
HAL Id: hal-01552462
https://hal.science/hal-01552462v1

Submitted on 3 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid approach for computing products of
high-dimensional geometric algebras

Stéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand,
Werner Benger, Christian Steinmetz

To cite this version:
Stéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand, Werner Benger, et al.. A
hybrid approach for computing products of high-dimensional geometric algebras. CGI / ENGAGE
2017, Jun 2017, Hiyoshi, Japan. pp.1 - 6, �10.1145/3095140.3097284�. �hal-01552462�

https://hal.science/hal-01552462v1
https://hal.archives-ouvertes.fr

A hybrid approach for computing products of high-dimensional
geometric algebras

Stéphane Breuils

LIGM (UMR 8049),

F-77454, Marne-la-Vallée, France

stephane.breuils@u-pem.fr

Vincent Nozick

JFLI (UMI 3527), CNRS, NII

Tokyo, Japan

vincent.nozick@u-pem.fr

Laurent Fuchs

XLIM-ASALI (UMR 7252), CNRS,

Université de Poitiers, Poitiers, France

Laurent.Fuchs@univ-poitiers.fr

Dietmar Hildenbrand

Hochschule RheinMain

Rüsselsheim, Germany

dietmar.hildenbrand@gmail.com

Werner Benger

AHM So�ware GmbH / Louisiana

State University, Center for

Computation & Technology

Innsbruck, Austria /

Baton Rouge, USA

w.benger@ahm.co.at

Christian Steinmetz

TU Darmstadt

Darmstadt, Germany

steinmetz@dik.tu-darmstadt.de

ABSTRACT
Geometric Algebra is considered as a very intuitive tool to deal with

geometric problems and it appears to be increasingly e�cient and

useful to deal with computer graphics solutions. For example, the

Conformal Geometric Algebra includes circles, spheres, planes and

lines as algebraic objects, and intersections between these objects

are also algebraic objects. More complex objects such as conics,

quadric surfaces can also be expressed and be manipulated using

an extension of the conformal Geometric Algebra. However due to

high dimension of their representations in Geometric Algebra, im-

plementations of Geometric Algebra that are currently available do

not allow e�cient realizations of these objects. �is paper presents

a Geometric Algebra implementation dedicated for both low and

high dimensions. �e proposed method is a hybrid solution for

precomputed code with fast execution and runtime computations

with low memory requirement. More speci�cally, the proposed

method combines a precomputed table approach with a recursive

method using binary trees. Some rules are de�ned to select the

most appropriate choice, according to the dimension of the algebra

and the type of multivectors involved in the product. �e resulting

implementation is well suited for high dimensional spaces (e.g. al-

gebra of dimension 15) as well as for lower dimensional space. �is

paper details the integration of this hybrid method as a plug-in into

Gaalop, which is a very advanced optimizing code generator. �is

paper also presents some benchmarks to show the performances of

our method, especially in high dimensional spaces.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

CGI ’17, Yokohama, Japan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5228-4/17/06. . . $15.00

DOI: 10.1145/3095140.3097284

CCS CONCEPTS
•Mathematics of computing →Mathematical so�ware per-
formance; •�eory of computation →Computational geometry;
•Computing methodologies →Representation of mathematical
functions;

KEYWORDS
Geometric Algebra, Implementation, High dimensional space

ACM Reference format:
Stéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand,

Werner Benger, and Christian Steinmetz. 2017. A hybrid approach for

computing products of high-dimensional geometric algebras. In Proceedings
of CGI ’17, Yokohama, Japan, June 27-30, 2017, 6 pages.

DOI: 10.1145/3095140.3097284

1 INTRODUCTION
Geometric algebras can be understood as a set of very intuitive tools

to represent, construct and manipulate geometric objects. Some

works [7, 13, 14, 16] proved that Geometric Algebra can be used

very advantageously in computer graphics and computer vision.

Other works [9] and [8] show that geometric algebra can be used

to express and transform more complex objects such as conics and

quadrics.

�ere already exists numerous geometric algebra implementa-

tions, and most of the programming languages or famous mathe-

matical frameworks can �nd a geometric algebra library well suited

for a comfortable use. However, very few of these libraries can

handle computations in high dimensional spaces, i.e. more than 12.

Moreover, the huge size of the subspace generated by high dimen-

sional spaces makes these few libraries very slow to process. �is

paper presents a new method based on binary trees and tables that

e�ciently computes Geometric Algebra for both low and higher

dimensional spaces. �e key feature of the proposed method is

to assign the computation to either the binary tree or the table

according to the dimension of the multivectors involved in the

product.

�e paper is organized as follows: Section 2 presents a state of

the art of the main geometric algebra implementations. Section 3

CGI ’17, June 27-30, 2017, Yokohama, JapanStéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand, Werner Benger, and Christian Steinmetz

discusses the implementation constraints related to high dimen-

sional spaces. Section 4 describes the proposed hybrid method.

Finally, Section 5 details the integration of the hybrid approach as

a plug-in into Gaalop, a very advanced geometric algebra tool.

2 STATE OF THE ART
�ere exist various implementations of geometric algebra, each of

them dedicated for a speci�c use. Some of these implementations

are designed to �t to a speci�c framework as a plug-in. �is is the

case for the library CLIFFORD [2] developed by Rafal Ablamowicz

and Bertfried Fauser, based on Maple. More recently, Steve Sang-

wine and Eckhard Hitzer developed a Multivector Toolbox [19]

for Matlab. Maxima also �nds its Cli�ord Algebra implementa-

tion [18] presented by Dimiter Prodanov. Some implementations of

geometric algebra target a speci�c programming language like GAl-

gebra [4] for Python or GALua [15] for Lua. Versor [6] developed

by Pablo Colapinto is a C++ library that focuses on 5D conformal

geometry. CLUCalc [17], conceived and wri�en by Christian Per-

wass handles more general geometric algebras. Finally, Gaalet [20]

proposed by Florian Seybold, standing for Geometric Algebra AL-

gorithms Expression Template, is also a C++ library and uses ex-

pression templates and metaprogramming techniques.

All these libraries present a comfortable use in their dedicated

framework or programming language and are very well suited for

experimentations in geometric algebra. Some other libraries ex-

pressly focus on computation performance. �e main way to speed

up the process is to precompute a selection of geometric algebra

operations. �e level of optimization can range from very high but

quite static to less optimized with more �exibility.

�e most optimized libraries perform most of the computation

during the compilation stage from a simple high level language.

�e optimizations are obtained by a low level source code gen-

eration as well as with some symbolic optimizations in terms of

algebra. �e most advanced program in this category is certainly

Gaalop [5, 13] developed by Dietmar Hildenbrand et al. Gaalop,

standing for Geometric Algebra Algorithms Optimizer, uses sym-

bolic operations wri�en in CLUCalc to produce C++, C++ AMP

(Accelerated Massive Parallelism), OpenCL, CUDA, CLUCalc or La-

TeX optimized output. GMac [10] developed by Ahmad Hosny Eid

is also a very optimized library for geometric algebra. GMac stands

for Geometric MACro, and is closely coupled with .NET languages

like C++, C#, VB.NET, F#, and IronPython. GMac presents advanced

conception and implementation, but it is not open source. �ese

compilation optimizations produce a very optimized code dedicated

for a speci�c task, however they are not well suited for runtime

computation where the operations are not decided in advance.

A more �exible way to use geometric algebra consists in using

libraries where the product between some multivectors with de-

�ned grade or structure are optimized. Typically, products between

homogeneous multivectors (non-zero vector basis with same grade)

can be hardcoded. �is is the case for Gaigen [7, 11] presented by

Daniel Fontijne. Gaigen stands for Geometric Algebra Implementa-

tion GENerator and can produce C++, C, C# and Java source code

which implements a geometric algebra with a speci�ed dimension

and metric. �e geometric algebra products are computed at run

time using the hard coded functions. Exotic multivectors (part of

non-homogeneous multivectors) are computed with a general class

that presents a lower optimization level. Breuils et al. [3] introduce

a similar library that produces hard coded products in C++ code

with SIMD instructions, leading to higher performances.

3 HIGH DIMENSIONS
Geometric algebra in a large sense includes many algebras among

which Conformal Geometric Algebra (CGA) is certainly one of the

most studied [16]. CGA is built from 5 dimensional vector space,

and thus includes 2
5 = 32 basis vectors. Although some people

consider 32 components per multivector to be already high, some

studies are conducted to explore higher dimensions. Easter and

Hitzer [9] represent some quartics and quadrics 3-d shapes using

a double conformal geometry of R3
. Extending this process to a

triple conformal geometry would lead to a 15 dimensional algebra

containing 2
15 = 32, 768 elements. For such geometry, the memory

requirement for optimized libraries explodes far beyond consumer

grade hardware capabilities. More regular approaches lead to very

long processing time. �is section gives some details about this

memory and processing time issues, as well as an e�cient solution

for this problem.

3.1 Geometric algebra products
�e geometric product, the inner product and the outer product

between 2 multivectors a and b are distributive over the addition

and can conceptually be computed by iterating over the components

of both a and b. For conciseness purpose, we limit our description

to the outer product but the overall method remains true for the

geometric product and the inner product. �e outer product c =
a ∧ b can be expressed as:

c =
2
d−1∑
k=0

ckEk = *
,

2
d−1∑
i=0

aiEi+
-
∧ *

,

2
d−1∑
j=0

bjEj+
-

(1)

where Ei refers to a basis vector, i.e Ei ∈ {1, e1, e2, e3, e12, ...}. Each

pair {ai ,bj } leads to a computed element that contributes to the

�nal value of c, and should be assigned to the adequate basis vector

of c, namely Ek = ± Ei ∧ Ej . �is assignment can be decided either

by a precomputed table that requires some memory space or by a

function that requires some additional processing time.

3.2 Table based methods
An e�cient way to compute the geometric algebra products is to

use precomputed 2D-tables indicating the result of the products

between any basis blades. �is approach can be used by Gaalop.

A product between two multivectors a and b consists of a loop

over each basis blades present in the two multivectors. For each

couple {ai ,bj }, the program refers to the table to know where to

put the result. Although this approach is simple and e�ective,

it includes some useless operations. Indeed, the outer product

between dependent basis blades (e.g. e1 ∧ e12) requires a table

access and are discarded if the table says so. �e pseudo-code of

this approach is presented on Algorithm 1. In the worst case, each

basis blade product is a constant time algorithm, however, this

A hybrid approach for computing products of high-dimensional geometric algebras CGI ’17, June 27-30, 2017, Yokohama, Japan

Algorithm 1: Product using the table based method.

Input: multivectors: A and B,

Table: T and S,

Dimension of the algebra: d
Output: resulting multivector: C

1 for i from 0 to 2
d − 1 do

2 if A[i] non-zero blade then
3 for j from 0 to 2

d − 1 do
4 if B[j] non-zero blade then
5 index ← T [i, j]

6 if index , null then // i.e. aei ∧ bej , 0

7 siдn ← S[i, j]

8 C[index] += siдn × A[i] × B[j]

product can be optimized by storing the multivector components

in a list, which may speedup the loops of lines 1 and 3. �e main

drawback of this approach is the memory consumption of the table.

A table should include all the basis vectors of the algebra in the

table, leading to a 2
d × 2

d = 4
d

size table, where d is the dimension

of the algebra. Each element of the table is composed of an index on

where to put the result and a sign (sometimes, the result is negative).

Moreover, geometric algebra involves at least 3 products (geometric,

outer and inner products), leading to at least 3 tables. If we assume

that the sign and index are stored in a signed integer of 6 bits, then

the size of the tables would be 2
5 × 2

5 × 6 × 3 ≈ 18 kbits. However

this would be a lower bound. Indeed, a product between two basis

basis blades might result in a sum of basis blades, as encountered in

Conformal Geometric Algebra. �us, in practice, the tables contain

a structure element that may enclose more than one index and sign.

In order to estimate the precise memory requirement of the table

based methods, we ran a pro�ler on Gaalop. In a 5-dimensional

space, Gaalop requires 1.1 MB of memory and requires 710 MB for

dimension 10. According to the progression of a O (4d) memory

complexity, we can infer that for a dimension 11, the table size will

occupy more than 2 GB memory and for a dimension 15, it would

be around 360 GB. �is memory requirement becomes a critical

issue for high dimensional spaces.

3.3 Function based methods
3.3.1 Iterative methods.

During the product between a and b, the access to a table can be

replaced by a call of a function that speci�es where to put the result

of a product between an element of a and an element of b. In prac-

tice, this approach just changes lines 5 and lines 7 of Algorithm 1.

Gaalop as well as Gaigen propose this kind of functions, based on

logical operations on a binary representation of the basis vectors.

Another function, also based on binary operators, is required to

specify the sign of a product contribution. Breuils et al. introduce a

faster sign computation function [3] derived from [12].

�e library CLIFFORD [2] uses linear algebra to decompose and

compute each product. �is decomposition makes possible to han-

dle high dimensional space computations. Moreover, the authors

extend this program to a parallel version in [1].

3.3.2 Recursive methods.
Fuchs and �éry [12] present a method to recursively compute

the products and [3] gives some implementation elements. Each

product is represented by a recursive function scanning a binary

tree whose leaves de�ne the basis vectors of the considered algebra.

�e multivectors product thus takes the following recursive form:

a ∧ b =
(
a1, a0

)
∧

(
b1, b0

)
(2)

where the subscript a0 or a1 respectively refers to the right and le�

subtree of a. �e recursive outer product starts with the iteration

n = 0 and is de�ned as:

if n < d, an ∧ bn =
(
an+1

1
∧ bn+1

0
+ a0

n+1
∧ bn+1

1
, an+1

0
∧ bn+1

0

)n
if n = d, an ∧ bn = ad ∧ bd

(3)

where a expresses the anticommutativity of the outer product. As

showed in [3], this method avoids useless products like outer prod-

uct between dependent basis blade, resulting in a complexity of

O (3d) instead of O (4d). �is complexity enhancement has a huge

e�ect in high dimensional spaces.

To handle sparse multivectors, Fuchs and �éry propose to use

unbalanced binary trees where the subtrees leading to leaves with

coe�cient set to 0 are removed. A recursive call leading to nodes

without subtrees is immediately discarded, as presented in Algo-

rithm 2. Note that for clarity purpose, Algorithm 2 omits sign

computations.

Algorithm2: Recursive outer product (unbalanced binary tree)

1 Function wedge
Input: C: resulting binary tree, A,B: binary tree

2 if A is a leaf then
3 C += A × B // (× is the product of scalars)

4 else
5 if A.hasLe�Child() and B.hasRightChild() then
6 wedge(C.le�Child,A.le�Child,B.rightChild)

7 if A.hasRightChild() and B.hasLe�Child() then
8 wedge(C.le�Child,A.rightChild,B.le�Child)

9 if A.hasRightChild() and B.hasRightChild() then
10 wedge(C.rightChild,A.rightChild,B.rightChild)

4 HYBRID APPROACH
We propose a new hybrid approach combining the table based

approach of Gaalop [5] with the recursive approach [3, 12].

4.1 Recursive method revisited
�is section focuses on the recursive method and more speci�cally

on how to minimize the number of conditionals in the recursive

products. Indeed, a recursive call from a recursion level to the next

involves some tests on the existence of subtrees, i.e. line 5, 7 and 9

CGI ’17, June 27-30, 2017, Yokohama, JapanStéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand, Werner Benger, and Christian Steinmetz

1start 2

3 5

4

7

6

8

9 10

a0.b0 a0.b1 a1.b0

a0.b1

a0

a0

b0

b0

b0 a1

a1

b0 a1

a1

a1

a1

b0

Figure 1: Automaton of the set of products of the outer prod-
uct from an recursion level to the next.

of Algorithm 2 for the outer product. We express this set of condi-

tions as a deterministic �nite automaton with boolean transitions

according to the existence of le� subtree a1 and right subtree a2

of the current node a (respectively for b). As an example, the au-

tomaton of the outer product is depicted in Figure 1. To each �nal

state of the automaton is associated a subset of the set of products

of equation (3), except for state 5 where no product is required. We

remark that in the worst case four conditionals are required but

less in the average case. For example, if we consider that a2 and b2

are non-null binary tree whereas a1 and b1 are null binary subtrees,

then the control �ow will be formed of two conditional instead of

four.

4.2 Table and recursive method hybridization
�e table method developed in this paper is a restructured ver-

sion of the table based approach described in Section 3.2. In-

stead of looping over two multivectors, the proposed algorithm

uses the recursive algorithm presented in section 4.1 and switch

to the table based method when the recursive call reaches the

leaves level of the trees. �e pseudo-code of our method is pre-

sented in Algorithm 3 for the outer product, where the function

outerRecursiveFlow(a0, a1, b0, b1) recursively calls the function

outerHybrid with the automaton process of section 4.1.

�e Algorithm 3 enables the two following properties:

• to compute the per-blade product in constant time.

• to avoid useless products, for example, outer product be-

tween dependent basis blade.

However, this method still requires the storage of a table whose

size is 4
d

, where d is the dimension.

4.3 Dimension restrictions
To �x the issue raised above, we limit the table size to a decided

threshold. �us, the table will be used only for the computation

between elements that are represented in the table. �e remaining

computation will be performed by the fully recursive process.

Algorithm 3: Hybrid recursive outer product

1 Function outerHybrid
Input: binary tree: A and B

Table: T and S
Output: resulting binary tree: C

2 if A is a leaf then
3 i ← A.index
4 j ← B.index
5 index ← T [i, j]

6 siдn ← S[i, j]

7 C[index] += siдn × A × B // (product of scalars)

8 else
9 a1 ← A.le�Child()

10 a0 ← A.rightChild()

11 b1 ← B.le�Child()

12 b0 ← B.rightChild()

13 outerRecursiveFlow(a1, a0, b1, b0)

Dimension 5 6 7 8 9 10

Memory occupation (MB) 1.1 3.7 13 40 142 710

Table 1: Gaalop memory occupation, including tables.

�e threshold dimension is decided such that the memory used

for the table does not exceed a certain limit. To know the memory

requirement of the tables in real conditions, we use the results

of our pro�ling tests conducted on Gaalop. �e generated tables

concern outer, geometric and inner products between the general

multivectors. We tested the memory occupation of the leading

program for di�erent dimensions ranging from 5 to 10. �e results

are depicted in Table 1.

Firstly, the Table 1 shows high memory occupation in 5-dimensional

space compared to the low bound previously computed. �is could

be explained by the fact that Gaalop is doing symbolic algebra, not

optimized to the bit level. �us, each entry of the table stores an

expression for evaluation in symbolic computing rather than mere

bits, therefore this memory optimization becomes crucial even at

smaller dimensions than a mere numerical implementation. From

this table we can also infer that for a dimension greater than 10, the

occupation of all the program will be greater than 1GB. Indeed, the

occupation is roughly multiplied by 4 at each incrementation of the

dimension. �us, in 11-dimensional space, the memory occupation

would be 2.8 GB and dimension 15 would require around 360 GB.

4.4 Select table components
Once the size of the table is decided, we have to decide which basis

blade will be represented in the table. Firstly, we assume that the

basis blades of the table are in grade-ascending order. Here is an

example of this order in a 3-dimensional Euclidean space:

1, e1, e2, e3, e12, e13, e23, e123 (4)

In the average case, the bigger the grade of a basis blade, the higher

will be the number of products between these two basis blades. To

prove this, we consider the geometric product between two basis

A hybrid approach for computing products of high-dimensional geometric algebras CGI ’17, June 27-30, 2017, Yokohama, Japan

blades A and B with respective grade k and l . �ese two basis

blades will be denoted as A〈k〉 and B〈l 〉 which is the notation used

by Perwass in [16]. �e geometric product of these two basis blades

is:

AB = 〈A〈k〉B〈l 〉〉 |k−l | + 〈A〈k〉B〈l 〉〉 |k−l |+2
+ · · ·+ 〈A〈k〉B〈l 〉〉k+l−2

+ 〈A〈k〉B〈l 〉〉k+l (5)

�us, the number of elements is bounded above by:

k + l − |k − l | (6)

Now suppose that we increase the grade of A and the grade of B
by i and j respectively (i, j ∈ N). �e grade of A is now k + i and

the grade of B is l + j. �en from Equations (5) and (6), the new

number of elements is upper bounded by:

k + l + i + j − ���(k − l) + (i − j)��� (7)

From the triangle inequality, we get an upper bound on the number

of elements of lower grade:

���(k − l) + (i − j)��� ≤ |k − l | + |i − j | (8)

�e la�er inequality leads to a new upper bound to the number of

elements:

k + l + i + j −
(
|k − l | + |i − j |

)
(9)

By di�erence between the two upper bounds of Equation (9) and (6),

we get the following formula:

i + j + |i − j | (10)

If i < j then |i − j | = −i + j and Equation (10) becomes:

i + j − (i − j) = 2j (11)

When i > j, then |i − j | = i − j and Equation (10) is:

i + j + (i − j) = 2i (12)

We get the same result if i = j.

�is result shows that when the grade of the basis blades increases,

the number of elements increases. Furthermore, the per-blade prod-

uct of the table approach is computed in constant time, regardless

of the grade of the multivectors. �us, in the average case, it will be

more e�cient to use the table based approach for highest graded

multivectors than for low graded multivectors.

5 INTEGRATION INTO GAALOP
�e resulting implementation was integrated into Gaalop as a plug-

in that includes the fully recursive approach explained in Section 4.1,

the table computations presented in Section 4.2 and the hybrid ap-

proach explained in Section 4. For the la�er approach, we �rst need

to set the thresholds. Firstly, the threshold dimension is determined

such that the memory used for the table does not exceed a limit. In

the case of Gaalop, this limit is the heap size of the JVM, i.e. the

total size of the table is set to 1GB. �e limit dimension will thus

be set to 10. From this limit dimension, the size of the table is thus

4
10

. Secondly, the components of the table are the elements whose

index are greater 2
d − 2

10
. �en, all the basis blades whose grade

are higher than the grade of 2
d − 2

10
will be computed using the

table.

Dimension 6 7 8 9 10

Table (KB) 53 198 816 3,283 12,732

Binary tree (KB) 8.1 18 38 71 131

Table 2: Binary tree and table memory occupation

Dimension 11 12 13 14 15

Binary tree (KB) 258 524 1,031 2,108 4,124

Table 3: Binary tree memory occupation for dimensions
from 11 to 15

To test our Plug-in, we compare it to the table based approach.

Firstly, we test the memory occupation of our binary tree approach

with the table based approach in the worst case. �is worst case

corresponds to the full binary tree (2
d

non-null leaves). We compute

the inner, geometric and outer product for dimensions ranging from

6 to 15, and run a memory pro�ler on the resulting programs. We

also run the pro�ler on the binary tree program. All the results

are detailed in Table 2. We can observe that in 10-dimensional

space, the occupation of the table approach is 10 times greater

than the binary tree approach. �is factor can be explained by

the fact that we also pro�le our binary tree approach for higher

dimensional spaces from 11 to 15, see Table 3. Finally, we compared

the runtime performance of our binary hybrid method compared to

the iterative methods of section 3.3.1 for dimensions ranging from

5 to 15. �e results show that the hybrid method is 9 times faster

in a 15-dimensional space. �is gain is higher for the outer product

that is 30 times faster in 15-dimensional space.

6 CONCLUSION
In this paper, we presented a new Geometric Algebra implemen-

tation with a hybrid design between precomputations with tables

and on-the-�y computations with a recursive binary tree. �e

program selects the �rst or the second method according to the

dimension of the algebra and the grade of multivectors. Some tests

were performed in high dimensional spaces and demonstrate the

be�er performance of the proposed method, both in terms of mem-

ory and speed computation. �e resulting implementation was

integrated into Gaalop as a Plug-in. As future work, we would like

to extend our approach to handle higher dimension applications,

namely higher than 15.

REFERENCES
[1] Ab lamowicz, R., and Fauser, B. On parallelizing the cli�ord algebra product

for CLIFFORD. Advances in Applied Cli�ord Algebras 24, 2 (2014), 553–567.

[2] Ab lamowicz, R., and Fauser, B. Using periodicity theorems for computations

in higher dimensional cli�ord algebras. Advances in Applied Cli�ord Algebras 24,

2 (2014), 569–587.

[3] Breuils, S., Nozick, V., and Fuchs, L. A geometric algebra implementation

using binary tree. Advances in Applied Cli�ord Algebras (2017), 1–19.

[4] Bromborsky, A. Galgebra. h�ps://github.com/brombo/galgebra. Accessed:

2017-04-06.

[5] Charrier, P., Klimek, M., Steinmetz, C., and Hildenbrand, D. Geometric

algebra enhanced precompiler for C++, OpenCL and Mathematica’s OpenCLLink.

Advances in Applied Cli�ord Algebras 24, 2 (2014), 613–630.

[6] Colapinto, P. Spatial computing with conformal geometric algebra. PhD thesis,

University of California Santa Barbara, 2011.

[7] Dorst, L., Fontijne, D., and Mann, S. Geometric Algebra for Computer Science,
An Object-Oriented Approach to Geometry. Morgan Kaufmann, 2007.

https://github.com/brombo/galgebra

CGI ’17, June 27-30, 2017, Yokohama, JapanStéphane Breuils, Vincent Nozick, Laurent Fuchs, Dietmar Hildenbrand, Werner Benger, and Christian Steinmetz

[8] Druoton, L., Fuchs, L., Garnier, L., and Langevin, R. �e non-degenerate

dupin cyclides in the space of spheres using geometric algebra. Advances in
Applied Cli�ord Algebras 24, 2 (2014), 515–532.

[9] Easter, R. B., and Hitzer, E. Double conformal geometric algebra. Advances in
Applied Cli�ord Algebras (April 2016), 28 pages.

[10] Eid, A. H. A. Optimized automatic code generation for geometric algebra based

algorithms with ray tracing application. arXiv preprint arXiv:1607.04767 (2016).

[11] Fontijne, D. Gaigen 2:: a geometric algebra implementation generator. In

Proceedings of the 5th international conference on Generative programming and
component engineering (2006), ACM, pp. 141–150.

[12] Fuchs, L., and Théry, L. Implementing geometric algebra products with binary

trees. Advances in Applied Cli�ord Algebras 24, 2 (2014), 589–611.

[13] Hildenbrand, D. Foundations of Geometric Algebra Computing. Springer, 2013.

[14] Hildenbrand, D., Perwass, C., Dorst, L., and Fontijne, D. Geometric Algebra

and its Application to Computer Graphics. In Eurographics 2004 - Tutorials (2004),

Eurographics Association.

[15] Parkin, S. T. Galua. h�ps://github.com/spencerparkin/GALua. Accessed: 2017-

04-06.

[16] Perwass, C. Geometric algebra with applications in engineering, vol. 20. Springer,

2009.

[17] Perwass, C. CLUCal/CLUViz interactive visualization [online]. h�p://www.

clucalc.info/, 2010.

[18] Prodanov, D. Cli�ord algebra implementation in maxima. Alterman Conference
on Geometric Algebra and Summer School on Kahler Calculus (2016).

[19] Sangwine, S. J., and Hitzer, E. Cli�ord multivector toolbox (for MATLAB).

Advances in Applied Cli�ord Algebras 27, 1 (2017), 539–558.

[20] Seybold, F., and Wössner, U. Gaalet-a c++ expression template library for

implementing geometric algebra. In 6th High-End Visualization Workshop (2010).

https://github.com/spencerparkin/GALua
http://www.clucalc.info/
http://www.clucalc.info/

	Abstract
	1 Introduction
	2 State of the art
	3 High dimensions
	3.1 Geometric algebra products
	3.2 Table based methods
	3.3 Function based methods

	4 Hybrid approach
	4.1 Recursive method revisited
	4.2 Table and recursive method hybridization
	4.3 Dimension restrictions
	4.4 Select table components

	5 Integration into Gaalop
	6 Conclusion
	References

