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ABSTRACT
�is paper presents a method that uses common objects as land-

marks for smartphone-based indoor localization and navigation.

First, a topological map marking relative positions of common ob-

jects such as doors, stairs and toilets is generated from �oor plan.

Second, a computer vision technique employing the latest deep

learning technology has been developed for detecting common

indoor objects from videos captured by smartphone. �ird, second

order Hidden Markov model is applied to match detected indoor

landmark sequence to topological map. We use videos captured by

users holding smartphones and walking through corridors of an

o�ce building to evaluate our method. �e experiment shows that

computer vision technique is able to accurately and reliably detect

10 classes of common indoor objects and that second order hidden

Markov model can reliably match the detected landmark sequence

with the topological map. �is work demonstrates that computer

vision and machine learning techniques can play a very useful role

in developing smartphone-based indoor positioning applications.
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1 INTRODUCTION
Location based services can bene�t consumers greatly and have

witnessed rapid development in the past decade. However, these

services mainly focus on outdoors because there is still a lack of

a robust indoor positioning technology. GPS does not function in

indoor environments because its signal is weakened or even blocked

by the wall or the surface of the building. How to obtain location

information quickly and reliably still remains a big challenge for

indoor localization based service.

�ere have been a�empts to use smartphone camera for indoor

localization [16, 19, 21, 27]. �ese methods exploit computer vision

techniques to estimate people’s location. �ey fall into two cate-

gories: methods based on image retrieval and methods based on

structure from motion. �e former uses images captured by smart-

phone camera to search for similar images in the image dataset

whose position and orientation are already known. It requires huge

o�ine e�orts and is easy to get stuck in scene ambiguity in which

similar scenes appear in di�erent locations. �e la�er estimates

location by solving vision geometry but does not work in the low

texture environment.

In this paper, we propose an image-based approach to obtain-

ing location information by recognizing landmarks in the indoor

environment. Instead of directly comparing images, landmark se-

quence are extracted from video sequence and match landmarks

with a topological map generated from �oor plan map. �e idea

behind this is that for indoor way-�nding scenario in an unfamiliar

environment, precise localization might not be needed and coarse

localization is enough to navigate people to their destinations. Since

landmark sequence is used to map to a topological map, geo-tagged

image database is avoided and much o�ine labour cost is saved.

Also, our method does not require indoor environment to have

highly textured surface.

To achieve it, a landmark detection approach based on convolu-

tional neural network (CNN) is developed which aims to extract

landmark sequence from a smartphone video, and second order hid-

den Markov model is used to match the detected landmark sequence

to landmarks on the topological map. �e main contributions of

the paper are two-folds:

(1) A novel landmark detector that is able to recognize two

distinctive types of indoor landmarks, indoor objects and
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indoor scenes (intersections and corners) in a uni�ed CNN

network.

(2) A landmark matching algorithm based on a second order

hidden Markov model is developed. It solves scene ambi-

guity problem where traditional methods have failed.

2 RELATEDWORKS
�e proposed method is mainly consisted of two processes, land-

mark detection and localization. We brie�y review related works

in these two areas.

2.1 Visual Landmark Detection
Landmarks can be divided into two categories: natural and arti�cial.

Arti�cial landmarks are usually designed to tackle challenges of

varying illuminations, view points and scales. �ey have many

advantages. �ey are easily and precisely detected since they are

designed based on known rules. �ose rules not only aid handling

variation of objects in the image but also act as guidance to de-

velop detection strategies. However, the drawbacks are di�cult to

overcome. Deploying those landmarks changes building decoration

which might not be feasible due to economic or owners’ tastes,

resulting in limitation in its application. Natural landmarks avoid

changing indoor infrastructure by exploiting physical objects or

scenes of the indoor environment. Common objects like doors, ele-

vators, �re extinguishers and interesting locations like corners and

turns are able to act as landmarks. �ey usually remain unchanged

in a relatively long period and are able to be seen frequently in the

indoor environment. �e main challenge of natural indoor land-

mark detection is that an accurate and robust method is lacking.

Many techniques based on handcra�ed features derived from their

color gradient or geometric information. [12] viewed planar and

quadrangular objects as landmarks and detected them based on

geometric shape. [6] viewed along-path objects as landmarks and

they are used for localization. [11] proposed a landmark-based

algorithm in which landmarks are represented with a set of SURF

features. [1] used SIFT features to compare a landmark with land-

marks pre-stored in the database. [24] presented a localization and

navigation system based on landmarks, they exploited doors, stairs

and tags in the environment as landmarks. SURF features and lines

are used to recognize those landmarks. [25] presented localization

methods based on indoor objects like doors, elevators, and cabinets

based on geometric shape using edges and corners. �eir approach

provided high performance when dealing with certain landmarks.

Current approaches either focus on certain types of object or fail

to work with landmarks whose background are of high texture in-

formation. Besides, few researchers have tried to detect landmarks

that are made up of corners and turns.

In this paper, we view landmark detection as a classi�cation prob-

lem. Unlike previous approaches that recognize indoor objects rely-

ing on handcra�ed features, deep learning neural network is chosen

to recognize indoor objects and interesting locations at the same

time. CNN have proved its high performance in classi�cation[9]

and indoor scene recognition[28] and outperformed approaches

based on handcra�ed feature.

2.2 Localization
Many positioning algorithms have introduced landmark informa-

tion for indoor localization. Basically, landmarks are taken as sup-

porting information to reduce the error dri� of dead reckon ap-

proaches [7, 8, 10]. In this paper, we focus on topological localiza-

tion with visual landmarks.

Many approaches performed landmark-based localization under

geometric scheme. [4] have proposed a method using more than 3

landmarks for localization to estimate the user’s position by apply-

ing geometric triangulation. [13] proposed a localizing algorithm

based on a single landmark and the accurate position was estimated

based on an a�ne camera model between 3-dimentional space and

projected image space.

Another localization scheme is based on landmark retrieval. A de-

tected landmark is matched to landmarks on a topological map and

the location is assigned with the location of most similar one on the

map. Many visual representations of landmarks are directly used

to perform the match. [16] used omnidirectional panoramic images

taken in di�erent positions to represent landmarks and PCA-SIFT

was applied to perform image matching. [2] developed a landmark-

based navigation system using QR codes as landmarks and user’s

location determined and navigated by recognizing quick response

code registered in the landmark’s location. Other presentations are

developed based on prior color distribution[13], shape[3, 30], light

strength[22] or region connection relations[20]. However, in in-

door environment, it is sometimes not feasible to match landmarks

just based on visual feature due to duplication of objects and struc-

ture. [25] exploited text information around doors to handle this

challenge. However, it is not able to apply to other indoor objects

without tags around them. [5, 17, 29] exploited contextual informa-

tion using hidden Markov model (HMM) to recognize landmarks

and achieved good result. Common HMM model fails in situations

of high ambiguity because it only considers current landmark to

recognize the next landmark. In this paper, we develop a second

order hidden Markov model to match landmarks to the map. It

considers previous two landmarks when match current one. In

this manner, more contextual information is taken into account to

recognizing the landmarks and indoor scene ambiguity is greatly

reduced.

3 LANDMARK DETECTION USING
CONVOLUTIONAL NEURAL NETWORK

3.1 Landmark De�nition
Indoor objects like doors, �re extinguishers, and stairs can be used

as landmarks, some examples are shown in Figure 1. In this pa-

per, three types of landmarks are de�ned: single object landmarks,

multiple object landmarks, and scene landmarks. Single object land-

marks consist of one object like a �re extinguisher or an elevator.

Multiple object landmarks combine more than one objects together

to identify a single location. Examples of this type include a door

object and a tag object on the door. Multiple objects together can

enhance the landmarks uniqueness and reduce ambiguity. Scene

landmarks are key locations of the indoor structure such as corners,

intersections or halls.

�ese three types of landmarks are detected relying on the indoor

object and scene recognition result. �e process is divided into two
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Figure 1: Common indoor objects and interesting locations

phases: o�ine and online phase. During o�ine phase, a CNN

network is trained to recognize indoor objects and indoor scenes.

In online phase, images are extracted from video sequence �rst,

then region proposal algorithm is used to generate image patches

containing the indoor objects, and �nally the image patches are

inpu�ed to a trained CNN network to recognize objects. Landmark

types are determined with indoor object recognition result. Figure

2 illustrates the process.

3.2 Convolutional Neural Networks for Object
Detection

Recent years has seen the great success of convolutional neural

networks in computer vision tasks including object recognition

and classi�cation. Real-time performance has been achieved in

object detection with high accuracy [23]. In our landmark detection

application, we retrain AlexNet[18] to recognize indoor objects and

scenes. �ere are 5 convolutional layers and each is tailed by a

max pooling layer in it. Two full convolutional layers are used

to concentrate on global features a�er convolutional layers. �e

input layer takes image pixel as input. �e output layer provides

the probability of each prede�ned classes that input image belongs.

�erefore, the number of neurons of the output layer is the same as

the number of classes to classify. AlexNet is selected for two reasons.

�e �rst is its high performance in image classi�cation. Secondly,

it has relatively fewer layers and thus is computationally e�cient.

AlexNet is originally designed for ImageNet competition, which

aims to recognize 1000 types of objects. However, not all indoor

objects are included. �erefore, network architecture needs to be

modi�ed to adapt to landmark detection. Pre-trained CNN network

is capable to extract key image information. We directly use their

weights and only learn output layer for landmark detection. �e

number of neurons in output layer is the same as the indoor object

and scene classes. So�max function is chosen as the activation

function of output layer neurons.

3.2.1 Frame Extraction. In the online phase, the �rst step is

video frame extraction. For image extraction, sampling rate is vital

Figure 2: Flowchart of indoor landmark detection

for landmark detection accuracy and e�ciency. If the rate is set very

low, successive images have low overlap or even have no overlap

at all. �is can make an object not be completely seen in an image

or some objects appear in the images thus missing some landmarks.

High sampling rate leads to information redundancy, resulting in

low landmark detection e�ciency. Empirically, overlap between

two successive images should be over 90%, in order to avoid missing

landmarks. Overlap can be roughly estimated using equations 1

and 2. �ey are applied in two scenarios: walking along a line and

turning to another direction.

Overlap = 1 − V

2H tan( θ
2
)Hz
× 100% (1)

Overlap = 1 −
Vanд

Hzθ
× 100% (2)

whereV represents walking speed and H is the average distance

between camera and surrounding environment. θ is the �eld of

view of camera in each mobile phone. Hz represents sampling rate.

Vanд is the angular velocity.

Generally speaking, humans walking speed is about 1. 4-2 m/s

and turning 90°in 0. 8 second. In order to achieve over 90% overlap,

empirically 3-5 frames per second would satisfy the requirement.

3.2.2 Region Proposal. Frequently more than one indoor enti-

ties (such as �oor, chairs, tables, etc), whether they are of interest

or not, appear in the images captured in an indoor environment.

�eir appearances a�ect the performance of recognizing targets.

Objects are usually detected depending on their color and texture.

Appearance of distracting objects decreases recognition accuracy.

�erefore, �nding a region that only contains an interesting target

can greatly increase object detection accuracy. Instead of generat-

ing patches based on object salience[15], here we choose a selective

search algorithm to generate interesting regions from images[26].

�e process contains two steps. At �rst, an over-segmentation al-

gorithm is chosen to generate massive initial regions in a variety of

color space with a range of di�erent parameters. �en a hierarchical

grouping strategy based on diverse similarity measurements like

color, texture, size and �ll, also various starting points, is applied.

In this way, a set of candidate regions are generated of various

sizes. Note that users usually are close to the landmark in indoor

environment. Landmarks cover certain space of captured image.
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�ose regions of small size are of low possibility to have interesting

indoor objects in them. �erefore, se�ing a threshold to �lter them

increases detection e�ciency. Here the threshold is set to 50. (�e

value was determined empirically based on our data).

3.2.3 Landmark Detection. For an image extracted from video,

a�er indoor object recognition stage, there are two results: having

indoor object and no indoor object. Images with no indoor object

are useless and are discarded. For images having objects, trained

CNN network recognizes object type. If object is used for de�ning

single object landmark, then a landmark is detected. If objects are

components of multiple objects landmarks, more information are

needed to determine landmark type.

In order to avoid separating indoor objects or missing objects,

video is sampled with high overlap rate. �e disadvantage it brings

is that a single object is seen in more than one images. �erefore,

instead of determining landmark-based on a single image, a suc-

cessive image sequence is used to recognize landmarks. Another

reason for this is that multiple indoor objects can be seen in an im-

age sequence to determine multiple objects landmark, which might

not be detected in a single image due to their size and position.

A�er landmark detection, the video sequence is divided into

landmark segments. A landmark segment starts with the �rst frame

when a landmark type is detected and ends with the last frame

containing the current landmark.

4 VISUAL SEQUENCE LOCALIZATION USING
SECOND ORDER HIDDENMARKOVMODEL

Given a sequence of landmark types detected from a video, a match-

ing algorithm is needed to match the landmarks and locations on

the topological map. Indoor scenes are usually very similar in the

visual space. Directly matching visual features of detected land-

marks and those recorded on the �oor map can cause ambiguity.

We leverage both visual semantic information and contextual in-

formation using second order hidden Markov model to perform

topological localization.

4.1 Second Order Hidden Markov Model
Hidden Markov model is a Markov model whose states can not

be directly measured but can be estimated from observation indi-

rectly. However, observations usually are not su�cient to precisely

determine state alone. �ey generally satisfy certain probability

distribution given a state. For landmark-based indoor localization

problem, it also can be modelled with hidden Markov model. De-

tected landmark sequence is observation and landmark locations

on the map are the states. �e localization process can be regarded

as the problem of �nding most possible location sequence, given a

sequence of landmark observations.

In practice, people are unlikely to walk back and forth between

two locations. Hidden Markov model is incapable of excluding such

probability. �erefore, we introduced second order hidden Markov

model (HMM2) to cope with it.

4.1.1 Transition Matrix of HMM2. Unlike transition matrix of

hidden Markov model which is a 2 dimensional matrix, the transi-

tion matrix of HMM2 is 3 dimensional. Its value ai, j,k means the

probability that next state is k , given the condition that previous

state is i and current state is j. For landmark-based indoor local-

ization problem, it represents probability of going through certain

landmark position given previous two landmarks positions.

To eliminate the possibility that users walk back and forth, matrix

values are assigned to zero, which indicate that next state and

previous state are the same. �e rest of the matrix values are set

based on topological map. Each edge from the same node is given

the same probability.

With the constructed HMM2 model and the observed landmark

sequence, we aim to �nd the most probable match between the

observed landmark sequence and a location sequence on the topo-

logical map. �is task can be solved using Viterbi algorithm. Tra-

ditional Viterbi algorithm is developed for HMM. It needs to be

extended for HMM2.

4.2 Extended Viterbi Algorithm
For landmark-based indoor localization, we aim to recognize the

landmark with the highest probability, given previous observation

sequence and the hidden Markov model parameters. Assume that

a hidden Markov model is known with states set called S. Initial

probability πi represents the probability that the process starts from

state i . Ai j is the transition probability that the process move from

i to j. Observation sequence is U = Y {y1,y2 . . . yi} , the most

likely state sequence of U is X = {x1,x2 . . . xi} . We aim to �nd

the sequence of states that has the maximum probability given the

observation sequence. From Bayesian theory,

P(X |U ) = P(U |X )P(X )
P(U ) (3)

where P(U |X ) denotes, the probability distribution of observation U,

given state X. In hidden Markov model, it is represented as emission

matrix. P(X ) is the prior probability distribution of X . For hidden

Markov model, it represents the probability distribution of state

sequence X . P(U ) is the probability distribution of observation

sequence. It is a constant value. Hence the solution to maximizing

P(X |U ) and maximizing дu(X ) are the same.

дu(X ) = P(U |X )P(X ) (4)

Suppose that we have n observations. Taking logarithm of дu(X ),
equation 4 is changed to equation 5.

lдu(X ) = loд(дu(X )) =
n∑
j=1

loдP(yi |Xi ) + loдP(x1,x2, . . . xn ) (5)

Since logarithm function is monotonically increasing, lдu(X ) and

дu(X ) share the same solution for the maximization problem. Note

that hidden Markov model requires next state only depends on

current state. LoдP(x1,x2 . . . ,xn ) can be changed as follows.

loдP(x1,x2, . . . xn ) = (
n∑
j=2

loдP(x j |x j−1)) + loдP(x1) (6)

�e Viterbi algorithm is used to �nd the largest states sequence

that maximizes loдP(x1,x2, . . . , xn ). For any step k , M values are

maintained that represent the largest probability of path end at each

state, based on observation yk and previous path. For each state,

we compute the largest possible move and update the probability
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cost and record the move start. �e process are as follows.

V
1,k = P(y1 |k) × πk (7)

Vt,k =max(P(yt |k) × ax,k ×Vt−1,x ) (8)

Ptr (k, t) = arg max

k
(P(yt |k) × ax,k ×Vt−1,x ) (9)

whereVt,k is the probability of the most probable state sequence

given t observations that have k as its �nal state. Since second

order HMM considers previous state and current state to predict

next step, thus equation 6 has to be changed to equation 10.

loдP(x1, . . . , xn ) =
n∑
j=3

loдP(x j |x j−1,x j−2)+loдP(x2 |x1)+loдP(x1)

(10)

Initial stage and recursive stage are needed to modify. Initial cost

is initialized with equations 11 and 12. Recursive stage is changed

to equations 13 and 14.

V(1,k) = P(y1 |k) × πk (11)

V2(l ,m) = V1,k × a(l ,m) × P(y2 |k) (12)

Vt (m,n) =max(Vt−1(l ,m) × a2(l ,m,n)) × P(yt |k) (13)

Ptrt (m,n) = arg max

l
(Vt−1(l ,m) × a2(l ,m,n)) (14)

�e extended algorithm is summarized in algorithm 1.

Algorithm 1: Extended Viterbi �nds the location sequence of

maximum probability

Input: A sequence of observations Y , transition Matrix A1,A2,

emission matrix B, initial location π
Output: A sequence of States

1 Def: N , number of locations; M , number of landmark type; K ,

number of observations

2 Initialization:

3 V1 = A1 × π × B
4 Recursion:

5 Vt = Vt−1 ×A2 × Bt
6 Ptrt = arg max (Vt−1 ×A2)
7 Back trace:

8 XK = arg maxn (VN ) n column index of the V

9 XK−1 = arg maxm (VN ) n row index of the V

10 Xt = Ptrt+1(Xt+1,Xt+2)
11 Return X ;

4.3 Localization Schemes
Given a sequence of landmark type, Viterbi algorithm searches the

most probable path by comparing probabilities of possible path

candidates. �e number of path candidates is calculated to indicate

localizing result. When the number of path candidate converges

to 1, it means that route is localized. In real applications, users

need to be noti�ed once the path is localized. �ere is no need

to wait until they �nish the path. A real-time positioning report

is required while walking. �ere are two localization schemes.

Online scheme: Whenever a new observed landmark type is added

to the observation sequence, the Viterbi algorithm is performed

to �nd the matching landmark on the topological map for the

new observation. O�ine scheme: A�er all landmarks are detected,

the observed landmark sequence is matched to a most probable

landmark sequence on the topological map using the the Viterbi

algorithm.

5 EVALUATION
5.1 Setup
To evaluate the proposed method, we conduct our experiment on

the B �oor of computer science school in the University of Not-

tingham. �is is a typical o�ce environment with many corridors

and o�ce rooms. Its �oor plan map is shown in Figure 3. �e

topological map is produced from �oor plan and is shown in Figure

4. It shows the distribution of landmarks of the environment. Node

color represents the type of landmark and edge indicate adjacent

relationship between two landmarks. �ere are 65 landmarks in the

environment belonging to 8 types which are: o�ce room, stair, ele-

vator, �re extinguisher, man’s toilet, woman’s toilet, disabled toilet

and intersection (corner). Among them, �re extinguisher, stair and

elevator belong to single object landmark. O�ce rooms and toilets

are multiple objects landmarks. Intersection is scene landmark. In

the topological map, there exist some landmarks only appeared

once, which we refer as unique landmarks. �ey include man’s toi-

let, woman’s toilet, disabled toilet and elevator. Landmarks appear

more than once are referred as common landmarks.

A participant was asked to walk along 5 routes observing various

types and number of landmarks. An Honor android mobile phone

was �xed on the arm of the participant with a side view while

the participant walked. We collected a video for each route and

obtained 5 videos in total. For the 5 videos, the �rst two are taken

with the camera on the le� arm and the last three with camera on

the right arm.

Route 1: �is route goes through 15 landmarks. It starts from

o�ce door (node 52) and ends in the intersection (node 14) in topo-

logical map. It walks through a sequence of o�ce door, containing

a corner, an up turn and a le� turn. In this route, there are all

common landmarks.

Route 2: Route 2 starts from the le� stair and goes straight to the

end corner of the corridor. 10 landmarks exist in this route which

includes 3 unique landmarks.

Route 3: Route 3 contains 14 landmarks which consists of both

unique landmarks and common landmarks. It begins from an inter-

section (node 16) and goes through a sequence of o�ce doors, turn

and elevator and reaches le� stair. In this route, unique landmarks

exist at the end of the landmark sequence.
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Figure 3: Floor plan map of B �oor

Route 4: �is route starts from a turn (node 16) and ends at o�ce

(node 65) , going through an upturn, a le� turn and a downturn,

containing 17 landmarks. Route 4 just contains common landmarks

but the quantity is larger than Route 1.

Route 5: Route 5 begins from a turn named node 16 in the topo-

logical map and goes up to the end of the corner then turns le�.

It goes strait until reaching the turn (node 19). It goes down to

the turn (node 17). �ere are 22 landmarks in this route. In this

route, unique landmarks encounter in the middle of the landmark

sequence.

5.2 Training Indoor Object Classi�er
Our experimental environment consists of 10 classes of objects.

�ese are, 8 classes of indoor objects including door (DR), woman’s

toilet tag (WMTT), man’s toilet tag (MTT), disable toilet tag (DTT),

�re extinguisher (FE), door plate (DP), elevator (ELV), and stair

(ST); one class of scene object (corner or intersection); and one

type of background object (walls). Together, they form 7 types of

landmarks.

We obtained about 500 images containing these 10 types of

indoor objects and about half of these are were used for training

(�ne-tuning a CNN pre-trained on ImageNet data) and the rest

for testing. �ese data comes from two sources, images on the

Internet and video frames from scenes of the B �oor corridor of the

Computer Science building at the University of No�ingham, UK.

We collected images from the Internet because images for certain

classes are relatively fewer than others. For instance, images of

toilets tags are far less than that of doors. Training dataset should

be balanced in every class in order to achieve high generalizing

ability of the classi�er.

5.2.1 Training and Testing. We selected Alexnet as the basic

network and �ne-tuned it for our application. �e output layer was

modi�ed by changing the number of neurons from 1000 to 10. �e

network is initialized with weights that won ImageNet classi�cation

Champion in 2012 except the output layer. �e output layer was

initialized with normal Gaussian distribution. CNN network was

trained under Ca�e[14]. It was trained in an MSI laptop in GPU

mode. �e laptop is installed with windows 10 system and its

Figure 4: Corresponding landmark topological map of B
�oor. Color codes di�erent landmark types. Fire extin-
guisher (Red), intersection (Black), stair (Yellow), o�ce
(Blue), elevator (Silver), man’s toilet (Green), woman’s toilet
(Dark Green) and disabled toilet (Light Green)

Table 1: Confusion matrix of trained CNN network

Type DTT DP ELV FE MTT DR ST TN WLL WMTT

DTT 10 0 0 0 0 0 0 0 0 0

DP 0 20 0 0 0 0 0 0 0 0

ELV 0 0 10 0 0 0 0 0 0 0

FE 0 0 0 47 0 0 0 0 0 0

MTT 0 0 0 0 9 0 0 0 0 1

DR 0 0 1 0 0 55 0 0 3 1

ST 0 0 0 0 0 0 19 0 0 0

TN 0 0 0 0 0 0 0 7 0 0

WLL 0 0 0 0 0 0 0 0 12 0

WMTT 0 0 0 0 1 0 0 0 0 9

processor is Intel i7 and with a RAM of 8GB. �e graphic card is

Nvidia GTX970M. Parameters of the convolutional layers and fully

connected layers are kept �xed and only learned the parameter of

our output layer.

5.2.2 Result. �e confusion matrix in table 1 is generated based

on testing images. �e overall accuracy is 96. 6%. �e classi�cation

accuracy of each class are 100%, 100%, 100%, 90. 9%, 100%, 90%,

100%, 100%, 100%, 80% and 81. 81% respectively. It shows that the

trained CNN network performed very well in recognizing these

indoor objects although some misclassi�cation happened. Small

number of wrongly classi�ed object appeared for certain reason.

For disable tag, door plate and �re extinguisher, stair and turn,

all the testing image are correctly classi�ed since they are quite

di�erent among other classes in color, shape or scene. An elevator

image is classi�ed as door, a woman’s toilet tag is detected as man’s

toilet tag and a man’s toilet tag is seen as the woman’s. It was

because they are similar in shape. 3 wall images are classi�ed as

o�ce door. It is caused by the fact that the wall in these scenes
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Table 2: Landmark detection performance in real test

Route number of landmark detected

1 15 15

2 10 10

3 14 14

4 18 18

5 22 22

are made of white board with metallic edge, which is very similar

to white door from the environment. In our case, 96. 6% accuracy

is high enough for detecting indoor landmarks. However, be�er

performance can be achieved by adding more training samples on

those easily mistaken classes.

5.3 Landmark Sequence Detection
Performance

All 5 videos were sampled at the rate of 3 frames per second. �is

rate is selected depending on walking and turning speed. �ese

images are processed with selective search algorithm to generate

patches. Image patches are gone through pre-processing like re-

sizing and transformed to the format of Ca�e detect indoor objects.

Landmark is determined from the classi�cation result according to

the strategy in section 3.2.3.

Figure 5 shows ground truth and landmark detection result. Each

line segment represents a landmark. �e result shows that all

landmarks of 5 videos are found, given the fact that number of

red and green line segments are the same in every route. �e

detection result of each landmark sequence is shown in Figures 6,

7, 8, 9 and 10. Table 2 shows statistical result of landmark detection

performance of these 5 videos. It demonstrates that our detector

has correctly recognized the landmarks in this scene. However, it

has to be admi�ed that in other more clu�ered scenes result may

not be as good.

5.4 Evaluation of HMM2 for Localization
5.4.1 Online Performance. With the landmark sequence detec-

tion result, HMM2 is applied to �nd the location of the users when

a new landmark type is detected from video frames. In this part,

we compare the online performances of our proposed method with

HMM in two situations: with initialization and without initializa-

tion.

Figure 11 shows the performance of HMM and the proposed

HMM2 on 5 routes when the staring position is known and un-

known respectively.

Route 1 consists of common landmarks. In unknown starting

position condition, curve of HMM �uctuates while curve of HMM2

shows a converging trend and �nally converges when the 15th land-

mark is detected. In known starting position case, HMM converges

with 7 landmarks and begins to increase from the 8th landmark.

HMM2 remains convergent until 14th landmark is observed, and

becomes convergent with 15 landmarks.

Route 2 contains several unique landmarks and is hard to be

confused with other routes. �e curves in Figure 11 also proves

that both methods in the two cases converge.

Route 3 begins from common landmarks and ends with unique

landmarks. �e curves all converge when unique landmarks are

observed. Given a common landmarks sequence, HMM2 shows

a trend to converge with more landmarks observed, while HMM

�uctuates. When starting position is provided, HMM2 converged

for all routes.

Route 4 is also made up of common landmarks but more than

Route 1 in quantity. It shows similar trend as in Route 1. HMM

tends to have more path candidates while HMM2 has a tendency

to converge. Knowing starting position helps the algorithm to

converge.

Route 5 contains both common and unique landmarks and has

unique landmarks in the middle of the sequence. Both HMM and

HMM2 achieved good performance before passing the unique land-

marks. HMM2 converged when more landmarks were detected

while HMM failed to converge.

HMM fails to localize routes consisting of long common land-

marks while HMM2 provides be�er results. Knowing starting posi-

tions and unique landmarks both aid to �lter out wrong candidates

and speed up convergence.

�e HMM2 curve �uctuates when certain landmarks are ob-

served. It is due to that landmark candidates have the same obser-

vation and both connect with the current landmark. For instance,

in route 1, HMM2 changes from convergence to divergence. It

is because node 13 is connected to two nodes 3 and 4, and their

observations are both �re extinguishers. Same things happen in

route 5 at node 2, 8 and 16.

5.4.2 O�line Performance. O�ine matching is done a�er all

landmarks are detected and we match the whole landmark sequence

with the topological map. �e ground truth routes and predicted

routes are shown in Table 3. �e result shows that the proposed

method is capable of localizing users accurately except for Route

4 with no starting information. It demonstrates the e�ectiveness

of the proposed method. In route 4, the proposed method did not

converge to a single path. It is because Route 4 only involved

common landmark types. It can localized with more landmarks.

6 CONCLUSION
�is paper presents a novel landmark sequence-based indoor lo-

calization method using a smartphone camera. A new landmark

approach is proposed based on a deep learning neural network

and second order hidden Markov model is applied to recognize

a consecutive locations of indoor topological map given detected

landmark sequence from the user’s traveling path. �e advantage

of the proposed method are 1) CNN neural network is introduced

to detect both object and indoor scene landmarks using the same

network; 2) context information and visual appearance are both ex-

ploited to recognize landmarks for localization. Experiment result

demonstrated the e�ectiveness of proposed method. In this paper,

only visual information is considered. Geometric information or

Wi-Fi information can help with landmarks-based localization by

providing geometric and wireless signal description of landmarks.

In the future work, we tend to combine visual landmarks with other

technologies like Wi-Fi and IMU to increase localization e�ciency.
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Figure 5: Landmark detection result. Each line segment indicates a video segment of a landmark. Red line represents ground
truth and green line represents the detection result

Table 3: Routes localization Results

Route Situation Route Chain

Route1 True Route

Predict Route without Initialization

Predict Route with Initialization

Route2 True Route

Predict Route without Initialization

Predict Route with Initialization

Route3 True Route

Predict Route without Initialization

Predict Route with Initialization

Route4 True Route

Predict Route without Initialization

Predict Route without Initialization

Predict Route with Initialization

Route5 True Route

Predict Route without Initialization

Predict Route with Initialization
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Figure 6: Landmark detection Result of Route 1

Figure 7: Landmark detection Result of Route 2

Figure 8: Landmark detection Result of Route 3
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