code documents. We remove
the unsure answers and use simple voting among the remaining
ratings to produce ground truth and compute an ROC curve.

5 RESULTS
On the Stack Overflow data, we first calculated the top-1 accuracy
previously used by Kuo [19] and Clayton and Byrne [33]. We obtain
a 78.7% top-1 accuracy, which is a significant improvement over
the previous best of 65%.

However, we found that metric to be lacking: it only checks if
the model’s top prediction is in the SO post’s tag set. Our goal is
to predict many tags pertinent to a source code document, not just
its primary tag. Because our work is introducing the multilabel
tag prediction problem on Stack Overflow code snippets, we train
multiple baseline models to demonstrate the significance of our
convolutional neural network architecture. In order to evaluate the
results, we computed the area under ROC (AUC) for each individual
tag. This is a reasonable evaluation because it demonstrates the
performance of each model across the entire set of tags.

Figure 11: The distribution of tag AUCs for each model. Be-
cause our dataset uses 4,508 labels, there are 4,508 AUCs
binned and plotted for eachmodel. This graph demonstrates
how well each model performs across all the labels.

We used two additional models as baselines for this problem. The
first model performs logistic regression on a bag of n-grams. This
model obtains the 75,000 most common n-grams (using n=1,2,3)
from the training set to use as features. The second model performs
logistic regression on a character embedding of the input code
using an embedding dimension of 8. We choose these two models as
baselines because they test two different types of featurizations and
they are able to efficiently train and predict on multilabel problems.

Fig. 11 shows the distributions of tag AUCs for the CNN model
and the logistic regression baselinemodels. Because our dataset uses
4,508 tags, there are 4,508 AUC values that are binned and plotted
for each model. The shape of the logistic regression distributions
are similar - most of the tags fall within the central range of the
models’ distributions and there are few tags that perform relatively
well or relatively poorly. Our convolutional architecture performs
well on most of the tags, and instead has a long-tailed distribution
of decreasing performance.

Table 2 displays a summarized, quantitative view of the tag
AUC distributions. The logistic regression models have similar
standard deviations, but the n-gram model has a considerably lower
mean and median, indicating that the n-gram features are not as
effective as the character embeddings. The convolutional network
has a significantly higher mean and median, and a lower standard
deviation. Although all of the models perform worse as the rarity of
the tags increases, the lower standard deviation of the convolutional
network implies that the model is more robust to the rarity of a
given tag.

For source code validation, we use human feedback on the con-
volutional network to generate Fig. 12. The model obtained a 0.769
AUC. For the sake of comparison, we compute top-1 accuracy with
the human validation on source code and obtain an 86.6% accuracy.
We note that this is better than the analogous performance on Stack
Overflow, which indicates that, on source code, the model performs
better for the first tag, but worse for the rest.
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Figure 12: Human validation ROC curve with a 0.769 AUC.
This differs from the Stack Overflow AUC values because it
operates on the results of human validation, which is lim-
ited to only a few tags per document.

As a final note on performance, we trained and tested our model
using an NVIDIA 1080 GPU. Our model obtains speeds of about
317,000 characters per second. Assuming an average of 38 char-
acters per line of code (calculated based on a random sample of
source files from GitHub[12]), the model is able to achieve predic-
tion speeds of 8,342 source lines of code per second. To put this in
context, it would take the model less than an hour to predict on
the 20+ million lines of code in the Linux kernel. It is also read-
ily parallelized to quickly predict across much larger source code
corpora.

6 CHALLENGES/LIMITATIONS
In the course of our research, we encountered a few limitations
that require further study. First is the transfer learning problem
between Stack Overflow code snippets and source code. The lack
of labeled source code prevents us from training directly on the
desired domain.

The size of SO code snippets and the maximum number of tags
per post are detrimental to the model’s ability to predict on arbitrar-
ily long source code. Due to the five tags per post limit, predicting
more tags will increase the model loss, resulting in predictions
with few tags. The original hypothesis was that the model would
associate few predictions with short snippets and many tags for
longer snippets, but the source code evaluation did not strongly
support this. Exploring approaches that utilize loss functions other
than binary cross-entropy may address these tag limit problems.

Another issue is that Stack Overflow users do not tag their code
snippets directly, but rather their questions. For example, a user
could post a code snippet of an XML document, ask how to parse it
in Java, and tag the thread with “XML," “Java," and “parse." These
tags are all extremely relevant to the user’s question, but they do
not describe the code snippet independently. During training, our

model is only able to see that the XML document is an example of
XML, Java, and parsing. This creates noise in the Java and parse
labels.

Finally, the human verification process is a noisy evaluation of
the model’s performance on source code. Verifying the predictions
is an arduous process because the model is familiar with thousands
of functionalities. It is infeasible for individuals to be masters of
such a wide range of ideas and tools, which results in a significant
amount of labeler disagreement.

7 CONCLUSIONS/FUTUREWORK
We leverage the crowdsourced data from Stack Overflow to train
a deep convolutional neural network that can attach meaningful,
semantic labels to source code documents of arbitrary language.
While most current code search approaches locate documents by
matching strings from user queries, our approach enables us to
identify documents based on functional content instead of the literal
characters used in source code or documentation. A logical next
step is to apply this model to large source code corpora and build a
search interface to find source code of interest.

Unlike previous supervised SO tag-prediction models, we train
and test strictly on code snippets, yet we still advance the top-1
prediction accuracy from 65% to 79% on Stack Overflow. We also
achieve 87% on human-validated source code. Using the area under
ROC to measure performance, we obtain a mean AUC of 0.957 on
the Stack Overflow dataset and an AUC of 0.769 on the human
source code validation. Refining the methodology and data prepro-
cessing by training the model with entire threads instead of posts
could alleviate the performance drop caused by transfer learning.
An alternative direction for future research is to investigate better
metrics and loss functions for training and evaluating model per-
formance on long-tailed multilabel datasets. This could prevent the
model from being punished for predicting more than five tags.

Finally, extensions of the architecture that broaden the contex-
tual aperture of the convolutional layers may grant the model a
deeper understanding of abstract code concepts and semantics. This
would enable more sophisticated code search and comprehension.
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