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ABSTRACT
Discriminating between computer-generated images (CGIs)
and photographic images (PIs) is not a new problem in dig-
ital image forensics. However, with advances in rendering
techniques supported by strong hardware and in genera-
tive adversarial networks, CGIs are becoming indistinguish-
able from PIs in both human and computer perception. This
means that malicious actors can use CGIs for spoofing facial
authentication systems, impersonating other people, and cre-
ating fake news to be spread on social networks. Themethods
developed for discriminating between CGIs and PIs quickly
become outdated and must be regularly enhanced to be able
to reduce these attack surfaces. Leveraging recent advances
in deep convolutional networks, we have built a modular
CGI–PI discriminator with a customized VGG-19 network
as the feature extractor, statistical convolutional neural net-
works as the feature transformers, and a discriminator. We
also devised a probabilistic patch aggregation strategy to deal
∗Also with The University of Edinburgh.
†Also with SOKENDAI (The Graduate University for Advanced Studies).
‡Also with SOKENDAI (The Graduate University for Advanced Studies).
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with high-resolution images. This proposed method outper-
formed a state-of-the-art method and achieved accuracy up
to 100%.
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1 INTRODUCTION
Despite the many benefits of computer-generated images
(CGIs), for example in gaming, virtual reality, and 3D anima-
tion, they can also be used for malicious purposes. Videos
generated for creating fake news to gain political advan-
tages, create chaos, or damage reputations can easily spread
uncontrollably in social networks. From the Digital Emily
Project in 2010 [1] to the Face2Face Project in 2016 [34] and
the Synthesizing Obama Project in 2017 [32], the require-
ments for performing a spoofing attack have been greatly
simplified, from obtaining 3D scanning information captured
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by sophisticated devices (which is unrealistic for most at-
tackers) to only needing RGB videos (which can be easily
obtained online), and now to generating spoofing video in
real time. Approaches like Face2Face can be used to break
challenge-response tests in facial authentication systems or
to impersonate people in teleconferences. Moreover, recent
advances in generative adversarial networks (GANs) [13]
have overcome the size-limit problem, enabling realistic fa-
cial images to be generated in unprecedented high-definition
quality (1024 × 1024) [17]. These developments have raised
alarms in forensics research as well as in security and privacy
areas. Discriminating between such high-quality computer-
generated multimedia and their natural counterparts, espe-
cially in the case of images, is a continuous competition
between the attacker side and the defender side.
Statistical properties obtained from transformed images

(e.g., from wavelet transform or differential operators) have
been widely used to distinguish CGIs from photographic im-
ages (PIs) [3, 4, 20, 22, 37, 38] andwere recently demonstrated
to be the best features for discrimination by Rahmouni et
al. [27]. They also demonstrated that applying automatic fea-
ture extraction using a convolutional neural network (CNN)
can substantially improve classification compared with using
handcrafted features.
In addition, the pre-trained VGG networks proposed by

the Visual Geometry Group at the University of Oxford [30]
(VGG-16 and VGG-19) have been widely used in areas out-
side their originally intended scope as image classification
networks, such as for perceptual loss in the style transfer
problem and for the super-resolution problem [16, 19]. Fur-
thermore, these VGG networks were trained using a large-
scale dataset [29], whichmaximizes the generalization ability
of a CNN.

In the research reported here, we leveraged the generaliza-
tion ability of the VGG-19 network, combined with statistical
properties applicable to CNNs, to build a modular CGI–PI
classifier. To deal with high-resolution images while mini-
mizing computational cost, we use a probabilistic patch ag-
gregation strategy that reduces V-RAM usage and shortens
classification time.

2 RELATEDWORK
Previously reported approaches to distinguishing CGIs from
PIs can be classified into four groups.

(1) Using wavelet/wavelet-like transformations or differ-
ential images

(2) Using the intrinsic properties of image acquisition de-
vices

(3) Using texture information
(4) Using statistical analysis (independently or jointlywith

other methods)

Early research on digital image forensics by Farid and
Lyu [11, 22] suggested that statistics on the first- and higher-
order wavelets can be used to classify CGIs and PIs. Wang
and Moulin [36] improved on this approach by using fea-
tures extracted from characteristic functions of wavelet his-
tograms. Chen et al. [3] suggested that a genetic algorithm
could help in selecting an optimal feature set from the sta-
tistical moments of the characteristic functions of an image
and its wavelet subbands. Li et al. [20] used second-order
difference statistics while Wu et al. [37] extracted features
from histograms of difference images.
To detect CGI–PI splicing, Conotter and Cordin [5] ex-

ploited both wavelet-based features and noise residual statis-
tics. For the same problem, Chen and Ke [4] proposed using
a hybrid classifier taking as input the pattern noise statistics
and histogram features of first- and second-order difference
images.
Work on distinguishing between CGIs and PIs includes

work focused on identifying the footprints of image acquisi-
tion devices. Khanna et al. [18] took advantage of the residual
pattern noise caused by both CCD (charged coupled device)
and CMOS (complementary metal oxide semiconductor) sen-
sors inside digital cameras or scanners. Dirik et al. [8] focused
on traces of demosaicing and chromatic aberration in color
filter arrays (CFAs), as did Gallagher and Chen [12]. Peng
et al. [25] also targeted CFAs and identified the effect of
their interpolation on the local correlation of photo response
non-uniformity noise.
Ng et al. [24] proposed a fusion classification system us-

ing the geometry (object model, light, post-processing), the
wavelet, and the cartoon features. Fan et al. [10] clarified the
limitations of using wavelets and made use of contour infor-
mation. Zhang et al. [38] extracted the statistical properties
of local edge patches in digital images. Also using statistical
analysis, Li et al. [21] explored the use of uniform gray-scale
invariant local binary patterns. Tan et al. [33] improved pre-
vious work by using the local ternary count based on local
ternary patterns. In other work, Peng et al. [26] proposed
using multi-fractal and regression analysis.
Recently, Rahmouni et al. [27] demonstrated that using

statistics is the best approach to solving this forensic prob-
lem and that applying a CNN substantially improves the
performance of traditional statistical-based methods. To the
best of our knowledge, the method of Rahmouni et al. is
state-of-the-art, with the highest accuracy for distinguishing
between CGIs and PIs.
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Figure 1: Overview of modular CNN discriminator.

3 NETWORK ARCHITECTURE
3.1 Overview
Our modular CNN for discriminating between CGIs and
PIs includes three modules, as illustrated in Figure 1. Un-
like recent work [27], we do not train the whole network
end-to-end. The biggest problem with CNNs is the need to
use a large-scale and diverse-content training dataset in or-
der to achieve the best generalization. The dataset used by
Rahmouni et al. [27] is relatively large but is less diverse
in content than the ILSVRC15 dataset [29]. Unfortunately,
the ILSVRC15 dataset was designed for visual recognition,
not digital image forensics research. However, CNNs have
the ability to transfer learning, so the knowledge gained
from solving one problem can be used to solve a different
but related problem. Therefore, we used one of the winners
of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) – the pre-trained VGG-19 network, as the feature
extractor module. It is important to note that we did not fine
tune the feature extractor in the training process.
Although recent work [27, 37] has shown that statistical

properties obtained from transformed images are the best fea-
tures for CGI–PI discrimination, the features extracted from
the pre-trained VGG-19 network were designed for visual
recognition. Therefore, we constructed feature transformer
modules to transform the output extracted by the feature ex-
tractor into statistical features. The number of convolutional
layers in the transformers must be limited to prevent them
from extracting semantic information, but there must be a
sufficient number of such layers to be able to extract good
statistical information.
The final module is a classifier. For this module, we se-

lected the machine learning algorithm among state-of-the-
art ones that has the best classification results.

3.2 Feature Extractor
Johnson et al. [16] suggested that the results obtained from
some activation layers of the pre-trained VGG-16 network
can be used to calculate the feature reconstruction loss and
the style reconstruction loss, which are used for both the
style transfer problem and the image super-resolution prob-
lem. Ledig et al. [19] argued that, in the case of feature recon-
struction loss, using output from a deeper activation layer of
the pre-trained VGG-19 network results in better perceptual
quality than that with Johnson et al.’s approach. Therefore,
there is no standard guideline for the utilization of the VGG

network family. In the case of digital forensics, we hypothe-
sized that features in lower layers have more discriminating
power than ones from higher levels, which mostly contain
semantic information. Moreover, instead of using the output
of the rectified linear units (ReLUs) [23], for which negative
values are omitted, we extracted output immediately after
the convolutional layers.

1

Feature 
Transformer

Classifier

3×3 conv, 64
3×3 conv, 64
Max Pooling

3×3 conv, 128
3×3 conv, 128
Max Pooling

3×3 conv, 256
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Max Pooling
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Figure 2: Detailed design of feature extractor and its
connections with feature transformers and classifier.

To verify this hypothesis, we performed an experiment us-
ing the patches dataset proposed by Rahmouni et al. [27] and
the pre-trained VGG-19 network. We extracted the outputs
after five convolutional layers located immediately before the
max-pooling layers as shown in Figure 2. For the five settings
given in Table 1, the combination of layers 1, 2, and 3 gave the
highest classification accuracy. These results indicate that
using only one layer does not produce the highest accuracy.
However, if semantic layers were included, the classification
performance would be affected by this irrelevant informa-
tion. Therefore, we chose outputs from layers 1, 2, and 3 in
Figure 2 (conv1_2, conv2_2, and conv3_4, respectively) as
features to be extracted by the feature extractor.
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Table 1: Accuracies for TrainingUsing PatchesDataset
for Five Settings.

Setting Accuracy (%)
1 95.40
1 + 2 97.60
1 + 2 + 3 97.70
1 + 2 + 3 + 4 96.50
1 + 2 + 3 + 4 + 5 96.10

3.3 Feature Transformers
The role of the feature transformers is to transform features
encoded by the pre-trained VGG-19 network into statistical
properties that can be used to distinguish CGIs from PIs.
Because there are three feature transformer modules, it is
necessary to minimize their depths. Moreover, a deep feature
transformer may produce unnecessary semantic informa-
tion, which could negatively affect the network. However, a
shallow network has a limited ability to transform the fea-
tures. Therefore, we used two convolutional layers with 3×3
kernels and a stride of 1. We integrated batch normalization
layers [15] into the transformers to regularize their train-
ing processes. Following the batch normalization layers are
the ReLU activation layers. We attached a statistical pool-
ing layer at the end of the modules to extract the statistical
properties. The three feature transformers share the same
architecture, as illustrated in Figure 3.

128 6464

128 64128

128 64256

384 512

features extracted by VGG network

ReLU

dropout

depth64  128 256
384  512

k3s1 convolution

batch normalization

output

linear

statistical pooling

softmax

Figure 3: Detailed settings of feature transformers and
classifier.

We built the statistical pooling layer following Rahmouni
et al.’s approach [27]. However, we assumed that finding the

maximum and minimum of each filter was not necessary
and that these actions would consume computational power,
especially when performing back propagation in the training
phase. Therefore, we calculate only the mean and variance
of each filter, which are important in statistics and also are
differentiable.

• Mean:

µk =
1

H ×W

H∑
i=1

W∑
j=1

Iki j

.
• Variance:

σ 2
k =

1
H ×W − 1

H∑
i=1

W∑
j=1

(Iki j − µk )
2

.
The k represents the layer index, H andW are respectively
the height and width of the filter, and I is a two-dimensional
filter array.

3.4 Classifier
Feed-forwardmultilayer networks, or multilayer perceptrons
(MLPs), [28] are widely used to build classifiers in CNNs be-
cause of their differentiable property. However, there are
other strong classification algorithms that have been widely
used such as Fisher’s linear discriminant analysis (LDA) al-
gorithm [9] and the support vector machine (SVM) algo-
rithm [6]. Therefore, we first use an MLP to build the classi-
fier to train the feature transformers (as well as to train the
classifier itself). After the training, the feature transformers
are kept fixed, and the classifier is trained using the LDA and
SVM classification algorithms. The learning curves of these
algorithm are plotted in Figure 4. The proposed network
converged very quickly in the few first epochs. The MLP
algorithm had high accuracy but was less stable than the
LDA and SVM algorithms. Since the LDA algorithm usually
has higher accuracy than the SVM one, we evaluated only
MLP and LDA classifiers, as described in section 5.
In more detail, two properties are extracted by each sta-

tistical pooling filter: the mean µi and the variance σi . Each
pooling layer has 64 filters. Since there are three feature
extractor modules, the classifier receives a 384-dimension
vector. For the MLP algorithm, we used two hidden layers
and one dropout layer [31] in between (with a dropout rate
of one-third to avoid over-fitting). A classifier using the MLP
algorithm is illustrated in Figure 3. For the LDA and SVM
classifiers, we used the LinearDiscriminantAnalysis and SVC
module of the scikit-learn library. 1
To choose the best weights for the feature transformers

and the classifier, we begin from epoch 20 and use the one
with the highest score in the validation set. Although the
1http://scikit-learn.org/
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Figure 4: Learning curves of MLP, LDA, and SVM clas-
sifiers on Patch-100-Full validation set described in
section 5.1

.

proposed network converged very quickly, it is better to
use a longer training time to optimize its weights before
harvesting.

4 PATCH AGGREGATION
Using a CNN with large-scale input requires a large amount
of GPU memory. One possible solution is to split the input
into patches, perform classification, and aggregate the re-
sults [27]. Although this approach can also detect local CGI
inlay in large PI images (or vice-versa), it has high computa-
tional cost, especially when dealing with very large images.
For instance, an image 4900 × 3200 pixels in size would re-
quire 1568 patches if the patch size was 100×100 pixels. This
would result in 1568 classification calculations.

To reduce the number of calculations, we devised an ap-
proach using a probability sampling method that randomly
selects a portion of the patches, performs classification using
the selected patches, calculates the average of the predicted
probabilities, and uses it as the final decision. Two patch
selection strategies are illustrated in Figure 5. For some fixed
number of patches (e.g., 10, 25, or 50), we could integrate
them into one batch and feed that batch into the network
instead of feeding each patch separately into the network,
thereby shortening the computation time.

Let
• ypred be the predicted label of input image I , which is
either 0 (PI) or 1 (CGI).

• W be the set of patcheswi extracted from the full-size
image I , |W | = N (patches).

• p(wi ) = D(wi ) be the probability of patch wi being
classified by the proposed network D as CGI.

The probability of I being classified as CGI is calculated
using

p(I ) =
1
N

N∑
i=1

p(wi ). (1)

Hence, the predicted label of I is

ypred =

{
1, if p(I ) > 0.5
0, otherwise.

(2)

5 EVALUATION
5.1 Datasets
For the image datasets, we began with the one recently con-
structed by Rahmouni et al. [27]. Its CGI part contains 1800
high-resolution (around 1920 × 1080 pixels) screenshots in
JPEG format from five photo-realistic video games. The PI
part is taken from the RAISE dataset [7], includes 1800 very
high-resolution JPEG images (around 4900 × 3200) directly
converted from RAW format. Both parts cover many kinds
of indoor and outdoor environments. Sample images from
this dataset are shown in Figure 6.
We made one major change to this dataset. We contend

that the reduced-size images created by cropping high-resolution
images to 650 × 650 are not appropriate for our purposes
because their quality is still good. In reality, many images
and videos have low quality, and a malicious person could
additionally apply transformation to the CGIs, for exam-
ple, scaling them to produce lower quality, to disguise the
attack. Therefore, instead of cropping, we resized each high-
resolution image to 360p resolution using a bilinear interpo-
lation algorithm. This increased the diversity in quality of
images used for evaluation.

In addition to using a patch size of 100× 100, we also used
a patch size of 256 × 256 for the high-resolution images to
reduce the number of patches. This larger patch size could
be used with large-memory GPUs. Moreover, a larger patch
size should contain more valuable information, and with the
size is the power of 2, we could reduce the effect of JPEG
artifacts. In addition, we also extracted 100 × 100 patches
from the reduced-size images. The datasets derived from the
original one are summarized in Table 2.

We trained each discriminator on the training sets of the
patch datasets. The valid. sets were used to validate the train-
ing process. After training, the discriminators were tested on
the testing sets of both patch datasets and their correspond-
ing Full-Size or Reduced-Size ones. Moreover, as described
in section 5.3, we also tested the discriminators which were
trained using the Patch-100-Full dataset on the Reduced-Size
dataset to check whether this training strategy is capable of
generalization.
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Figure 5: Patch selection strategies: Selecting all patches (left) vs. random sampling (right).

Figure 6: Sample images from dataset constructed by Rahmouni et al. [27]. Images on the left are PIs and those
on the right are CGIs.

Table 2: Datasets Used for Evaluation.

Name No. for training No. for valid. No. for testing Image size
Full-Size 2,520 360 720 High-resolution
Patch-100-Full 40,000 1,000 2,000 100 × 100
Patch-256-Full 40,000 1,000 2,000 256 × 256
Reduced-Size 2,520 360 720 360p
Patch-100-Reduced 40,000 1,000 2,000 100 × 100

5.2 Testing on High-Resolution Images
For testing on high-resolution images, we trained our pro-
posed method and Rahmouni et al.’s one [27] on the Patch-
100-Full and the Patch-256-Full datasets. We then evaluated
them on both the corresponding patch dataset and the Full-
Size one. The proposed method was also tested for several

patch aggregation strategies, as presented in Table 3. For
the 100 × 100 patch size, it was sufficient to sample only 50
patches to obtain performance equivalent to that of evaluat-
ing all patches on the Full-Size dataset. When the sampling
process avoided some confused areas in the images, sampling
only 10 256× 256 patches outperformed sampling 25 patches
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or evaluating all patches, achieving an accuracy of 100%.
Otherwise, the accuracy was slightly lower (e.g., 99.72%).
Our proposed method substantially outperformed Rah-

mouni et al.’s method [27] on both the Patch-100-Full and
Patch-256-Full datasets. It also had the highest results on the
Full-Size dataset, reaching 100%. A comparison of accuracy
between Rahmouni et al.’s method [27] and the proposed
method is shown in Table 4. Comparing the original 100×100
patch size with the 256 × 256 one shows that increasing the
patch size improves the accuracy of Rahmouni et al.’s method.
Moreover, use of the MLP classifier rather than the LDA one
in the proposed method resulted in higher accuracy for both
the Reduced- and Full-Size datasets. The ROC curves for
the Patch-100-Full and Full-Size dataset discriminators are
plotted in Figures 7 and 8.
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Figure 7: ROC curves of discriminators tested on
Patch-100-Full dataset. Proposed method used MLP
classifier.

5.3 Dealing with Low-Resolution Images
In reality, many videos on social networks such as YouTube,
Facebook, and Vimeo have 360p quality. Attackers can take
advantage of this to produce low-resolution videos (and im-
ages) that are more difficult to detect. The results shown
in Table 5 highlight this problem for discriminators trained
on the Patch-100-Full dataset. Their performance substan-
tially decreased to the random-selection level. To solve this
problem, we mixed the Patch-100-Full and the Patch-100-
Reduced datasets to form the Patch-100-Mixed dataset. We
then retrained the discriminators on this new dataset and
evaluated them on the Patch-100-Reduced & Reduced-Size
datasets and Patch-100-Full & Full-Size datasets.
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Figure 8: ROC curves of discriminators tested on Full-
Size dataset. Proposed method used MLP classifier.

The results in Table 5 show that both discriminators had
better performance on the Patch-100-Reduced and the Reduced-
Size datasets. However, their performance on the Patch-100-
Full and the Full-Size datasets was slightly lower than with
the previous scheme for high-resolution datasets. The dif-
ference in performance between the proposed method and
Rahmouni et al.’s was also substantially greater. The results
also demonstrated the advantage of choosing among state-
of-the-art classifiers to find the best one; i.e., use of the LDA
classifier resulted in higher accuracy when the Patch-100-
Mixed dataset was used. The ROC curves for the Reduced-
Size and Full-Size dataset discriminators after being retrained
are shown in Figures 9 and 10.

5.4 Detecting Image Splicing
In an experiment, we used the discriminators to detect image
splicing. Along with the normal way of dividing the test
input into 100 × 100 patches, we also used an overlapping
patch strategy. The probability of splicing for each area is
the average of the probabilities of all patches to which the
area belongs. Although this strategy has a higher calculation
cost, it produces smoother output than the non-overlapping
one. Example images are shown in Figure 11; the input sizes
were 1800×1200 and 1200×800 pixels. Our proposed method
(both overlapped and non-overlapped patches) outperformed
Rahmouni et al.’s one [27]. Although our method did not
flawlessly separate all the splices and had a few minor false
positives, it could detect their relative positions. Rahmouni
et al.’s one, on the other hand, failed to detect the splice in
the first image and was confused in the second image.
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Table 3: Accuracy for Several Patch Aggregation Strategies on Full-Size Dataset. The Random Sampling Strategy
Was Evaluated Three Times.

Classifier MLP LDA
Patch size No. of patches 1 2 3 Avg. 1 2 3 Avg.

100
×

100

10 99.31 99.72 99.86 99.63 99.86 99.31 99.72 99.63
50 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
100 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
All 99.86 99.86

256
×

256

5 99.72 99.44 99.72 99.63 99.44 99.03 99.58 99.35
10 100.00 99.72 100.00 99.91 99.86 99.58 99.72 99.72
25 99.86 99.86 99.86 99.86 99.72 99.72 99.72 99.72
All 99.86 99.72

Table 4: Comparison of Accuracy between Rahmouni et al.’s Method [27] and Proposed Method.

Method Patch-100-Full Patch-256-Full Full-Size
Rahmouni et al. - 100 [27] 86.10 × 96.94
Rahmouni et al. - 256 [27] × 93.95 98.75
Proposed method - MLP - 100 96.55 × 99.86
Proposed method - LDA - 100 96.40 × 99.86
Proposed method - MLP - 256 × 98.70 99.72 - 100.00
Proposed method - LDA - 256 × 98.70 99.58 - 99.86

Table 5: Accuracy of Classifiers Trained on Patch-100-Full Dataset (Old) or on Patch-100-Mixed Dataset (New). For
Simplicity, Proposed Method Used All-Patch Strategy.

Method Patch-100-Reduced Reduced-Size Patch-100-Full Full-Size
Rahmouni et al. (old) [27] 51.50 50.97 86.10 96.94
Proposed method - MLP (old) 52.55 51.81 96.55 99.86
Proposed method - LDA (old) 52.35 51.53 96.40 99.86
Rahmouni et al. (new) [27] 60.45 79.72 81.20 95.00
Proposed method - MLP (new) 88.60 96.67 93.40 97.64
Proposed method - LDA (new) 89.95 97.92 94.80 98.89

6 SUMMARY AND FUTUREWORK
The proposed modular CGI–PI discriminator uses the VGG-
19 network as the feature extractor, statistical convolutional
neural networks as the feature transformers, and the ma-
chine learning algorithm among state-of-the-art ones that
has the best classification results as a discriminator. It out-
performed a state-of-the-art CGI–PI discriminator. The pro-
posed random sampling strategy used for patch aggregation
was demonstrated to be effective for large images. Testing
showed that using only high-resolution images for training
is not sufficient to counter real-world attacks.

Our top priority now is to use ensemble adversarial train-
ing [35] to counter adversarial machine learning attacks [14].
This kind of attack is becoming more common and is very
effective against machine-learning-based discriminators. A

promising candidate to replace patch aggregation for deal-
ing with high-resolution images is the attention-based ap-
proach [2]. We also plan to adapt the proposed discriminator
to enable it to work with videos, not simply extracting data
frame-by-frame and performing classification to reduce com-
putational time.
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