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ABSTRACT

We introduce a novel latent vector space model that jointly learns
the latent representations of words, e-commerce products and a
mapping between the two without the need for explicit annotations.
The power of the model lies in its ability to directly model the dis-
criminative relation between products and a particular word. We
compare our method to existing latent vector space models (LSI,
LDA and word2vec) and evaluate it as a feature in a learning to
rank setting. Our latent vector space model achieves its enhanced
performance as it learns better product representations. Further-
more, the mapping from words to products and the representations
of words benefit directly from the errors propagated back from the
product representations during parameter estimation. We provide
an in-depth analysis of the performance of our model and analyze
the structure of the learned representations.
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1. INTRODUCTION

Retail through online channels has become an integral part of
consumers’ lives [40]. In addition to using these online platforms
that generate hundreds of billions of dollars in revenue [22]], con-
sumers increasingly participate in multichannel shopping where
they research items online before purchasing them in brick-and-
mortar stores. Search engines are essential for consumers to be
able to make sense of these large collections of products available
online [30]. In the case of directed searching (in contrast to ex-
ploratory browsing), users formulate queries using characteristics
of the product they are interested in (e.g., terms that describe the
product’s category) [S1]. However, it is widely known that there ex-
ists a mismatch between queries and product representations where
both use different terms to describe the same concepts [34]. Thus,
there is an urgent need for better semantic matching methods.
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Product search is a particular example of the more general en-
tity finding task that is increasingly being studied. Other entity
finding tasks considered recently include searching for people [6],
books [23] and groups [35]. Products are retrievable entities where
every product is associated with a description and one or more user
reviews. Therefore, we use the terms “product” and “entity” inter-
changeably in this paper. However, there are two important differ-
ences between product search and the entity finding task as defined
by de Vries et al. [[14]]. First, in entity finding one retrieves entities
of a particular type from large broad coverage multi-domain knowl-
edge bases such as Wikipedia [3| [14]. In contrast, product search
engines operate within a single domain which can greatly vary in
size. Second, user queries in product search consist of free-form
text [51]], as opposed to the semi-structured queries with additional
type or relational constraints being used in entity finding [5}[14].

In this paper we tackle the problem of discriminating between
products based on the language (i.e., descriptions and reviews) they
are associated with. Existing methods that are aimed at discrimi-
nating between entities based on textual data learn word represen-
tations using a language modeling objective or heuristically con-
struct entity representations [[16}157]. Our approach directly learns
two things: a unidirectional mapping between words and entities,
as well as distributed representations of both words and entities. It
does so in an unsupervised and automatic manner such that words
that are strongly evidential for particular products are projected
nearby those products. While engineering of representations is im-
portant in information retrieval [2,110, 12116} 25,161]], unsupervised
joint representation learning of words and entities has not received
much attention. We fill this gap. Our focus on learning represen-
tations for an end-to-end task such as product search is in con-
trast to the large volume of recent literature on word representation
learning [56] that has a strong focus on upstream components such
as distributional semantics [42} 49], parsing [13| 56] and informa-
tion extraction [13| 56]. In addition, our focus on unsupervised
representation learning is in contrast to recent entity representation
learning methods [[10}|61]] that heavily depend on precomputed en-
tity relationships and cannot be applied in their absence.

In recent years, significant progress has been made concerning
semantic representations of entities. We point out three key in-
sights on which we build: (1) Distributed representations [27]
learned by discriminative neural networks reduce the curse of di-
mensionality and improve generalization. Latent features encap-
sulated by the model are shared by different concepts and, conse-
quently, knowledge about one concept influences knowledge about
others. (2) Discriminative approaches outperform generative mod-
els if enough training data is available [7, 47| as discriminative
models solve the classification problem directly instead of solving
a more general problem first [58|]. (3) Recently proposed unsu-
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pervised neural retrieval models [S7] do not scale as they model a
distribution over all retrievable entities; the approach is infeasible
during training if the collection of retrievable entities is large.

Building on these insights, we introduce Latent Semantic Enti-
ties (LSE), a method that learns separate representations of words
and retrievable objects jointly for the case where mostly unstruc-
tured documents are associated with the objects (i.e., descriptions
and user reviews for products) and without relying on predefined
relationships between objects (e.g., knowledge graphs). LSE learns
to discriminate between entities for a given word sequence by map-
ping the sequence into the entity representation space. Contrary to
heuristically constructed entity representations [16], LSE learns the
relationship between words and entities directly using gradient de-
scent. Unlike [57]], we avoid computing the full probability distri-
bution over entities; we do so by using noise-contrastive estimation.

Our research questions are as follows: (1) How do the param-
eters of LSE influence its efficacy? (2) How does LSE compare to
latent vector models based on LDA, LSI and word2vec? (3) How
does LSE compare to a smoothed language model that applies lex-
ical term matching? (4) What is the benefit of incorporating LSE
as a feature in a learning-to-rank setting?

We contribute: (1) A latent vector model, LSE, that jointly
learns the representations of words, entities and the relationship be-
tween the former, together with an open-source implementation
(2) A study of the influence of LSE’s parameters and how these in-
fluence its ability to discriminate between entities. (3) An in-depth
comparative analysis of the entity retrieval effectiveness of latent
vector models. (4) Insights in how LSE can improve retrieval per-
formance in entity-oriented search engines. (5) An analysis of the
differences in performance between latent vector models by exam-
ining entity representations and mappings from queries to entity
space.

2. RELATED WORK

2.1 Product retrieval

Product search engines are an important source of traffic in the
e-commerce market [30]. Specialized solutions are needed to max-
imize the utilization of these platforms. Nurmi et al. [48] note a
discrepancy between buyers’ shopping lists and how retail stores
maintain information. They introduce a grocery retrieval system
that retrieves products using shopping lists written in natural lan-
guage. Product resolution [1] is an important task for e-commerce
aggregation platforms, such as verticals of major web search en-
gines and price comparison websites. Duan et al. [19] propose a
probabilistic mixture model for the attribute-level analysis of prod-
uct search logs. They focus on structured aspects of product en-
tities, while in this work we learn representations from unstruc-
tured documents. Duan et al. [20] extend the language modeling
approach to product databases by incorporating the ability to con-
dition on specification (e.g., lightweight products only). They note
that while languages such as SQL can be used effectively to query
these databases, their use is difficult for non-experienced end users.
Duan and Zhai [18]] study the problem of learning query intent rep-
resentation for structured product entities. They emphasize that ex-
isting methods focus only on the query space and overlook critical
information from the entity space and the connection in between.

We agree that modeling the connection between query words and
entities and propagating information from the entity representations
back to words is essential. In contrast to their work, we consider
the problem of learning representations for entities based on their
associations with unstructured documents.

"https://github.com/cvangysel/SERT

2.2 Latent semantic information retrieval

The mismatch between queries and documents is a critical chal-
lenge in search [34]. Latent Semantic Models (LSMs) enable re-
trieval based on conceptual content, instead of exact word matches.
LSMs have become popular through the introduction of Latent Se-
mantic Indexing (LSI) [15], followed by probabilistic LSI (pLSI)
[28]. Salakhutdinov and Hinton [S2] use a deep auto-encoder for
the unsupervised learning of latent semantic document bit patterns.
Deep Structured Semantic Models [29] 54] employ click data to
predict a document’s relevance to a query. Methods based on neu-
ral networks have also been used for machine-learned ranking [[11}
17,136]. Van Gysel et al. [S7] introduce an LSM for entity retrieval,
with an emphasis on expert finding; they remark that training the
parameters of their model becomes infeasible when the number of
entities increases. In this work we mitigate this problem by consid-
ering only a random sample of entities as negative examples during
training. This allows us to efficiently estimate model parameters in
large product retrieval collections, which is not possibly using the
approach of [57]] due to its requirement to compute a normalization
constant over all entities.

2.3 Representation learning

Recently, there has been a growing interest in neural probabilis-
tic language models (LMs) for the modeling of word sequences
[I8} 1431 144]. Distributed representations [27] of words learned by
neural LMs, also known as word embeddings, incorporate syntac-
tic and semantic information [42, |45} 49] as a side-effect of their
ability to reduce the dimensionality. Feed-forward [[13] and recur-
rent [42] neural networks perform well in various NLP tasks. Very
recently, there has been an increased interest in multimodal neural
language models [33], which are used for the task of automated
image captioning, amongst others. Learning representations of en-
tities is not new. Bordes et al. [[10]] leverage structured relations
captured in Knowledge Bases (KB) for entity representation learn-
ing and evaluate their representations on the link prediction task.
Our approach has a strong focus on modeling the language of all
entities collaboratively, without the need for explicit entity relations
during training. Zhao et al. [61] employ matrix factorization meth-
ods to construct low-dimensional continuous representations of en-
tities, categories and words for determining similarity of Wikipedia
entities. They employ a word pair similarity evaluation set and only
evaluate on pairs referring to Wikipedia entities; they learn a single
semantic space for widely-differing concepts (entities, categories
and words) of different cardinalities and make extensive use of an
underlying Knowledge Graph (KG) to initialize their parameters.
In contrast, we model representations of words and entities jointly
in separate spaces, in addition to a mapping from word to entity
representations, in an unsupervised manner.

We tackle the task of learning latent continuous vector represen-
tations for e-commerce products for the purpose of product search.
The focus of this work lies in the language modeling and represen-
tation learning challenge. We learn distributed representations [27]]
of words and entities and a mapping between the two. At retrieval
time, we rank entities according to the similarity of their latent rep-
resentations to the projected representation of a query. Our model
LSE is compared against existing entity-oriented latent vector rep-
resentations that have been created using LSI, LDA and word2vec.
We provide an analysis of model parameters and give insight in the
quality of the joint representation space.
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Figure 2: Schematic representation of the Latent Semantic Entities model for a single word w. Word embeddings W, (ev-dim. for
|V'| words), entity embeddings W, (ex-dim. for | X | entities) and the mapping from words to entities (¢ z-by-ey matrix W, eg-dim.

vector b) are learned using gradient descent.

Figure 1: Illustrative example of how entities are ranked in vec-
tor space models w.r.t. a projected query. Query q is projected
into entity space £ using mapping f (black arrow) and enti-
ties (black crosses) are ranked according to their similarity in
decreasing order.

3. LATENT VECTOR SPACES FOR
ENTITY RETRIEVAL

We first introduce a generalized formalism and notation for entity-
oriented latent vector space models. After that, in §3.2] we in-
troduce Latent Semantic Entities, a latent vector space model that
jointly learns representations of words, entities and a mapping be-
tween the two directly, based on the idea that entities are character-
ized by the words they are associated with and vice versa. Product
representations are constructed based on the n-grams the products
are likely to generate based on their description and reviews, while
word representations are based on the entities they are associated
with and the context they appear in. We model the relation between
word and product representations explicitly so that we can predict
the product representation for a previously unseen word sequence.

3.1 Background

We focus on a product retrieval setting in which a user wants
to retrieve the most relevant products on an e-commerce platform.
As in typical information retrieval scenarios, the user encodes their
information need as a query g and submits it to a search engine.
Product search queries describe characteristics of the product the
user is searching for, such as a set of terms that describe the prod-
uct’s category [S1].

Below, X denotes the set of entities that we consider. For every
x; € X we assume to have a set of associated documents D, .
The exact relation between the entity and its documents depends
on the problem setting. In this paper, entities are products [[18 48]
and documents associated with these products are descriptions and
product reviews.

Latent vector space models rely on a function f : V1t — FE that
maps a sequence of words (e.g., a query g during retrieval) from a
vocabulary V' to a eg-dimensional continuous entity vector space
E C R°F. Every entity x; € X has a corresponding vector rep-
resentation e; € E. Let Sc : E x E — R denote the cosine
similarity between vectors in F. For a given query g, entities x;
are ranked in decreasing order of the cosine similarity between e;
and the query projected into the space of entities, f(q). Fig‘illus—
trates how entities are ranked according to a projected query. For

LSI, f is defined as the multiplication of the term-frequency vector
representation of g with the rank-reduced term-concept matrix and
the inverse of the rank-reduced singular value matrix [15]. In the
case of LDA, f becomes the distribution over topics conditioned
on g [9]. This distribution is computed as the sum of the topic dis-
tributions conditioned on the individual words of ¢. In this paper,
the embedding f is learned; see §3.3]below.

Traditional vector space models operate on documents instead
of entities. Demartini et al. [16] extend document-oriented vector
spaces to entities by representing an entity as a weighted sum of the
representations of their associated documents:

ei= > mi;fd)) (D

dj€Da,

where f(d;) is the vector representation of d; and 7; ; denotes the
relationship weight between document d; and entity x;. In this
work we put r; ; = 1 whenever d; € D, for a particular x; €
X and r; ; = 0 otherwise, as determining the relationship weight
between entities and documents is a task in itself.

3.2 Latent semantic entities

While Eq. [T] adapts document-oriented vector space models to
entities, in this work we define f by explicitly learning (§3.3) the
mapping between word and entity representations and the represen-
tations themselves:

f(s) = tanh (W (W, - ﬁ Z di) + b> )

w; ES

for a string s of constituent words w1, ..., w, (an n-gram ex-
tracted from a document or a user-issued query), where W, is the
ey X |V| projection matrix that maps the averaged one-hot rep-
resentations (i.e., a |V'|-dimensional vector with element 4 turned
on and zero elsewhere) of word w;, J;, to its ey -dimensional dis-
tributed representation. This is equivalent to taking the embed-
dings of the words in s and averaging them. In addition, b is a
er-dimensional bias vector, W is the eg X ey matrix that maps av-
eraged word embeddings to their corresponding position in entity
space F and tanh is the element-wise smooth hyperbolic tangent
with range (—1, 1). This transformation allows word embeddings
and entity embeddings to be of a different dimensionality.

In other words, for a given string of words we take the represen-
tation of this string to be the average of the representations of the
words it contains [42} 50]. This averaged word representation is
then transformed using a linear map (W) and afterwards translated
using b. We then apply the hyperbolic tangent as non-linearity such
that every component lies between —1 and 1. First of all, this reg-
ularizes the domain of the space and avoids numerical instability
issues that occur when the magnitude of the vector components be-



comes too large. Secondly, by making the function non-linear we
are able to model non-linear class boundaries in the optimization
objective that we introduce in the next section. We use W, to de-
note the | X'| X ez matrix that holds the entity representations. Row
i of W, corresponds to the vector representation, e;, of entity x;.
Fig. [2] depicts a schematic overview of the proposed model. The
parameters W,,, W, b and W, will be learned automatically using
function approximation methods as explained below.

The model proposed in this section shares similarities with pre-
vious work on word embeddings and unsupervised neural retrieval
models [42] I57]. However, its novelty lies in its ability to scale
to large collections of entities and its underlying assumption that
words and entities are embedded in spaces of different dimension-
ality: (1) The model of [42] has no notion of entity retrieval as
it estimates a language model for the whole corpus. (2) Similar
to [42], Eq. 2] aggregates words w; € s to create a single phrase
representation of s. However, in [57], a distribution P(X | w;) is
computed for every w; independently and aggregation occurs using
the factor product. This is infeasible during model training when
the collection of retrievable objects becomes too large, as is the
case for product search. In the next section (§3.3) we solve this
problem by sampling. (3) In both [42] 57]] two sets of represen-
tations of the same dimensionality are learned for different types
of objects with potentially different latent structures (e.g., words,
word contexts and experts). As mentioned earlier, Eq. 2] alleviates
this problem by transforming one latent space to the other.

3.3 Parameter estimation

For a particular document d € D, associated with entity x;, we
generate n-grams wj 1, ..., W;,,» Where n (window size) remains
fixed during training. For every n-gram wj 1, ..., w;,n, We com-
pute its projected representation f(wj,1,...,w; ) in E using f
(Eq.[2). The objective, then, is to directly maximize the similarity
between the vector representation of the entity e; and the projected
n-gram f(wj1, ..., wj,n) with respect to S. (§3.1), while mini-
mizing the similarity between f(wj 1, ..., w; ) and the represen-
tations of non-associated entities. This allows the model to learn
relations between neighboring words in addition to the associated
entity and every word.

However, considering the full set of entities for the purpose of
discriminative training can be costly when the number of entities
| X| is large. Therefore, we apply a variant of Noise-Contrastive
Estimation (NCE) [26, 41 |45| 46] where we sample negative in-
stances from a noise distribution with replacement. We use the
uniform distribution over entities as noise distribution. Define

P(S | ei, f(win, .- ywin)) = olei flwi,. ., win)) 3)

as the similarity of two representations in latent entity space, where

1
o(t) = ——
() 1+et
denotes the sigmoid function and S is an indicator binary random
variable that says whether z; is similar to f(wj,1,...,W;jn).

We then approximate the probability of an entity x; given an n-
gram by randomly sampling z contrastive examples:

logﬁ’(xl | wj,l,...,wj’n) (4)
= IOgP(S ‘ €4, f(wjyl, N ,wj,n))

+ Y log(1—P(S| ek, f(wsa,--,win)))
k=1

e ~U(X)

where U (X) denotes the uniform distribution over entities X, the
noise distribution used in NCE [26]. Eq. avoids iterating over all
entities during parameter estimation as we stochastically sample z
entities uniformly as negative training examples

During model construction we maximize the log-probability (@)
using batched gradient descent. The loss function for a single batch
of m instances ((w,1,- .., Wk,n), Tx) consisting of n-grams sam-
pled from documents D, (see @ and associated entity x, is as
follows:

L(W,, We, W, b)

1 <
= ——Zlogp(l'k|wk,17~--awk,’ﬂ)
mi4
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where )\ is a weight regularization parameter. Instances are shuf-
fled before batches are created. The update rule for a particular
parameter 6 (W,,, W, W or b) given a single batch of size m is:

00D = g0 _ o o L (@ @ o B0y (6
89 v ) e I ) I

where o™ and 6 denote the per-parameter learning rate and pa-
rameter 6 at time ¢, respectively. The learning rate o consists of
the same number of elements as there are parameters; in the case
of a global learning rate, all elements of o are equal to each other.
The derivatives of the loss function (3)) are given in the Appendix.

4. EXPERIMENTAL SETUP

4.1 Research questions

In this paper we investigate the problem of constructing a latent
vector model of words and entities by directly modeling the dis-
criminative relation between entities and word context. We seek to
answer the following research questions:

RQ1 How do the parameters of LSE influence its efficacy?

In §3]we introduced various hyper-parameters along with the defi-
nition of Latent Semantic Entities. We have the size of word repre-
sentations ey and the dimensionality of the entity representations
er. During parameter estimation, the window size n influences the
context width presented as evidence for a particular entity. What is
the influence of these parameters on the effectiveness of LSE and
can we identify relations among parameters?

RQ2 How does LSE compare to latent vector models based on
LDA, LSI and word2vec?

Is there a single method that always performs best or does effec-

tiveness differ per domain? Does an increase in the vector space

dimensionality impact the effectiveness of these methods?

RQ3 How does LSE compare to a smoothed language model that
applies lexical term matching?

How does LSE compare to language models on a per-topic basis?

Are there particular topics that work especially well with either type

of ranker?

RQ4 What is the benefit of incorporating LSE as a feature in a
learning-to-rank setting?

2We exploit the special nature of our evaluation scenario where we
know the unique association between documents and entities. The
setup can easily be adapted to the more general case where a doc-
ument is associated with multiple entities by extracting the same
word sequences from the document for every associated entity.



What if we combine popularity-based, exact matching and latent
vector space features in a linear learning-to-rank setting? Do we
observe an increase in effectiveness if we combine these features?

4.2 Experimental design

To answer the research questions posed in §4.1] we evaluate LSE
in an entity retrieval setting organized around Amazon products
(see §4.3). We choose to experiment with samples of Amazon
product data [38|139] for the following reasons: (1) The collection
contains heterogeneous types of evidential documents associated
with every entity: descriptions as well as reviews. (2) Every depart-
ment (e.g., Home & Kitchen) constitutes a separate, self-contained
domain. (3) Within each department there is a hierarchical tax-
onomy that partitions the space of entities in a rich structure. We
can use the labels associated with these partitions and the parti-
tions themselves as ground truth during evaluation. (4) Every de-
partment consists of a large number of products categorized over a
large number of categories. Importantly, this allows us to construct
benchmarks with an increasing number of entities. (5) Every prod-
uct has a variety of attributes that can be used as popularity-based
features in a learning-to-rank setting.

To answer [RQT] we investigate the relation between the dimen-
sionality of the entity representations er and window size n. The
latter, the window size n, controls the context width the model can
learn from, while the former, the dimensionality of the entity rep-
resentations e, influences the number of parameters and expres-
sive power of the model. We sweep exponentially over n (2° for
0<i<6)andep (2" for 6 < i < 11). is answered by com-
paring LSE with latent vector space model baselines (§4.5) for an
increasing entity space dimensionality ez (2° for 6 < i < 11). For
[RQ3] we compare the per-topic paired differences between LSE
and a lexical language model. In addition, we investigate the cor-
relation between lexical matches in relevant entity documents and
ranker preference. We address[RQ4]by evaluating LSE as a feature
in a machine-learned ranking in addition to query-independent and
lexical features.

The number of n-grams sampled per entity z € X from asso-
ciated documents D, in every epoch (i.e., iteration of the train-

ing data) is equal to %71‘ >gepmax (|d —n+1, 0)—‘ ,where the

| - | operator is used interchangeably for the size of set X and the
number of tokens in documents d € D. This implicitly imposes
a uniform prior over entities (i.e., stratified sampling where every
entity is of equal importance). The word vocabulary V' is created
for each benchmark by ignoring punctuation, stop words and case;
numbers are replaced by a numerical placeholder token. We prune
V by only retaining the 2'¢ most-frequent words so that each word
can be encoded by a 16-bit unsigned integer. In terms of param-
eter initialization of the Latent Semantic Entities model, we sam-
ple the initial matrices W,, W (Eq.[2) and W, uniformly in the

range [—, Y e ]for an m X n matrix, as this initializa-
tion scheme is known to improve model training convergence [24],
and take the bias vector b to be null. The number of word features
is set to ey = 300, similar to [41]. We take the number of negative
examples z = 10 to be fixed. Mikolov et al. [41] note that a value
of z between 10 and 20 is sufficient for large data sets [43].

We used Adam (o« = 0.001, 51 = 0.9, 52 = 0.999) [32] with
batched gradient descent (m = 4096) and weight decay A = 0.01
during training on NVidia Titan X GPUs. Adam has been designed
specifically for non-stationary, stochastic cost functions like the one
we defined in Eq.[d] For every model, we iterate over the training
data 15 times and choose the best epoch based on the validation
sets (Table[T).

4.3 Product search benchmarks

We evaluate on four samples from different product domainsE]
(Amazon departments), each with of an increasing number of prod-
ucts: Home & Kitchen (8,192 products), Clothing, Shoes & Jew-
elry (16,384 products), Pet Supplies (32,768 products) and Sports
& Outdoors (65,536 products); see Tablem The documents asso-
ciated with every product consist of the product description plus
reviews provided by Amazon customers.

Rowley [S1) p. 24] describes directed product search as users
searching for “a producer’s name, a brand or a set of terms which
describe the category of the product.” Following this observation,
the test topics c¢; are extracted from the categories each product be-
longs to. Category hierarchies of less than two levels are ignored, as
the first level in the category hierarchy is often non-descriptive for
the product (e.g., in Clothing, Shoes & Jewelry this is the gender for
which the clothes are designated). Products belonging to a partic-
ular category hierarchy are considered as relevant for its extracted
topic. Products can be relevant for multiple topics. Textual repre-
sentations g, of the topics based on the categories are extracted as
follows. For a single hierarchy of categories, we tokenize the titles
of its sub-categories and remove stopwords and duplicate words.
For example, a digital camera lense found in the Electronics de-
partment under the categorical topic Camera & Photo — Digital
Camera Lenses will be relevant for the textual query “photo cam-
era lenses digital.” Thus, we only have two levels of relevance. We
do not index the categories of the products as otherwise the query
would match the category and retrieval would be trivial.

4.4 Evaluation measures and significance

To measure retrieval effectiveness, we report Normalized Dis-
counted Cumulative Gain (NDCG). For [RQ4] we additionally re-
port Precision@k (k = 5,10). Unless mentioned otherwise, sig-
nificance of observed differences is determined using a two-tailed
paired Student’s t-test [53] (*** p < 0.01; ** p < 0.05; *p < 0.1).

4.5 Methods used in comparisons

We compare Latent Semantic Entities to state-of-the-art latent
vector space models for entity retrieval that are known to perform
semantic matching [34]. We also conduct a contrastive analysis
between LSE and smoothed language models with exact matching
capabilities.

Vector Space Models for entity finding. Demartini et al.
[16] propose a formal model for finding entities using document
vector space models (§3.1). We compare the retrieval effective-
ness of LSE with baseline latent vector space models created us-
ing (1) Latent Semantic Indexing (LSI) [15] with TF-IDF term
weighting, (2) Latent Dirichlet Allocation (LDA) [9] with o =
B = 0.1, where a document is represented by its topic distribu-
tion, and (3) word2vec [42] with CBOW and negative sampling,
where a query/document is represented by the average of its word
embeddings (same for queries in LSE). Similar to LSE, we train
word2vec for 15 iterations and select the best-performing model
using the validation sets (Table [I).

Query-likelihood Language Model. For every entity a pro-
file-based statistical language model is constructed using maximum-
likelihood estimation [4} 37} 58], which is then smoothed by the
language model of the entire corpus. The retrieval score of entity x
for query q is defined as

Pg|a) =] Pt | 62), (7)

t;€q

3 A list of product identifiers, topics and relevance assessments can
be found at https://github.com/cvangysel/SERT.
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Table 1: Overview of the Home & Kitchen, Clothing, Shoes & Jewelry, Pet Supplies and Sports & Outdoors product search benchmarks.
T and V denote the test and validation sets, respectively. Arithmetic mean and standard deviation are reported wherever applicable.

Home & Kitchen Clothing, Shoes & Jewelry Pet Supplies Sports & Outdoors

Corpus (train)
Number of documents 88,130 94,024 416,993 502,313
Document length 70.02 £ 73.82 58.41 £61.90 7748 £78.44 72.52 £81.47
Number of entities 8,192 16,384 32,768 65,536
Documents per entity 10.76 £ 52.01 5.74 £18.60 12.73 +£55.98 7.66 £+ 30.38
Topics (test)
Tobics 657 (T) 750 (T) 385 (T) 1,879 (T)

P 72 (V) 83 (V) 42 (V) 208 (V)
Terms per topic 5.11+£1.79 4.10 £1.86 3.73 £1.62 4.64 +£1.68

Relevant entities
per topic

10.92 £ 32.41 (T)
10.29 +15.66 (V)

20.15 £57.78 (T)
12.13 £19.85 (V)

75.96 £ 194.44 (T)
57.40 £ 88.91 (V)

29.27 +£61.71 (T)
38.25 & 157.34 (V)

where P(t | 05) is the probability of term ¢ occurring in the smooth-
ed language model of = (Jelinek-Mercer smoothing [60]). Given a
query g, entities are ranked according to P(q | x) in descending
order.

Machine-learned ranking. RankSVM models [31]] in
and[f]are trained using stochastic gradient descent using the imple-
mentation of Sculley [S3]. We use default values for all parameters,
unless stated otherwise. For the experiment investigating LSE as a
feature in machine-learned ranking in §5.2] we construct training
examples by using the relevant entities as positive examples. Neg-
ative instances are generated by sampling from the non-relevant
entities with replacement until the class distribution is uniform.

S. RESULTS AND DISCUSSION

We start by giving a high-level overview of our experimental
results (RQ1] and [RQ2), followed by a comparison with lexical
matching methods and the use of LSE as a ranking feature

(RQ4) (see §4.2]for an overview of the experimental design).

5.1 Overview of experimental results

[RQT} Fig. 3] depicts a heat map for every combination of win-
dow size and entity space dimensionality evaluated on the valida-
tion sets (Table[T). Fig.[]shows that neither extreme values for the
dimensionality of the entity representations nor the context width
alone achieve the highest performance on the validation sets.

Instead, a low-dimensional entity space (128- and 256-dimen-
sional) combined with a medium-sized context window (4- and 8-
grams) achieve the highest NDCG. In the two largest benchmarks
(Fig.[3¢c] [Bd) we see that for 16-grams, NDCG actually lowers as
the dimensionality of the entity space increases. This is due to the
model fitting the optimization objective (Eq. [5), which we use as
an unsupervised surrogate of relevance, too well. That is, as the
model is given more learning capacity (i.e., higher dimensional rep-
resentations), it starts to learn more regularities of natural language
which counteract retrieval performance.

Fig. [ presents a comparison between LSE (window size
n = 4) and vector space model baselines (§4.3)) for increasing en-
tity representation dimensionality (2* for 6 < ¢ < 11) on the test
sets. LSE significantly outperforms (p < 0.01) all baseline meth-
ods in most cases (except for Fig. fa| where ez = 1024). For the
smaller benchmarks (Fig. fa] [Ab), we see LSI as the main com-
petitor of LSE. However, as the training corpora become larger (in
Fig.[Ac][Ed), word2vec outperforms LSI and becomes the main con-

Table 2: Correlation coefficients between average IDF of lexi-
cally matched terms in documents associated with relevant en-
tities and ANDCG. A negative correlation coefficient implies
that queries consisting of more specific terms (i.e., low docu-
ment freq.) that occur exactly in documents associated with
relevant entities are more likely to benefit from QLM, whereas
other queries (with less specific terms or less exact matches)
gain more from LSE. Significance is achieved for all bench-
marks (p < 0.01) using a permutation test.

Benchmark Spearman R  Pearson R
Home & Kitchen —0.30 —0.35
Clothing, Shoes & Jewelry —-0.40 —0.37
Pet Supplies —0.17 —-0.17
Sports & Outdoors —0.34 —0.36

tester of LSE. On all benchmarks, LSE peaks when the entity repre-
sentations are low-dimensional (128- or 256-dimensional) and af-
terwards (for a higher dimensionality) performance decreases. On
the other hand, word2vec stagnates in terms of NDCG around rep-
resentations of 512 dimensions and never achieves the same level
as LSE did for one or two orders of magnitude (base 2) smaller rep-
resentations. This is a beneficial trait of LSE, as high-dimensional
vector spaces are undesirable due to their high computational cost
during retrieval [S9].

5.2 A feature for machine-learned ranking

We now investigate the use of LSE as a feature in a learning to
rank setting [36]]. Latent vector space models are known to provide
a means of semantic matching as opposed to a purely lexical match-
ing [34.57]]. To determine to which degree this is indeed the case,
we first perform a topic-wise comparison between LSE and a lexi-
cal language model, the Query-likelihood Language Model (QLM)
[60], as described in §4.5] We optimize the parameters of LSE and
QLM on the validation sets for every benchmark (Table[T). In the
case of LSE, we select the model that performs best in Fig.[3] For
QLM, we sweep over A linearly from 0.0 to 1.0 (inclusive) with
increments of 0.05.

[RQ3} Fig.[3]shows the per-topic paired difference between LSE
and QLM in terms of NDCG. Topics that benefit more from LSE
have a positive value on the y-axis, while those that prefer QLM
have a negative value. We can see that both methods perform sim-
ilarly for many topics (where A = 0.0). For certain topics one
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Figure 5: Per-topic paired differences between LSE and Query-
likelihood Language Model for models trained on Home &
Kitchen, Clothing, Shoes & Jewelry, Pet Supplies and Sports &
Outdoors product search benchmarks ( and evaluated on
the test sets. For every plot, the y-axis indicates ANDCG be-
tween LSE and a Query-likelihood Language Model. The x-
axis lists the topics in the referenced benchmark in decreasing
order of ANDCG such that topics for which LSE performs bet-
ter are on the left and vice versa for the Query-likelihood Lan-
guage Model on the right.

method performs substantially better than the other, suggesting that
the two are complementary. To further quantify this, we investigate
the relation between specific topic terms and their occurrence in
documents relevant to these topics. That is, we measure the cor-
relation between the per-topic ANDCG (as described above) and
the average inverse document frequency (IDF) of exact/lexically
matched terms in the profile-based language model. In Table [2]
we observe that queries that contain specific tokens (i.e., with high
inverse document frequency) and occur exactly in documents as-
sociated with relevant products, benefit more from QLM (lexical
matches). Conversely, queries with less specific terms or without
exact matches in the profiles of relevant products gain more from
LSE (semantic matches).

This observation motivates the use of LSE as a ranking fea-
ture in addition to traditional language models. Specifically, we
now evaluate the use of LSE as a feature in a linear RankSVM
(§8.3). Following Fang et al. [21]], we consider query-independent
(QI) popularity-based features in addition to features provided by
LSE and QLM. This allows us to consider the effect of the query-
dependent features independent from their ability to model a popu-
larity prior over entities. Table[3]lists the feature sets.

Table[d]shows the results for different combinations of fea-
ture sets used in a machine-learned ranker, RankSVM. The experi-
ment was performed using 10-fold cross validation on the test sets
(Table[T). The combination using all features outperforms smaller
subsets of features, on all metrics. We conclude that Latent Seman-
tic Entities adds a signal that is complementary to traditional (lexi-
cal) language models, which makes it applicable in a wide range of
entity-oriented search engines that use ranker fusion techniques.



Table 3: Overview of the feature sets used in the machine-
learned ranking experiments.

Features Description

Query-independent features: (1) product price;
(2) product description length; (3) reciprocal of the

QI Amazon sales rank; and (4) product PageRank scores
based on four related product graphs (also bought, also
viewed, bought together, buy after viewing).

Query-likelihood Language Model using Jelinek-Mercer
smoothing with A optimized on the validation set

QLM (Table[). Posterior P(q | x) is used as a feature for
entity « and query q.
Latent Semantic Entities optimized on the validation set
LSE (Table[i] Fig. ). Similarity Sc(f(q),e) is used as a

feature for entity =, with vector representation e, and
query q.

6. ANALYSIS OF REPRESENTATIONS

Next, we analyze the entity representations e; of the vector space
models independent of the textual representations by providing em-
pirical lower-bounds on their maximal retrieval performance, fol-
lowed by a comparison with their actual performance so as to mea-
sure the effectiveness of word-to-entity mapping f.

Fig. [8land ] show which levels of performance may be achieved
by using the latent models to generate a ranking from textual queries
(Eq.[2). But this is only one perspective. As entities are ranked ac-
cording to their similarity with the projected query vector f(qc),
the performance for retrieving entities w.r.t. the textual represen-
tation of a topic c depends on the structure of the entity space F,
the ideal retrieval vector e; € F (i.e., the vector that optimizes
retrieval performance), and the similarity between f(g.) and e..

How can we determine the ideal vector e ? First, we define it to
be the vector for which the cosine similarity with each of the entity
embeddings results in a ranking where relevant entities are ranked
higher than non-relevant or unjudged entities. We approximate e,
by optimizing the pair-wise SVM objective [31, I53]. That is, for
every topic ¢ we construct a separate RankSVM model based on
its ground-truth as follows. We only consider topics with at least
two relevant entities, as topics with a single relevant entity have
a trivial optimal retrieval vector (the entity representation of the
single relevant entity). Using the notation of [31], the normalized
entity representations are used as features, and hence the feature
mapping ¢ is defined as

QS(C? :172)

Hei||2

The target ranking r} is given by the entities relevant to topic c.
Thus, the features for every entity become the entity’s normalized
representation and its label is positive if it is relevant for the topic
and negative otherwise. The pair-wise objective then finds a weight
vector such that the ranking generated by ordering according to the
vector scalar product between the weight vector and the normalized
entity representations correlates with the target ranking 7. Thus,
our approximation of the ideal vector, €, is given by the weight
vector w, for every cE]

What is the performance of this approximately ideal vector rep-
resentation? And how far are our representations removed from it?
Fig. [6] shows the absolute performance of &} (dashed curves) and
f(q) (solid curves) in terms of NDCG. Comparing the (absolute)
difference between every pair of dashed and solid curves for a sin-

forall z; € X.

“Note that & does not take into account the textual representations
gc of topic c, but only the clustering of entities relevant to ¢ and
their relation to other entities.

Table 4: Ranking performance results for query independent
(QI) features, the Query-likelihood Language Model (QLM)
match feature, the Latent Semantic Entities (LSE) match
feature and combinations thereof, weighted using RankSVM
(§5.2), evaluated on the test sets using 10-fold cross validation,
for Home & Kitchen, Clothing, Shoes & Jewelry, Pet Supplies
and Sports & Outdoors product search benchmarks (§4.3). The
hyperparameters of the individual query features (QLM and
LSE) were optimized using the validation sets. Significance of
the results (§4.4) is computed between QI + QLM + LSE and
QI + QLM.

Home & Kitchen

NDCG P@s P@10
QI 0.005 0.002 0.001
QI + QLM 0.321 0.180 0.145
QI +LSE 0.257 0.121 0.107
QI+ QLM + LSE 0.352%** 0.192** 0.157*%**

Clothing, Shoes & Jewelry

NDCG P@5 P@10
QI 0.002 0.001 0.001
QI + QLM 0.177 0.079 0.068
QI +LSE 0.144 0.065 0.057
QI+ QLM + LSE 0.198*** 0.094***  0.080"**

Pet Supplies

NDCG P@s P@10
QI 0.003 0.002 0.002
QI + QLM 0.250 0.212 0.199
QI +LSE 0.268 0.222 0.214
QI+ QLM + LSE 0.298*** 0.255***  0.236™**

Sports & Outdoors

NDCG P@s P@10
QI 0.001 0.001 0.001
QI + QLM 0.235 0.183 0.156
QI +LSE 0.188 0.132 0.121
QI+ QLM + LSE 0.264"** 0.192%**  0.172***

gle latent model gives an intuition of how much performance in
terms of NDCG there is to gain by improving the projection func-
tion f for that method. The approximately ideal vectors & discov-
ered for LSE outperform all baselines significantly. Interestingly,
for representations created using LDA, the optimal performance
goes up while the actual performance stagnates. This indicates that
a higher vector space dimensionality renders better representations
using LDA, however, the projection function f is unable to keep
up in the sense that projected query vectors are not similar to the
representations of their relevant entities. The latent models with
the best representations (LSE and LSI) also have the biggest gap
between f(q) and & in terms of achieved NDCG.

We interpret the outcomes of our analysis as follows. The en-
tity space E has more degrees of freedom to cluster entities more
appropriately as the dimensionality of E increases. Consequently,
the query projection function f is expected to learn a more com-
plex function. In addition, as the dimensionality of E increases, so
does the modeling capacity of the projection function f in the case
of LSE and LSI (i.e., the transformation matrices become larger)
and therefore more parameters have to be learned. We conclude
that our method can more effectively represent entities in a lower-
dimensional space than LSI by making better use of the vector
space capacity. This is highly desirable, as the asymptotic run-
time complexity of many algorithms operating on vector spaces in-
creases at least linearly [59] with the size of the vectors.
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Figure 6: Comparison of the approximately ideal retrieval vec-
tor ¢ with the projected query retrieval vector f(q) for latent
entity models built using LSE, LSI, LDA and word2vec (§4.5)
on Home & Kitchen and Pet Supplies product search bench-
marks (§4.3) and evaluated on the test sets. The plots for Cloth-
ing, Shoes & Jewelry and Sports & Outdoors product search
benchmarks are qualitatively similar to the ones shown. The
figures show the absolute performance in terms of NDCG of
¢, (dashed curves) and f(q) (solid curves); significance (
for the results for the approximately ideal retrieval vectors e
is computed between LSE and the best-performing baseline for
each vector space size and indicated along the x-axis.

7. CONCLUSIONS

We have introduced Latent Semantic Entities, an unsupervised
latent vector space model for product search. It jointly learns a uni-
directional mapping between, and latent vector representations of,
words and products. We have also defined a formalism for latent
vector space models where latent models are decomposed into a
mapping from word sequences to the product vector space, repre-
sentations of products in that space, and a similarity function. We
have evaluated our model using Amazon product data, and com-
pared it to state-of-the-art latent vector space models for product
ranking (LSI, LDA and word2vec). LSE outperforms all baselines
for lower-dimensional vector spaces.

In an analysis of the vector space models, we have compared
the performance achieved with the ideal performance of the pro-
posed product representations. We have shown that LSE constructs
better product representations than any of the baselines. In addi-
tion, we have obtained important insights w.r.t. how much perfor-
mance there is to gain by improving the individual components of
latent vector space models. Future work can focus on improving
the mapping from words to products by incorporating specialized
features or increasing the mapping’s complexity. In addition, semi-
supervised learning may help specialize the vector space and map-
ping function for particular retrieval settings.

A comparison of LSE with a smoothed lexical language model
unveils that the two methods make very different errors. Some di-
rected product search queries require lexical matching, others ben-
efit from the semantic matching capabilities of latent models. We
have evaluated LSE as a feature in a machine-learned ranking set-
ting and found that adding LSE to language models and popularity-
based features significantly improves retrieval performance.

As to future work, in this paper we focus on the unsupervised
setting where we have a description and a set of reviews associ-
ated with every product. Fig. [ shows that there is a lot of perfor-
mance to gain by improving the query projection function f. In a
semi-supervised setting, the difference between e and f(q) can be
minimized according to pairs of queries and ideal rankings. As an
additional step, query-relevance training data could be incorporated
during estimation of the entity space E. Moreover, as mentioned
in §6] the query projection function f is expected to learn a more

complicated mapping. Hence, it may be beneficial to consider in-
corporating additional hierarchical depth using multiple non-linear
transformations in the construction of f. More generally, the ob-
tained product representations can be beneficial for various entity-
oriented prediction tasks such as entity disambiguation or related
entity finding. While we have focused on product retrieval in this
work, the proposed model, insights and ideas can be applied in
broader settings, such as entity finding and ad-hoc retrieval.
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APPENDIX

Denote py, = ﬁ(mk | w1,
term b equals

., Wk n). The derivative of @ w.r.t. bias
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and w.r.t. an arbitrary matrix parameter 6 (W,,, W, or W):
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Ignoring the subscripts for batch instances and word positions for ease of

notation, for a single instance we denote 21 as the target entity and X ~ as
the sample of z contrastive negative examples. We have

p o= PS|et fwinwin) - [ Q=P Te, fwi,. . win))
T EXT
where application of the product rule in the computation of % is omitted
due to space constraints.
For 6 (W, b, W, or W,,) we observe
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20 N
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For a single entity representation e (a row of matrix We),
de- fwi,...,wn)
Ce L) . wn)

where we observe that the update to an entity representation is the projected
representation of the input n-gram multiplied by a scalar.

The symbolic derivative of the dot product between the entity represen-
tation and the projected n-gram w.r.t. bias term b, linear map W and word
representations W, respectively, are:
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