Workflow Support for Live Object-Based Broadcasting

Jack Jansen
Centrum Wiskunde & Informatica
Amsterdam, the Netherlands
Jack.Jansen@cwi.nl

ABSTRACT

This paper examines the document aspects of object-based broad-
casting. Object-based broadcasting augments traditional video and
audio broadcast content with additional (temporally-constrained)
media objects. The content of these objects — as well as their tempo-
ral validity — are determined by the broadcast source, but the actual
rendering and placement of these objects can be customized to the
needs/constraints of the content viewer(s). The use of object-based
broadcasting enables a more tailored end-user experience than the
one-size-fits-all of traditional broadcasts: the viewer may be able
to selectively turn off overlay graphics (such as statistics) during
a sports game, or selectively render them on a secondary device.
Object-based broadcasting also holds the potential for supporting
presentation adaptivity for accessibility or for device heterogeneity.

From a technology perspective, object-based broadcasting re-
sembles a traditional IP media stream, accompanied by a structured
multimedia document that contains timed rendering instructions.
Unfortunately, the use of object-based broadcasting is severely lim-
ited because of the problems it poses for the traditional television
production workflow (and in particular, for use in live television
production). The traditional workflow places graphics, effects and
replays as immutable components in the main audio/video feed
originating from, for example, a production truck outside a sports
stadium. This single feed is then delivered near-live to the homes
of all viewers. In order to effectively support dynamic object-based
broadcasting, the production workflow will need to retain a familiar
creative interface to the production staff, but also allow the inser-
tion and delivery of a differentiated set of objects for selective use
at the receiving end.

In this paper we present a model and implementation of a dy-
namic system for supporting object-based broadcasting in the con-
text of a motor sport application. We define a new multimedia
document format that supports dynamic modifications during play-
back; this allows editing decisions by the producer to be activated
by agents at the receiving end of the content. We describe a proto-
type system to allow playback of these broadcasts and a production
system that allows live object-based control within the production

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DocEng 18, August 2831, 2018, Halifax, NS, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5769-2/18/08...$15.00
https://doi.org/10.1145/3209280.3209528

Pablo Cesar
Centrum Wiskunde & Informatica
Amsterdam, the Netherlands
Technische Universiteit Delft
Delft, the Netherlands
Pablo.Cesar@cwi.nl

Dick Bulterman
Centrum Wiskunde & Informatica
Amsterdam, the Netherlands
Vrije Universiteit
Amsterdam, the Netherlands
Dick.Bulterman@cwi.nl

workflow. We conclude with an evaluation of a trial using near-live
deployment of the environment, using content from our partners,
in a sport environment.

CCS CONCEPTS

« Applied computing — Markup languages; Multi / mixed me-
dia creation; « Information systems — Markup languages;

KEYWORDS

Object based video, Declarative languages

ACM Reference Format:

Jack Jansen, Pablo Cesar, and Dick Bulterman. 2018. Workflow Support
for Live Object-Based Broadcasting. In DocEng ’'18: ACM Symposium on
Document Engineering 2018, August 28-31, 2018, Halifax, NS, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3209280.3209528

1 INTRODUCTION

When the SMIL language was initially released in 1998, one of
the hopes of the development team was that it would facilitate
bringing TV content to the Web [14]. By introducing a declarative
container document that held references to networked multime-
dia, the hope was that complex content streams could be bundled
together based on end-user preferences, ushering in a new era of
on-demand content delivery. In order to meet the needs of a di-
verse set of multimedia content producers and consumers, SMIL
(and other languages being developed at the time, such as NCL)
had extensive support for temporal hierarchies, timing graphs, and
linking architectures, as well as visual structures that supported
dynamic content layout and sizing. Content control facilities were
available that allowed content to be tailored to the network connec-
tion characteristics and various local parameters, such as screen size
or preferred language. There were pro’s and con’s to each language
developed, but in hindsight they all shared a common problem:
they were far too complex to meet the workflow, transmission and
rendering requirements of ‘real’ broadcast television production.
While many multimedia researchers may have been over-ambitious

in defining adaptive formats, many in the area of television technol-
ogy never transcended a content production model that effectively
resulted in the ‘burning’ of content in fixed, producer-defined po-
sitions in an audio-video stream. Within the world of television
production, controlling the visual message remains of paramount
importance, at the expense of client-based customizations or even
the flexible sharing of (parts of) the content stream among the set of
primary and secondary screens that are at the disposal of a modern
media viewer.

https://doi.org/10.1145/3209280.3209528
https://doi.org/10.1145/3209280.3209528

DocEng 18, August 28-31, 2018, Halifax, NS, Canada

Director ‘Front’

.~ -

17:44 CHE 0-0 MCI

This paper reports on the development of a document model
that has been developed to meet the production workflow needs of
the television community, while still offering the end-user a great
degree of flexibility in controlling the selection of on-screen content.
Our work, which has been developed in a partnership with Euro-
pean broadcasters, content distributors and other related parties,
has been focused on the integration of object-based broadcasting of
multiple content components in the context of a sports-television
application.

Figure 1 provides a view of the typical production setting in
an OB (outdoor broadcasting) van. We see three sets of activity,
including the director’s station and video mixer at top left and
right and the graphics integration console at bottom. The ultimate
video feed coming from the truck is shown bottom left. The content
stream that is created in the van is distributed via a multi-stage
process to the homes of (paid) viewers. The end-to-end delay from
action on the field to consumption on the couch can vary from
10-50 seconds, depending on the architecture used.

The work reported in this paper has concentrated on tests using
content produced for motor-sports: the MotoGP. Figure 2 shows a
conventional screen at the top, containing the main video of the
race and a set of content overlays. One of the goals of our work has
been to define a light-weight and flexible timing model that can
be used as the basis of supporting flexible end-user consumption
across a primary and secondary screen (shown in the bottom of
Figure 2.) This work touches on many aspects of content selection,
scheduling, transmission, delivery and routing within the home.

Jack Jansen, Pablo Cesar, and Dick Bulterman

Director ‘Rear’

Figure 2: Object-based viewing of a MotoGP race. (from [9])

Workflow Support for Live Object-Based Broadcasting

Linear Broadcasting Object-based Broadcasting

content objects content objects
ofaTV program. of aTV program.

</>
Iq)) 1.Prepare all the |&)) 1.Prepare all the

‘ * Meta?\ata
g s =
~ vy

Ty

2.The content objects are independently
transmitted to the viewers, which can be
assembled optimally on different devices
according to the metadata describing how
they should be assembled. .

D] Cad C A
posn

2. Allthe content objects are composited and
turned into a linear program during the
production process. The same program is
transmitted to every viewer.

3.The same program is displayed on all kinds
of devices, which can neither be tailored
to the viewers’ contexts, nor allow viewers
to interact meaningfully.

3.The program is optimally displayed on all
kinds of devices, which are tailored to the
viewers’ contexts, and allow viewers to
interact with the content and their friends.

Figure 3: Object-based broadcasting compared to linear
broadcasting. (from [9])

Most of the details of the end-to-end chain are beyond the scope of
this paper, but will be addressed in passing in the text below. Our
focus is on defining a single cloud-based presentation document that
can be shared with potentially millions of viewers simultaneously.
The creation process of this document allows a broadcaster to
identify and schedule information objects (such as replays, statistics
summary, scoreboards, background information) in such a manner
that the broadcaster retains full control of content, but which still
enables viewer-side adaptation and control across a local set of
devices. While our solution has the potential to work for both live
and on-demand content, the operational constraint in our research
was to support live broadcasts only.

The main contribution of this paper is a structured temporal
document format and the accompanying editing semantics. This is
supported by an implementation, and by demonstrating that this
implementation fits the workflow for live editing of object based
video.

Our paper is structured as follows. Section 2 summarizes the
document requirements for supporting live object-based broadcast-
ing. Section 3 reviews related work. Section 4 discusses the general
design of our system and Section 5 considers the particular timeline
document format that we propose. Section 6 discusses our imple-
mentation and Section 7 our experimental evaluation. We close
with conclusions and issues for future research.

DocEng ’18, August 28-31, 2018, Halifax, NS, Canada

2 SYSTEM REQUIREMENTS

The general process of conventional linear broadcasting and the
emerging art of object-based broadcasting are illustrated in Figure
3. At left, we see how linear broadcasting uses a fixed packaging
model to collect and arrange media objects for distribution to a wide
range of consumer devices. Content control is strictly managed by
the producer, with the consumer having little influence on how
and where this content is adapted on the desired client device. At
right, we see a sketch of the object-based model. The individual
content objects are created using a familiar (to the broadcaster!)
workflow, and then individually packaged along with scheduling
meta-data for storage on an intermediate content delivery network
(CDN). Using information on the local devices, the content can be
adapted for placement on a home device. Note that the content itself
remains under full control of the producer, but by being unbundled,
it can be tailored to the needs of the user.

In our work, the ‘meta-data’ in Figure 3 is a structured docu-
ment model that contains a presentation timeline description. This
description has a number of special characteristics that make it suit-
able for object based broadcasting. First and foremost, the document
structure is simple, containing only limited time references to other
objects. This allows content to be easily inserted and deleted from
the document without forcing a complete re-parse of the document.

The document format has been designed to assist in meeting the
following constraints across the system:

o It must allow for the seamless playback of content at the
viewer side, providing a “baked-in content” experience;

o It must allow viewer-side rendering and layout control of
content across home devices;

e It must allow synchronized playback of content on multiple
associated devices on in the home;

o It must support the inclusion of live events at the producer
side and scheduled rendering of these events at the client;

o It must support flexible entry and exit of devices, while re-
specting the ‘live’ model of the broadcast; and

o It must hold the potential for non-live, on-demand playback
of the presentation document in a way that respects the
original scheduling of content objects.

We note that not all of these requirement are new, but neither of the
two main declarative formats that have historically addressed these
issues (NCL and SMIL) have the facilities to incrementally grow
or shrink a single shared instance in a manner that supports live
content editing. We return to these requirements in the relevant
sections below.

3 RELATED WORK

This work is part of a larger collaboration between different parties
on designing, developing and deploying an end-to-end object-based
broadcast chain. This paper emphasizes the document-oriented
aspects of our work, we refer to companion papers by Li [9] for
a treatment of the production workflow analysis and by Walker
[15] and Kegel [8] for a more in-depth discussion of the system
architecture.

There are a number of case studies on delivery and production
of object-based video. Ursu et al [13] describe design and deploy-
ment of a system that allows viewers to influence the storylines of

DocEng 18, August 28-31, 2018, Halifax, NS, Canada

Context (viewer for a single household)

Live Production Timeline

Determines when to
play media

Modifies timeline
document under
producer control

Layout

; D.etermlnes device an.d
visual layout for media
device

Jack Jansen, Pablo Cesar, and Dick Bulterman

Client
Controls media
playback on 1

For both TV and
companion screens

Figure 4: Control flow for object-based video chain.

television programs in various different genres. Cake [4] treats a
single genre, cooking programs, but adresses more of the whole
production workflow. Squeezebox [1] is an example of ongoing
work to look into production tools for object-based video.

That it is in principle possible to modify the timegraph of a
declarative multimedia document during playback is shown for
NCL by de Resende Costa [5]. That it is in principle impossible
in the general case is shown for SMIL by the authors [7]. Our
current work leans heavily on these two papers and extends the
work therein. We show that it is possible to create a declarative
document format that is “SMIL-like” in design but that can be
modified during playback. These two papers also include ample
references to adaptive multimedia documents in general, which we
will not repeat here.

Two standardization efforts that are related to our object-based
video delivery approach. MPEG-TEMI [10] is a standard for encap-
sulating references to external objects and associated timing into
an MPEG-2 Transport Stream. This enables scenarios in which addi-
tional extrinsic media objects can be rendered synchronously with
the television broadcast [2]. The references to the external media
are transmitted in-line in the transport stream, which contrasts
with our out-of-line method that facilitates companion devices.
Our solution also aims at adaptability and user interaction, which
MPEG-TEMI does not handle.

MPEG-MORE [11] is a draft standard that aims at providing
mechanisms to orchestrate in a coherent manner media experiences
that have multiple media sources. It has a richer model than TEMI
and a wider reach, also targeting multiple sources and sinks of
information. Like our solution MPEG-MORE uses DVB-CSS [6] for
low level synchronization between devices. MPEG-MORE does not
address user interaction and adaptation currently.

4 SYSTEM DESIGN

The overall control flow of the whole system is sketched in Figure
4. There is a single instance of the Live Production box, which is
the component that allows the producer to issue his commands to
trigger visuals, effects and additional media to be played out.

In a true live setting there will be an individual Timeline and Lay-
out component for each household. Therefore, there can potentially
be millions of these and these components have been implemented
as cloud services. For each device (television or settop box, compan-
ion device) in each household there would be a Client component,
which will run on the device it controls. The set of timeline, layout
and clients for a single home we call a context, and within a single
context all media playout is coordinated. In addition to a context
for every household there is one more context active: the preview
player context that allows the producer to see the visual effect of
his editing commands.

The timeline component determines the start and stop times of
individual media items, relatively to the base timeline (the main
video broadcast feed). It issues commands to the layout component,
which determines on which device, if any, this media item needs
to be played out, and where it should be placed on the screen. The
layout component forwards the start and stop commands to the
correct client instance, which now simply has to play the media at
the right time.

Individual handheld devices can join and leave the context at
will, by contacting the layout component, which de facto acts as
the context controller. The layout component remembers all media
items for which a start has been received and no stop yet, and
issues the correct set of commands to handhelds that join during
the playback session.

Within a context feedback flows in the opposite direction (right
to left in Figure 4): clients report play position of the individual
media items (including the main feed) to the layout component
and hence to the timeline component. This enables the timeline
component to determine the current play status and time position
of each media item.

The timeline, layout and clients for a live broadcast are the same
as those used for a prerecorded broadcast, as sketched out in [8].
The only difference is that in a prerecorded broadcast the timeline
component plays out a static document with all media items and
timing determined beforehand, whereas in the live situation that

Workflow Support for Live Object-Based Broadcasting

document is modified on the fly, by the live production compo-
nent issuing modification commands to the document. The live
production tool simply issues a single edit operation to all timeline
components. As all timeline components are playing the same doc-
ument this edit operation will therefore have the same effect in all
households.

The preview player context is identical to a normal context, with
two exceptions:

o Its timeline component sends feedback on media playout
status and time position to the live production component.
This allows the production component to give visual feed-
back to the producer (in the form of lighting up buttons as
components are playing and such), but more importantly
if gives the live production component itself a sense of the
play status of the document, so that it can insert media items
with the correct timing information.

e In a true live setting the preview player context will play a
timeline document that uses a version of the main video feed
that is a few seconds ahead of the normal broadcast feed.
This is normal practice for live television broadcast, as the
video feed will have to pass through encoders, encrypters
and distribution infrastructure, and possibly be monitored
for inappropriate content such as nudity or bad language. For
our setting this has the distinct advantage that our realtime
requirements become less stringent: we have a few seconds
to spare to forward the edit decisions of the producer to the
timeline components for the home viewers.

In terms of the requirements defined in Section 2, it is the client
that has the responsibility for ensuring seamless playback based on
the elements in the timeline document. The layout components sup-
ports cross-device placement and adaptation, to the extent allowed
by the content owner. The processing of the document occurs via
the layout module, which also detects and enforces rendering of
objects that have been inserted during the live editing process. Note
that the layout component also enforces the constrained entry/de-
parture of new devices within the context of rendering in the home
to ensure enforcement of the live (fixed wallclock) broadcast model.
At the same time, it is also the layout component that can be used
for on-demand access, once this is allowed by the content owner.

5 TIMELINE DOCUMENT
5.1 Design Principles

The document format design has been guided by the requirements
in Section 2. The primary external representation format is XML
with namespaces (which we use in this paper), but the format has
been designed to also be representable in JSON, and in-core data
structures can follow the document format closely.

The format shares a number of requirements with SMIL [3]:

(1) Hierarchical temporal containment: the timing aspects of an
element (when it is active) is fully contained in the timing
aspects of its parent.

(2) Parallel and sequential composition: the basic operations
that govern timing relationships are elements that activate
their children either in parallel, playing out at the same time,

DocEng ’18, August 28-31, 2018, Halifax, NS, Canada

or sequentially, playing out one after the other in document
order.

(3) Automatic inference of timing and synchronization: ele-
ments without intrinsic timing aspects (such as images)
should pick up their timing from their parent, or indirectly
from their siblings.

But only these three aspects were taken from SMIL. Three more
requirements for the new format are in conflict with SMIL:

(4) Timing aspects of each element are governed strictly by
the element itself, its parent and its direct children. This
leads to a format where all scheduling and synchronization
can be computed on a fairly local level, based only on the
state of the element and its direct neighbors in the tree.
As a result, constructs like SMIL timebase which enables
synchronization relationships outside the tree hierarchy, are
not included.

Timegraph equivalence. The timegraph that is used in mem-
ory while playing the document must be the same as the
external representation, with some annotations on each ele-
ment to encode the current state of that element. SMIL (and
many other declarative multimedia formats such as NCL[12])
needs to transform the external document graph into an in-
ternal timegraph with a different structural representation
to facilitate execution.

Every temporal operation, rule or modifier is encoded as an
individual element type. Many formats — including SMIL -
encode things as attributes, but this makes it difficult to spec-
ify how features interact, often requiring a large amount of
specification text. The description of how dur, repeatDur and
repeatCount interact in SMIL can be seen as an example of
this issue. By encoding each feature as an individual element
it becomes a lot easier to specify the semantics: the nesting
inherently specifies the interplay.

—
&)
=

—~
=)
=

The largest difference between our document format and SMIL is
that many aspects of SMIL are out of scope for this format (layout,
SMIL state, transitions and animations). Also, SMIL had the goal of
human-readability and conciseness that this format does not share.
Such a goal would be in conflict with requirements (4) through (6):
these requirements are essentially about decomposing functionality
so the effect of document modification operations can be specified.
A conciseness goal would go in the opposite direction of combining
functionality for authoring convenience.

The timegraph equivalence requirement (5) of our format en-
sures that our documents can in principle be edited at runtime.
In [7] the authors show that the SMIL language features in the
Structural Cluster (their term) are the only features that cannot be
modified, and with timegraph equivalence the structural cluster
is essentially empty for our format. The local timing requirement
(4) ensures that this editing can also be implemented in a practical
way: recomputation of timing aspects can be done on a local level
without taking the whole document timegraph state into account.

While we have not completed the full analysis of the timing
model for live/on-demand access, we believe that requirement (6)
will allow us to specify the full temporal semantics of our format
in a concise way, we aim at something that can be fully explained
in 10 pages of text (as opposed to the hundreds of pages of the

DocEng 18, August 28-31, 2018, Halifax, NS, Canada

<tl:par tl:endsync="all">
<tl:ref url="video.m4v"/>
<tl:ref url="caption.txt"
tl:fill="freeze"/>
<tl:ref url="flash. jpg"
tl:fill="remove"/>
</tl:par>

caption.txt . |
flash. jpg .

visibility over time —

Figure 5: Example of inferred timing

SMIL specification [14]). It may also be possible to formally specify
the semantics using an appropriate formalism, something that has
never been possible for the full SMIL timing model.

We will now first outline the document structure elements, and
then proceed to show editability.

5.2 Format

The timeline document, and hence the timegraph, consists of basic
elements (leaf nodes in the document tree), grouping elements,
(interior nodes in the tree) and modifying elements (interior nodes
in the tree with only a single descendant). In this section we will use
the XML namespace prefix t1: to indicate elements and attributes
that are relevant to the timeline document format.

The most basic elements in the timeline documents are the
<tl:ref> elements that play media or have other external side-
effects such as changing layout or playback parameters. There can
be multiple types of these, but from the timeline perspective they
are all semantically identical and go through a number of discrete
steps:

(1) They are created and initialized by the timegraph execution

engine,

(2) Then they are started by the timegraph execution engine,

(3) They may then end of their own accord because the under-

lying media has finished playing,

(4) They are stopped by the timegraph execution engine (either

before or after the previous step),

(5) They are destroyed by the timegraph execution engine.

Here, and in the rest of this document, we use the words finished
and stopped with precise and distinct meaning. Finished means
that the media file or element has reached its end. Stopped means
that timegraph execution engine has instructed the media playback
component or the element to stop. Finished is therefore a change
of playback state of an element, which may result in state changes
in the timegraph. Stopped is the reverse: a state change probably
caused by state changes in the timegraph.

As stated, there can be multiple types of elements that play
media, and they can have many attributes to control that playback.
And, indeed, for the 2-IMMERSE use case there is an additional

Jack Jansen, Pablo Cesar, and Dick Bulterman

element type <tim:update> which behaves exactly like <tl:ref>
from a timeline aspect but in stead of playing media it changes
parameters on already running media items. For the remainder of
this section we will group all these elements under the <tl:ref>
moniker. The only interesting attributes are t1:fill and t1:prio,
which are discussed below.

There are two more basic elements that are very similar to
<tl:ref>, except they do not have the side effect of playing media:

e <tl:sleep tl:dur="20s"/>doesnothing and finishes play-
ing 20 seconds after it is started.

e <tl:wait tl:event="userevent"/> does nothing and fin-
ishes playing after the named event has been received from
a player (client component) through user interaction or a
system event.

From requirements (1) through (3) follow two types of grouping
elements, representing parallel and sequential temporal compo-
sition of their children. Sequential playback is implemented by
<tl:seg>, which simply executes its children in order: when the
<tl:seqg> is started its first child is started, which it finishes the
next child is started and so on. When the last child has finished
playback the <t1:seq> itself finishes playback.

Parallel composition is done with the <tl:par> element. All
children are started when the <tl:par> element starts, but the
stopping of elements and the finishing of the <tl:par> element
itself is a bit more involved and governed by attributes on the
element itself and its children:

e The tl:end attribute on the tl:par element determines
when the parallel composition element finishes. The values
can be a child identifier (xml : id) or one of the values first, all
or master. A child identifier means the par finishes when that
specific child finishes playback. First means the par finishes
when any child finishes, all means it finishes only when
all of its children have finished and master means that one
specific child determines when the par finishes, but which
child is determined by the priorities of the children. The
highest priority child element will govern the par timing.
The t1:prio attributes on the children are used to determine
the priorities, but these priorities can be modified at runtime
depending on the type of media the child element is playing
back, with timed media (audio, video) having a higher default
priority that static media items (images, text).

<video begin="5s" dur="5s" src="video.m4v"/>

<tl:par tl:end="first">
<tl:seq>
<tl:sleep tl:dur="5s"/>
<tl:ref url="video.m4v"/>
</tl:seq>
<tl:sleep tl:dur="10s"/>
</tl:par>

Figure 6: SMIL (top) and Timeline format (bottom) equiva-
lence.

Workflow Support for Live Object-Based Broadcasting

e The t1:fill attribute on a child element determines what
happens when that child element finishes playback, but the
par parent element has not finished yet. If the value is remove
the child element will be stopped (removing it from the
screen), but if the value is freeze the stop will be delayed
until the <tl:par> element itself finishes. This effectively
keeps media items visible. Figure 5 shows an example of
how this can be used to have media items, especially static
media items such as pictures, pick up the duration from other
parallel media items.

Note that the t1:prioand tl:fill attributes are not only used on
leaf elements but also on interior elements. This means that, for ex-
ample, a t1:seq with t1:fill="freeze" that has a last child that
also has t1:fill="freeze" will effectively extend the visibility of
that last child until the t1:seq itself is stopped.

There are two modifying elements. The first one is <tl:repeat>,
which has a t1:count attribute and simply runs its child element
that many times: when the repeat is started it starts its child, when
the child finishes it is stopped and immediately started again, and
this continues count times.

The other modifying element is <t1:conditional> which has a
tl:expr attribute. When the conditional element is started it checks
the expression for being true or false. The expression will usually
refer to a condition set by the user or the playback system (such as
whether the user prefers a specific language, or has a screen of a
specific minimum size). If the condition is true the child element is
played and the conditional element finishes when the child element
does. If the condition is false the element simply finishes directly.

Most SMIL semantics can be expressed in this new language, but
often the the new constructs are much more verbose. See Figure 6
as an example: to start playback of a video after a delay and stop
it after playing back 10 seconds our timeline format needs 7 lines
what would require only a single line in SMIL. Many constructs in
SMIL will require such a nested t1:par/tl:seq composition with
tl:sleeps in there. As another example you can think of how the
equivalent of SMIL repeatDur would be implemented.

The verbosity is caused by our new requirements (4) through (6)
and we feel it is a small price given the benefits those requirements
entail.

Some temporal features of SMIL are currently not implementable
in our timeline format, notably <excl>, <switch>, multiple begin
and end times and syncbases. With the exception of syncbases we
could add elements for these features to the format in the future,
when needed.

5.3 Modification Operations

We have identified the following atomic edit operations, basically
all XML DOM operations, and we believe all possible meaningful
document transformations can be decomposed into a sequence of
these:

o Adding anew child subtree to an existing (t1:par or t1:seq)
parent element.

e Removing a child subtree from an existing (t1:par or tl:seq)
parent element.

e Inserting a new (t1:par or tl:seq) parent around an exist-
ing element.

DocEng ’18, August 28-31, 2018, Halifax, NS, Canada

o Deleting a (t1:par or t1:seq) parent around a single child.
e Changing an attribute.

The semantics of all insertion or removal operations depend on
whether the new parent element (or old parent element for removal)
is currently active or not. If the parent is not active we simply add
the new element in inactive state or remove it.

Adding a child to an existing active t1: par parent will cause
that parent to recompute its state, basically repeating the algorithm
on its t1:end attribute and the t1:prioand tl:fill attributes of
all its children (including the new one). This will result in a new
state for the t1:par itself and each of its children. For each child
for which the new state does not match the old state it issues the
start and stop commands, which will most likely include a start
command for the new child and a command to advance the clock
of the new child to the correct position.

Adding a child to an existing active t1: seq parent depends
on where the child is added, with respect to the currently active
child. If the new child is added after the active child it is simply
added in inactive state. If it is added before the active child things
are more complicated. Each child that has been started and stopped
remembers how long its duration was, and the t1:seq element
knows its current (old) clock value. The active element is stopped,
the new element is started and the t1:seq element sets its clock to
the clock value at which that new element would have started if it
had been in the document from the beginning. Now a clock advance
instruction is sent to the new element, to try and fast forward to the
old clock value. This procedure is repeated with successive child
elements until the t1:seq is back at its old clock value, at which
time normal playback continues.

Removing a child from an existing t1:par or tl:seq parent
basically runs the same algorithms as for adding of an element.

Inserting a parent around an existing element initializes the
state of the new parent (whether it is active or not, its clock value
if it is active, and possibly its last run duration) to the same values
as the child element.

Deleting a parent around a single child is a no-op, except possi-
bly for implementation details such as updating the administration
on the grandparent.

Changing an attribute depends on which attribute is changed:

e For tl:dur, tl:event and tl:count the element updates
its internal administration.

e For tl:end the t1:par element runs the same algorithm as
for child insertion or removal.

e For tl:prio and tl:fill the parent of the element on
which the attribute is changed runs the same algorithm as
for child insertion or removal.

o For all other attributes nothing happens with respect to the
timegraph, but if the element is active the attribute change
may need to be forwarded to the client playout component
(so that it can change the media that is played back, for
example).

6 IMPLEMENTATION
6.1 Global Structure

The project in which this work was undertaken aims at being close
to market, and therefore scalability and deployability are issues that

DocEng 18, August 28-31, 2018, Halifax, NS, Canada

we need to address. The full architecture is described elsewhere
[8, 15], here we will only give a global overview.

Referring back to the diagram of Figure 4, our layout and time-
line components and the bulk of the live production tool are im-
plemented as lightweight REST services and deployed using cloud
infrastructure. Currently this runs in the AWS cloud but is portable
to other cloud infrastructures, and it has actually been deployed
to other cloud providers in the past. There are numerous other
services in our architecture, for onboarding, authentication, distri-
bution of CENC media decryption keys, logging and many other
features that fall outside of the scope of this paper.

The client components are basically Javascript webapps that
communicate with the cloud services using REST and websockets,
but they need some HbbTV 2.0 functionality. Specifically, they need
DVB-CSS to enable the handheld devices to discover the settop box
or television, so the devices can discover the context to which they
belong. DVB-CSS is also used to synchronize the clocks and media
positions within the context, so all devices play out synchronously.
For the handheld devices DVB-CSS is implemented in the Cordova
application framework ! in which the javascript runs. As no feature-
complete HbbTV 2.0 television sets are on the market yet we have
implemented the TV client on a small PC (Intel NUC) running a
handcrafted Linux installation with a Chrome web browser in kiosk
mode and a Python implementation of DVB-CSS?.

The computational load on the clients is minimal, due to the fact
that all coordination is done by timeline and layout components,
and the clients could be implemented in settop boxes and internal
TV processors. The one computationally intensive operation done
by the client is video decoding and decrypting and TVs will have
dedicated hardware support for this.

The front end of the live production tool is currently a normal
web application using REST and websockets to communicate with
the production tool backend. The API is such that multiple frontends
can be used to work on the same live production simultaneously
with multiple people.

The front end provides the producer with a list of commands
that are specific to this broadcast, such as “show the channel logo”,
“hide the channel logo” or “show a replay from hh:mm:ss.ff with a
duration of n seconds”, where the time position and duration are
parameters the producer can enter. The current list of available
commands is obtained from the backend, and will vary during the
broadcast. For example, replays are only available during the race
and not during the introductory section, and hiding the logo is only
available after it has been shown first.

As the producer selects commands the frontend communicates
these to the live production backend. The backend translates these
into XML edit operations, with the correct timing information
inferred from the current time position of the main video feed. These
XML edit operations are then forwarded to all timeline components,
which modify their documents, which causes the right content to
show up in the viewers’ homes.

In the live setting (and for the preview player in the near-live
setting) the initial timeline document is served to the timeline com-
ponent from the production tool backend. This document contains

!https://cordova.apache.org
Zhttps://github.com/BBC/pydvbcss

Jack Jansen, Pablo Cesar, and Dick Bulterman

a generation number, initially zero and incremented by one for each
edit operation. When a new context joins the timeline component
gets a recent version of the document and if it notices it has missed
edit operations (because of a mismatch in edit operation number
and document generation number) it will request the missing oper-
ations from the production tool backend. With this mechanism all
contexts (and the production tool backend) share the same view of
the document.

6.2 Timeline Execution

The implementation of timeline component is a REST-based web ser-
vice in Python. It has not been implemented as a true microservice
because it is stateful, but each service instance can serve multiple
independent contexts. The limits of this and the implications for
scaling are to be determined later, but for load up to a few tens of
contexts it seems to work fine.

The implementation is around 3000 lines of code, approximately
half of which is the timeline scheduler itself and the editing oper-
ations. The rest is glue code for the web service, communication,
logging, etc. This is less than 1/20th of our own SMIL playback
engine.

There is one important aspect of the implementation that falls
outside the architectural description of Section 4 and that has to
do with synchronicity: ensuring that media items are shown at
the right time relative to each other (and that that synchronicity is
maintained). play and stop commands issued by the scheduler take
time to reach the client components, which then need to initialize
media decoder, fetch content, initialize decoders and decrypters,
fill buffers, and all this on different client devices with possibly
different CPU power and network bandwidth.

To address this issue we have introduced to concept of media
component lifecycle. Each media item (or other user-visible com-
ponent, such as menu, interaction component or — in the case of
MotoGP - virtual track view or leaderboard) is handled by a media
component running in a client. These components go through a
fixed sequence Idle - Inited - Started - Stopped - Destroyed - Idle.
The timeline scheduler sends commands to the client to make the
transitions, and the client sends back status reports to inform the
scheduler that the transition has been made.

Actually, because all clients in a context have a shared clock
(based on the media time of the main broadcast video stream, syn-
chronised between the clients using DVB-CSS) the timeline sched-
uler issues the transition commands in advance, with a timestamp
signaling when the transition should be executed. The status re-
ports are also timestamped, and together this has the advantage
that the commands and reports can now be considered idempo-
tent, which helps recovering from failed companion devices and
companion devices joining the context at a later stage, when the
show is already well underway: the layout component can simply
replay the commands to the newly joined device at will (in the right
temporal order).

The inited state and the corresponding init command deserve
a bit of explanation. Upon receiving an init command the media
component gets all the required parameters (such as media URL)
and therefore it can start creating decoders and buffering and all
that, as long as nothing is shown on the screen or audible through

Workflow Support for Live Object-Based Broadcasting

[2IMMERSE Editor X

weriishee Venue GP Logo (1)

remave

Laps Remaining (and Last Lap) (1)

remove

Leaderboard (1)

remave

Figure 7: Production tool screen shot.

the speakers. The scheduler will emit the init commands as early
as possible to give the media components enough time, hopefully,
to be initialized when the media needs to be played.

As an example, for a t1:par the scheduler will emit all init calls
when the t1:par itself gets its init call, and the t1:par will not
move to inited state until it has received inited reports from all its
children. On the other hand, a t1:seq will follow this sequence
only for its first child. Then, just after the first child is started it
will send an init for the second child. Effectively this overlaps the
initialization of many media items with the playing of the preceding
media item.

7 EVALUATION

The system described here has been used in a near-live setting for
the MotoGP trial as part of the EU’s 2-IMMERSE project. It was
not a full live setting because the event, the live editing and the
viewing by audiences happened in sequence over several months.
This did not impact the operational emulation of a live broadcast.

The event was the British motorcycle Grand Prix race at Silver-
stone, August 26, 2018. All video and audio material was recorded
here, and provided to the project by BT Sports and Dorna’, the
main item being the so-called “clean feed”, the main video feed
without any overlay graphics and such.

The production trials happened roughly in November 2018. A
producer would use the production tool and preview player, watch
the main video feed and trigger the appropriate media, overlay

3https://www.dorna.com

DocEng ’18, August 28-31, 2018, Halifax, NS, Canada

graphics and user interactions at the correct time. Figure 7 shows a
screen shot of the production tool and preview player in operation.
The timeline document from the production trial was saved and
subsequently used in the viewer trials.

Finally, starting in December 2018 and expected to end in Feb-
ruary 2019, 6 sets of of 2-IMMERSE playback systems (consisting
of the settop box and 2 handhelds) were sent to the homes of trial-
ists, around 80 families in total, who viewed the race experience
“as-live”, so from the prerecorded material but viewed as if it was
live, without ability to pause and such. The results of this are being
collected and will be reported elsewhere.

The viewer-side adaptations we implemented in this trial (which
are ultimately the reason for doing object-based broadcasting) fell
in three areas:

e On-screen graphic overlays were shown in a size that de-
pended on the TV screen size: on a large TV they were
shown relatively smaller (so less screen space was used), on
a smaller TV they were larger (so they remained readable).

e Content was adapted to the level of “MotoGP-awareness”
the viewers could select. For example, the leaderboard in
Figure 7 shows the “intermediate” level, the “expert” level
has the names abbreviated to the 3 letter acronyms the fans
will know, and the “beginner” level has not only the full
names but also a picture.

e Content would be adapted to available resources. For exam-
ple, the number of picture-in-picture views made available
depended on available bandwidth and processing power of
the playback device.

In this paper we want to concentrate on the production trial.
As can be seen from the screen shot in Figure 7 we did include a
pause button: it turned out that especially the more complex visual
effects, such as replays which required entering of timecodes and
rider names and such, were too complex to trigger live. Based on
this and on other studies we will redesign the production tool to
allow the workload to be shared among multiple people [9].

But from a technical performance standpoint the system per-
formed very well. The delay between the producer pressing a button
and the graphic appearing on the preview player was on the order
of 0.2 second, significantly below the “few seconds” of our require-
ments. Timing of the graphics during the viewer trials was equally
good: graphics appeared close to frame-accurate. With one excep-
tion: viewers with congested networks would incur a delay when
viewing a replay. We believe this is due to idiosyncrasies of the
DASH player used to play the videos and is not fundamental.

8 CONCLUSIONS AND FUTURE WORK

The development of a document format that supports the full pro-
duction workflow of live broadcast television has been a long-
standing interest. The delivery of quality content (at least in terms
of production value!), combined with support for adaptation at the
client side provides the potential for a fundamental improvement
for the consumption of content in realistic modern home settings.

We have been encouraged by the initial results developed in this
work. While any given implementation can always be made more
robust, and any given user interface be made more intuitive, our
evaluation users have reported substantial benefit in having control

DocEng 18, August 28-31, 2018, Halifax, NS, Canada

over partitioning content across multiple devices. In modern homes,
where (multiple) secondary screens has become commonplace, the
ability to have a central screen that holds the focus of a social
group, while still allowing for special-purpose added-value content
on personal devices, is a model with great promise. The major
innovation of this paper is the development of an end-to-end control
model in which a broadcast workflow can be integrated with a social
client setting, without having to sacrifice production quality.

In the future, we expect to be able to expand this model to in-
clude enriched support for on-demand presentations that are not
scheduled to run at fixed times. We recognize that, on the one hand,
this temporal flexibility has more to do with licensing issues than
content production, but we recognize the initial need to support a
true-live production environment within existing workflows.

We also see great potential for the timeline document model in
this paper to provide renewed support for accessible presentations,
in which content versions can be adapted to the physical limitations
of users. While ‘motor sports for the blind’ may be difficult to
imagine for the sighted (or for the deaf, for that matter), we feel
that existing workflows can be easily extended to expand the reach
of sports content to a wider segment of society.

We conclude with the expectation that other applications of the
document format presented here in traditional web/HTML applica-
tions, or in applications with multiple clocks would all benefit from
a formal description and model of the timeline document format
and of the suite of editing operations available. We have begun
work on this formal model and hope to report on it at a future
DocEng symposium.

9 ACKNOWLEDGEMENTS

The work presented in this paper was supported by the EU funded
H2020 ICT project 2-IMMERSE, under contract 687655. We are
indebted to our project partners in this consortium.

Our work on defining a minimalistic SMIL/NCL-like environ-
ment has been of long-term interest to ourselves and our colleagues
at the Telemedia Lab of PUC-Rio in Brazil. We are greatly indebted
to the efforts of our long-time friend and colleague Prof. Luiz Fer-
nando Gomes Soares, with whom we started this work. His untimely
death has had a great impact on us and on this work.

REFERENCES

[1] BBC R&D. 2016. Squeezebox. (2016). http://www.bbc.co.uk/rd/projects/
squeezebox
[2] Lourdes Beloqui Yuste, Fernando Boronat, Mario Montagud, and Hugh Melvin.
2016. Understanding timelines within MPEG standards. IEEE Communications
Surveys and Tutorials 18, 1 (2016), 368-400. https://doi.org/10.1109/COMST.2015.
2488483
[3] Dick C A Bulterman and Lloyd Rutledge. 2004. SMIL 2.0 — Interactive Multime-
dia for Web and Mobile Devices. Springer. https://www.narcis.nl/publication/
RecordID/oai:cwi.nl: 11429
[4] Jasmine Cox, Rhianne Jones, Chris Northwood, Jonathan Tutcher, and Ben Robin-
son. 2017. Object-Based Production: A Personalised Interactive Cooking Ap-
plication. In Adjunct Publication of the 2017 ACM International Conference on
Interactive Experiences for TV and Online Video - TVX ’17 Adjunct. ACM Press,
New York, New York, USA, 79-80. https://doi.org/10.1145/3084289.3089912
Romualdo Monteiro de Resende Costa, Marcio Ferreira Moreno, Rogério Fer-
reira Rodrigues, Luiz Fernando Gomes Soares, Romualdo Costa, Marcio Ferreira
Moreno, Rogério Ferreira Rodrigues, and Luiz Fernando Gomes Soares. 2006. Live
editing of hypermedia documents. In Proceedings of the 2006 ACM symposium on
Document engineering - DocEng °06. ACM Press, New York, New York, USA, 165.
https://doi.org/10.1145/1166160.1166202

)

Jack Jansen, Pablo Cesar, and Dick Bulterman

[6] DVB.2017. DVB-CSS ETSI TS 103 286-2 V1.2.1 (2017-08). (2017). https://www.
dvb.org/standards/dvb{_}css

[7] Jack Jansen, Pablo Cesar, and Dick Bulterman. 2010. A model for editing opera-

tions on active temporal multimedia documents. In Proceedings of the 10th ACM

symposium on Document engineering - DocEng ’10. ACM Press, New York, New

York, USA, 87. https://doi.org/10.1145/1860559.1860579

Tan Kegel, James Walker, Cisco London, and Mark Lomas. 2017. 2-IMMERSE: A

Platform for Orchestrated Multi-Screen Entertainment. In Adjunct Publication

of the 2017 ACM International Conference on Interactive Experiences for TV and

Online Video - TVX ’17 Adjunct. ACM Press, New York, New York, USA, 71-72.

https://doi.org/10.1145/3084289.3089909

[9] Jie Li, Thomas Roggla, Maxine Glancy, Jack Jansen, and Pablo Cesar. 2018. A

New Production Platform for Authoring Object-based Multiscreen TV Viewing

Experiences. In ACM TVX (submitted).

MPEG. 2015. ISO/IEC 13818-1:2015/Amd 1:2015 - Delivery of timeline for external

data. (2015). https://www.iso.org/standard/67734.html

[11] MPEG. 2016. WD of ISO/IEC 23001-13 Media Orchestration (MORE) | MPEG.
(2016). https://mpeg.chiariglione.org/standards/mpeg-b/media-orchestration/
wd-isoiec-23001- 13-media-orchestration-more

[12] Heron V. O. Silva, Rogério Ferreira Rodrigues, Luiz Fernando Gomes Soares,

and Débora C. Muchaluat Saade. 2004. NCL 2.0. In Proceedings of the 2004 ACM

symposium on Document engineering - DocEng '04. ACM Press, New York, New

York, USA, 188. https://doi.org/10.1145/1030397.1030433

Marian Ursu, Maureen Thomas, Ian Kegel, Doug Williams, Mika L Tuomola,

Inger Lindstedt, Terence Wright, Andra Leurdijk, Vilmos Zsombori, Julia Suss-

ner, Ulf Myrestam, and Nina Hall. 2008. Interactive TV narratives: Opportu-

nities, progress, and challenges. ACM Transactions on Multimedia Comput-

ing, Communications, and Applications (TOMCCAP) 4, 4 (oct 2008), 25. https:

//doi.org/10.1145/1412196.1412198

[14] W3C. 1998. Press Release: W3C Issues SMIL as a W3C Recommendation. (1998).
https://www.w3.org/Press/1998/SMIL-REC

[15] James Walker. 2018. 2-IMMERSE: A platform for production, delivery and or-
chestration of Distributed Media Applications. In IBC (submitted).

—
&

[10

(13

http://www.bbc.co.uk/rd/projects/squeezebox
http://www.bbc.co.uk/rd/projects/squeezebox
https://doi.org/10.1109/COMST.2015.2488483
https://doi.org/10.1109/COMST.2015.2488483
https://www.narcis.nl/publication/RecordID/oai:cwi.nl:11429
https://www.narcis.nl/publication/RecordID/oai:cwi.nl:11429
https://doi.org/10.1145/3084289.3089912
https://doi.org/10.1145/1166160.1166202
https://www.dvb.org/standards/dvb{_}css
https://www.dvb.org/standards/dvb{_}css
https://doi.org/10.1145/1860559.1860579
https://doi.org/10.1145/3084289.3089909
https://www.iso.org/standard/67734.html
https://mpeg.chiariglione.org/standards/mpeg-b/media-orchestration/wd-isoiec-23001-13-media-orchestration-more
https://mpeg.chiariglione.org/standards/mpeg-b/media-orchestration/wd-isoiec-23001-13-media-orchestration-more
https://doi.org/10.1145/1030397.1030433
https://doi.org/10.1145/1412196.1412198
https://doi.org/10.1145/1412196.1412198
https://www.w3.org/Press/1998/SMIL-REC

	Abstract
	1 Introduction
	2 System Requirements
	3 Related Work
	4 System Design
	5 Timeline Document
	5.1 Design Principles
	5.2 Format
	5.3 Modification Operations

	6 Implementation
	6.1 Global Structure
	6.2 Timeline Execution

	7 Evaluation
	8 Conclusions and Future Work
	9 Acknowledgements
	References

