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Betweenness is a well-known centrality measure that ranks the nodes according to their participation in

the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact

on the node itself. Hence, in this paper we consider the problem of determining how much a vertex can

increase its centrality by creating a limited amount of new edges incident to it. In particular, we study the

problem of maximizing the betweenness score of a given node – Maximum Betweenness Improvement (MBI)

– and that of maximizing the ranking of a given node – Maximum Ranking Improvement (MRI). We show

that MBI cannot be approximated in polynomial-time within a factor (1 − 1

2e ) and that MRI does not admit

any polynomial-time constant factor approximation algorithm, both unless P = NP . We then propose a

simple greedy approximation algorithm for MBI with an almost tight approximation ratio and we test its

performance on several real-world networks. We experimentally show that our algorithm highly increases

both the betweenness score and the ranking of a given node and that it outperforms several competitive

baselines. To speed up the computation of our greedy algorithm, we also propose a new dynamic algorithm

for updating the betweenness of one node after an edge insertion, which might be of independent interest.

Using the dynamic algorithm, we are now able to compute an approximation of MBI on networks with up to

10
5
edges in most cases in a matter of seconds or a few minutes.
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1 INTRODUCTION

In recent years, the analysis of complex networks has become an extremely active research area.

One of the main tasks in network analysis is computing the ranking of nodes based on their

structural importance. Since the notion of importance can vary significantly depending on the

application, several centrality measures have been introduced in the literature. One of the most

popular measures is betweenness centrality, which ranks the nodes according to their participation

in the shortest paths between other node pairs. Intuitively, betweenness measures a node’s influence

on the flow circulating through the network, under the assumption that the flow follows shortest

paths.

Computing betweenness centrality in unweighted graphs requires Θ(nm) time with Brandes’s

algorithm [13], where n is the number of nodes andm is the number of edges. Since this can be

prohibitive for very large networks, several approximation algorithms exist in the literature [12,

25, 50, 51]. Also for dynamic networks that evolve over time, such as social networks and the

Web graph, recomputing betweenness at every time step can be too expensive. For this reason,

a variety of dynamic algorithms have been proposed over the last years [8, 26, 29, 33, 41, 48].

These algorithms usually keep track of the betweenness scores and additional information, such as

the pairwise distances, and update them accordingly after a modification in the graph. Another

problem that has recently been considered for betweenness and other centrality measures is the

quick identification of the k most central nodes without computing the score of each node [6, 34].

There are several contexts in which having a high betweenness can be beneficial for the node

itself. For example, in the field of transportation network analysis, the betweenness centrality seems

to be positively related to the efficiency of an airport (see [38], where a network of 57 European

airports has been analyzed). Also, increasing the betweenness of an airport would mean more traffic

flowing through it and possibly more customers for its shops. In the context of social networks,

Valente and Fujimoto [55] claim that brokers (or “bridging individuals”) “may be more effective at

changing others, more open to change themselves, and intrinsically interesting to identify”. In [20],

the authors show that a slightly modified version of betweenness centrality can be used to find

brokers. Also, the authors of [37] show experimentally that nodes with high betweenness are also

very effective in spreading influence to other nodes in a social network. Therefore, it might be

interesting for a user to create new links with other users or pages in order to increase his own

influence spread.

The problem of increasing the centrality of a node has attracted considerable attention for

page-rank [1, 43], where much effort has been devoted to “fooling” search engines in order to

increase the popularity of some web pages (an example is the well-known link farming [57]). In

addition to page-rank, the problem has been considered also for other centrality measures, such as

closeness centrality [16] and eccentricity [19, 47].

In the above mentioned contexts, it is reasonable to assume that, in order to increase its between-

ness, a node can only add edges incident to itself. Hence, in this paper we address the following

problem: assuming that a node v can connect itself with k other nodes, how can we choose these

nodes in order to maximize the betweenness centrality of v? In other terms we want to add a set of

k edges to the graph (all incident to v), such that the betweenness of v in the new graph is as high

as possible. For directed graphs, we assume the edges we want to add are of the form (w,v) (i.e.
incoming edges). However, our results apply also to the problem where k outgoing edges need to be

added. Indeed, in our proofs, we could simply use G transposed instead of G , and the results would

also be valid in the case where we want to add outgoing edges.

Since in some contexts one might be more interested in having a high ranking among other

nodes rather than a high betweenness score, we also consider the case where we want to maximize
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the ranking increment of a node instead of its betweenness. We call such two optimization problems

maximum betweenness improvement (MBI) and maximum ranking improvement (MRI), respectively.

Our contribution. We study bothMBI andMRI problems in directed graphs. Our contribution

can be summarized as follows: (i)We provide two hardness results, one for MBI and one forMRI.

In particular, we prove that, unless P = NP ,MBI cannot be approximated within a factor greater

than 1 − 1

2e . Also, we show that, for any constant α ≤ 1, there is no α−approximation algorithm

for MRI, unless P = NP (Section 4). (ii)We propose a greedy algorithm for MBI, which yields a

(1 − 1

e )−approximation (Section 5). This is in contrast with the results for the undirected graph

case, where it is known that the same algorithm has an unbounded approximation ratio [17]. The

complexity of the algorithm, if implemented naively, isO(kn2m). (iii) To make our greedy approach

faster, we also develop a new algorithm for recomputing the betweenness centrality of a single

node after an edge insertion or a weight decrease (Section 6). The algorithm, which might be of

independent interest, builds on a recent method for updating the betweenness of all nodes [8].

In the worst case, our algorithm updates the betweenness of one node in O(n2) time, whereas all

existing dynamic algorithms have a worst-case complexity of at least Θ(nm). This is in contrast

with the static case, where computing betweenness of all nodes is just as expensive as computing

it for one node (at least, no algorithm exists that computes the betweenness of one node faster

than for all nodes). In a context where the betweenness centrality of a single node needs to be

recomputed, our experimental evaluation (Section 7.2) shows that our new algorithm is much

faster than existing algorithms, on average by a factor 18 for directed and 29 for undirected graphs

(geometric mean of the speedups). Also, using our dynamic algorithm, the worst-case complexity

of our greedy approach for MBI decreases to O(kn3). However, our experiments show that it is

actually much faster in practice. For example, we are able to target directed networks with hundreds

of thousands of nodes in a few minutes.

In terms of solution quality, our experiments in Section 7.1 show that on directed random graphs,

the approximation ratio (the ratio between the solution found by the optimum and the one found by

our greedy algorithm) is never smaller than 0.96 for the instances used. Also, we show that on real-

world networks the greedy approach outperforms other heuristics, both in terms of betweenness

improvement and ranking improvement. Although the approximation guarantee holds only for

directed graphs, our tests show that the greedy algorithm works well also on undirected real-world

networks.

2 RELATEDWORK

Centrality improvement. In the following we describe the literature about algorithms that aim at

optimizing some property of a graph by adding a limited number of edges. In [39], the authors give

a constant factor approximation algorithm for the problem of minimizing the average shortest-path

distance between all pairs of nodes. Other works [45, 46] propose new algorithms for the same

problem and show experimentally that they are good in practice. In [4], the authors study the

problem of minimizing the average number of hops in shortest paths of weighted graphs, and

prove that the problem cannot be approximated within a logarithmic factor, unless P = NP . They
also propose two approximation algorithms with non-constant approximation guarantees. [54]

and [52] focus on the problem of maximizing the leading eigenvalue of the adjacency matrix and

give algorithms with proven approximation guarantees.

Some algorithms with proven approximation guarantees for the problem of minimizing the

diameter of a graph are presented in [10] and [22].
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In [36] and [18], the authors propose approximation algorithms with proven guarantees for

the problem of making the number of triangles in a graph minimum and maximum, respectively.

In [44], the author studies the problem of minimizing the characteristic path length.

The problem analyzed in this paper differs from the above mentioned ones as it focuses on

improving the centrality of a predefined vertex. Similar problems have been studied for other

centrality measures, i.e. page-rank [1, 43], eccentricity [19, 47], average distance [39], somemeasures

related to the number of paths passing through a given node [28], and closeness centrality [15, 16].

In particular, in [16] the authors study the problem of adding a limited amount of edges incident to a

target node in order to increase its harmonic centrality (a variant of closeness). They prove that the

problem cannot be approximated within a factor greater than 1 − 1

3e (1 − 1

15e on undirected graphs)

and they design a 1 − 1

e -approximation algorithm to solve it. They also make use of heuristics

to decrease the computational time and run experiments on large real-world networks. In this

work we show how to adapt the greedy algorithm presented in [16] according to the definition of

betweenness centrality in order to study the MBI problem.

The MBI problem has been studied for undirected weighted graphs [17] and it has been proved

that, in this case, the problem cannot be approximated within a factor greater than 1 − 1

2e , unless

P = NP . They proved this bound using a technique similar to the one used in [15] for the harmonic

centrality (and to the one used in this paper for directed graphs). Also, D’Angelo et al. [17] show

that a natural greedy algorithm exhibits an arbitrarily small approximation ratio. Nevertheless,

in their experiments on small networks with up to few hundreds of nodes, they show that the

greedy algorithm provides a solution near to the optimal. In this paper, we make the greedy

algorithm orders of magnitude faster by combining it with a new dynamic algorithm for updating

the betweenness of one node and we study the behavior of the algorithm on directed and undirected

networks with up to 10
4
nodes and 10

5
edges.

Dynamic algorithms for betweenness centrality. The general idea of dynamic betweenness algo-

rithms is to keep track of the old betweenness values and to update them after some modification

happens to the graph, which might be an edge or node insertion, an edge or node deletion, or

a change in an edge’s weight. In particular, in case of edge insertions or weight decreases, the

algorithms are often referred to as incremental, whereas for edge deletions or weight increases they

are called decremental. All dynamic algorithms existing in the literature update the centralities

of all nodes and most of them first update the distances and shortest paths between nodes and

then recompute the fraction of shortest paths each node belongs to. The approach proposed by

Green et al. [26] for unweighted graphs maintains all previously calculated betweenness values

and additional information, like the distance between each node pair and the list of predecessors,

i.e. the nodes immediately preceding v in the shortest paths from s to v , for all node pairs (s,v).
Using this information, the algorithm limits the recomputation to the nodes whose betweenness

has actually been affected. Kourtellis et al. [30] modify the approach by Green et al. [26] in order to

reduce the memory requirements from O(nm) to O(n2). Instead of storing the predecessors of each

node v from each possible source, they recompute them every time the information is required.

Kas et al. [29] extend an existing algorithm for the dynamic all-pairs shortest paths (APSP)

problem by Ramalingam and Reps [49] to also update BC scores. Nasre et al. [41] compare the

distances between each node pair before and after the update and then recompute the dependencies

as in Brandes’s algorithm. Although this algorithm is faster than recomputation on some graph

classes (i.e. when only edge insertions are allowed and the graph is sparse and weighted), it was

shown in [9] that its performance in practice is always worse than that of the algorithm proposed

in [26]. Pontecorvi and Ramachandran [48] extend existing fully-dynamic APSP algorithms with

new data structures to update all shortest paths and then recompute dependencies as in Brandes’s
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algorithm. Differently from the previous algorithms, the approach by Lee et al. [33] is not based on

dynamic APSP algorithms, but splits the graph into biconnected components and then recomputes

the betweenness values from scratch only within the component affected by the graph update.

Although this allows for a smaller memory requirement (Θ(m) versus Ω(n2) needed by the other

approaches), the speedups on recomputation reported in [33] are significantly worse than those

reported for example in [26] or Kas et al. [29].

Very recently, a new approach called iBet for updating betweenness after an edge insertion or a

weight decrease has been proposed [8]. The approach improves over the one by Kas et al. [29] by

removing redundant work in both the APSP update step and the dependency accumulation. In their

experiments, the authors show that iBet outperforms existing dynamic algorithms by about one

order of magnitude. Since our new dynamic algorithm for updating the betweenness of a single

node builds on iBet, we will describe it in more detail in Section 6.1.

Recently, also dynamic algorithms that update an approximation of betweenness centrality have

been proposed [7, 27, 51]. Notice that all existing dynamic algorithms update the betweenness of

all nodes and their worst-case complexity is, in general, the same as static recomputation. This

means, for exact algorithms, O(nm) in unweighted and O(n(m + n logn)) in weighted graphs.

3 NOTATION AND PROBLEM STATEMENT

Let G = (V ,E) be a directed graph where |V | = n and |E | =m. For each node v , Nv denotes the set

of in-neighbors of v , i.e. Nv = {u | (u,v) ∈ E}. Given two nodes s and t , we denote by dst , σst , and
σstv the distance from s to t inG , the number of shortest paths from s to t inG , and the number of

shortest paths from s to t in G that contain v , respectively. For each node pair (s, t ), we assume

dst ≥ 0. For each node v , the betweenness centrality [23] of v is defined as

bv =
∑
s,t ∈V

s,t ;s,t,v
σst,0

σstv
σst
. (1)

In case σst = 0, the corresponding term in the sum is defined to be 0. The ranking of each node v
according to its betweenness centrality is defined as

rv = |{u ∈ V | bu > bv }| + 1. (2)

In this paper, we consider graphs that are augmented by adding a set S of arcs not in E. Given a

set S ⊆ V ×V \ E of arcs, we denote by G(S) the graph augmented by adding the arcs in S to G , i.e.
G(S) = (V ,E ∪ S). For a parameter x of G, we denote by x(S) the same parameter in graph G(S),
e.g. the distance from s to t in G(S) is denoted as dst (S).

The betweenness centrality of a node might change if the graph is augmented with a set of arcs.

In particular, adding arcs incident to some nodev can increase the betweenness ofv and its ranking.

We are interested in finding a set S of arcs incident to a particular node v that maximizes bv (S).
Therefore, we define the following optimization problem.

Maximum Betweenness Improvement (MBI)

Given: A directed graph G = (V ,E); a node v ∈ V ; an integer k ∈ N
Solution: A set S of arcs incident to v , S = {(u,v) | u ∈ V \ Nv }, such that |S | ≤ k
Objective: Maximize bv (S)
Note that maximizing the betweenness value of a nodev does not necessarily lead to maximizing

the ranking position of v . For example, consider the graph in Figure 1: before the addition of the

edge (u,v) the initial betweenness values are bu = 2, bv = 1 and ba = bb = bc = bd = be = 0 while

the initial ranking is ru = 1, rv = 2 and ra = rb = rc = rd = re = 0. After the addition of the edge
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Fig. 1. Graph in which the addition of the edge (u,v) affects the betweenness value but not the ranking.

(u,v) the new betweenness values are b ′u = 6, b ′v = 4 and ba = bb = bc = bd = be = 0 but the

ranking remains the same.

Therefore, we also consider the problem of finding a set S of arcs incident to nodev that maximizes

the increment of the ranking of v with respect to its original ranking. We denote such an increment

as ρv (S), that is,
ρv (S) = rv − rv (S).

Informally, ρ(S) represents the number of nodes that v “overtakes” by adding arcs in S to G.
Therefore, we define the following optimization problem.

Maximum Ranking Improvement (MRI)

Given: A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Solution: A set S of arcs incident to v , S = {(u,v) | u ∈ V \ N (v)}, such that |S | ≤ k
Objective: Maximize ρv (S)

4 HARDNESS OF APPROXIMATION

In this section we first show that it is NP-hard to approximate problemMBI within a factor greater

than 1 − 1

2e . Then, we focus on theMRI problem and show that it cannot be approximated within

any constant bound, unless P = NP .

Theorem 4.1. Problem MBI cannot be approximated within a factor greater than 1 − 1

2e , unless

P = NP .

Proof. We give an L-reduction with parameters a and b [56, Chapter 16] to the maximum set

coverage problem (MSC) defined as follows: given a finite set X , a finite family F of subsets of

X , and an integer k ′, find F ′ ⊆ F such that |F ′ | ≤ k ′ and s(F ′) = | ∪Si ∈F′ Si | is maximum. In

detail, we will give a polynomial-time algorithm that transforms any instance IMSC of MSC into an

instance IMBI ofMBI and a polynomial-time algorithm that transforms any solution SMBI for IMBI

into a solution SMSC for IMSC such that the following two conditions are satisfied for some values a
and b:

OPT (IMBI) ≤ aOPT (IMSC) (3)

OPT (IMSC) − s(SMSC) ≤ b (OPT (IMBI) − bv (SMBI)) , (4)

where OPT denotes the optimal value of an instance of an optimization problem. If the above

conditions are satisfied and there exists an α-approximation algorithm AMBI forMBI, then there

exists a (1−ab(1−α))-approximation algorithmAMSC forMSC [56, Chapter 16]. Since it is NP-hard
to approximateMSC within a factor greater than 1− 1

e [21], then the approximation factor of AMSC

must be smaller than 1 − 1

e , unless P = NP . This implies that 1 − ab(1 − α) < 1 − 1

e that is, the

approximation factor α of AMBI must satisfy α < 1 − 1

abe , unless P = NP . In the following, we give

an L-reduction and determine the constant parameters a and b. In the reduction, each element xi
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vx1

vx2

...

vx |X |

vS1

vS2

...

vS |F|

v t

Fig. 2. Reduction used in Theorem 4.1. In the example x1 ∈ S1, x1 ∈ S2, x2 ∈ S1, and x2 ∈ SF . The dashed
arcs denote those added in a solution.

and each set S j in an instance of MSC corresponds to a vertex in an instance of MBI, denoted by

vxi and vSj , respectively. There is an arc from vxi to vSj if and only if xi ∈ S j . The MBI instance

contains two further nodes v and t and an arc (v, t). A solution to such an instance consists of arcs

from nodes vSj to v and the aim is to cover with such arcs the maximum number of shortest paths

from nodes vxi to t . We will prove that we can transform a solution to MBI into a solution to MSC

such that any node vxi that has a shortest path passing trough v corresponds to a covered element

xi ∈ X . We give more detail in what follows.

Given an instance IMSC = (X ,F ,k ′) of MSC, where F = {S1, S2, . . . S |F |}, we define an instance

IMBI = (G,v,k) of MBI, where:

• G = (V ,E);
• V = {v, t} ∪ {vxi | xi ∈ X } ∪ {vSj | S j ∈ F };
• E = {(v, t)} ∪ {(vxi ,vSj ) | xi ∈ S j };
• k = k ′.

See Figure 2 for a visualization.

Without loss of generality, we can assume that any solution SMBI to MBI contains only arcs

(vSj ,v) for some S j ∈ F . In fact, if a solution does not satisfy this property, then we can improve it

in polynomial time by repeatedly applying the following transformation: for each arc a = (vxi ,v)
in SMBI such that xi ∈ X , exchange a with an arc (vSj ,v) such that xi ∈ S j and (vSj ,v) < SMBI if

it exists or remove a otherwise. Note that if no arc (vSj ,v) such that xi ∈ S j and (vSj ,v) < SMBI

exists, then all the shortest paths from xi to t pass through v and therefore the arc (vxi ,v) can
be removed without changing the value of bv (SMBI). Such a transformation does not decrease the

value of bv (SMBI) in fact, all the shortest paths passing through v in the original solution still pass

through v in the obtained solution. Moreover, if Condition (4) is satisfied for the obtained solution,

then it is satisfied also for the original solution. In such a solution, all the paths (if any) fromvxi to t ,

for each xi ∈ X , and from vSj to t , for each S j ∈ F pass through v and therefore the ratio
σstv (SMBI)
σst (SMBI)

is 1, for each s ∈ V \ {v, t} such that σst (SMBI) , 0. We can further assume, again without loss of

generality, that any solution SMBI is such that |SMBI | = k , in fact, if |SMBI | < k , then we can add to

SMBI an arc (vSj ,v) that is not yet in SMBI. Note that such an arc must exists otherwise k > |F | and
this operation does not decrease the value of bv (SMBI).

Given a solution SMBI = {(vSj ,v) | S j ∈ F } toMBI, we construct the solution SMSC = {S j | (vSj ,v) ∈
SMBI} to MSC. By construction, |SMSC | = |SMBI | = k = k ′. Moreover, the set of elements xi of X
such that σvxi t (SMBI) , 0 is equal to {xi ∈ S j | (vSj ,v) ∈ SMBI} =

⋃
Sj ∈SMSC

S j . Therefore, the
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betweenness centrality of v in G(SMBI) is:

bv (SMBI) =
∑

s ∈V \{v,t }
σst (SMBI),0

σstv (SMBI)
σst (SMBI)

=
∑
xi ∈X

σvxi t (SMBI),0

σvxi tv (SMBI)
σvxi t (SMBI)

+
∑
Sj ∈F

σvSj t (SMBI),0

σvSj tv (SMBI)
σvSj t (SMBI)

=|{xi ∈ S j | (vSj ,v) ∈ SMBI}| + |{S j | (vSj ,v) ∈ SMBI}|

=

������ ⋃
Sj ∈SMSC

S j

������ + |SMSC |

=s(SMSC) + k .

It follows that Conditions (3) and (4) are satisfied fora = 2,b = 1 since:OPT (IMBI) = OPT (IMSC)+k ≤
2OPT (IMSC) and OPT (IMSC) − s(SMSC) = OPT (IMBI) − bv (SMBI), where the first inequality is due

to the fact that OPT (IMSC) ≥ k .1 The statement follows by plugging the values of a and b into

α < 1 − 1

abe . □ □

In the next theorem, we show that, unless P = NP , we cannot find a polynomial time approxi-

mation algorithm for MRI with a constant approximation guarantee.

Theorem 4.2. For any constant α ≤ 1, there is no α -approximation algorithm for the MRI problem,

unless P = NP .

Proof. By contradiction, let us assume that there exists a polynomial time algorithm A that

guarantees an approximation factor of α . We show that we can use A to determine whether an

instance I of the exact cover by 3-sets problem (X3C) admits a feasible solution or not. Problem X3C

is known to be NP-complete [24] and therefore this implies a contradiction. In the X3C problem

we are given a finite set X with |X | = 3q and a collection C of 3-element subsets of X and we ask

whether C contains an exact cover for X , that is, a subcollection C ′ ⊆ C such that every element of

X occurs in exactly one member of C ′. Note that we can assume without loss of generality that

m > q.
Given an instance I = (X ,C) of X3C where |X | = n = 3q and |C | = m, we define an instance

I ′ = (G,v,k) of MRI as follows.

• G = (V ,E);
• V = {v,u, t1, t2, t3} ∪ {vxi | xi ∈ X } ∪ {vTj | Tj ∈ C} ∪ {vT ℓ

j
| Tj ∈ C, ℓ = 1, 2, . . . ,M};

• E = {(vxi ,vTj ) | xi ∈ Tj }∪{(vTj ,vT ℓ
j
) |Tj ∈ C, ℓ = 1, 2, . . . ,M}∪{(u,v), (v, t1), (v, t2), (v, t3)};

• k = q.
whereM = 5q + 1. See Figure 3 for a visualization.

The proof proceeds by showing that I admits an exact cover if and only if I ′ admits a solution S
such that ρv (S) > 0. This implies that, if OPT is an optimal solution for I ′, then ρv (OPT ) > 0 if

and only if I admits an exact cover. Hence, the statement follows by observing that algorithm A
outputs a solution S such that ρv (S) > αρv (OPT ) and hence ρv (S) > 0 if and only if I admits an

exact cover.

1
If OPT (IMSC) < k , then the greedy algorithm finds an optimal solution forMSC.
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vx1

vx2

...

vxn

vT1

vT2

...

vTm

vT 1

1

vT 2

1

...
vTM

1

vT 1

2

vT 2

2

...
vTM

2

vT 1

m

vT 2

m

...
vTM

m

v

u

t1

t2

t3

Fig. 3. The reduction used in Theorem 4.2. The dashed arcs denote those added in a solution toMRI.

In I ′, bv = 3, bvTj = 3M = 15q + 3, for each Tj ∈ C , and bw = 0, for any other nodew . Therefore,

rTj = 1, for each Tj ∈ C , rv =m + 1, and rw =m + 2, for any other nodew . In the proof we will use

the observation that, in instance I ′, adding arcs incident to v does not decrease the betweenness

value of any node, that is for any nodew ∈ V and for any solution S to I ′, bw (S) ≥ bw .
If instance I of X3C admits an exact coverC ′, then consider the solution S = {(vT 1

j
,v) |Tj ∈ C ′} to

I ′. Note that |S | = q = k and therefore we only need to show that ρv (S) > 0. Indeed, in the following

we show that ρv (S) =m − q > 0. Since C ′ is an exact cover, then all nodes vxi are connected to the

3 nodes ti and all the paths connecting them pass through v . The same holds for nodes vTj and
vT 1

j
such that Tj ∈ C ′. Since there are 3q nodes vxi , q nodes vTj such that Tj ∈ C ′, and q nodes vT 1

j

such that Tj ∈ C ′, then the betweenness centrality of v increases to bv (S) = 3(5q + 1) = 15q + 3.

Nodes vTj and vT 1

j
such that Tj ∈ C ′ increase their centrality to bvTj (S) = 3(M + 4) = 15q + 15 and

bvT 1

j
(S) = 16, respectively. Any other node does not change its betweenness centrality. Therefore

the only nodes that have a betweenness higher than v are the q nodes vT 1

j
such that Tj ∈ C ′. It

follows that rv (S) = q + 1 and ρv (S) =m + 1 − (q + 1) =m − q > 0.

Let us now assume that I ′ admits solution S such that |S | ≤ k and ρv (S) > 0. We first prove that

S is only made of arcs in the form (vT 1

j
,v) and that bv (S) ≥ 15q + 3 or that it can be transformed in

polynomial time into a solution with such a form without increasing its size. Assume that S has

arcs not in this form, then we can apply one of the following transformations to each of such arcs

e = (w,v).

• If w = vxi for some xi ∈ X and there exists a node vT 1

j
such that xi ∈ Tj and (vT 1

j
,v) < S ,

then remove e and add arc (vT 1

j
,v) to S ;

• Ifw = vxi for some xi ∈ X and (vT 1

j
,v) ∈ S for all Tj such that xi ∈ Tj , then remove e;

• Ifw = vTj for some Tj ∈ C and (vT 1

j
,v) < S , then remove e and add arc (vT 1

j
,v) to S ;

• Ifw = vTj for some Tj ∈ C and (vT 1

j
,v) ∈ S , then remove e;

9



ALGORITHM 1: Greedy algorithm.

Input :A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Output :Set of edges S ⊆ {(u,v) | u ∈ V \ Nv } such that |S | ≤ k

1 S ← ∅;
2 for i = 1, 2, . . . ,k do

3 foreach u ∈ V \ (Nv (S)) do
4 Compute bv (S ∪ {(u,v)});
5 umax ← arg max{bv (S ∪ {(u,v)}) | u ∈ V \ (Nv (S))};
6 S ← S ∪ {(umax,v)};
7 return S ;

• Ifw = vT i
j
for some Tj ∈ C and i > 1, and (vT 1

j
,v) < S , then remove e and add arc (vT 1

j
,v) to

S ;
• Ifw = vT i

j
for some Tj ∈ C and i > 1, and (vT 1

j
,v) ∈ S , then remove e and add arc (vT 1

j′
,v) to

S for some j ′ such that (vT 1

j′
,v) < S ;2

• If w = ti for i ∈ {1, 2, 3}, then remove e and add arc (vT 1

j′
,v) to S for some j ′ such that

(vT 1

j′
,v) < S .2

Let us denote by S ′ and S the original solution and the solution that is eventually obtained by

applying the above transformations, respectively. All the above transformations remove an arc

and possibly add another arc, therefore the size of the transformed solution is at most the original

size, that is |S | ≤ |S ′ | ≤ k . It remains to show that ρv (S ′) > 0 implies bv (S) ≥ 15q + 3. Indeed,

observe that v is initially in position m + 1 and the only nodes that have a betweenness value

higher than v are them nodes vTj . Therefore, since ρv (S ′) > 0, there is at least a node vTj such
that bv (S ′) ≥ bvTj (S

′). Moreover, all the transformations do not decrease the value of bv and then

bv (S) ≥ bv (S ′) and, considering that bvTj (S
′) ≥ bvTj = 15q + 3, we obtain bv (S) ≥ 15q + 3.

We now prove that the solution C ′ = {Tj | (vT 1

j
,v) ∈ S} to I is an exact cover. By contradiction,

let us assume that an element in X is not contained in any set in C ′ or that an element in X is

contained in more than one set in C ′. The latter case implies the former one since |C ′ | = q, all the
sets in C ′ contain exactly 3 elements, and |X | = 3q. Hence, we assume that an element in |X | is not
contained in any set in C ′. This implies that there exists a node vxi ∈ V that has no path to nodes

ti and therefore the betweenness of v is at most 3(1 + 3q − 1 + 2q) = 15q, which is a contradiction

to bv (S) ≥ 15q + 3. □ □

5 GREEDY APPROXIMATION ALGORITHM FOR MBI

In this section we propose an algorithm that guarantees a constant approximation ratio for theMBI

problem. The algorithm exploits the results of Nemhauser et al. on the approximation of monotone

submodular objective functions [42]. Let us consider the following optimization problem: given

a finite set N , an integer k ′, and a real-valued function z defined on the set of subsets of N , find

a set S ⊆ N such that |S | ≤ k ′ and z(S) is maximum. If z is monotone and submodular
3
, then the

following greedy algorithm exhibits an approximation of 1 − 1

e [42]: start with the empty set and

repeatedly add an element that gives the maximal marginal gain, that is, if S is a partial solution,

choose the element j ∈ N \ S that maximizes z(S ∪ {j}).
2
Note that such j′ must exists, otherwisem < q.

3
For a ground set N , a function z : 2

N → R is submodular if for any pair of sets S ⊆ T ⊆ N and for any element e ∈ N \T ,
z(S ∪ {e }) − z(S ) ≥ z(T ∪ {e }) − z(T ).
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Theorem 5.1 ([42]). For a non-negative, monotone submodular function z, let S be a set of size k
obtained by selecting elements one at a time, each time choosing an element that provides the largest

marginal increase in the value of z. Then S provides a

(
1 − 1

e

)
-approximation.

In this paper we exploit such results by showing that bv is monotone and submodular with

respect to the possible set of arcs incident to v . Hence, we define a greedy algorithm, reported

in Algorithm 1, that provides a

(
1 − 1

e

)
-approximation. Algorithm 1 iterates k times and, at each

iteration, it adds to a solution S an arc (u,v) that, when added to G(S), gives the largest marginal

increase in the betweenness of v , that is, bv (S ∪ {(u,v)}) is maximum among all the possible arcs

not in E ∪ S incident to v . The next theorem shows that the objective function is monotone and

submodular.

Theorem 5.2. For each nodev , function bv is monotone and submodular with respect to any feasible

solution for MBI.

Proof. We prove that each term of the sum in the formula of bv is monotone increasing and

submodular. For each pair s, t ∈ V such that s , t and s, t , v , we denote such term by bstv (X ) =
σstv (X )
σst (X ) , for each solution X to MBI.

We first give two observations that will be used in the proof. Let X ,Y be two solutions toMBI

such that X ⊆ Y .

• Any shortest path from s to t in G(X ) exists also in G(Y ). It follows that dst (Y ) ≤ dst (X ).
• If dst (Y ) < dst (X ), then any shortest path from s to t in G(Y ) passes through arcs in Y \ X .
Therefore, all such paths pass through v . It follows that if dst (Y ) < dst (X ), then bstv (Y ) = 1.

We now show that bv is monotone increasing, that is for each solution S toMBI and for each

node u such that (u,v) < S ∪ E,

bstv (S ∪ {(u,v)}) ≥ bstv (S).

If dst (S) > dst (S ∪ {(u,v)}), then bstv (S ∪ {(u,v)}) = 1 and since by definition bstv (S) ≤ 1, then

the statement holds. If dst (S) = dst (S ∪ {(u,v)}), then either (u,v) does not belong to any shortest

path from s to t and then bstv (S ∪ {(u,v)}) = bstv (S), or (u,v) belongs to a newly added shortest

path from s to t with the same weight and bstv (S ∪ {(u,v)}) = σstv (S )+δ
σst (S )+δ >

σstv (S )
σst (S ) = bstv (S), where

δ ≥ 1 is the number of shortest paths from s to t that pass through arc (u,v) in G(S ∪ {(u,v)}). In
any case the statement holds.

We now show that bstv is submodular, that is for each pair of solutions to MBI S,T such that

S ⊆ T and for each node u such that (u,v) < T ∪ E,

bstv (S ∪ {(u,v)}) − bstv (S) ≥ bstv (T ∪ {(u,v)}) − bstv (T ).

We analyze the following cases:

• dst (S) > dst (T ). In this case, bstv (T ∪ {(u,v)}) − bstv (T ) = 0 since in any case bstv (T ∪
{(u,v)}) = bstv (T ) = 1. As bstv is monotone increasing, then bstv (S ∪ {(u,v)}) −bstv (S) ≥ 0.

• dst (S) = dst (T ).
– dst (S) > dst (S∪{(u,v)}). In this case there exists a shortest path from s to t passing through
edge (u,v) inG(S ∪ {(u,v)) and the length of such path is strictly smaller that the distance

from s to t inG(S). Sincedst (S) = dst (T ), such a path is a shortest path also inG(T ∪{(u,v)})
and its length is strictly smaller than dst (T ). It follows that dst (T ) > dst (T ∪ {(u,v)})
and bstv (T ∪ {(u,v)}) = bstv (S ∪ {(u,v)}) = 1. Moreover bstv (T ) ≥ bstv (S). Therefore
bstv (S ∪ {(u,v)}) − bstv (S) ≥ bstv (T ∪ {(u,v)}) − bstv (T ).
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– dst (S) = dst (S ∪ {(u,v)}). In this case dst (T ) = dst (T ∪ {(u,v)}). Let us denote bstv (S) = α
β ,

then we have that bstv (T ) = α+γ
β+γ , bstv (S ∪ {(u,v)}) =

α+δ
β+δ , and bstv (T ∪ {(u,v)}) =

α+γ+δ
β+γ+δ ,

where γ and δ are the number of shortest paths between s and t in G(T ) that pass through
arcs inT \S and arc (u,v), respectively. The statement follows since

α+δ
β+δ −

α
β ≥

α+γ+δ
β+γ+δ −

α+γ
β+γ

for any α ≤ β , i.e. σstv (S) ≤ σst (S). □

□

Corollary 5.3. Algorithm 1 provides a

(
1 − 1

e

)
-approximation for the MBI problem.

It is easy to compute the computational complexity of Algorithm Greedy. Line 2 iterates over

all the numbers from 1 to k . Then, in Line 3, all the nodes u that are not yet neighbors of v are

scanned. The number of these nodes is clearlyO(n). Finally, in Line 4, for each node u in Line 3, we

add the edge {u,v} to the graph and compute the betweenness in the new graph. Since computing

betweenness requiresO(nm) operations in unweighted graphs, the total running time of Greedy is

O(kn2m). In Section 6 we show how to decrease this running time to O(kn3) by using a dynamic

algorithm for the computation of betweenness centrality at Line 4.

6 DYNAMIC ALGORITHM FOR BETWEENNESS CENTRALITY OF A SINGLE NODE

u

v

Fig. 4. Insertion of edge (u,v) af-
fects the betweenness of nodes

lying in the old shortest paths

(red).

Algorithm 1 requires to add edges to the graph and to recompute

the betweenness centrality bv of node v after each edge insertion.

Instead of recomputing it from scratch every time, we use a dy-

namic algorithm. The idea is to keep track of information regarding

the graph and just update the parts that have changed as a con-

sequence of the edge insertion. As described in Section 2, several

algorithms for updating betweenness centrality after an edge in-

sertion have been proposed. However, these algorithms update the

betweenness of all nodes, whereas in Algorithm 1 we are interested

in the betweenness of a single node. In this case, using an algo-

rithm that recomputes the betweenness of all nodes would require

a significant amount of superfluous operations. Let us consider the

example shown in Figure 4.

The insertion of an edge (u,v) does not only affect the between-

ness of the nodes lying in the new shortest paths, but also that of

the nodes lying in the old shortest paths between affected sources

and affected targets (represented in red). Indeed, the fraction of

shortest paths going through these nodes (and therefore their betweenness) has decreased as a

consequence of the new insertion. Therefore, algorithms for updating the betweenness of all nodes

have to walk over each old shortest path between node pairs whose distance has changed. However,

we will show that if we are only interested in the betweenness of one particular node x , we can
simply update the distances (and number of shortest paths) and check which of these updates

affect the betweenness of x . Section 6.2 describes our new dynamic algorithm for updating the

betweenness of a single node after an edge insertion. Notice that the algorithm could be used

in any context where one needs to keep track of the betweenness of a single node after an edge

insertion (or weight decrease) and not only for the betweenness improvement. Since our new

algorithm builds on a recent dynamic betweenness algorithm called iBet [8], we first describe iBet

in Section 6.1 and then explain how this can be modified to recompute the betweenness of a single

node in Section 6.2.

12



6.1 iBet algorithm for updating the betweenness of all nodes

iBet [8] updates the betweenness of all nodes after an edge insertion or an edge weight decrease.

Just as Brandes’s algorithm [13], iBet is composed of two steps: a step where the pairwise distances

and number of shortest paths are computed, and a step where the actual betweenness values are

found.

Let us assume a new edge (u,v) with weight ω ′u,v is inserted into the graph, or that the weight

of an existing edge (u,v) ∈ E is decreased and set to a new value ω ′u,v . Then, let us name affected

pairs the node pairs (s, t) such that dst ≥ dsu + ω
′
u,v + dvt . Notice that these are the nodes for

which either (u,v) creates a shortcut (decreasing the distance), or creates one or more new shortest

paths of the same length as the old distance. Also, let the affected sources of a node t be the set
S(t) of nodes {s ∈ V : dst ≥ dsu + ω ′u,v + dvt } and let the set T (s) of affected targets of s be
T (s) = {t ∈ v : dst ≥ dsu + ω

′
u,v + dvt }.

In [8] it was proven that if (s, t) is an affected node pair, then s ∈ S(v) and t ∈ T (u). This allows
us to reduce the search space of the affected pairs to the nodes whose distance to v or from u has

changed (or their number of shortest paths). Thus, a first idea would be to identify the set S(v)
and the set T (u), which can be done with two pruned BFSs, rooted in u and v , respectively. For
each node s ∈ S(v) and each node t ∈ T (u), we can compare the old distance dst with the one of a

path going through edge (u,v), namely dsu + ω
′
u,v + dvt , and update the distance and number of

shortest paths accordingly. However, iBet is more efficient than this. Let a predecessor in a shortest

path from v to t be any node x such that (x , t) ∈ E and dvt = dvx + dxt , and let us denote this as

x ∈ Pv (t). Then, the following lemma holds.

Lemma 6.1. [8] Let t ∈ V be any node and x ∈ Pv (t) be a predecessor of t in the shortest paths

from v . Then, S(t) ⊆ S(x).

v

u

x

t

s

Fig. 5. Insertion of

edge (u,v) creates a

shortcut between s
and t , but also be-

tween s and x .

Figure 5 explains this concept. The insertion of edge (u,v) creates a shortcut
between s and t , making (s, t) an affected pair. Similarly, the new edge creates

a shortcut between s and each predecessor of t in the shortest path from

v , i.e. x . Lemma 6.1 basically tells us that we do not need to check all pairs

(s, t) such that s ∈ S(v) and t ∈ T (u). On the contrary, for a given target t ,
we only need to check the nodes s ∈ S(x), where x is any node in Pv (t). If
we process the targets in increasing order of distance from v , this set will
become smaller and smaller as we go down the BFS tree, saving unnecessary

comparisons.

Clearly, what we described is only the update of the augmented APSP.

After this, iBet also needs to update the betweenness scores of all the nodes

that lie in some old or new shortest path between an affected pair. Since this

part is not necessary when updating the betweenness of a single node, we

will not describe this and refer the reader to [8] for more details.

Since the augmented APSP update of iBet was shown to be significantly faster than all existing

algorithms, we use it as a building block for our incremental algorithm for the betweenness

centrality of a single node, described in Section 6.2.

6.2 New dynamic algorithm for the betweenness of a single node

iBet stores the pairwise distances dst and the number of shortest paths σst for each s, t ∈ V . When

computing the betweenness of a specific node x , we also need the number σstx of shortest paths

between s and t that go through x . Then, we can compute betweenness by using its definition

given in Eq. (1). In the following, we will assume that the graph G is unweighted and connected,

but the algorithm can be easily extended to weighted and disconnected graphs, in a way analogous
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to what has been done in [8]. Our algorithm can be divided in two phases: an initialization phase,

where pairwise distances, σ(·, ·) and σ(·, ·)x are computed and stored, and an update phase, where the

data structures and the betweenness of node x are updated as a consequence of the edge insertion.

6.2.1 Initialization. The initialization can be easily done by running a Single-Source Shortest

Path (SSSP) from each node, as in the first phase of Brandes’s algorithm for betweenness central-

ity [13]. While computing distances from a source node s to any other node t , we set the number

σst of shortest paths between s and t to the sum

∑
σsp over all predecessors p in the shortest

paths from s (and we set σss = 1). This can be done for a node s in O(m) in unweighted graphs

and in O(m + n logn) in weighted graphs (the cost of running a BFS or Dijkstra, respectively).

Instead of discarding this information after each SSSP as in Brandes’s algorithm, we store both the

distances d(·, ·) and the numbers of shortest paths σ(·, ·) in a matrix. After this, we can compute the

number σ(·, ·)x of shortest paths going through x . For each node pair (s, t), σstx is equal to σsx · σxt
if dst = dsx + dxt , and to 0 otherwise. The betweenness bx of x can then be computed using the

definition given in Eq. (1). This second part can be done in O(n2) time by looping over all node

pairs. Therefore the total running time of the initialization is O(nm) for unweighted graphs and

O(n(m + n logn)) for weighted graphs, and the memory requirement is O(n2), since we need to

store three matrices of size n × n each.

6.2.2 Update. The update works in a way similar to iBet (see Section 6.1), with a few differences.

Algorithm 2 gives an overview of the algorithm for betweenness update for a single node x , whereas
Algorithm 3 and Algorithm 4 describe the update σ(·, ·) and σ(·, ·)x when dst > dsu + ω

′
uv + dvt and

when dst = dsu + ω
′
uv + dvt , respectively.

Algorithm 2 shares its structure with iBet. In Lines 2-6, after setting the new distance between

u and v , also σuv and σuvx are updated with either updateSigmaGR or updateSigmaEQ. Then,

just like in iBet, the affected sources are identified with a pruned BFS rooted in u on G transposed

(function findAffectedSources).

Then, a (pruned) BFS rooted in v is started to find the affected targets for u (Lines 12-31). In

Lines 27-31, the neighbors w of the affected target t are visited and, if they are also affected

(i.e. duw ≥ ω ′uv + dvw ), they are enqueued. Also, t is stored as the predecessor of w (Line 31).

In Lines 15-26, for each affected node pair (s, t), we first subtract the old contribution σstx/σst
from the betweenness of x , then we recompute dst , σst and σstx with either updateSigmaGR or

updateSigmaEQ, and finally we add the new contribution σ ′stx/σ ′st to bx . Notice that, if x did not

lie in any shortest path between s and t before the edge insertion, σstx = 0 and therefore bx is

not decreased in Line 17. Analogously, if x is not part of a shortest path between s and t after the
insertion, bx is not increased in Line 24.

In the following, we analyze updateSigmaGR and updateSigmaEQ separately.

UpdateSigmaGR. Let us consider the case dst > dsu + ω
′
uv + dvt . In this case, all the old shortest

paths are discarded, as they are not shortest paths any longer, and all the new shortest paths go

through edge (u,v). Therefore, we can set the new number σ ′st of shortest paths between s and t
to σsu · σvt . Since all old shortest paths should be discarded, also σstx depends only on the new

shortest paths and not on whether x used to lie in some shortest paths between s and t before
the edge insertion. Depending on the position of x with respect to the new shortest paths, we

can define three cases, depicted in Figure 6. In Case (a) (left), x lies in one of the shortest paths

between s and u. This means that it also lies in some shortest paths between s and t . In particular,

the number of these paths σ ′stx is equal to σsux · σvt . Notice that no shortest paths between s
and u can be affected (see [8]) and therefore σsux = σ ′x (s,u). In Case (b) (center), x lies in one of

the shortest paths between v and t . Analogously to Case 1, the new number of shortest paths
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ALGORITHM 2: Update of bx after an edge insertion

Algorithm: Incremental betweenness

Input :Graph G = (V , E), edge update (u, v, ω′uv ), pairwise distances d(·, ·), numbers σ(·, ·) of shortest paths, numbers

σ(·, ·)x of shortest paths through x , betweenness value bx of x
Output :Updated d(·, ·), σ(·, ·), σ(·, ·)x and bx
Assume :boolean vis(v) is false, ∀v ∈ V

1 if duv ≥ ω′uv then

2 if duv > ω′uv then

3 duv ← ω′uv ;
4 σuv , σuvx ←updateSigmaGR(G, (u, v), d, σ , σx );
5 else

6 σuv , σuvx ←updateSigmaEQ(G, (u, v), d, σ , σx );
7 S (v) ← findAffectedSources(G, (u, v), d);
8 Q ← ∅;
9 P (v) ← v ;

10 Q .push(v);
11 vis(v) ← true;

12 while Q .lenдth() > 0 do

13 t = Q .f ront ();
14 foreach s ∈ S (P (t )) do
15 if dst ≥ dsu + ω′uv + dvt then
16 if x , s and x , t then
17 bx ← bx − σstx /σst ;
18 if dst > dsu + ω′uv + dvt then
19 σst , σstx ←updateSigmaGR(G, (u, v), d, σ , σx );
20 dst ← dsu + ω′uv + dvt ;

21 else

22 σst , σstx ←updateSigmaEQ(G, (u, v), d, σ , σx );
23 if x , s and x , t then
24 bx ← bx + σstx /σst ;
25 if t , v then

26 S (t ).inser t (s);

27 foreach w s.t. (t, w ) ∈ E do

28 if not vis(w ) and duw ≥ ω′uv + dvw then

29 Q .push(w );
30 vis(w ) ← true;

31 P (w ) ← t ;

between s and t going through x is σ ′stx = σsu · σvtx . Notice that Case (a) and Case (b) cannot

both be true at the same time. In fact, if dsu = dsx + dxu and dvt = dvx + dxt , we would have that

d ′st = dsu +ω
′
uv + dvt = dsx + dxu +ω

′
uv + dvx + dxt > dsx + dxt , which is impossible, since d ′st is

the shortest-path distance between s and t . Therefore, at least one among σsux and σvtx must be

equal to 0. Finally, in Case (c) (right), σsux and σvtx are both equal to 0, meaning that x does not lie

on any new shortest path between s and t . Once again, this is independent on whether x lied in

an old shortest path between s and t or not. Algorithm 3 shows the computation of σ ′st and σ
′
stx .

Notice that, in the computation of σ ′stx , the first addend is greater than zero only in Case (a) and

the second only in Case (b).
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Fig. 6. Possible positions of x with respect to the new shortest paths after the insertion of edge (u,v). On the

left, x lies between the source s and u. In the center, x lies between v and the target t . On the right, x does

not lie on any new shortest path between s and t .

ALGORITHM 3: Update of σst and σstx when (u,v) creates new shortest paths of length smaller than dst
Algorithm: UpdateSigmaGR

Input :Graph G = (V , E), edge insertion (u, v), pairwise distances d(·, ·), numbers σ(·, ·) of shortest paths, numbers

σ(·, ·)x of shortest paths through x
Output :Updated σ ′st , σ

′
stx

1 σ ′st ← σsu · σvt ;
2 σ ′stx ← σsux · σvt + σsu · σvtx ;
3 return σ ′st , σ

′
stx ;

ALGORITHM 4: Update of σst and σstx when (u,v) creates new shortest paths of length equal to dst
Algorithm: UpdateSigmaEQ

Input :Graph G = (V , E), edge insertion (u, v), pairwise distances d(·, ·), numbers σ(·, ·) of shortest paths, numbers

σ(·, ·)x of shortest paths through x
Output :Updated σ ′st , σ

′
stx

1 σ ′st ← σst + σsu · σvt ;
2 σ ′stx ← σstx + σsux · σvt + σsu · σvtx ;
3 return σ ′st , σ

′
stx ;

UpdateSigmaEQ. Let us now consider the case dst = dsu + ω
′
uv + dvt . Here all the old shortest

paths between s and t are still valid and, in addition to them, new shortest paths going through

(u,v) have been created. Therefore, the new number of shortest paths σ ′st is simply σst + σsu · σvt .
Notice that we never count the same path multiple times, since all new paths go through (u,v) and
none of the old paths does. Also all old shortest paths between s and t through x are still valid,

therefore σ ′stx is given by the old σstx plus the number of new shortest paths going through both x
and (u,v). This number can be computed as described for updateSigmaGR according to the cases

of Figure 6. Algorithm 4 shows the computation of σ ′st and σ
′
stx .

6.3 Time complexities

6.3.1 Dynamic betweenness algorithm. Let us define the extended size | |A| | of a set of nodes A
as the sum of the number of nodes in A and the number of edges that have a node of A as their

endpoint. Then, the following proposition holds.

Proposition 6.2. The running time of Algorithm 2 for updating the betweenness of a single node

after an edge insertion (u,v) is Θ(| |S(v)| | + | |T (u)| | +∑y∈T (u) |S(P(y))|).
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Proof. The function findAffectedSources in Line 7 identifies the set of affected sources

starting a BFS in v and visiting only the nodes s such that dsu + ω ′uv + dvt ≤ dst . This takes
Θ(| |S(v)| |), since this partial BFS visits all nodes in S(v) and their incident edges. Then, the while

loop of Lines 12 - 31 (excluding the part in Lines 14 - 26) identifies all the affected targets T (u) with
a partial BFS. This part requires Θ(| |T (u)| |) operations, since all affected targets and their incident

edges are visited. In Lines 14 - 26, for each affected node t ∈ T (u), all the affected sources of the

predecessor P(t) of t are scanned. This part requires in total Θ(∑t ∈T (u) |S(P(t))|) operations, since
for each node in S(P(t)), Lines 15 - 26 require constant time. □

Notice that, since S(P(y)) is O(n) and both | |T (u)| | and | |S(v)| | are O(n +m), the worst-case

complexity of Algorithm 2 is O(n2) (assumingm = Ω(n)). This matches the worst-case running

time of the augmented APSP update of iBet. However, notice that iBet needs a second step to

update the betweenness of all nodes, which is more expensive and requires Θ(nm) operations in the

worst case. Also, this introduces a contrast between the static and the incremental case: Whereas

the static computation of one node’s betweenness has the same complexity as computing it for all

nodes (at least no algorithm for computing it for one node faster than computing it for all nodes

exists so far), in the incremental case the betweenness update of a single node can be done inO(n2),
whereas there is no algorithm faster than O(nm) for the update of all nodes.

6.3.2 Greedy algorithm for betweenness maximization. We can improve the running time of

Algorithm Greedy by using the dynamic algorithm for betweenness centrality instead of the

recomputation from scratch. In fact, at Line 4 of Algorithm Greedy, we add an edge {u,v} to the

graph and compute the betweenness in the new graph, for each node u inV \Nv (S). If we compute

the betweenness by using the from-scratch algorithm, this step requires O(nm) and this leads to an

overall complexity of O(kn2m). At Line 4 , instead of recomputing betweenness on the new graph

from scratch, we can use Algorithm 2. As we proved previously, its worst-case complexity is O(n2).
This leads to an overall worst-case complexity of O(kn3) for Greedy. However, in Section 7.2 we

will show that Greedy is actually much faster in practice.

7 EXPERIMENTAL EVALUATION

In our experiments, we evaluate the performance of Greedy both in terms of quality of the solution

found (Section 7.1) and in terms of its running time (Section 7.2). All algorithms compared in our

experiments are implemented in C++, building on the open-source NetworKit [53] framework. The

experiments were done on a machine equipped with 256 GB RAM and a 2.7 GHz Intel Xeon CPU

E5-2680 having 2 sockets with 8 cores each. To make the comparison with previous work more

meaningful, we use only one of the 16 cores. The machine runs 64 bit SUSE Linux and we compiled

our code with g++-4.8.1 and OpenMP 3.1.

For our experiments, we consider a set of real-world networks belonging to different domains,

taken from SNAP [35], KONECT [32], Pajek [3], and the 10thDIMACS Implementation Challenge [2].

The properties of the networks are reported in Table 2 (directed graphs) and in Table 3 (undirected

graphs).

7.1 Solution quality

In this section we evaluate Greedy in terms of accuracy and we compare it both with the optimum

and with some alternative baselines.

To speed up the computation of Greedy (and therefore to target larger graphs), we do not

recompute betweenness from scratch in Line 4 of Algorithm 1, but we use the dynamic algorithm

described in Section 6. Notice that this does not affect the solution found by the algorithm, only its

running time, which is reported in Section 7.2. Since computing the optimum by examining all
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possible k-tuples would be too expensive even on small graphs, we use an Integer Programming

(IP) formulation, described in the following paragraph.

7.1.1 IP formulation forMBI on directed graphs. Let S be a solution to an instance of MBI. Given

a node v , we define a variable xu for each node u ∈ V \ (Nv ∪ {v})

xu =

{
1 if (u,v) ∈ S
0 otherwise.

We define a variable yst for each s, t ∈ V \ {v}, s , t .

yst =

{
1 If all shortest paths from s to t in G(S) pass through node v

0 otherwise.

For each pair of nodes s, t ∈ V \ {v}, s , t , we denote by A(s, t) the set of nodes u not in

Nv such that all the shortest paths between s and t in G({(u,v)}) pass through edge (u,v) and
hence through node v . Note that in this case, dst > dst ({(u,v)}) and hence A(s, t) is defined as

A(s, t) = {u | dst > dst ({(u,v)})}. Set B(s, t) is defined as the set of nodes u not in Nv such that at

least a shortest path between s and t in G({(u,v)}) does not pass through edge (u,v) and hence

B(s, t) = V \ (A(s, t) ∪ Nv ). We denote by σ̄stv (u) the number of shortest paths from s to t in
G({(u,v)}) passing through edge (u,v).

The following non linear formulation solves the MBI problem:

max

∑
s,t ∈V

s,t ;s,t,v

(
(1 − yst )

σstv +
∑
u ∈B(s,t ) xu σ̄stv (u)

σst +
∑
u ∈B(s,t ) xu σ̄stv (u)

+ yst

)
(5)

subject to

∑
u ∈A(s,t )

xu ≥ yst , s, t ∈ V \ {v}, s , t (6)∑
u ∈V \(Nv∪{v })

xu ≤ k,

xu ,yst ∈ {0, 1} s ∈ V \ {v}, t ∈ V \ {v, s}
Let us consider a solution S to the above formulation. In the case that yst = 1, for some pair of

nodes s, t ∈ V \ {v}, s , t , then Constraint (6) implies that, for at least a node u ∈ A(s, t), variable
xu must be set to 1 and hence all the shortest paths between s and t in G(S) pass through v . In this

case, the term corresponding to pair (s, t) in the objective function (5) is correctly set to be equal to

1.

If yst = 0 and xu = 0, for each u ∈ A(s, t), then the number of shortest paths between s and t in
G(S) passing throughv is equal toσstv+

∑
u ∈B(s,t ) xu σ̄stv (u) and the overall number of shortest paths

between s and t in G(S) is equal to σst +
∑
u ∈B(s,t ) xu σ̄stv (u). In this case, the term corresponding

to pair (s, t) in the objective function (5) is correctly set to be equal to

σstv+
∑
u∈B(s,t ) xu σ̄stv (u)

σst+
∑
u∈B(s,t ) xu σ̄stv (u) .

Note that,

σstv+
∑
u∈B(s,t ) xu σ̄stv (u)

σst+
∑
u∈B(s,t ) xu σ̄stv (u) ≤ 1 and therefore a solution in which yst = 0 and xu = 1, for

some u ∈ A(s, t) is at least as good as a solution in which yst is set to 1 instead of 0 and the other

variables are unchanged. Hence, we can assume without loss of generality that the case in which

yst = 0 and xu = 1, for some u ∈ A(s, t), cannot occur in an optimal solution.

We solve the program with the Mixed-Integer Nonlinear Programming Solver Couenne [5] and

measure the approximation ratio of the greedy algorithm on three types of randomly generated

directed networks, namely directed Preferential Attachment (in short, PA) [11], Copying (in short,

COPY) [31], Compressible Web (in short, COMP) [14]. For each graph type, we generate 5 different
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instances with the same size. We focus our attention on twenty vertices v , which have been chosen

on the basis of their original betweenness ranking. In particular, we divide the list of vertices, sorted

by their original ranking, in four intervals, and choose five random vertices uniformly at random

in each interval. In each experiment, we add k = {1, 2, ..., 7} edges. We evaluate the quality of the

solution produced by the greedy algorithm by measuring its approximation ratio and we report

the results in Table 1. The experiments clearly show that the experimental approximation ratio is

Table 1. Comparison between the Greedy algorithm and the optimum. The first three columns report the

type and size of the graphs; the fourth column reports the approximation ratio.

Graph Nodes Edges Min. approx. ratio

PA 100 130 1

COPY 100 200 0.98

COMP 100 200 0.98

COMP 100 500 0.96

by far better than the theoretical one proven in the previous section. In fact, in all our tests, the

experimental ratio is always greater than 0.96.
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Fig. 7. Betweenness of the pivot as a function of the number k of inserted edges for the four heuristics. The

plots refer to two different pivots in the munmun-digg-reply graph.
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Fig. 8. Betweenness of the pivot as a function of the number k of inserted edges for the four heuristics. The

plots refer to two different pivots in the linux graph.

7.1.2 Results for real-world directed networks. We also analyze the performance of Greedy on the

real-world directed networks of Table 2 (Section 7.2). Since finding the optimum on these networks

would take too long, we compare the solution of Greedy with the following three baselines:
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Fig. 9. Percentage betweenness of the pivot as a function of the number k of inserted edges for the four

heuristics. Left: average results for the munmun-digg-reply graph. Right: average results for the linux graph.
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Fig. 10. Percentage rank of the pivot as a function of the number k of inserted edges for the four heuristics.

Left: average results for the munmun-digg-reply graph. Right: average results for the linux graph.

• Top-k Degree: the algorithm that connects the k nodes having the highest degree to v ;
• Top-k Betweenness: the algorithm that connects thek nodes having the highest betweenness

centrality to v ;
• Random: the algorithm that connects k nodes extracted uniformly at random to v .

For each graph, we pick one node at random, compute its betweenness on the initial graph and

try to increase it with the four heuristics. We refer to the selected node as pivot. Since the results

may vary depending on the initial betweenness of the pivot, we also repeat each experiment with

10 different pivots. In each experiment, we add k = {1, 2, ..., 10} edges and compute the ranking

and betweenness of the pivot after each insertion.

Figure 7 shows the results for the munmun-digg-reply graph, using two different pivots. In

particular, the plot on the left shows the betweenness improvement for a node with an initially

low betweenness score (close to 0), whereas the one on the right refers to a node that starts with a

higher betweenness value (about 40000). Although the final betweenness scores reached by the

two nodes differ, we see that the relative performance of the four algorithms is quite similar among

the two pivots. A similar behavior can be observed for all other tested pivots. Figure 8 reports the

results for two different pivots chosen from the linux graph. Again, we notice that the relative

performance of the four algorithms is basically the same. Since the same is true also for the other

tested graphs, in the following we simply report the average values among the samples.

Figure 9 reports the average results (over the sampled pivots) for munmun-digg-reply (left) and

linux (right). We define the percentage betweenness of a node v as bv · 100

(n−1)(n−2) , where bv is
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Fig. 11. Average results over all directed networks. On the left, average percentage betweenness of the pivots

as a function of k . On the right, average percentage rank of the pivots.

the betweenness of v and (n − 1)(n − 2) represents the maximum theoretical betweenness a node

can have in a graph with n nodes. For each value of k , the plots show the average percentage

betweenness of a pivot after the insertion of k edges (each point represents the average over the

10 pivots). Clearly, the pivot’s betweenness after k insertions is a non-decreasing function of k ,
since the insertion of an edge can only increase (or leave unchanged) the betweenness of one of

its endpoints. In both plots, Greedy outperforms the other heuristics. For example, after 10 edge

insertions, the average betweenness of a pivot in the munmun-digg-reply graph is 81460 with

Greedy, 43638 with Top-k Degree, 36690 with Top-k Betweenness and 28513 with Random. A

similar behavior can be observed for the average ranks of the pivots, reported in Figure 10. The

figures report the percentage ranks, i.e. the ranks multiplied by
100

n , since n is the maximum rank

a node can have in a graph with n nodes. This can be seen as the fraction of nodes with higher

betweenness than the pivot. On munmun-digg-reply , the average initial rank is 2620 (about 43%).

After 10 insertions, the rank obtained using Greedy is 476 (about 7%), whereas the one obtained

by the other approaches is never lower than 1188 (about 19%). It is interesting to notice that 3

edge insertions with Greedy yield a rank of 1011, which is better than the one obtained by the

other approaches after 10 insertions. Similarly, also on the linux graph, 3 iterations of Greedy

are enough to bring down the rank from 2498 (45.6%) to 247 (4.4%), whereas the other approaches

cannot go below 299 (5.3%) with 10 iterations. Similar results can be observed on the other tested

(directed) instances. Figure 11 reports the average results over all directed networks, both in terms

of betweenness (left) and rank (right) improvement. The initial average betweenness of the sample

pivots is 0.015%. Greedy is by far the best approach, with an average final percentage betweenness

(after 10 iterations) of 0.38% and an average final percentage rank of 1.4%. As a comparison, the best

alternative approach (Top-k Degree) yields a percentage betweenness of 0.22% and a percentage

rank of 7.3%. Not surprisingly, the worst approach is Random, which in 10 iterations yields a

final percentage betweenness of 0.04% and an average percentage rank of 10.2%. On average, a

single iteration of Greedy is sufficient for a percentage rank of 5.5%, better than the one obtained

by all other approaches in 10 iterations. Also, it is interesting to notice that in our experiments

Top-k Degree performs significantly better than Top-k Betweenness. This means that, for the

betweenness of a node in a directed graph, it is more important to have incoming edges from nodes

with high out-degree than with high betweenness. We will see in the following that our results

show a different behavior for undirected graphs.

Also, notice that, although the percentage betweenness scores are quite low, the improvement

using Greedy is still large: with 10 insertions, on average the scores change from an initial 0.015%

to 0.38%, which is about 25 times the initial value.

21



7.1.3 Results for real-world undirected graphs. Although it was proven that Greedy has an

unbounded approximation ratio for undirected graphs [17], it is still not clear how it actually

performs in practice. In [17], the authors performed some preliminary experiments in which they

showed that the greedy algorithm provides a solution slightly better than the Top-k Betweenness

algorithm. However, they analyzed only very small networks (with few hundreds of nodes), due

to the high complexity of a straightforward implementation of the Greedy algorithm. In what

follows, we compare Greedy with other baselines on graphs with up to 10
4
nodes and 10

5
edges.

This is made possible by combining Greedy with the dynamic algorithm described in Section 6

(note that using the dynamic algorithm only influences the running times of Greedy, but not its

results). In particular, we compare Greedy with Top-k Betweenness, Top-k Degree and Random

also on several undirected real-world networks, listed in Table 3 of Section 7.2. Figure 12 shows the
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Fig. 12. Average results over all undirected networks. On the left, average percentage betweenness of the

pivots as a function of k . On the right, average percentage rank of the pivots.

percentage betweenness and ranking, averaged over the undirected networks of Table 3. Also in

this case, Greedy outperforms the other heuristics. In particular, the average initial betweenness of

the pivots in the different graphs is 0.05%. After 10 iterations, the betweenness goes up to 3.7% with

Greedy, 1.6% with Top-k Degree, 2.1% with Top-k Betweenness and only 0.17% with Random.

The average initial rank is 45%. Greedy brings it down to 0.7% with ten iterations and below 5%

already with two. Using the other approaches, the average rank is always worse than 10% for

Top-k Betweenness, 15% for Top-k Degree and 20% for Random. As mentioned before, differently

from directed graphs, Top-k Betweenness performs significantly better than Top-k Degree in

undirected graphs.

Also, notice that in undirected graphs the percentage betweenness scores of the nodes in the

examined graphs are significantly larger than those in the directed graphs. This could be due to the

fact that many node pairs have an infinite distance in the examined directed graphs, meaning that

these pairs do not contribute to the betweenness of any node. Also, say we want to increase the

betweenness of x by adding edge (v,x). The pairs (s, t) for which we can have a shortcut (leading

to an increase in the betweenness of x ) are limited to the ones such that s can reach v and such that

t is reachable from x , which might be a small fraction of the total number of pairs. On the contrary,

most undirected graphs have a giant connected component containing the greatest majority of the

nodes. Therefore, it is very likely that a pivot belongs to the giant component or that it will after

the first edge insertion.

It is interesting to notice that, despite the unbounded approximation ratio, the improvement

achieved by Greedy on undirected graphs is even larger than for the directed ones: on average 74

times the initial score.
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Table 2. Average running times of the betweenness algorithms on directed real-world graphs. The last two

columns report the standard deviation of the running times of AI and SI over the 100 edge insertions.

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] STD AI [s] STD SI [s]

subelj-jung 6 120 50 535 1.25 0.0019 0.0002 0.0036 0.0005

wiki-Vote 7 115 100 762 8.18 0.0529 0.0015 0.0635 0.0038

elec 7 118 103 617 8.67 0.0615 0.0019 0.0858 0.0053

freeassoc 10 617 63 788 14.96 0.1118 0.0034 0.1532 0.0036

dblp-cite 12 591 49 728 5.04 0.1726 0.0071 0.7905 0.0451

subelj-cora 23 166 91 500 34.08 0.3026 0.0327 1.1598 0.1575

ego-twitter 23 370 33 101 8.47 0.0062 0.0001 0.0576 0.0003

ego-gplus 23 628 39 242 10.01 0.0024 0.0001 0.0026 0.0000

munmun-digg 30 398 85 247 78.09 0.2703 0.0073 0.2539 0.0099

linux 30 837 213 424 34.75 0.0692 0.0108 0.3019 0.0637

Table 3. Average running times of the betweenness algorithms on undirected real-world graphs. The last two

columns report the standard deviation of the running times of AI and SI over the 100 edge insertions.

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] SD AI [s] SD SI [s]

Mus-musculus 4 610 5 747 2.87 0.0337 0.0037 0.0261 0.0024

HC-BIOGRID 4 039 10 321 5.32 0.1400 0.0083 0.1450 0.0119

Caenor-eleg 4 723 9 842 4.75 0.0506 0.0025 0.0406 0.0014

ca-GrQc 5 241 14 484 4.15 0.0377 0.0033 0.0245 0.0017

advogato 7 418 42 892 12.65 0.1820 0.0024 0.1549 0.0008

hprd-pp 9 465 37 039 29.19 0.2674 0.0053 0.1873 0.0021

ca-HepTh 9 877 25 973 21.57 0.1404 0.0095 0.1108 0.0053

dr-melanog 10 625 40 781 38.18 0.2687 0.0067 0.2212 0.0029

oregon1 11 174 23 409 23.77 0.5676 0.0037 0.5197 0.0020

oregon2 11 461 32 730 27.98 0.5655 0.0039 0.5551 0.0026

Homo-sapiens 13 690 61 130 68.06 0.5920 0.0079 0.4203 0.0035

GoogleNw 15 763 148 585 76.17 2.4744 0.0044 4.1075 0.0045

CA-CondMat 21 363 91 342 168.44 1.1375 0.0486 0.7485 0.0358

7.2 Running time evaluation

In this section we evaluate the running time of the dynamic algorithm for betweenness central-

ity computation. We used the same experimental setting used in Section 7.1. Since some of the

algorithms we use for comparison work only on unweighted graphs, all the tested networks are

unweighted (although we recall that our algorithm described in Section 6.2 can handle also weighted

graphs).

7.2.1 Evaluation of the dynamic algorithm for the betweenness of one node. In the following,

we refer to our incremental algorithm for the update of the betweenness of a single node as SI

(Single-node Incremental). Since there are no other algorithms specifically designed to compute or

update the betweenness of a single node, we also use the static algorithm by Brandes [13] and the

dynamic algorithm by Bergamini et al. [8] for a comparison (the one by Brandes was already in

NetworKit). Indeed, the algorithm by Brandes (which we refer to as Stat, from Static) is the best

known algorithm for static computation of betweenness and the one by Bergamini et al. (which we

name AI, from All-nodes Incremental) has been shown to outperform other dynamic algorithms [8].

To compare the running times of the algorithms for betweenness centrality, we choose a node x
at random and we assume we want to compute the betweenness of x . Then, we add an edge to the

graph, also chosen uniformly at random among the node pairs (u,v) such that (u,v) < E. After the
insertion, we use the three algorithms to update the betweenness centrality of x and compare their

running times. We recall that Stat is a static algorithm, which means that we can only run it from

scratch on the graph after the edge insertion. On each graph, we repeat this 100 times and report

the average running time obtained by each of the algorithms.
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Fig. 13. Top: Running time of AI and SI as a function of the number of affected node pairs for two directed

graphs (left: ego-gplus, right: munmun-digg). Bottom: Same as the two plots above, but zoomed on the

running times of SI. The points are the computed running times, the lines are the results of a linear regression

and the area around the lines is a 95% confidence interval for the regression.

Table 2 and Table 3 show the running times for directed and undirected graphs, respectively. As

expected, both dynamic algorithms AI and SI are faster than the static approach and SI is the fastest

among all algorithms. This is expected, since SI is the one that performs the smallest number of

operations. Also, notice that the standard deviation of the running times of both AI and SI is very

high, sometimes even higher than the average. This is actually not surprising, since different edge

insertion might affect portions of the graph of very different sizes. Figure 13 and Figure 14 report

the running times of AI and SI as a function of the number of affected node pairs for two directed

and undirected graphs, respectively (similar results can be observed for the other tested graphs).

As expected, the running time of both algorithms (as well as the difference between the running

time of AI and that of SI) mostly increases as the number of affected pairs increases. However, AI

presents a much larger deviation than SI. This is due to the fact that its running time also depends

on the number of nodes that used to lie in old shortest paths between the affected pairs. Indeed,

the number of nodes whose betweenness gets affected does not only depend on the number of

affected pairs (which we recall to be the ones for which the edge insertion creates a shortcut or a

new shortest paths), but also on how many shortest paths there used to be between the affected

pairs before the insertion and how long these paths were.

Table 4 and Table 5 show the speedups of SI on AI and those of SI on Stat, for directed and

undirected graphs, respectively. Although the speedups vary considerably among the networks and

the edge insertions, SI is always at least as fast as AI and up to 1560 times faster (maximum speedup

for GoogleNw). On average (geometric mean of the average speedups over the tested networks), SI
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Fig. 14. Top: Running time of AI and SI as a function of the number of affected node pairs for two undirected

graphs (left: dr-melanog, right: Homo-sapiens). Bottom: same as the two plots above, but zoomed on the

running times of SI. The points are the computed running times, the lines are the results of a linear regression

and the area around the lines is a 95% confidence interval for the regression.

Table 4. Speedups on the static algorithm and on the dynamic algorithm for all nodes on directed networks.

For both Stat and AI, the first column reports the geometric mean of the speedups over the 100 insertions,

the second column reports the maximum speedups and the third column the minimum speedup.

Speedups on Stat Speedups on AI

Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum

subelj-jung 24668.3 67477.6 342.9 10.0 63.7 1.1

wiki-Vote 23779.8 381357.7 275.6 39.3 310.7 1.0

elec 21560.5 408629.3 175.6 32.1 285.1 1.1

freeassoc 6783.2 330333.4 707.5 13.0 94.0 1.1

dblp-cite 24745.7 140950.0 11.4 13.3 314.5 1.1

subelj-cora 18936.5 543630.2 22.9 32.4 257.5 1.0

ego-twitter 111597.2 134716.0 3169.2 4.0 216.3 1.0

ego-gplus 115936.2 154869.5 57650.6 14.6 74.5 1.1

munmun-digg 34299.5 998564.0 1796.8 30.7 188.3 1.2

linux 103469.6 433745.5 59.5 32.1 94.6 1.5

is 29 times faster than AI for undirected graphs and 18 times faster for directed graphs. The high

speedups on the dynamic algorithm for all nodes is due to the fact that, when focusing on a single

node, we do not need to update the scores of all the nodes that lie in some shortest path affected

by the edge insertion. On the contrary, for each affected source node s , AI has to recompute the

change in dependencies by iterating over all nodes that lie in either a new or an old shortest path
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Table 5. Speedups on the static algorithm and on the dynamic algorithm for all nodes on undirected networks.

For both Stat and AI, the first column reports the geometric mean of the speedups over the 100 insertions,

the second column reports the maximum speedups and the third column the minimum speedup.

Speedups on Stat Speedups on AI

Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum

Mus-musculus 1031.2 174166.8 191.4 7.7 21.9 1.7

HC-BIOGRID 962.3 4060.6 56.7 17.0 51.1 4.5

Caenor-eleg 2152.2 293172.8 474.6 15.0 49.4 1.3

ca-GrQc 1517.5 220289.2 351.8 10.0 22.8 2.1

advogato 5819.0 698406.6 2860.5 43.4 192.7 1.9

hprd-pp 5846.6 10852.3 1696.6 39.2 119.5 3.2

ca-HepTh 2642.6 432794.2 549.2 12.3 35.7 2.8

dr-melanog 6105.9 10589.7 1869.7 29.9 88.3 3.1

oregon1 7407.4 733008.3 1562.3 72.6 493.4 2.4

oregon2 9192.5 617710.0 1595.8 68.8 470.5 2.5

Homo-sapiens 9216.4 17177.4 2706.2 57.0 165.2 3.4

GoogleNw 34967.2 505509.9 3799.3 137.3 1560.3 2.9

CA-CondMat 4073.9 10690.6 537.8 20.8 69.4 2.8

from s . As a result, SI is extremely fast: on all tested instances, its running time is always smaller

than 0.05 seconds, whereas AI can take up to seconds to update betweenness.

Compared to recomputation, SI is on average about 4200 times faster than Stat on directed

and about 33000 times on undirected graphs (geometric means of the speedups). Since SI has

shown to outperform other approaches in the context of updating the betweenness centrality of a

single node after an edge insertion, we use it to update the betweenness in the greedy algorithm

for the Maximum Betweenness Improvement problem (Section 5). Therefore, in all the following

experiments, what we refer to as Greedy is the Algorithm of Section 5 where we recompute

betweenness after each edge insertion with SI.

7.2.2 Running times of the greedy algorithm for betweenness maximization. In Section 5, we

already showed that Greedy outperforms all other heuristics in terms of solution quality, both

on directed and on undirected graphs (although we recall that the theoretical guarantee on the

approximation ratio holds only for directed graphs). In this section, we report the running times of

Greedy, using SI to recompute betweenness. Table 6 and Table 7 show the results on directed and

undirected graphs, respectively. For each value of k , the tables show the running time required by

Greedy when k edges are added to the graph. Notice that this is not the running time of the kth
iteration, but the total running time of Greedy for a certain value of k . Since on directed graphs the

betweenness of x is a submodular function of the solutions forMBI (see Theorem 5.2), we can speed

up the computation for k > 1 (see Algorithm 5). This technique was originally proposed in [40]

and it was used in [16] to speed up the greedy algorithm for harmonic centrality maximization. Let

∆bv (u) = bv (S ∪ {(u,v)}) −bv (S), where S is the solution computed at some iteration i ′ < i , that is,
∆bv (u) is the increment tobv given by adding the edge (u,v) to S at iteration i ′. Let LB be the current

best solution at iteration i . We avoid to compute bv (S ∪ {(u,v)}) at line 8 if LB ≥ bv (S) + ∆bv (u).
In fact, by definition of submodularity, ∆bv (u) is monotonically non-increasing and bv (S) + ∆bv (u)
is an upper bound for bv (S ∪ {(u,v)}). Then, LB ≥ bv (S) + ∆bv (u) implies LB ≥ bv (S ∪ {(u,v)}).

Although the standard deviation is quite high, we can clearly see that exploiting submodularity

has significant effects on the running times: for all graphs in Table 6 , we see that the difference in

running time between computing the solution for k = 1 and k = 10 is at most a few seconds. Also,

for all graphs the computation never takes more than a few minutes.

Unfortunately, submodularity does not hold for undirected graphs, therefore for each k we need

to apply SI to all possible new edges between x and other nodes. Nevertheless, apart from the

CA-CondMat graph (where, on average, it takes about 10 hours for k = 10) and ca-HepTh (where
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ALGORITHM 5: Greedy algorithm with pruning (exploiting submodularity).

Input :A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Output :Set of edges S ⊆ {(u,v) | u ∈ V \ Nv } such that |S | ≤ k

1 S ← ∅;
2 foreach u ∈ V \ (Nv (S)) do
3 ∆bv (u) ← 0;

4 for i = 1, 2, . . . ,k do

5 LB ← 0;

6 foreach u ∈ V \ (Nv (S)) do
7 if (i = 1) ∨ (LB < (bv (S) + ∆bv )) then
8 Compute bv (S ∪ {(u,v)});
9 ∆bv (u) ← bv (S ∪ {(u,v)}) − bv (S);

10 LB ← max(LB,bv (S ∪ {(u,v)}));

11 umax ← arg max{bv (S ∪ {(u,v)}) | u ∈ V \ (Nv (S))};
12 S ← S ∪ {(umax,v)};
13 return S ;

Table 6. The left part of the table reports the running times (in seconds) of Greedy on directed real-world

graphs for different values of k . The right part shows the standard deviations.

Running time Greedy STD. DEV. Greedy

Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10

subelj-jung 1.79 1.91 1.99 2.10 0.56 0.58 0.61 0.68

wiki-Vote 14.32 14.44 14.74 15.19 10.75 10.81 11.04 11.46

elec 12.47 12.57 12.81 13.13 7.80 7.83 7.99 8.16

freeassoc 81.52 83.01 87.00 96.60 66.27 67.88 70.84 82.01

dblp-cite 584.90 694.19 710.90 729.73 1060.50 1268.18 1296.99 1328.83

subelj-cora 1473.04 1504.96 1600.68 1688.39 1491.48 1526.95 1657.98 1784.74

ego-twitter 164.43 179.13 217.19 229.39 200.10 211.52 259.85 275.22

ego-gplus 211.39 225.58 230.26 240.29 195.22 186.00 188.82 196.78

munmun-digg 736.13 739.82 749.74 759.58 313.45 313.50 313.66 316.35

linux 1145.94 1239.16 1271.74 1311.28 822.06 917.50 933.02 951.61

Table 7. The left part of the table reports the running times (in seconds) of Greedy on undirected real-world

graphs for different values of k . The right part shows the standard deviations.

Running time Greedy STD. DEV. Greedy

Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10

Mus-musculus 27.06 87.80 394.30 1155.46 15.53 36.35 176.05 630.80

HC-BIOGRID. 34.54 85.98 289.84 701.50 9.63 25.63 100.04 217.76

Caenor-elegans 11.17 25.47 94.94 320.85 3.23 10.23 23.66 55.19

ca-GrQc. 19.76 43.01 149.43 438.98 8.64 20.65 53.63 96.31

advogato 12.42 28.07 81.79 299.05 1.56 13.96 28.23 147.66

hprd-pp 47.08 111.85 460.31 1561.82 12.84 29.65 59.01 439.32

ca-HepTh 100.34 464.66 2069.34 5926.75 42.83 282.09 604.61 1320.20

dr-melanog 71.43 160.89 614.92 2084.71 18.01 31.55 46.88 333.84

oregon1 30.66 69.06 191.63 441.09 4.87 9.41 23.99 76.51

oregon2 36.44 73.35 233.28 594.53 9.63 16.92 25.26 44.3 7

Homo-sapiens 99.82 276.09 1155.97 3554.53 20.30 54.42 258.89 673.55

GoogleNw 68.33 102.35 220.32 451.29 11.71 17.18 36.19 76.37

CA-CondMat 1506.68 3402.10 12177.24 36000.24 381.00 927.40 2178.47 17964.74

it takes about 1.5 hours), Greedy never requires more than 1 hour for k = 10. For k = 1, it takes

at most a few minutes. Quite surprisingly, the running time of the first iteration is often smaller

than that of the following ones, in particular if we consider that the first iteration also includes the
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initialization of SI. This might be due to the fact that, initially, the pivots are not very central and

therefore many edge insertions between the pivots and other nodes affect only a few shortest paths.

Since the running time of IA is proportional to the number of affected node pairs, this makes it

very fast during the first iteration. On the other hand, at each iteration the pivot x gets more and

more central, affecting a greater number of nodes when a new shortcut going through x is created.

To summarize, our experimental results show that our incremental algorithm for the betweenness

of one node is much faster than existing incremental algorithms for the betweenness of all nodes,

taking always fractions of seconds even when the competitor takes seconds. The combination of

it with our greedy approach for theMBI problem allows us to maximize betweenness of graphs

with hundreds of thousands of edges in reasonable time. Also, our results in Section 7.1 show that

Greedy outperforms other heuristics both on directed and undirected graphs and both for the

problem of betweenness and ranking maximization.

8 CONCLUSIONS

Betweenness centrality is a widely-used metric that ranks the importance of nodes in a network.

Since in several scenarios a high centrality directly translates to some profit, in this paper we

have studied the problem of maximizing the betweenness of a vertex by inserting a predetermined

number of new edges incident to it. Our greedy algorithm, which is a (1− 1

e )−approximation of the

optimum for directed graphs, yields betweenness scores that are significantly higher than several

other heuristics, both on directed and undirected graphs. Our results are drawn from experiments

on a diverse set of real-world directed and undirected networks with up to 10
5
edges.

Also, combining our greedy approach with a new incremental algorithm for recomputing the

betweenness of a node after an edge insertion, we are often able to find a solution in a matter

of seconds or few minutes. Our new incremental algorithm extends a recently published APSP

algorithm and is the first to recompute the betweenness of one node inO(n2) time. All other existing

approaches recompute the betweenness of all nodes and require at least O(nm) time, matching the

worst-case complexity of the static algorithm. Although extremely fast, our betweenness update

algorithm has a memory footprint ofΘ(n2), which is a limitation for very large networks. A possible

direction for future work could be to combine our greedy approach with dynamic algorithms that

compute an approximation of betweenness centrality. Since these algorithms require less memory

than the exact ones, they might allow us to target even larger networks.

Also, future work could consider extensions of the problem studied in this paper, such as allowing

additions of edges incident to other vertices or weight changes to the existing edges.
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