

SMT-based Schedulability Analysis using
RMTL- R

Conference Paper

CISTER-TR-161101

Andre de Matos Pedro

David Pereira

Luis Miguel Pinho

Jorge Sousa Pinto

Conference Paper CISTER-TR-161101 SMT-based Schedulability Analysis using RMTL- R

© CISTER Research Center
www.cister.isep.ipp.pt

1

SMT-based Schedulability Analysis using RMTL- R

Andre de Matos Pedro, David Pereira, Luis Miguel Pinho, Jorge Sousa Pinto

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Several methods have been proposed for performingschedulability analysis for both uni-processor and multi-
processorreal-time systems. Very few of these works use the power offormal logic to write unambiguous
specifications and to allowthe usage of theorem provers for building the proofs of interestwith greater correctness
guarantees. In this paper we addressthis challenge by: 1) defining a formal language that allows tospecify periodic
resource models; 2) describe a transformationalapproach to reasoning about timing properties of resource
modelsby transforming the latter specifications into a SMT problem.

1

SMT-based Schedulability Analysis using RMTL-
∫

André de Matos Pedro, David Pereira, Luı́s Miguel Pinho, and Jorge Sousa Pinto∗

CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal

{anmap,dmrpe,lmp}@isep.ipp.pt
∗ HASLab/INESC TEC & Universidade do Minho, Portugal

jsp@di.uminho.pt

Abstract—Several methods have been proposed for performing
schedulability analysis for both uni-processor and multi-processor
real-time systems. Very few of these works use the power of
formal logic to write unambiguous specifications and to allow
the usage of theorem provers for building the proofs of interest
with greater correctness guarantees. In this paper we address
this challenge by: 1) defining a formal language that allows to
specify periodic resource models; 2) describe a transformational
approach to reasoning about timing properties of resource models
by transforming the latter specifications into a SMT problem.

I. INTRODUCTION AND MOTIVATION

Very few works adopt formal logic as the framework for
specifying and reasoning about the scheduling problems at
hand. Therefore, specifications may be subject to multiple
interpretations, and both the construction and checking of asso-
ciated proofs becomes error prone. This is not the case when
using formal logic, since the syntax and semantics must be
defined unambiguously. Practitioners can use modern theorem
provers to build machine checkable proofs of the unambiguous
specifications that they are interested in showing for the
scheduling analysis problem. Furthermore, (timed) temporal
logic becomes capable to supply the synthesis algorithms with
the scheduling problem that automatically outputs the concrete
implementation via the transformation of the specifications
into, e.g., finite state machines.

In this paper we focus on the formal treatment of periodic
resource models [5] with the goal of analyzing the composi-
tionality of rigorously defined components, each one with its
own set of real-time tasks and their associated timing prop-
erties. We transform the schedulability problem into a SMT
problem in order to integrate the description of the scheduling
behavior with the schedulability analysis. This allows to draw
counter-examples when the system is not schedulable which
can then be used for the system engineers to adapt the design
accordingly.

A. Resource Models

As resource model (RM), we consider a model whose com-
ponents are of two possible kinds, namely, simple components
or supervisor components. A simple component is denoted by
a tuple C = (Γ, ω, ϑ, φ) where Γ = {τ1, . . . , τn} is a set of
tasks, ω is a RM, ϑ is a scheduler policy, and φ is a set of
properties defined in a program logic to monitor the behaviour
of Γ. The supervisor components (or hypervisors) are tuples

RS-A

RS-C

ts1

ǫidle

Pts1 Pts1Pts1 Pts2Pts3Pts2

ǫidle
ts1

Pattern C

ts1 ts1ts2 ts3 ts3

estart(ωC , τ1) eresume(ωC , τ1)

ts2 ts3

estart(ωA, τ1)

ts3 ts2 ts1

Pattern A

Pts1

ρ

estart(ωA, τ1) estart(ωA, τ1)
estart(ωA, τ2)

estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2) estart(ωA, τ3)

eresume(ωA, τ3)

estop(ωA, τ1)
estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ3)

esleep(ωC , τ1)

estop(ωA, τ1)

estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ1)

estop(ωA, τ3)

ǫidle ǫidlets1

beginning of trace
Monitor miss the deadline (option one)

Maximum detection delay ts1

Pts1

Monitor executes (option two)

10 units

Figure 1: Example of patterns and the global trace generated
by the composition of resource models.

H = (Ω, φh) where Ω is a set of periodic resource models, and
φh is a set of timed properties to check. Having these two kinds
of components is justified by the fact that the framework was
originally designed to be able to account for the specification
and reasoning about runtime monitors as artifacts to check,
upon run-time, that the RM behave as specified.

Figure 1 shows an example of a concrete CMF instance. It
considers two components RS-A and RS-C. The compontent
RS-A consisting of ts1, ts2, and ts3; the component RS-C
considers only a task, namely ts1. We can see in the Figure 1
two distinct patterns of execution, according to the task events
estart, esleep, eresume, and estop, each denoting a job’s status
of execution (started, sleeping, resumed, and finished).

B. Adopted Formal Logic

For this work, we adopt the RMTL-
∫

logic [3], a fragment
of the MTL-

∫
[2] with a restriction over the relations that can

be defined at the term level. RMTL-
∫

was introduce with the
original aim of easing specification of periodic resource models
and their verification/enforcement of properties during run-
time. The syntax of RMTL-

∫
is defined in a mutually inductive

way. Let P and V denote, respectively, non-empty finite sets of
propositions and variables. The terms denoted by η are of the
form α ∈ R, x ∈ V , or

∫ η
ϕ. They correspond respectively,

to a real-valued constant, a logic variable, and the duration of
the formula ϕ. The formulae denoted by ϕ are of the form
p ∈ P (proposition), η1 < η2 (relation between terms), ¬ϕ
(negation), ϕ1 ∨ ϕ2 (disjunction), ϕ1 UI ϕ2 (interval-bounded

2

until), ϕ1 SI ϕ2 (interval-bounded since), or ∃xϕ (existential
quantifier).

The semantical interpretation of RMTL-
∫

formulas is de-
fined elsewhere [3]. The model to interpret the formulas are
sets of time-labelled traces produced by a periodic RM. As an
example, we can use the RTML-

∫
formula

∫
10

estop(RS-A(ts1)) < 9 (1)

to denote that the task ts1 belonging to the resource model
RS-A must hold in at most 9 time units in any execution trace
before time 10 (see the time line Pattern A of the Figure 1).

II. SPECIFICATION OF RESOURCE MODELS

In order to allow for non-ambiguous specification of re-
source models and facilitate the construction of a RMTL-

∫

formulae that has specifications of these models, we propose a
simple language and transformation semantics. This language,
named L, has expressions to declare tasks and resource models,
together with concurrency relations (higher priority or same
priority between tasks and resource models). Let τ1, . . . , τk be
task names, ρ1, . . . , ρl resource model names, opt ∈ {≻, ⊲⊳}
and opm ∈ {‖,≫}. The syntax of L is inductively defined by

tsk ::= τi(C, P) | tsk1 opt tsk2

rm ::= ρj(tsk,B, P) | rm1 opm rm2,

where C is a WCET, tsk is a set of tasks, B and P are natural
numbers denoting, respectively, a budget and period. The
operator ≻ represents urgency among tasks, i.e., if tsk1 ≻ tsk2
holds then tsk1 is a task with more urgency than tsk2; the
operator ⊲⊳ denotes that two tasks have exactly the same
urgency in the system. Similarly, the operator ≫ denotes a
urgency relation over resource models, and ‖ denotes concur-
rent execution between two resource models with the same
level of urgency in the system. For instance, a possible RM
specification for Figure 1 can be expressed as

RC-A(ts1(10, 8) ≻ (ts2(5, 20) ⊲⊳ ts3(7, 27))) ‖ RS-C(ts1(4, 33)).

The next step of our method consists in the transformation
of a specification written in L into an equivalent RMTL-

∫

specification. We can then check for the satisfiability of a
scheduling property over the generated set of formulas, like
for instance checking if task ts1 in RS-A halts before time 9,
again using the Equation 1. Next, we convert this formula into
the SMT-LIBv2 language using our tool [4] and delegate the
reasoning to the Z3 solver [1]. More complex examples can be
seen in the tool’s repository [4]. The first experimental results
indicate that this method is indeed feasible for small sets of
tasks and resource models.

To better exemplify how the process is done, let us assume
the Listing 1 that shows an incomplete candidate encoding
of the point-wise semantics for the RMTL-

∫
duration term.

The uninterpreted function computep evaluates a proposition
at the instant mt, and pa is a proposition representing an
event. It is true from the beginning of the event’s occurrence
until the next event is triggered in the system. Our goal is to
find a trace (or set of traces) that satisfies these constraints,
henceforth if the answer we obtain is unsat then the system

(d e f i n e -fun i n d i c a t o r ((mt Time)) I n t

(i t e (= (computep trace mt pa) TVTRUE) 1 0)

)

(d e c l a r e -fun e v a l n ((Time)) I n t)

(a s s e r t (= 0 (e v a l n 0))) (a s s e r t (f o r a l l ((x I n t)) (=> (> x 0) (= (e v a l n x) (+ (

e v a l n (- x 1)) (i n d i c a t o r x))))))

(a s s e r t (< (e v a l n 10) 9))

Listing 1: RMTL-
∫

duration term encoding using SMT-Libv2.

is impossible to be scheduled (somehow the constraints may
be incoherent); otherwise, we have a flow of the system for
which these constraints result in a schedulable behaviour.

Comparatively to classic approaches, it is clear that this type
of reasoning allows to construct and extend our constraints
easily, instead of needing to reformulate every step of the
analysis (it is a constructive approach). Note also that the
expressiveness to deal with temporal order is of extremely
importance when dealing with systems depending on a time,
which using just sets of inequalities and equalities alone cannot
provide. It is therefore important to reuse such sets of (in-
)equalities and combined them with logic connectives to get a
fine-grained description of the system. Furthermore, the recent
developments of SMT solvers positively impact our approach,
namely due to the efficiency of the underlying reasoning
methods that increases the chances of constructing the proofs
we need in a fully automatic way.

III. CONCLUSION AND FURTHER WORK

In this paper we have described an alternative approach
to scheduling analysis following a formal based rigorous
specification of the components of the scheduling hierarchy,
and its transformation into the SMTLIBv2 language for which
we have used the Z3 solver to obtain valid schedules. Our plan
in terms of future work is to improve on the developments
done so far and on the kind of system we target, in order to
understand how the proposal scales for systems which have
characteristics very close to those used in the industry.

IV. ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within the
CISTER Research Unit (CEC/04234); also by by FCT/MEC
and the EU ARTEMIS JU within project ARTEMIS/0001/2013
- JU grant nr. 621429 (EMC2).

REFERENCES

[1] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS’08/ETAPS’08, pages 337–340, 2008.

[2] Y. Lakhneche and J. Hooman. Metric temporal logic with durations.
Theor. Comput. Sci., 138(1):169–199, 1995.

[3] A. Pedro, D. Pereira, L.M. Pinho, and J.S. Pinto. Logic-based schedu-
lability analysis for compositional hard real-time embedded systems.
SIGBED Review, 12(1):56–64, 2015.

[4] A. Pedro, D. Pereira, L.M. Pinho, and J.S. Pinto. The rmtld3syth tool.
https://github.com/cistergit/rmtld3synth, 2016.

[5] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM TECS, 7(3):30:1–30:39, 2008.

