
Contractive Functions on Infinite Data Structures

Venanzio Capretta
Functional Programming Lab,

University of Nottingham, UK

venanzio.capretta@nottingham.ac.uk

Graham Hutton∗

Functional Programming Lab,

University of Nottingham, UK

graham.hutton@nottingham.ac.uk

Mauro Jaskelio�
CIFASIS–CONICET, Universidad

Nacional de Rosario, Argentina

mauro@fceia.unr.edu.ar

ABSTRACT

Coinductive data structures, such as streams or in�nite trees, have

many applications in functional programming and type theory, and

are naturally de�ned using recursive equations. But how do we

ensure that such equations make sense, i.e. that they actually gen-

erate a productive in�nite object? A standard means to achieve

productivity is to use Banach’s �xed-point theorem, which guar-

antees the unique existence of solutions to recursive equations on

metric spaces under certain conditions. Functions satisfying these

conditions are called contractions. In this article, we give a new

characterization of contractions on streams in the form of a sound

and complete representation theorem, and generalize this result to

a wide class of non-well-founded structures, �rst to in�nite binary

trees, then to �nal coalgebras of container functors.

These results have important potential applications in functional

programming, where coinduction and corecursion are successfully

deployed to model continuous reactive systems, dynamic interac-

tivity, signal processing, and other tasks that require �exible ma-

nipulation of non-well-founded data. Our representation theorems

provide a de�nition paradigm to compactly compute with such

data and easily reason about them.

CCS CONCEPTS

• Theory of computation → Semantics and reasoning; Type

theory; Algebraic language theory; •Computingmethodologies

→ Representation of mathematical functions;

ACM Reference format:

Venanzio Capretta, Graham Hutton, and Mauro Jaskelio�. 2017. Contrac-

tive Functions on In�nite Data Structures. In Proceedings of IFL 2016, Bel-

gium, August 31-September 02, 2016 Leuven, 13 pages.

DOI: http://dx.doi.org/10.1145/3064899.3064900

1 INTRODUCTION

Coinductive types, data structures with potentially in�nite unfold-

ing, are becoming a standard feature of functional programming

languages and type theoretic systems. The most well-studied ex-

ample is streams, in�nite sequences of elements. There is a con-

siderable literature devoted to streams, covering their theoretical

∗Graham Hutton was funded by EPSRC grant EP/P00587X/1, Mind the Gap: Uni�ed
Reasoning About Program Correctness and E�ciency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

IFL 2016, Belgium

© 2016 ACM. 978-1-4503-4767-9/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3064899.3064900

foundation and programming techniques [25, 29, 30, 45]. In re-

cent years, research has explored more varied kinds of non-well-

founded structures [13, 41], including in�nite trees, interactive pro-

cesses and games, and, in logical systems, re�exive modalities [9,

12] and in�nitary proof rules. Two recent books give an overview

of the area [46, 47].

A crucial issue in programming and reasoning with coinductive

types is the convergence of recursive equations. Given a recursive

equation that speci�es an element of a coinductive type in terms

of itself, under what conditions is the existence of a unique solu-

tion certain? In the dual case of recursive de�nitions over inductive

types, we are interested in the eventual termination of the unfold-

ing of the equation: the structure should be well-founded and the

computation should eventually yield a completed element. On the

other hand, the corecursive case requires that the unfolding contin-

uously produces new parts of the structure without getting stuck.

This property is known as productivity. Intensive research is dedi-

cated to the identi�cation of criteria to ensure productivity.

The basic principle of corecursive programming comes from

the categorical characterization of coinductive types as �nal coal-

gebras of functors [32]. We can de�ne a unique function into a

coinductive type by giving a coalgebra on the domain. This is a

simple and theoretically transparent technique, but it does not ap-

ply directly to most cases of interest and forces the programmers

to rewrite their code, often requiring complex intermediate data

structures [10, 11, 18, 44].

A slightly more permissive method allows equations that are

guarded [13], in which we admit recursive calls as long as they oc-

cur under a constructor that ensures that part of the structure is

generated before iterating the equation. This methodology is im-

plemented in type-theoretic systems such as Coq [27]. It is based

on the syntactic form of the recursive de�nition, and applies to

de�nitions whose productivity can be checked easily by a one-

step algorithm. Recent work on de�nition schemes [36], extends

the range of functions that are permissible in a proof assistant by

exploiting the double nature of lazy lists as both producers and

consumers of data; this work also provides associated reasoning

principles.

A more comprehensive and mathematically elegant approach

appeals to topological and metric concepts. In particular, we can

associate to a coinductive type a notion of distance between its el-

ements and exploit standard mathematical theorems that ensure

the existence of solutions. The chief among these is Banach’s the-

orem, which states that every contractive function on a complete

metric space has a unique �xed point.

Our interest focuses on the application of Banach’s theorem to

the particular setting of non-well-founded data types. The metric

structure, introduced for in�nite trees by Arnold and Nivat [5],

uses a notion of distance that measures the similarities between

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

elements: two elements are near if they have a common initial

segment. It is easy to verify that the types then become complete

metric spaces. A function is contractive if it always decreases the

distance of its arguments by a factor smaller than one.

Another recent application of metric notions to computer sci-

ence is [39], that shows that the full λ-calculus is the metric com-

pletion of the a�ne λ-calculus, similarly to how the reals are the

completion of the rationals.

The main original contribution of our work is a new represen-

tation theorem: contractive functions are in one-to-one correspon-

dence with elements of an appropriate coinductive type. We ini-

tially focus on streams, in which setting we provide a simple and

e�ective representation of contractions. We prove that it is sound

and complete: it exactly captures the notion of contractive func-

tion. We then extend the characterization to richer data structures,

�rst to binary trees and then to �nal coalgebras of container func-

tors. Although the representation for streams is straightforward,

its abstraction to general �nal coalgebras is far from obvious. We

show that most of the conceptual framework that we developed

for streams still applies. A complex non-well-founded object can

be seen as a stream of slices, each adding all the structure needed

at a certain depth, an idea by Ghani et al. [20, 21]. In full general-

ity this requires the slices to have a type dependent on the previ-

ous section of the structure. Our main result provides a sound and

complete representation of contractions on a wide class of �nal

coalgebras.

2 METRIC SPACES AND BANACH’S

THEOREM

Banach’s theorem was originally discovered as a useful tool to

prove the unique existence of solutions to di�erential equations

[7]. The theorem applies in complete metric spaces, which are given

by a pair (X ,d) of a set X and a real-valued function d that mea-

sures the distance between two points of the set X . Completeness

in this context expresses that every Cauchy sequence converges to

a point, where a sequence is Cauchy if the distance between points

becomes arbitrarily close.

A contraction is a function from the set X to itself that shrinks

the distances by a factor smaller than 1 (called the Lipschitz con-

stant). Banach’s theorem states that every contraction has a unique

�xed point. Its proof is constructive: we can begin with any point

and iterate the function, obtaining a Cauchy sequence that con-

verges to the �xed point. Traditionally, the choice of X is a space

of analytic functions and the contraction is given by a di�erential

equation. The �xed point is the unique solution to the equation.

Banach’s theoremhas also proved very useful in theoretical com-

puter science, speci�cally in domain theory. It is used to give the se-

mantics of recursive types [37] and the solution of recursive equa-

tions on them [23, 24]. It has previously been applied to streams

and in�nite trees [8], with important results in the semantics of

reactive programs [33]. In these applications,X is usually a seman-

tic domain, often a space of functions denoted by programs. The

distance then measures the information separation between data

structures. Banach’s theorem provides a method to ensure the con-

vergence of iterative programs and recurrence relations. For an in-

troduction, see Section 6 of Smyth [48]. An alternative approach

consists in using a family of converging equivalence relations [38].

Our work in this article follows this line of application to in�-

nite data structures. The space X is a type of non-well-founded el-

ements. The distance d is a measure of the di�erence between two

in�nite objects, inversely dependent on the size of their common

�nite initial segment.

Given the central position of contractive functions in recursive

programming with coinductive data, it is important to have a sim-

ple characterization of the class of contractions. A straightforward

de�nition imposes the contractivity predicate on a generic func-

tion, but a direct representation as a data type is desirable. We pro-

vide a concrete characterization of contractions in terms of their

computational structure, leading to e�ective versions of Banach’s

theorem that can be deployed in concrete programming and rea-

soning practice.

The original contribution of our work is a sound and complete

representation theorem for contractive functions on streams and

on �nal coalgebras of containers.

3 CONTRACTIONS ON STREAMS

In this section we introduce contractions for the particular case of

streams of values over a given type A:

codata StreamA = {head : A} ⊳ {tail : StreamA}

According to this de�nition, every stream t : StreamA has the

shape x ⊳ xs, where x is an element of the parameter type A and

xs is another stream of the same type. Whereas in lists we have a

constructor for the empty list, in streams we do not, and therefore

every stream must continue forever. If we add such a constructor

to the codata de�nition, we obtain lazy lists, which comprise both

�nite and in�nite sequences.

3.1 Recursive Equations

Streams are naturally de�ned using recursive equations. For exam-

ple, the constant stream ones = 1 ⊳ 1 ⊳ 1 ⊳ · · · can be de�ned as

a single one followed by the stream itself, by means of the follow-

ing recursive equation:

ones : StreamN

ones = 1 ⊳ ones

In turn, the stream of natural numbers nats = 0 ⊳ 1 ⊳ 2 ⊳ · · · can

be de�ned by starting with the value zero, and then mapping the

successor function (+1) over each element of the stream itself to

produce the remaining stream of values:

nats : StreamN

nats = 0 ⊳ map (+1) nats

map : (A→ B) → StreamA→ StreamB

map f (x ⊳ xs) = f x ⊳ map f xs

(The de�nition of map is itself recursive: it applies f to the �rst

element of the stream and recursively calls itself on the tail.)

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

Unfortunately, not all recursive stream equations make sense as

de�nitions of streams. For example, the following is well-typed,

loop : StreamA

loop = tail loop

but does not actually de�ne a stream because unfolding the de�ni-

tion loops forever without ever producing any values.

Similarly, attempting to rede�ne

ones : StreamN

ones = 1 ⊳ tail ones

is also invalid, because it produces a single one and then loops.

However, not all uses of tail in de�nitions are problematic. For ex-

ample, the stream ones can be de�ned as a single 1 followed by the

result of interleaving alternative elements from the stream and its

tail:

ones : StreamN

ones = 1 ⊳ interleave ones (tail ones)

interleave : StreamA→ StreamA→ StreamA

interleave (x ⊳ xs) ys = x ⊳ interleave ys xs

However, if we swapped the order of the arguments to interleave in

the above de�nition for ones, the de�nitionwould again become in-

valid. This brings us to the following fundamental question: when

does a recursive stream equation actually de�ne a stream? In the

next few sections we introduce the technical machinery that un-

derlies our particular approach to answering this question.

3.2 Fixed Points

In the previous section we reviewed the idea of streams and stream

equations. In this section we consider what these notions mean

from a more formal perspective, in terms of solutions of equations

and �xed points of functions.

First of all, recall that inductive types are de�ned as the least so-

lution of some equation. For example, the type N of natural num-

bers can be de�ned as the least set X for which there is a bijection

X � 1 + X , where 1 is a singleton set with element ∗, and + is

disjoint union of sets with injections inl and inr. The right-to-left

component of the bijection, f : 1 +N→ N, gives the constructors

for N by de�ning zero = f (inl ∗) and succn = f (inrn). The left-

to-right component д : N → 1 + N gives a form of case analysis,

mapping zero to inl ∗ and succn to inrn.

Dually, coinductive types are de�ned as the greatest solution

of some equation. In this case the solutions considered are those

satisfying the coinduction principle, which states that bisimilar ob-

jects are equal: intuitively, when two entities are indistinguishable

by the structure of the equation, they must be equal. For exam-

ple, the equation X � 1 + X also has a greatest solution, given by

the type N∞ of natural numbers together with an in�nite value

inf = succ inf . (It is possible to construct larger solutions by hav-

ing many in�nite values, but the principle of coinduction will de-

cree that they must all be equal.) In a similar manner, the coin-

ductive type StreamA of streams of type A can be de�ned as the

greatest set X for which there is a bijection X � A × X , where ×

is Cartesian product of sets with projections fst and snd. The left-

to-right component of the bijection, f : StreamA→ A×StreamA,

gives rise to the destructors for streams by de�ning head xs =

fst (f xs) and tail xs = snd (f xs). The right-to-left component д :

A×StreamA→ StreamA gives rise to the constructor for streams

by de�ning x ⊳ xs = д (x ,xs).

Just as types can be de�ned using equations, so too can values.

Consider a recursive equation xs = f xs that de�nes a stream xs

in terms of itself and some function f . Any stream that solves this

equation for xs is a �xed point of f . Hence, solving a stream equa-

tionmeans �nding a �xed point of a function on streams. However,

not all such functions have �xed points. For example,map (+1) has

no �xed point, which corresponds to the fact that xs = map (+1) xs

is not a valid de�nition for a stream. (Here we’re talking of streams

of N; in N∞ there exists a �xed point.)

Moreover, some functions have many �xed points. For example,

the identity function has any stream as a �xed point, which cor-

responds to the fact that the equation xs = xs is also an invalid

de�nition for a stream. Note that there is no general notion of or-

dering on streams, so it does not make sense to consider least or

greatest �xed points in this context.

What then makes a valid de�nition? Our approach is to only

consider functions on streams that have a unique �xed point, de-

noted by fix f , which is adopted as the semantics of the correspond-

ing recursive equation. For example, the function λxs. 1 ⊳ xs

has a unique �xed point given by the constant stream of ones,

which corresponds to the fact that the equation ones = 1 ⊳ ones

is a valid de�nition for a stream. In conclusion, the question of

when a recursive stream equation actually de�nes a stream can

now be rephrased as follows: when does a function f : StreamA→

StreamA have a unique �xed point fix f : StreamA?

3.3 Contractive Functions

Our approach to this question is based on an idea from topology:

contractive functions. The �rst step in de�ning contractions for

streams is to provide a measure of the distance between any two

streams. The distance between two streams is given by the inverse

of the exponential of the length of their longest common pre�x.

More formally, we de�ne a family of equivalence relations =n on

streams of the same type as follows:

xs =0 ys

x = y xs =n ys

(x ⊳ xs) =n+1 (y ⊳ ys)

Equivalently, xs =n ys if and only if ∀i < n.xsi = ysi , where xsi is

the ith element of xs. The distance function between two streams

of the same type is the inverse of the exponential of the longest

pre�x where the two streams coincide:

d (xs,ys) =

{

0 if ∀n.xs =n ys
1
2m with m = max {n | xs =n ys}

Checking that the metric space of streams is complete is a mat-

ter of routine veri�cation. The notion of contractivity for streams

can now be reformulated as follows (see also the notion of causal

stream function by Hansen et al. [28]):

Lemma 3.1 (contractive functions). A stream function f :

StreamA→ StreamB is contractive if and only if xs =n ys implies

f xs =n+1 f ys for all natural numbers n and streams xs,ys.

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

Proof. It is easy to see that this notion of contraction is equiv-

alent to the metric one. A Lipschitz constant of 1/2 will always

work. �

This lemma states that a function on streams is contractive if,

when applied to two streams whose �rst n elements are equal, it

returns result streams whose �rst n + 1 elements are equal. We de-

note the type of contractive functions by StreamA→c StreamB.

Theorem 3.2 (Banach’s theorem for streams). Every contrac-

tive f : StreamA→c StreamA has a unique �xed point fix f .

In summary, the notion of contractivity provides a su�cient

condition for the (unique) existence of �xpoints, thus guarantee-

ing that we obtain well-de�ned streams from recursive equations.

Note, however, that contractivity is only a su�cient condition, as

not every function between streams with a unique �xpoint is con-

tractive. For example, if we de�ne

f : StreamN→ StreamN

f xs = head (tail xs) ⊳ 1 ⊳ xs

then the function f has a unique �xed point, given by the constant

stream of ones, but is not contractive. In particular, in the case of

n = 0 contractivity requires that head (tail xs) = head (tail ys),

which is not always true. Notice that this depends on the particu-

lar de�nition of distance that we adopted. With di�erent metrics,

we could have di�erent sets of contractions; it is in fact possible to

de�ne a distance that makes the above de�nition satisfy the condi-

tions for application of Banach’s theorem.

It is natural to ask what contractivity actually means, i.e. what is

being expressed in its de�nition? More generally, we can ask what

kind of functions are contractive, i.e. can the class of contractive

functions be characterized in a precise manner? The next section

answers this question by providing a sound and complete repre-

sentation theorem for contractive functions on streams.

4 REPRESENTATION THEOREM

Our main goal is to give a representation of the class of contractive

functions as a coinductive data type. In this section we achieve this

objective for functions on streams. In later sections we generalize

it to in�nite binary trees and to a wide class of non-well-founded

data structures.

For our purposes, we need that the type StreamA contains at

least one element anyA. So we assume that A itself is non-empty

and has a distinguished element a0. This will allow us to build a

stream consisting of repetitions ofa0. In our construction, it is com-

pletely indi�erent what anyA is, we just need to know that there

is some element in StreamA.

Let us consider a contractive function f : StreamA→c StreamB.

Looking at Lemma 3.1, we see that contractivity requires that

∀xs,ys. xs =0 ys implies f xs =1 f ys

Since xs =0 ys is true for any two streams xs and ys, this condition

reduces to ∀xs,ys. f xs =1 f ys, i.e. the head of the output should

be the same regardless of the input.

Similarly, given two streams xs,ys such that xs =1 ys, i.e. they

coincide on the �rst element, call it x : A, then f xs =2 f ys, so the

second element of the output stream can only depend on x . This

suggest the following representation:

codata GenAB = Step {output : B; cont : A→ GenAB}

A generating tree t : GenAB is a structure that represents a

contraction that immediately outputs an element (output t), then

reads an element of the input stream, x and continues the compu-

tation using the generating tree (cont t x) on the tail of the input

stream. This is very close to the representation of continuous func-

tions by Ghani et al. [22]: the di�erence is that here the actions of

producing an output and reading an input are strictly alternated,

while in their version it is possible to read several elements at a

time without producing a result. The restriction is necessary to ob-

tain a contraction, rather than just a continuous function: only con-

tractions are guaranteed by Banach’s theorem to have �xed points.

More precisely, we de�ne a function gen that takes a generating

tree and produces a contraction as follows:

gen : GenAB → StreamA→c StreamB

gen t (x ⊳ xs) = output t ⊳ gen (cont t x) xs

The validity of this de�nition, which requires that the resulting

function is contractive, is established by the following result:

Lemma 4.1. If t is a generating tree then gen t is contractive.

The proof of the lemma, and of the following theorem, are straight-

forward. They also follow from the general results for �nal coalge-

bras. Dually, every contractive function can be represented as a

generating tree by means of the following de�nition:

rep : (StreamA→c StreamB) → GenAB

rep f = Step (head (f anyA),λx . rep (tail ◦ f ◦ (x ⊳)))

The �rst output will not depend on the input, so we obtain it by

applying f to an arbitrary stream of As, which we call anyA. This

stream can be constructed for non-emptyA, e.g. as a constant stream.

The continuation of the tree receives the head x of the input and

returns, recursively, the representation of the function on streams

that: prepends x , applies f , and takes the tail. The recursive call

to rep is valid because it is guarded by the constructor Step; the

application of tail is in this case not problematic, since it is under

the recursive call.

Using the two conversion functions, we can now formalize the

idea that contractions and generating trees are in one-to-one cor-

respondence, i.e. every contraction can be uniquely represented by

a generating tree, and vice versa.

Theorem 4.2 (representation theorem). The functions gen

and rep form an isomorphism GenAB � StreamA→c StreamB.

The representation theorem tells us that instead of de�ning a

function and checking that it is a contraction, we can write a gen-

erating tree. We will then say that a generating tree is a code for a

contraction and we refer to GenAB as a type of codes for contrac-

tions from StreamA to StreamB.

The type genAB is the same used by Altenkirch [4] to represent

functions on lists. Speci�cally, we have that genAB � ListA→ B,

thus obtaining another representation of contractions by list func-

tions. The intuition is that the (n + 1)st entry of the output is cal-

culated from the list of the �rst n entries of the input.

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

How easy is it to build a generating tree? In order to answer this

question, we note that generating trees are a coinductively de�ned

data type and therefore can naturally be understood by means of

coalgebras. The type of generating trees GenAB is (the carrier of)

the �nal coalgebra for the functorGC = B × (A→ C). This means

that it comes equipped with a canonical means of producing gen-

erating trees, in the form of an unfold (or anamorphism) operator

[26, 40]. In order to de�ne this operator, we �rst introduce the no-

tion of a coalgebra [31] for generating trees:

GCoalgABC = (C → B) × (C → A→ C)

That is, a coalgebra for the type GenAB comprises two functions

that respectively turn a value of type C into a value of type B and

a function of type A→ C . We can think of an element of C as the

state of an automaton which produces a value in B, then waits for

an input in A before making a transition and changing its state. In

this analogy, we allow states from an arbitrary typeC , so we admit

automata with in�nite states.

The unfold operator for producing trees is then de�ned as fol-

lows:

unfoldGen : GCoalgABC → C → GenAB

unfoldGen (h,t) z = Step (h z, λx . unfoldGen (h,t) (t z x))

That is, given a coalgebra (h : C → B, t : C → A → C) and a seed

value z : C , the label of the resulting tree produced by the unfold

is given by applying h to the seed z, and the branching function

is given by applying t to the seed z and the branching value x : A

to obtain a new seed that is then used to produce the remaining

levels of the tree in the same manner.

5 EXAMPLES

Combining the representation theorem with the use of unfold pro-

vides a means of producing contractive functions on streams. In

particular, given a coalgebra and a seed value, we �rst apply unfold

to produce a generating tree, then apply gen to turn it into a con-

tractive function. We encapsulate this idea as follows:

generate : GCoalgABC → C → (StreamA→c StreamB)

generate (h,t) z = gen (unfold (h,t) z)

From the point of view of improving e�ciency, however, it is de-

sirable to fuse the two functions in this de�nition together to give

a direct recursive de�nition for generate:

generate : GCoalgABC → C → (StreamA→c StreamB)

generate (h,t) z (x ⊳ xs) = h z ⊳ generate (h,t) (t z x) xs

It is useful now to think of the seed value z as a state that rep-

resents the input history of the resulting contractive function. In

this manner, the above de�nition expresses that the �rst value in

the output stream is given by applying h to the current state (as

it cannot depend on the current or future input values, to ensure

contractivity), and the remaining output values are given by apply-

ing t to the current state and the �rst input value x to obtain a new

state that is then used to process the tail xs of the input stream in

the same way.

Note that one can work with coalgebras instead of generating

trees without loss of generality, because generating trees are a par-

ticular instance of a coalgebra:

treeAsCoalg : GCoalgAB (GenAB)

treeAsCoalg = (output,cont)

We encapsulate the idea of de�ning a stream as the unique �xed

point of a contractive function produced using the function generate

by means of a new �xed point operator (fix is the �xed point oper-

ator given by Theorem 3.2):

cfix : GCoalgAAC → C → StreamA

cfix (h,t) z = fix (generate (h,t) z)

When we de�ne a stream using cfix, we can choose an appropri-

ate state type to represent the history of previous values in the

stream, and then de�ne a suitable starting value and coalgebra for

this type. Ideally, the state should be compact in terms of space,

and the coalgebra should be e�cient in terms of time.

Note that we have a choice of how to access previous outputs

of the function. The notion of contraction and the Gen type se-

mantics allow direct access to the previous element of the output.

Alternatively, we can use the state to store the information about

the present output required for the next iteration.

For example, we can de�ne the stream of natural numbers in

two ways, both using a natural number as state, which represents

the next output value, with starting value zero, and a coalgebra

(hnats,tnats). The �rst updates the state by replacing it with the

successor of the present output value; the second updates it by in-

creasing it and does not use the present output value at all:

nats : StreamN

nats = cfix (hnats, tnats) 0

where hnats : N→ N

hnats z = z

tnats : N→ N→ N

tnats z x = x + 1

nats : StreamN

nats = cfix (hnats, tnats) 0

where hnats : N→ N

hnats z = z

tnats : N→ N→ N

tnats z x = z + 1

The two coalgebras correspond to the following simple generat-

ing trees.

fromTree1, fromTree2 : N→ GenNN

fromTree1 n = Stepn (λx .fromTree1 (x + 1))

fromTree2 n = Stepn (λx .fromTree2 (n + 1))

Similarly, the stream of Fibonacci numbers can be de�ned using

a state that comprises the next two values, starting value (0,1), and

a simple coalgebra on this state:

fibs : StreamN

fibs = cfix (hfibs, tfibs) (0,1)

where hfibs : (N,N) → N

hfibs (z0,z1) = z0
tfibs : (N,N) → N→ (N,N)

tfibs (z0,z1) x = (z1,z1 + x)

Note that we used the value x , the present output element, to up-

date the state, rather than z0. The two values are always identi-

cal, so the two versions are equivalent. A di�erence in the two

approaches arises if we want to have a more compact state space

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

that does not necessarily store all the information about the out-

put. In that case, we may decide to use the present output value to

generate the new state, but we are free to lose information.

As a more complex example, we consider the sequence of Ham-

ming numbers [14], natural numbers of the form 2i3j5k , with i, j,k ∈

N, i.e. natural numbers with no prime factors other than 2, 3, and 5.

The sequence consists of Hamming numbers, in increasing order,

without repetitions.

For simplicity, we will only consider numbers of the form 2i3j .

The sequence hamming begins with 1, and the rest of the values

can be obtained by recursively merging in increasing order the

Hamming sequences obtained by multiplying the values in the se-

quence by two and three respectively:

hamming = 1 ⊳ (map (2∗) hamming | | map (3∗) hamming)

Given two increasing sequences without duplicates, the operator

| | constructs an increasing sequence without duplicates:

(| |) : StreamA→ StreamA→ StreamA

(x ⊳ xs) | | (y ⊳ ys) =





x ⊳ (xs | | (y ⊳ ys)) if x < y

y ⊳ ((x ⊳ xs) | | ys) if x > y

x ⊳ (xs | | ys) if x = y

In order to see hamming as the �xpoint of a contractive function,

we note that one may de�ne the | | operator using a coalgebra

(h | | , t | |) (see the de�nition below) and compose it with the func-

tion λx . (2 ∗ x ,3 ∗ x):

hhamming : (N,[N],[N]) → N

hhamming = h | |

thamming : (N,[N],[N]) → N→ (N,[N],[N])

thamming s x = t | | s (2 ∗ x ,3 ∗ x)

hamming = cfix (hhamming, thamming) (1,[],[])

The coalgebra for the merge operator has a triple as state, where

the �rst component of the triple is the next item to be output, and

the other two are �nite lists of the unused inputs so far:

h | | : (N,[N],[N]) → N

h | | (a,_,_) = a

t | | : (N,[N],[N]) → (N,N) → (N,[N],[N])

t | | (_,xs,ys) (x ,y) = h (xs ++ [x],ys ++ [y])

whereh (x :: xs,y :: ys) =





(x ,xs,y :: ys) if x < y

(y,x :: xs,ys) if x > y

(x ,xs,ys) if x = y

The coalgebra presentation makes it obvious that such a stream

has a memory leak, as the history increases whenever the next

item on both lists di�er and it does not decrease in the other case.

This issue is also present in the original formulation, although not

in an explicit manner: in practice, however, we need to keep the

output stream in memory and have two pointers to the di�erent

positions of the next elements to be multiplied by 2 and 3. (The

coalgebraic form has an extra ine�ciency, caused by the singleton

append operations (xs ++ [x]) and (ys ++ [y]). This can be obviated

by using FIFO lists.)

6 CONTRACTIONS ON FINAL COALGEBRAS

In this section we extend the representations of contractions from

streams to general coinductive types.

In the previous sections we de�ned a representation for contrac-

tive functions on streams and proved that it is a complete character-

ization. The facility to de�ne a contraction by a simple coinductive

object enhances the practicality of Banach’s �xed point theorem to

de�ne streams. The theorem says that every contraction on a com-

plete metric space has a unique �xed point. It can be applied in a

programming language context by turning a data type, speci�cally

streams, into a metric space by associating a distance between el-

ements that measures how much they di�er. A contraction is a

function that shrinks the distances by a factor smaller than 1. Ba-

nach’s theorem guarantees that we can de�ne a total program by

specifying a contraction.

Now we extend these results to richer types, providing tech-

niques to construct �xed points on coinductive types de�ned by

containers, a general form of data constructors made possible by

the use of dependent types. We characterize the contractive func-

tions between �nal coalgebras of container functors, using ideas

about the representation of continuous functions from Ghani et al.

[20, 21, 22].

A �nal coalgebra is the greatest �xed point of a functor F :

Set → Set satisfying the bisimulation principle (bisimilar objects

are equal). Intuitively, F speci�es a collection of forms to build el-

ements and the �nal coalgebra, νF , is the set of elements obtained

by iterating these forms in a potentially in�nite structure.

We use the notation (νF ,outν) for it, where outν : νF → F (νF)

is the actual coalgebra. Intuitively, it unpacks the top structure of

an element, exposing its overall form and constituents. Its de�n-

ing property is that, for every other coalgebra f : X → F X there

exists a unique ϕf : X → νF that commutes with the coalgebras

outν and f , that is outν ◦ϕf = (F ϕf) ◦ f . In type theory, coinduc-

tive types are often de�ned by constructors, similarly to inductive

types. So the �nal coalgebra is speci�ed by giving its inverse al-

gebra inν : F (νF) → νF . This is equivalent since, by Lambek’s

lemma [35], �nal coalgebras are always invertible. In more mod-

ern approaches [1, 2], they are presented by copatterns, which are a

syntactic equivalent of the components of the �nal coalgebra, and

they are explicitly strati�ed into sized types. See also Kurz et al.

[34] for a categorical account of the construction of parametric

coinductive types by stages. A still di�erent account [6], inspired

by the recursion modality of Nakano [43], uses clock variables to

represent coinductive elements as processes evolving in time.

The universal property of �nal coalgebras is the standard de�-

nition scheme for functions that produce coinductive objects. Our

goal is to extend the range of acceptable de�nition schemes. In-

stead of looking for a coalgebra, a user should be able to write

down a recursive equation and have it be accepted, provided that

it satis�es some conditions. Inspired by the work on streams, we

propose that this condition is that the operator given by the recur-

sive equation has to be a contractive function.

In order to generalize the notion of contraction, we need to re-

strict the class of functors that can be used. Containers are functors

whose constructors consist of a shape containing positions where

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

the elements of the base type are inserted. We will see that mem-

bers of the �nal coalgebras of containers are, in a sense that we

will make precise, generalized dependently typed streams. There-

fore the representation of contractions on streams can be adapted

once we take into account the way that the dependency of the el-

ement type varies along the sequence. We �rst look at a speci�c

instantiation, non-well-founded binary trees, in the next section.

Then we give the full generalization to containers.

7 CONTRACTIONS ON BINARY TREES

Our �rst generalization step is to adapt the results on contractive

functions to richer data structures. We start by considering in�nite

binary trees with nodes labelled by elements of a type A:

codata BTreeA = Node {get : A; le�,right : BTreeA}

Every element of this type, t : BTreeA, has the shape of a nodewith

two children, t = Nodex t1 t2, where x is an element of the param-

eter type A and t1, t2 are recursive subtrees in BTreeA. The record

functions extract the components of the tree: get t = x , le� t = t1,

right t = t2. Because there is no leaf constructor, the trees are non-

well-founded: t1 and t2 must also have a node structure with two

children each, and so on. In this manner, every path starting at any

node will continue forever.

Our goal now is to precisely characterize the concept of contrac-

tive functions between two types of trees, BTreeA and BTreeB. In-

tuitively, a contraction computes a certain part of the output from

a strictly smaller part of the input. A node of the output tree at

depth n should depend only on nodes of the input tree at depths

less than n. We can imagine the trees as made of subsequent slices,

each slice consisting of the node elements at the same depth. Then

a function is contractive if it computes the nth slice of the output

from the slices of the input up to the (n − 1)th.

We don’t deviate much from the stream case: we view trees as

streams of slices. The di�erence is that the type of each slice is

di�erent. In particular, a slice at depth n is given by a 2n-tuple.

The de�nition of distance between trees is parallel to that be-

tween streams, with the only di�erence in the notion of the family

of equivalence relations up to a certain depth. If we see lists of

Booleans as paths inside trees, we can de�ne a function extracting

the node in the position pointed by the path:

nodeAt : [B]→ BTreeA→ A

nodeAt nil t = get t

nodeAt (true :: bs) t = nodeAt bs (le� t)

nodeAt (false :: bs) t = nodeAt bs (right t)

Then two trees are equivalent at leveln if all their nodes with paths

of length smaller than n are equal. That is:

t1 =n t2 if and only if

∀p : [B], (lengthp < n) → nodeAtp t1 = nodeAtp t2

Then the de�nition of distance between trees is exactly the same as

the distance between streams andwe get the same characterization

of contractive functions as previously:

Lemma 7.1 (contractive functions). A function between tree

types f : BTreeA → BTreeB is contractive if and only if t1 =n t2
implies f t1 =n+1 f t2 for all natural numbers n and trees t1 and t2
of type BTreeA.

In particular, the root element of the output has depth 0, so it

shouldn’t depend on the input at all. The function must therefore

�rst of all print this root element. Then it can read the root element

of the input and use it in the computation of the rest of the output.

To make this observation into a recursive de�nition, we use a

trick to view the children of a tree as a single double tree. The chil-

dren of a tree of type BTreeA are given by two trees, but they can

also be viewed as a single tree with pairs of labels on the nodes,

BTree (A2). Imagine superimposing the two trees: they have the

same overall shape with di�erent labels on the nodes; we can en-

code them into a tree with the same shape with coupled labels. So

our contractive function, after producing the root of the output

and reading the root of the input, can continue recursively as a

contractive function on trees of pairs.

We can encode the above intuition in the following representa-

tion, similar to the one we gave in Section 4 for streams:

codata TGenAB =

Step {output : B; cont : A→ TGen (A2) (B2)}

An element of TGenAB has the form Stepb f : the element b goes

in the root of the output tree; the function f expects the root a

of the input tree and returns a new contraction on trees of pairs

that will be applied to the children of the input tree. Given such a

code, we unfold it as a function from trees to trees. To formulate

this computation, we use zipping/unzipping operations on trees,

de�ned in a straightforward recursive fashion.

zipTree : BTreeA→ BTreeA→ BTree (A2)

unZipTree : BTree (A2) → (BTreeA)2

These functions can be de�ned because BTree has a single con-

structor and therefore all trees have the same structure. It would

notworkwith data typeswhose elements can have di�erent shapes.

However, we will see later that it is possible to de�ne contractions

for data types with di�erent shapes, without the need of such zip-

ping and unzipping operations.

The interpretation of an element of TGenAB as a function on

trees is given by a computation operator:

genT : TGenAB → BTreeA→c BTreeB

genT (Stepb f) (Nodea t1 t2) = Nodeb u1 u2
where (u1,u2) = unZipTree (genT (f a) (zipTree t1 t2))

When elaborating an input tree Nodea t1 t2, the contraction gen-

erates an output of formNodeb · ·, without the need to look at the

input at all. The shape is the only possible shape, the node element

b is dictated by the contraction. The computation of the output chil-

dren may need information from the input. The label a determines

the contraction (f a) that is used for the continuation. The input

children are zipped together into a single tree (zipTree t1 t2) that is

elaborated by the continuation contraction. This returns a tree of

pairs, that needs to be unzipped to obtain the output children.

Dually, every contractive function can be represented by a code

in TGenAB. The de�nition is again similar to that for streams, ex-

cept that we need some zipping and unzipping, and the type of

the representation function depends on the type parameters of the

trees. (We use an arbitrary tree anyA, which could be a constant

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

tree with all labels occupied by a designated element of A.)

repTA,B : (BTreeA→c BTreeB) → TGenAB

repTA,B f = Step (get (f anyA),λx . repTA2,B2 fx)

where fx : BTree (A2) →c BTree (B2)

fx t = let (t1,t2) = unZipTree t

tB = f (Nodex t1 t2)

in zipTree (le� tB) (right tB)

The two conversion functions form an isomorphismwhich shows

that contractions on trees and generating codes are in one-to-one

correspondence, i.e. every contraction can be uniquely represented

by a generating code, and vice versa.

Theorem 7.2 (representation theorem). The functions genT

and repT form an isomorphism TGenAB � BTreeA→c BTreeB.

Example 7.3. Let us illustrate the use of �xpoints of contractions

to construct in�nite binary trees. We build a tree of integers where

the children of a node are, respectively, the sum of its value with its

left neighbour and the di�erence of its value with the right neigh-

bour. When there are no neighbours (on leftmost and rightmost

spines of the tree) we assume that value to be 0.

1

1

△ △

1

2

2

△ △

1

3

△ △

-2

△ △

1

3

△ △

△

This example is interesting in this context because the children are

not generated simply by their parent, but also they depend on the

values of other elements at the same depth.

We can de�ne a function mnplslice that yields a new tree slice.

The tree generators work on input types that are structured tuples,

e.g. (A2)2. We use the notation PowTypeA 2 for such type:

PowType : Set→ N→ Set

PowTypeA 0 = A

PowTypeA (n + 1) = (PowTypeAn)2

With some hacking on tuples, we can de�ne the one-step function

mnplslice : (n : N) → (PowTypeZn) → (PowTypeZ (n + 1))

which computes the sums/di�erences of adjacent elements, e.g.

mnplslice 2 〈〈a0,a1〉,〈a2,a3〉〉 =

〈 〈〈a0,a0 − a1〉,〈a0 + a1,a1 − a2〉〉,

〈〈a1 + a2,a2 − a3〉,〈a2 + a3,a3〉〉 〉

In general (with functions first and last giving the leftmost and

rightmost elements of a power tuple):

mnplslice 0a = 〈a,a〉

mnplslice (n + 1) 〈v1,v2〉

= 〈(mnplslicenv1)⊖(firstv2)
, (lastv1)⊕ (mnplslicenv2)

where a⊖x = a − x , 〈v1,v2〉⊖x = 〈v1,v2⊖x 〉

x ⊕a = a + x , x ⊕〈v1,v2〉 = 〈x ⊕v1,v2〉

The code of the contraction that we need to de�ne our tree is then:

mpgen : (n : N) → (PowTypeZn) →

TGen (PowTypeZn) (PowTypeZn)

mpgennv =

Stepv (λw .mpgen (n + 1) (mnplslicenw))

Remark 7.4. We can generalize the representation of contractive

functions by using any �nal coalgebra as codomain, in place ofBTreeB.

LetG be any functor for which the �nal coalgebra νG exists; now we

want to characterize the contractions of type BTreeA→ νG .

Let inG : G (νG) → νG be the inverse of the �nal coalgebra forG .

The type of contractions is now de�ned by:

codata TGenG A = Step (G (A→ TGenG (A2)))

Let us see how to interpret elements of this type as computable func-

tions. An element of TGenG A has the form Stepд, where д is in

G (A→ TGenG (A2)). We often see functors as specifying the shape

of a data structure, with positions in the shape where substructures

are inserted. We will make this intuition formal when we consider

containers. We can view G as providing the top shape of the out-

put in νG , with the positions occupied by functions of type A →

TGenG (A2). After generating the top shape, without reading any

input, the contraction can read the label a of the input tree and feed

it to these functions, each of which produces a new contraction that

can run on the zipping of the children of the input tree. Formally, this

spells out the following computation operator.

genTG : TGenG A→ BTreeA→ ν G

genTG (Stepд) (Nodea t1 t2) =

inG (mapG (λf . genTG (f a) (zipTree t1 t2)) д)

The way it works will be clearer if we instantiate to the previous

case of contractions that map trees to trees. In the special case when

the output is BTreeB, we have G X = B × X 2, inG = Node. In a

contraction code of form Stepд, the parameter д has type B × (A→

TGenG (A2))2, so it will be a triple 〈b, f1, f2〉. We unfold the de�nition

of genTG .

genTG (Step 〈b, f1, f2〉) (Nodea t1 t2) =

Nodeb (genTG (f1 a) (zipTree t1 t2))

(genTG (f2 a) (zipTree t1 t2))

With respect to our previous de�nition of genT, we see that now we

use two distinct functions f1 and f2 to produce the left and right child

of the output, whereas previously we had a single function f that

produced a tree of pairs that needed to be unzipped. Otherwise the

functions are equivalent. We do not give an inverse representation

operator and theorem for this generalization. This requires associat-

ing a metric space to the �nal coalgebra νG . We see how to do this

when G is a container functor in the next section.

A drawback of this evaluation function is that it is ine�cient,

because of the zipping and unzipping of trees. We avoided the un-

zipping of the output in the second version, but we still need to zip

the input. We may think of applying some standard fusion tech-

niques to resolve this problem. However, a more elegant solution

will come to light when we generalize the construction even fur-

ther to work on container functors. As the generalization of the

codomain type to any �nal coalgebra produced an optimization at

the output side of the computation, a similar generalization of the

domain will produce an optimization at the input side.

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

8 CONTRACTIONS ON CONTAINERS

Now we generalize the notion of contraction and the representa-

tion theorem to a large class of non-well-founded structures. We

want to characterize contractive functions between �nal coalge-

bras of general functors. To do this, we need to have a metric on

such coalgebras. As before, this can be done if we have a notion of

depth and a way of pointing at the parts of the data structure that

lie at a given depth. This is possible if the functor has a speci�c

form, which is the case for most commonly used �nal coalgebras.

A container [3], also called dependent polynomial functor [19]

in the categorical literature, is a pair 〈S ,P〉 with S : Set, a set of

shapes, and P : S → Set, a family of positions for every shape.

Every container de�nes a functor:

(S ✄ P) : Set→ Set

(S ✄ P)X = Σ s : S . P s → X

So an element of (S ✄ P)X is a pair 〈s,xs〉 where s : S is a shape

and xs : P s → X is a function assigning an element of X to every

position in the shape s . The �nal coalgebra of a container, ν (S ✄

P), is inhabited by trees with nodes decorated by shapes and with

positions giving their branching type:

codata ν (S ✄ P) =

inν {shape : S ; subs : P shape→ ν (S ✄ P)}

So every element of t : ν (S ✄ P) is uniquely given by a shape,

shape t : S , and a family of subelements, subs t : P (shape t) →

ν (S ✄ P).

We are interested in characterizing the contractive functions be-

tween �nal coalgebras of containers: if 〈S ,P〉 and 〈T ,Q〉 are two

containers, what are the contractions in ν (S ✄ P) → ν (T ✄ Q)?

We extend the intuition that we gained from streams and trees: a

contraction produces the output structure up to depthn by looking

only at the structure of the input at depths lower than n.

Ghani et al. [21] study the related question of characterizing

the continuous functions of this same type. Their technique is use-

ful for our purpose as well. They approximate the elements of the

�nal coalgebra by another container 〈S ♮ ,P ♮〉, whose shapes are it-

erations of the functor up to a �xed depth and whose positions are

the holes where new shapes can be inserted. We call the elements

of S ♮ hangers and the elements of (P ♮ s) pegs, for some hanger s .

Intuitively, a hanger is an incomplete structure, a well-founded ap-

proximation to a completed in�nite tree. The pegs are those places

in the incomplete structure where subtrees need to be inserted to

complete the tree.

Hangers and pegs are de�ned by induction-recursion [15–17].

This is a type de�nition paradigm where we simultaneously de-

�ne a well-founded type and a recursive function on it. When con-

structing an element, we can already use the function on its sub-

terms. Induction-recursion is available in the dependently-typed

language Agda and can be mimicked, for the small types that we

consider, in other type-theoretic systems by an inductive family.

S ♮ : Set P ♮ : S ♮ → Set

• : S ♮ P ♮ • = 1

(;) : Π s : S ♮ . (P ♮ s → S) → S ♮ P ♮ (s ; σ) = Σp : P ♮ s . P (σ p)

The simplest hanger, •, is a completely uninformative approx-

imation, a hook with one peg where the whole tree needs to be

added. Given a hanger s with pegs P ♮ s , we can extend it by plac-

ing a new shape at each peg. So we give a function σ : P ♮ s → S ,

which we think of as a new slice of the structure, specifying all the

data at the next level. The new hanger is denoted by (s ; σ) and its

pegs are the disjoint union of the positions of all the new shapes.

We can approximate ν (S ✄ P) and ν (T ✄ Q) by stages using

〈S ♮ ,P ♮〉 and 〈T ♮ ,Q ♮〉. A contraction is a function for which the

approximation of the output at a certain stage only depends on ap-

proximations of the input at lower stages. We can in fact summon

again the intuition that we had for streams. Think of an element

of ν (S ✄ P) as a stream of slices. Using stream notation, we can

express it as

• ⊳ σ0 ⊳ σ1 ⊳ σ2 ⊳ · · ·

where σ0 : P
♮ • → S

σ1 : P
♮ (• ; σ0) → S

σ2 : P
♮ (• ; σ0 ; σ1) → S .

Most of our previous de�nitions and results are still valid, once

we make the adjustments necessitated by the more complex type

structure of the stream entries.

First of all, we canmodify the family of equivalences up to depth

n and use them to de�ne the metric on the �nal coalgebra. We

just give a function that truncates an element of the coalgebra to

a hanger by cutting it at a given depth. We can cut a tree at level n

into an upper part, given by a hanger, and a lower part, given by a

family of trees to be inserted in the pegs.

cut : ν (S ✄ P) → N→ Σ s : S ♮ .
(

P ♮ s → ν (S ✄ P)
)

cut t 0 = 〈•,λp. t〉

cut t (n + 1) = let 〈s,τ 〉= cut t n

σ = λp. shape (τ p)

τ ′ = λp. subs (τ p)

in 〈s ; σ ,λ〈p,q〉. τ ′ p q〉

Keeping only the hanger part of this splitting (the �rst component

of the pair) we get the truncation of a tree at level n.

truncate : ν (S ✄ P) → N→ S ♮

truncate t = fst (cut t n)

Using this notion, two elements of ν (S ✄ P) are then de�ned to be

equivalent at level n if their n-truncations are the same:

t1 =n t2 if and only if truncate t1 n = truncate t2 n

As in the case of trees, the de�nition of distance on ν (S ✄ P) is

the same as the distance between streams and we get the same

characterization of contractive functions.

Lemma 8.1 (contractive functions). A function f : ν (S ✄

P) → ν (T ✄ Q) is contractive if and only if t1 =n t2 implies

f t1 =n+1 f t2 for all natural numbers n and trees t1 and t2 in

ν (S ✄ P).

Example 8.2. One of the most interesting applications of con-

tractions on �nal coalgebras of containers is to realize the notion

of higher-order recursion. For example, we may want to realize

parametric �xed points on streams:

pfix : (Stream (A × B) →c StreamB)

→ (StreamA→c StreamB)

pfix f as = f (zipas (pfix f as))

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

In Section 4 we showed that contractive functions on streams can

be represented by codes, so the parametric �xed point operator

de�ned above can be lifted to the codes:

pfix_code : Gen (A × B) B → GenAB

pfix_code (Stepb д) = Stepb (λa.pfix_code (д 〈a,b〉))

Furthermore,GenAB is a �nal coalgebra of a containerwith shapes

B and positions λb .A. Although pfix_code is not itself a contrac-

tion, it is clear from its de�nition that it generates a slice for ev-

ery slice of the input, so it preserves distances. This indicates that,

when composed with contractions, it will yield a contraction.

The representation theorem for contractions on �nal coalgebras

of containers is complicated slightly by the fact that each slice of

the structure has a di�erent complex type. Contractions need to be

de�ned locally, that is, given two hangers for the input and output,

s : S ♮ and t : T ♮ , we de�ne the type of contractions from the

extensions of s to the extension of t . In other words: assume that

we have already read s in input and we have produced t in output,

we de�ne how the rest of the input is mapped to an extension of

the output. We use the notation CGen s t for the set of codes for

contractions from the points of s to the points of t . By points of s

we mean elements of ν (S ✄ P) approximated by s .

A contraction must �rst of all produce part of the output with-

out reading any input. The part of the output produced is a slice

that puts a new shape in every peg: τ : Q ♮ t → T . Then the con-

traction reads a slice of the input σ : P ♮ s → S and, according to

this value, speci�es how to continue the computation by giving a

new contraction between the re�nements: CGen (s ;σ) (t ;τ). Since

both input and output are potentially in�nite, the type of codes for

contractions is also a �nal coalgebra de�ned by the following coin-

ductive family, which generalizes the representations for streams

in Section 4 and for trees in Section 7:

codata

CGen : S ♮ → T ♮ → Set

CGen s t = Step { output : Q ♮ t → T ;

cont : Π σ : P ♮ s → S .

CGen (s ; σ) (t ; output) }

Finally, the set of all contractions from ν (S ✄ P) to ν (T ✄ Q) is

represented by CGen • •.

We have seen earlier, in de�ning the function cut, that an ele-

ment of ν (S ✄ P) can be split into a hanger s : S ♮ and a family of

substructures to be inserted in each peg of s . Let us call the set of

all such possible families the extension of s: Ext s = P ♮ s → ν (S✄P).

This type is isomorphic to the subtype of ν (S✄P) of those elements

that are approximated by s .

We can widen the notion of contraction to functions between

extensions. We write Ext s →c Ext t to denote a contraction on the

possible evolution of the input and output hangers, s and t . The

de�nition is similar to that of contraction at the top level, except

that we count depth from the next level below the hangers.

genC s t : CGen s t → Ext s →c Ext t

genC s t (Stepτ f) д = λr : Q ♮ t .

inν (τ r) (λq : Q (τ r). genC (s ; σ) (t ; τ) (f σ)

(λ〈p,u〉. subs (дp)u) 〈r ,q〉)

where σ = shape ◦ д

The above de�nition is rather involved, but the intuitive idea is

similar to the special case of streams. A generating code has the

form (Stepτ f), where τ is the slice that has to be sent to output

immediately and f is the interaction function specifying how to

continue the computation according to the value of the next input

slice. Their respective types are

τ : Q ♮ t → T f : Π σ : P ♮ s → S .CGen (s ; σ) (t ; τ)

So f reads a new input slice σ and decrees accordingly how to

continue the computation between the two extended hangers.

The contractive function associated to this code maps the ex-

tension of s to the extension of t . The next argument is д : Ext s =

P ♮ s → ν (S ✄ P). We need to produce an element in Ext t , that

is, Q ♮ t → ν (T ✄ Q). The next argument to our function is then

r : Q ♮ t and we have to produce an element of ν (T ✄ Q). We use

the canonical constructor inν for coinductive types: The top shape

is given by the output slice in the appropriate positions, (τ r). The

substructures must map every position q : Q (τ r) in this shape

to an element of ν (T ✄ Q). Intuitively, we have produced a slice

τ in output and we can read a new slice σ from input. We must

now produce the part of the tree below the hanger (t ; τ). We are

allowed to use the next slice of the input to do this. The function д

generates the whole continuation of the input. We extract just the

�rst slice by taking only its top shapes:

σ = shape ◦ д : P ♮ s → S

The function f applied to this slice produces a new code for a con-

traction between the extensions of (s ; σ) and (t ; τ). We can recur-

sively apply the generating function to this code:

genC (s ; σ) (t ; τ) (f σ) : Ext (s ; σ) →c Ext (t ; τ)

This function takes an element of Ext (s ; σ), whose structure can

be seen by unfolding de�nitions as follows:

Ext (s ; σ) = P ♮ (s ; σ) → ν (S ✄ P)

= (Σp : P ♮ s . P (σ p)) → ν (S ✄ P)

We already have an argument д in Ext s , so we can just lop o� the

�rst slice: λ〈p,u〉. subs (дp)u : Ext (s ;σ). Putting it all together, we

have an element of Ext (t ; τ) and we can instantiate it to the right

peg r and position q in the output tree.

In the other direction, we seek a representation operator that

associates a code to every contractive function between the exten-

sions of two hangers. As in previous incarnations, we need an ar-

bitrary element anys : Ext s . This will certainly exist if S is non-

empty, that is, the input container has at least one shape. We as-

sume this is the case in the following. The representation operator

is de�ned as follows:

repC s t : (Ext s →c Ext t) → CGen s t

repC s t ϕ =

Stepτ (λσ . repC (s ; σ) (t ; τ) (λh. λ〈r ,q〉. subs (ϕ v r) q))

where τ = shape ◦ (ϕ anys)

v = λp. inν (σ p) (λq.h 〈p,q〉)

Remember that the function ϕ is assumed to be contractive, which

means that the �rst slice it produces (which is the only part of

(ϕ anys) that we need) does not actually depend on the argument

anys . The code for the contraction prescribes that the �rst slice of

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

the output, τ , consists of the shapes of the result of ϕ on anys (or

indeed on any other element of Ext s).

The continuation must be a function that maps the next slice

of the input σ : P ♮ s → S to the code for the contraction on the

extensions, with type CGen (s ; σ) (t ; τ). Here we are allowed to

use recursively the operator repC, because we are guarded by τ .

We must give it a contraction between Ext (s ; σ) and Ext (t ; τ). So

let h be an extension of (s ; σ), that is:

h : Ext (s ; σ) = P ♮ (s ; σ) → ν (S ✄ P)

= (Σp : P ♮ s . P (σ p)) → ν (S ✄ P)

First we use it to make an extension of s by simply gluing σ on top:

д : Ext s = P ♮ s → ν (S ✄ P)

д = λp : P ♮ s . inν (σ p) (λq : P (σ p).h 〈p,q〉)

We can now apply the original contraction to this extension:

(ϕ д) : Ext t = Q ♮ t → ν (T ✄Q)

We can split it into the �rst slice and the rest. Note that the �rst

slice shape ◦ (ϕ д) must be equal to τ because f is a contraction.

This is essential to check that the following type-checks correctly.

λ〈r ,q〉. subs (ϕ д r) q : Ext (t ; τ)

= (Σ r : Q ♮ t .Q (τ r)) → ν (T ✄Q)

This concludes the de�nition of the contraction between the exten-

sions, therefore we can safely apply repC to it.

As in the case of streams and binary trees, the generation and

representation operators are mutually inverse functions. The iso-

morphism is up to extensionality for functions and bisimilarity for

coinductive objects. This means that we consider contractive func-

tions and functional arguments of recursive data equal if they are

equal pointwise. Elements of �nal coalgebras are considered equal

if they are bisimilar. This allows us to use the method of proof by

bisimulation: when proving that two structures are equal, we just

have to show that the top shapes are equal and we can invoke the

statement recursively on the substructures.

Theorem 8.3 (representation theorem). The functions genC s t

and repC s t form an isomorphism CGen s t � Ext s →c Ext t .

At the top level, this gives us a representation isomorphism for

contractions on �nal coalgebras:

CGen • • � ν (S ✄ P) →c ν (T ✄Q)

Proof. In one direction, given a contraction ϕ : Ext s →c Ext t ,

we prove that (genC s t (repC s t ϕ)) = ϕ. Let us call ϕ ′ the left-

hand side of this equality for short.Wewant to show that these two

functions are extensionally equal. To this end, we let д : Ext s and

r : Q ♮ t , and aim to prove thatϕ ′д r = ϕ д r . These two terms are in

the inductive type ν (T ✄Q), so their equality can be demonstrated

by bisimulation: we prove that the top shape is the same and we

invoke the statement of the theorem recursively to show that the

substructures are also equal.

The top shapes are identical: shape (ϕ ′д r) = shape (ϕ д r). In

fact, by construction, shape (ϕ ′д r) = shape (ϕ anys r). Continuity

of ϕ guarantees that this result does not depend on the argument

anys , so replacing it with д gives the same shape, as desired.

The substructures are equal: subs (ϕ ′д r) = subs (ϕ д r). The

coinduction principle, which allows us to prove equalities by bisim-

ulation, tells us that we can recursively use the statement of the the-

orem to prove this. That is, we are allowed to assume that genC (s ;

σ) (t ; τ) and repC (s ; σ) (t ; τ) are inverse of each other for appro-

priate σ and τ . We call this the coinductive hypothesis.

By de�nition of repC and genC we have that:

subs (ϕ ′д r) = λv . genC (s ; σ) (t ; τ) (f σ) e 〈r ,q〉

where σ = shape ◦ д

τ = shape ◦ (ϕ anys)

f = λσ . repC (s ; σ) (t ; τ)ψ

ψ = λh. λ〈r ,q〉. subs (f д′ r) q

д′ = λp. inν (σ p) (λq.h 〈p,q〉)

e = λ〈p,u〉. subs (дp)u

We can now apply the coinduction hypothesis to obtain

subs (ϕ ′д r)

= λv . genC (s ; σ) (t ; τ) (repC (s ; σ) (t ; τ)ψ) e 〈r ,q〉

= λv .ψ e 〈r ,q〉

= subs (ϕ д′ r) q

We can conclude by noting that д′ = д since

σ p = shape (дp)

e 〈p,q〉 = subs (дp) q

This completes the proof of one direction of the isomorphism. The

opposite direction can be checked similarly, by just unfolding de�-

nitions and using extensional equality for functions and bisimula-

tion for coinductive objects. �

Remark 8.4. As for binary trees, we can generalize the construc-

tion and use any �nal coalgebra as codomain. For any functorG , we

de�ne a family of contractions from every hanger s : S ♮ to νG :

codata (−◮ G) : S ♮ → Set

Step : G (Π σ : P ♮ s → S . (s ; σ) −◮ G) → (s −◮ G)

Intuitively, the denotation of the type (s −◮ G) is the set of contrac-

tions from the extensions of s to the �nal coalgebra of G , if it exists,

Ext s →c νG .

9 INSTANTIATIONS FOR STREAMS AND

TREES

We show how the abstract representation of contractions on �nal

coalgebras instantiates to the cases of streams and binary trees.

Whatwe obtain is equivalent to the ad hoc versions that we de�ned

in Sections 4 and 7.

Streams can be represented as the �nal coalgebra of a container:

StreamA � ν (A✄ λx .1)

In this case the type of hangersA♮ is just (List A), and every hanger

always has just one peg. Extension simply consists in attaching a

new element at the end of a list. After simpli�cation (the function

type 1→ A is isomorphic to A), the type of codes for contractions

IFL 2016, August 31-September 02, 2016 Leuven, Belgium Venanzio Capre�a, Graham Hu�on, and Mauro Jaskelio�

becomes

codata

CGen : List A→ List B → Set

CGenas bs

= Step { output : B;

cont : Πa : A.CGen (as ; a) (bs ; output) }

Since the arguments as and bs occur only in the type speci�cation,

we have that each element of this family is isomorphic and essen-

tially the same as GenAB.

The �nal coalgebra representation of in�nite binary trees is

BTreeA � ν (A✄ λx .2)

The corresponding hangers are complete binary trees of �xed depth

with elements of A in the internal nodes. Let us denote by |s | the

depth of such a hanger s : A♮ . The pegs are the leaves of the tree s ,

therefore the hanger s will have 2 |s | pegs. We see this by simplify-

ing the de�nitions in this particular case:

A♮ : Set P ♮ : A♮ → Set

• : A♮ P ♮ • = 1

(;) : Πs : A♮ .A2
|s |

→ A♮ P ♮ (s ; σ) = Σp : P ♮ s .2

where we directly used the observation that P ♮ s is a type with 2 |s |

elements to de�neA♮ independently of P ♮ (P ♮ s → A � A2
|s |

). The

type of codes for contractions simpli�es to

codata

CGen : A♮ → B♮ → Set

CGen s t

= Step { output : B2
|t |

;

cont : Πσ : A2
|s |

.CGen (s ; σ) (t ; output) }

From this simpli�cation, it is clear that CGen s t is isomorphic to

TGenA2
|s |

B2
|t |

.

10 SUMMARY AND CONCLUSION

In this article, we developed sound and complete representations of

contractive functions on streams, non-well-founded binary trees,

and �nal coalgebras of containers. In all three cases, a contraction

is represented by a code. Such a code is itself an element of a coin-

ductive type, and comprises two �elds.

The �rst component, called output, gives the portion of the re-

sult that must be produced immediately, before reading any input.

In the case of streams, it consists of the next element of the se-

quence; in the case of binary trees, it consists of the nodes on the

next depth level; in the case of �nal coalgebras, it consists of the

next slice of the structure.

The second component, called cont, speci�es how the rest of the

coinductive structure will be generated according to the value read

in input. This input token is again the next element of the sequence

for streams, a tuple of the nodes of the next depth level for trees,

and the next slice of data for �nal coalgebras. The continuation is

a function mapping this value to a recursive code.

We gave generation operators that unpack codes into contrac-

tive functions and representation mappings that synthesize a code

from a contraction. We proved that the generation and represen-

tation operators are mutual inverses, showing that the representa-

tion is both sound and complete.

Our development yields a precise characterization of contrac-

tive functions on a wide class of coinductive data structures. This

result provides the theoretical framework to deploy Banach’s �xed

point theorem to prove that recursive de�nitions of non-well-founded

objects are guaranteed to produce a unique solution.We illustrated

the application of our results by means of some simple examples.

We expect to deploy them fruitfully on more complex and realis-

tic applications in the future. In particular, they have the potential

to facilitate the de�nition of highly recursive objects and to o�er

powerful proof methods for reasoning about them.

REFERENCES
[1] Andreas Abel and Brigitte Pientka. 2013. Wellfounded recursion with copat-

terns: a uni�ed approach to termination and productivity, See [42], 185–196.
[2] Andreas Abel, Brigitte Pientka, David Thibodeau, andAnton Setzer. 2013. Copat-

terns: programming in�nite structures by observations. In The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot
(Eds.). ACM, 27–38.

[3] Michael Abott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers - Con-
structing Strictly Positive Types. Theoretical Computer Science 342 (September
2005), 3–27. Applied Semantics: Selected Topics.

[4] Thorsten Altenkirch. 2001. Representations of �rst order function types as ter-
minal coalgebras. In Typed Lambda Calculi and Applications, TLCA 2001 (Lecture
Notes in Computer Science). 8 – 21.

[5] André Arnold and Maurice Nivat. 1980. The metric space of in�nite trees. Alge-
braic and topological properties. Fundam. Inform. 3, 4 (1980), 445–476.

[6] Robert Atkey and Conor McBride. 2013. Productive coprogramming with
guarded recursion, See [42], 197–208.

[7] Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales. Fund. Math. 3 (1922), 133–181.

[8] Wilfried Buchholz. 2005. A term calculus for (co-)recursive de�nitions on
streamlike data structures. Ann. Pure Appl. Logic 136, 1-2 (2005), 75–90.

[9] Venanzio Capretta. 2007. Common Knowledge as a Coinductive Modality. In
Re�ections on Type Theory, Lambda Calculus, and the Mind, Erik Barendsen, Her-
man Geuvers, Venanzio Capretta, and Milad Niqui (Eds.). ICIS, Faculty of Sci-
ence, Radbout University Nijmegen, 51–61. Essays Dedicated to Henk Baren-
dregt on the Occasion of his 60th Birthday.

[10] Venanzio Capretta. 2010. Bisimulations Generated from Corecursive Equations.
Electronic Notes in Theoretical Computer Science 265 (2010), 245–258.

[11] Venanzio Capretta. 2011. Coalgebras in functional programming and type the-
ory. Theoretical Computer Science 412, 38 (2011), 5006–5024. CMCS Tenth
Anniversary Meeting.

[12] Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema.
2011. Modal Logics are Coalgebraic. Comput. J. 54, 1 (2011), 31–41.

[13] Thierry Coquand. 1993. In�nite Objects in Type Theory. In Types for Proofs and
Programs. International Workshop TYPES’93 (Lecture Notes in Computer Science),
Henk Barendregt and Tobias Nipkow (Eds.), Vol. 806. Springer-Verlag, 62–78.

[14] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.
[15] Peter Dybjer. 2000. AGeneral Formulation of Simultaneous Inductive-Recursive

De�nitions in Type Theory. J. Symb. Log. 65, 2 (2000), 525–549.
[16] Peter Dybjer and Anton Setzer. 1999. A �nite axiomatization of inductive-

recursive de�nitions. In Proceedings of TLCA 1999 (LNCS), Vol. 1581. Springer-
Verlag, 129–146.

[17] Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial algebras.
Ann. Pure Appl. Logic 124, 1-3 (2003), 1–47.

[18] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and
Jan Willem Klop. 2010. Productivity of stream de�nitions. Theor. Comput. Sci.
411, 4-5 (2010), 765–782. DOI:https://doi.org/10.1016/j.tcs.2009.10.014

[19] Nicola Gambino and Martin Hyland. 2003. Wellfounded Trees and Dependent
Polynomial Functors. In Types for Proofs and Programs, International Workshop,
TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers (Lec-
ture Notes in Computer Science), Stefano Berardi, Mario Coppo, and Ferruccio
Damiani (Eds.), Vol. 3085. Springer, 210–225.

[20] Neil Ghani, Peter Hancock, and Dirk Pattinson. 2006. Continuous Functions on
Final Coalgebras. Electr. Notes Theor. Comput. Sci. 164, 1 (2006), 141–155. Pro-
ceedings of the EighthWorkshop on Coalgebraic Methods in Computer Science
(CMCS 2006).

https://doi.org/10.1016/j.tcs.2009.10.014

Contractive Functions on Infinite Data Structures IFL 2016, August 31-September 02, 2016 Leuven, Belgium

[21] Neil Ghani, Peter Hancock, and Dirk Pattinson. 2009. Continuous Functions on
Final Coalgebras. Electr. Notes Theor. Comput. Sci. 249 (2009), 3–18. Proceedings
of the 25th Conference on Mathematical Foundations of Programming Seman-
tics (MFPS 2009).

[22] Neil Ghani, Peter Hancock, and Dirk Pattinson. 2009. Representations of Stream
Processors Using Nested Fixed Points. Logical Methods in Computer Science 5, 3
(2009).

[23] Pietro Di Gianantonio and Marino Miculan. 2003. A Unifying Approach to Re-
cursive and Co-recursive De�nitions. In Proc. TYPES’02 (LNCS), Herman Geu-
vers and Freek Wiedijk (Eds.), Vol. 2646. Springer-Verlag, 148–161.

[24] Pietro Di Gianantonio and Marino Miculan. 2004. Unifying Recursive and Co-
recursive De�nitions in Sheaf Categories. In Proc. FOSSACS’04 (LNCS), Igor
Walukiewicz (Ed.), Vol. 2987. Springer, 136–150.

[25] Jeremy Gibbons and Graham Hutton. 2005. Proof Methods for Corecursive Pro-
grams. Fundam. Inform. 66, 4 (2005), 353–366.

[26] Jeremy Gibbons and Geraint Jones. 1998. The Under-Appreciated Unfold. In
Proceedings of the Third ACM SIGPLAN International Conference on Functional
Programming. Baltimore, Maryland, 273–279.

[27] Eduardo Giménez. 1994. Codifying guarded de�nitions with recursive schemes.
In Types for Proofs and Programs. International Workshop TYPES ’94 (Lecture
Notes in Computer Science), Peter Dybjer, Bengt Nordström, and Jan Smith (Eds.),
Vol. 996. Springer, 39–59.

[28] Helle Hvid Hansen, David Costa, and Jan J. M. M. Rutten. 2006. Synthesis of
MealyMachines Using Derivatives. Electr. Notes Theor. Comput. Sci. 164, 1 (2006),
27–45.

[29] Ralf Hinze. 2008. Concrete stream calculus: An extended study. J. Funct. Pro-
gram. 20, 5-6 (2008), 463–535.

[30] Ralf Hinze. 2008. Functional pearl: streams and unique �xed points. In Proceed-
ing of the 13th ACM SIGPLAN international conference on Functional program-
ming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, James Hook and
Peter Thiemann (Eds.). ACM, 189–200.

[31] Bart Jacobs and Jan Rutten. 1997. A Tutorial on (Co)Algebras and (Co)Induction.
Bulletin of the European Association for Theoretical Computer Science 62 (1997),
222–259.

[32] Bart Jacobs and Jan J. M. M. Rutten. 1997. A Tutorial on (Co)Algebras and
(Co)Induction. EATCS Bulletin 62 (1997), 222–259.

[33] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Semantics of
Reactive Programs. In Proceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. IEEE
Computer Society, 257–266.

[34] Alexander Kurz, Alberto Pardo, Daniela Petrisan, Paula Severi, and Fer-Jan de
Vries. 2015. Approximation of Nested Fixpoints – A Coalgebraic View of Para-
metric Dataypes. In CALCO 2015 (LIPIcs), Lawrence S. Moss and Pawel Sobocin-
ski (Eds.), Vol. 35. Dagstuhl, Germany, 205–220.

[35] Joachim Lambek. 1968. A Fixpoint Theorem for Complete Categories. Math.
Zeitschr. 103 (1968), 151–161.

[36] Andreas Lochbihler and JohannesHölzl. 2014. Recursive Functions on Lazy Lists
via Domains and Topologies. In Interactive Theorem Proving - 5th International
Conference, ITP (Lecture Notes in Computer Science), Gerwin Klein and Ruben
Gamboa (Eds.), Vol. 8558. Springer, 341–357.

[37] David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. 1984. An Ideal Model
for Recursive Polymorphic Types. In Conference Record of the Eleventh Annual
ACM Symposium on Principles of Programming Languages, Salt Lake City, Utah,
USA, January 1984, Ken Kennedy, Mary S. Van Deusen, and Larry Landweber
(Eds.). ACM Press, 165–174.

[38] John Matthews. 1999. Recursive Function De�nition over Coinductive Types.
In Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Nice, France, September, 1999, Proceedings (Lecture Notes in Computer
Science), Yves Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent
Théry (Eds.), Vol. 1690. Springer, 73–90.

[39] Damiano Mazza. 2012. An In�nitary A�ne Lambda-Calculus Isomorphic to
the Full Lambda-Calculus. In Proceedings of the 27th Annual IEEE Symposium on
Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE
Computer Society, 471–480.

[40] Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In Proceedings of the
Conference on Functional Programming and Computer Architecture (LNCS), John
Hughes (Ed.). Springer-Verlag.

[41] N. P. Mendler, P. Panangaden, and R. L. Constable. 1986. In�nite Objects in Type
Theory. In Proceedings, Symposium on Logic in Computer Science. IEEEComputer
Society, Cambridge, Massachussetts, 249–255.

[42] Greg Morrisett and Tarmo Uustalu (Eds.). 2013. ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA - September
25 - 27, 2013. ACM.

[43] Hiroshi Nakano. 2000. A Modality for Recursion. In LICS. IEEE Computer Soci-
ety, 255–266. http://tinyurl.com/huzq7gl

[44] Jan J. M. M. Rutten. 2003. Behavioural di�erential equations: a coinductive cal-
culus of streams, automata, and power series. Theor. Comput. Sci. 308, 1-3 (2003),
1–53.

[45] Jan J. M. M. Rutten. 2005. A coinductive calculus of streams. Mathematical
Structures in Computer Science 15 (2005), 93–147.

[46] Davide Sangiorgi (Ed.). 2012. Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press.

[47] Davide Sangiorgi. 2012. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press.

[48] M.B. Smyth. 1992. Topology. In Handbook of Logic in Computer Science. Vol. 2.
Oxford University Press, 641–761.

http://tinyurl.com/huzq7gl

	Abstract
	1 Introduction
	2 Metric Spaces and Banach's Theorem
	3 Contractions on Streams
	3.1 Recursive Equations
	3.2 Fixed Points
	3.3 Contractive Functions

	4 Representation Theorem
	5 Examples
	6 Contractions on Final Coalgebras
	7 Contractions on Binary Trees
	8 Contractions on Containers
	9 Instantiations for Streams and Trees
	10 Summary and Conclusion
	References

