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ABSTRACT
Reductions are common in scientific and data-crunching codes, and
a typical source of bottlenecks on massively parallel architectures
such as GPUs. Reductions are memory-bound, and achieving peak
performance involves sophisticated optimizations. There exist li-
braries such as CUB and Thrust providing highly tuned imple-
mentations of reductions on GPUs. However, library APIs are not
flexible enough to express user-defined reductions on arbitrary data
types and array indexing schemes. Languages such as OpenACC
provide declarative syntax to express reductions. Such approaches
support a limited range of reduction operators and do not facilitate
the application of complex program transformations in presence of
reductions. We present language constructs that let a programmer
express arbitrary reductions on user-defined data types matching
the performance of tuned library implementations. We also ex-
tend a polyhedral compilation flow to process these user-defined
reductions, enabling optimizations such as the fusion of multiple
reductions, combining reductions with other loop transformations,
and optimizing data transfers and storage in the presence of reduc-
tions. We implemented these language constructs and compilation
methods in the PPCG framework and conducted experiments on
multiple GPU targets. For single reductions the generated code
performs on par with highly tuned libraries, and for multiple re-
ductions it significantly outperforms both libraries and OpenACC
on all platforms.

1. INTRODUCTION
A reduction is an associative and commutative operator on a col-

lection of data elements that reduces its dimensionality. Reductions
can be found in many computational applications such as image
processing, linear-algebra, partial differential equations, computa-
tional geometry, statistical computing, machine learning, etc. They
are often found in convergence tests of iterative algorithms and are
executed repeatedly. For example, in Monte Carlo simulations av-
erages and variances of a vast number of random simulations are
repeatedly computed. A poorly optimized reduction will become
a bottleneck for the whole program’s performance. Imperative im-
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plementations of reductions apply a binary operator successively
to all elements of the input set; this induces dependences between
loop iterations and forces them to execute sequentially. Since re-
duction operators are associative and commutative, it is safe to ig-
nore the sequential dependence, exposing parallelism and enabling
more aggressive loop nest optimizations. Since reduction opera-
tors are associative, multiple reductions can also be performed in
parallel and eventually combined to produce the final output. Fur-
thermore, the reduction operator’s commutativity can enable target-
specific optimizations on massively parallel architectures such as
GPUs.

To optimize reductions, we first need to identify them. Auto-
matic detection of simple reductions with commonly used reduc-
tion operators such as addition, multiplication, minimum and max-
imum is well understood. However, when the reduction is per-
formed on a user-defined data type or with a more complex op-
erator, no existing compiler can do this automatically, even if it
remains easy for the programmer to identify the associative and
commutative operations and the variables involved in the reduction.
Hence our proposal to introduce new language constructs to con-
vey information about reductions to the compiler. For a compiler
to optimize reductions, it needs to know the data type and identity
element of the binary operation, the set of loop iterations carrying
the reduction, and the actual associative and commutative opera-
tor. The language constructs we propose allow all this information
to be expressed by the programmer with very little modifications
to input code. Unlike the declarative syntax of parallel languages
like OpenMP or OpenACC, these constructs are embedded into the
semantics of the underlying imperative language.

Even after the reduction is identified, it is not trivial to optimize
them on massively parallel architectures such as GPUs. Reduction
operations typically have very low arithmetic intensity, performing
one operation per load. Hence, they are bandwidth-bound and re-
quire many optimizations to achieve peak performance. Libraries
such as CUB, Thrust provide a highly efficient implementation of
reductions. They often achieve more than 90% percent of theoreti-
cal peak performance by means of a diverse range of optimizations,
including architecture-specific instructions to accelerate reductions
and tuning parameters for a given architecture. These libraries let
the programmer customize reductions by providing an associative
and commutative operator and its identity element; it is indeed easy
to embed a single reduction into a library call. But when encoun-
tering multiple reductions on the same input data, or if performing
the reduction on only a subset of the input elements, or combining
the reduction with pre- and post-processing steps, these libraries
are inefficient as they require multiple calls involving multiple ar-
ray traversals. For example, consider a loop computing the minimal
and maximal elements of an array simultaneously. A typical library



approach would need two function calls calls: one to find the min-
imum and an other one to find the maximum. This is inefficient
as one could use a single traversal of the array to find both. In
the same spirit, the SLAMBench computer vision application we
consider in our experiments has a reduction kernel that performs
32 different reductions [17]. Using library calls in these cases will
be highly inefficient. Although library APIs are highly efficient in
their optimized use-cases, they are not flexible enough to adapt to
all program requirements.

Reductions are usually bound by the maximum available band-
width of the device. We can improve the arithmetic intensity of
reductions by performing certain loop transformations such as loop
fusion. Performing two reductions at once can be twice as fast
as two separate reductions. In the latter case, input data is scanned
twice, whereas in former input data is scanned just once and two re-
ductions are performed per single load. It is also profitable to fuse
the parallel map and reduce type of kernels. In order to enable such
transformations, we extend the polyhedral framework of compila-
tion to support reductions. In recent times, the polyhedral model
has evolved to a powerful, practical and automatic framework to
perform loop nest optimizations. We propose a dependence-based
abstraction for reductions in the polyhedral model. This abstraction
fits well into an existing polyhedral compilation toolchain and also
enables loop transformations in the presence of reductions.

We propose a template-based code generator for reductions. It
retains the ability to generate code for arbitrary polyhedral program
representation, while embedding a reduction template implement-
ing all the optimizations required to achieve peak performance. The
code generation algorithm adapts this template to match the reduc-
tions defined by the programmer, and to coordinate the scheduling,
storage mapping decisions and data transfers across reduction and
non-reduction regions of the program. Building on the rich infor-
mation about the source program’s reductions carried by the new
language constructs, it is possible to aggressively modify and spe-
cialize the template even after loop nest optimizations have been
applied. It is also possible to auto-tune the reduction template for
a given GPU architecture, to identify the optimal values for pa-
rameters such as block size, grid size, and the number reduction
elements per thread. Overall, our approach allows generation of
highly efficient code for sequences of user-defined reductions em-
bedded into more general array- and loop-intensive computations,
and to make that process portable across different architectures.

Building on a start-of-the-art polyhedral compilation flow capa-
ble of generating CUDA and OpenCL code from an ISO C pro-
gram, we extended this framework to handle generalized reduction
constructs and to generate efficient code for these. We evaluate our
prototype with a selected set of reduction kernels extracted from the
SLAMBench, SHOC and Rodinia benchmark suites. We present
a performance comparison against highly tuned libraries such as
CUB and Thrust, as well as with the PGI OpenACC compiler, tar-
geting three different GPUs to assess the performance portability.

In summary, our main contributions are:

• language constructs embedded into ISO C as builtin func-
tions allowing programmers to express custom reductions on
arbitrary data types;

• the support for generalized reductions carried by imperfectly
nested loops, and for indirect indexing in reduction arrays
(subscripts of subscripts);

• a dependence-based abstraction of user-defined reductions in
the polyhedral model to apply loop nest transformations on
reductions;

• template-based code generation for custom reductions that
are efficient and portable across multiple GPU architectures;

• the evaluation of several single reduction kernels and one
complete application with many reductions on multiple GPU
architectures.

2. ABOUT PENCIL
Our work builds upon PENCIL [1], a Platform-Neutral Compute

Intermediate Language. This section reviews its essential design
and syntactic elements.

PENCIL is intended as a target language for DSL compilers and
as a high level portable implementation language for programming
accelerators. A program domain expert with high-level knowledge
about the relevant operations in a given domain knows a lot of infor-
mation that could be useful to an optimizing compiler. Information
regarding aliasing, parallelization, high level data flow and other
domain specific information can be exploited by the compiler to
perform more accurate static analysis, additional optimizations and
to generate more efficient target-specific code. Such information
can be difficult to extract by a compiler but might be easily cap-
tured from a DSL, or expressed by an expert programmer. PENCIL
is a rigorously-defined subset of GNU C99 and provides language
constructs that enable communication of this domain-specific in-
formation to the PENCIL compiler.

PENCIL was designed with following main objectives:

Sequential Semantics. Its sequential semantics simplifies DSL-
to-PENCIL compiler development and flattens the learning
curve of an expert directly developing in PENCIL. Note that
the sequential semantics does not preclude the expression of
information essential to parallelization, such as interprocedu-
ral side-effects and (in)dependence properties; but the user is
not bound to any particular pattern(s) of parallelism.

Portability. Any standard C99 compiler that supports GNU C at-
tributes is able to compile PENCIL. This ensures portabil-
ity to platforms without OpenCL/CUDA support and allows
existing tools to be used for debugging sequential PENCIL
code.

Ease of analysis. The language simplifies static code analysis for
a high degree of optimization. The main restriction of this
is that the use of pointers is disallowed, except in specific
read-only cases.

Support for domain-specific information. PENCIL helps domain
experts and high-level DSL compilers to convey, in PEN-
CIL, domain-specific information that can be exploited by
the PENCIL compiler during optimization.

Figure 1 shows a high level overview of a PENCIL compiler
framework. At the top level a DSL program is translated into PEN-
CIL by a DSL-to-PENCIL compiler, applying domain-specific op-
timizations in the process.

PPCG is a polyhedral optimizer that performs loop nest transfor-
mations, parallelization, data locality optimization and generates
efficient OpenCL or CUDA code [34]. PPCG was modified by
the authors of PENCIL to handle the language’s extensions [1]. It
extracts the additional information provided through PENCIL ex-
tensions and uses it to apply the aforementioned transformations.
This separation of domain-specific optimizations and general loop-
level optimizations make PENCIL a lightweight general-purpose
language applicable to a wide range of domains, and made it a



Figure 1: A high level overview of the PENCIL compilation flow

prime candidate for the prototyping of our reduction constructs and
compilation methods. Our framework also supports auto-tuning of
the generated code to find optimal parameter values for tile sizes,
block sizes, grid sizes, etc. for a given target architecture.

We detail the most important restrictions imposed by PENCIL
from the point of view of enabling GPU-oriented compiler opti-
mizations. The PENCIL specification [2] contains the rules in full.

Sized, non-overlapping arrays. Arrays must be declared through
the C99 variable-length array syntax [11], with the static
const restrict C99 type qualifiers/keywords. As a short-
cut, the pencil_attributes macro expands to the latter.
Optimizations in the PENCIL compiler know about the length
of arrays, and that arrays do not overlap.

Pointer restrictions. Pointer declarations and definitions are al-
lowed in PENCIL, but pointer manipulation (including arith-
metic) is not, except that C99 array references are allowed
as arguments in function calls. Pointer dereferencing is also
not allowed except for accessing C99 arrays. The restricted
use of pointers is important for moving data between differ-
ent address spaces of hardware accelerators, as it essentially
eliminates aliasing problems.

No recursion. Recursive calls are not allowed, because they are
not supported by accelerator programming languages such
as CUDA or OpenCL.

Structured for loops. A PENCIL for loop must have a single it-
erator, a loop-invariant stop value and a constant increment
(step).

The main constructs introduced by PENCIL include the assume
and kill builtin functions, the independent directive and sum-
mary functions. They are described here very briefly, in a form
extracted from the more complete description of [2, 1].

2.1 Summary Functions
Summary functions are used to describe the memory access pat-

terns of (1) library functions called from PENCIL code, for which
source code is not available for analysis, and (2) non-PENCIL func-
tions called from PENCIL code to enable more precise static anal-
ysis. The concept is inspired from stub functions in PIPS [10] and

__attribute__((pencil_access(summary_fft32)))
void fft32(int i, int j, int n,

float in[pencil_attributes n][n][n]);

int ABF(int n, float in[pencil_attributes n][n][n])
{
// ...
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
fft32(i, j, n, in);

// ...
}

void summary_fft32(int i, int j, int n,
float in[pencil_attributes n][n][n]);

{
for (int k = 0; k < 32; k++)
__pencil_use(in[i][j][k]);

for (int k = 0; k < 32; k++)
__pencil_def(in[i][j][k]);

}

Figure 2: Example code illustrating the use of summary functions

shares the motivations of access specifications in Jade [29] and Ac-
cess/Execute metadata [9]. As a distinctive feature, the concrete se-
mantics of summary functions captures both may- and must-access
information from a single imperative implementation.

Figure 2 shows an example use of summary functions. The
code calls the function fft32 (Fast Fourier Transform). This func-
tion only reads and modifies (in-place) 32 elements of its input
array in, but does not modify any other parts of the input array.
Without a summary function the compiler must conservatively as-
sume that the whole array passed to fft32 is accessed for read-
ing and writing. Such a conservative assumption prevents paral-
lelization. The effect of a calling fft32 is given by its summary
function summary_fft32. The PENCIL compiler derives accu-
rate memory access information (reads and writes of 32 elements)
summary_fft32 enabling parallelization of the loop nest.

Summary functions are a powerful construct enabling polyhe-
dral analysis and transformations for non-affine code. Traditional
polyhedral compilers handle control flow with only affine condi-
tionals. When dealing with non-affine parts and data dependent
conditionals, one may create a function encapsulating such control
flow regions and provide conservative memory accesses informa-
tion through a summary function. A polyhedral compiler can now
perform analyses and transformations based on the memory access
information in the summary function. For example, we were able
to pencilize the large SLAMBench application, rich in non-affine
and data dependent control flow, using summary functions.

2.2 Assume Builtin
__pencil_assume(e) is an intrinsic function where e is a log-

ical expression, indicating that e is guaranteed to hold whenever
the control flow reaches the intrinsic. This knowledge is taken on
trust by the PENCIL compiler, and may enable generation of more
efficient code. An assume statement allows a programmer to com-
municate high level facts to the optimizer.

A general 2D convolution in image processing is a a good exam-
ple that demonstrates the use of __pencil_assume. This image
processing kernel calculates the weighted sum of the area around
each pixel using a kernel matrix for weights. It can be helpful to
know that the size of the convolution matrix (the matrix that holds
the convolution kernel) is at most 15 × 15. This can be expressed
using the assume builtin as follows:
__pencil_assume(kernel_matrix_rows <= 15);
__pencil_assume(kernel_matrix_cols <= 15);



This information enables a PENCIL compiler to perform opti-
mizations such as unrolling the inner convolution loops or placing
kernel matrix into shared memory.

2.3 Independent Directive
The independent directive is used to annotate loops. It indi-

cates that the desired result of the loop execution does not depend in
any way upon the execution order of the data accesses from differ-
ent iterations. In particular, data accesses from different iterations
may be executed simultaneously. In practice, the independent

directive is used to indicate that the marked loop does not have any
loop-carried dependences (i.e., it could be run in parallel).

Note that reductions are not allowed in a loop annotated with the
independent directive, as they carry dependences along the suc-
cessive iterations of the loop. This is a major limitation of PENCIL
that we address in this paper.

2.4 Pencil Kill
The __pencil_kill builtin function allows the user to refine

data flow information within and across any control flow region in
the program. It is a polymorphic function that signals that its argu-
ment (a variable or an array element) is dead at the program point
where __pencil_kill is inserted, meaning that no data flows
through the argument from any statement instance executed be-
fore the kill to any statement instance executed after. The accurate
data flow information avoids unnecessary data transfers between
the host and accelerator.

3. REDUCTIONS IN PENCIL
Let us now present the PENCIL extensions to represent user-

defined reductions. Figure 3 shows a sample reduction code of
complex number multiplications. Automatic techniques for the de-
tection of reductions have been proposed; see [6] for a survey of the
polyhedral ones. However, most of these techniques can only de-
tect a simple reduction with standard operators such as sum, max,
min, etc. Real-world applications often involve user-defined reduc-
tions with custom reduction operators and user-defined data types.
Moreover, reductions might be applied only to a range of array in-
dexes. Automatic detection techniques are expensive and fail to
detect such complex user-defined reductions. Often the program-
mer or the code generator for a high-level, domain-specific lan-
guage, readily knows all information related to reductions. Hence,
we provide PENCIL extensions that will allow a programmer to eas-
ily express arbitrary reductions.

We analyzed many benchmarks from different suites (SHOC,
Rodinia, PolyBench, SLAMBench, etc.) and many DSLs (linear al-
gebra, image processing, signal processing, etc.). Based on these,
and considering the semantic constraints of embedding custom re-
duction information into a statically compiled imperative language
with first order functions, we designed the following extensions
that are natural and flexible enough to express all the reductions
we have encountered. The programmer or DSL compiler needs to
convey the following pieces of information regarding reductions to
the underlying compiler: reduction operator, identity element and
reduction domain. The reduction operator is a commutative and
associative function of two arguments that returns one value of the
same type. The identity element of the reduction operator is used
to initialize the temporary variables that hold the intermediate re-
sult. The reduction domain represents the set of iterations for which
the reduction operator is called, possibly spanning multiple nested
loops.

Figure 4 shows a sample reduction kernel taken from the Srand
benchmark of the Rodinia suite. Figure 5 shows the PENCIL ver-

typedef struct COMPLEX {
int a;
int b;

} Complex;

Complex multiply(Complex x,Complex y) {
Complex z;
z.a = x.a*y.a - x.b*y.b;
z.b = x.a*y.b + x.b*y.a;
return z;

}

Complex Reduce(const int N, Complex input[N]){
int i;
Complex product = {1.0, 0.0};

for(i=0;i<N;i++)
product = multiply(product, input[i]);

return product;
}

Figure 3: Complex number multiplication

sion of Figure 4. All the information regarding reductions is ex-
pressed using two extensions of PENCIL:
__pencil_reduction_var_init and __pencil_reduction.

3.1 Reduction Initialization Builtin
__pencil_reduction_var_init is an intrinsic function that

is used to express the identity element of the reduction operator.
The first argument of this function is the address of the reduction
variable. A reduction variable can be a scalar or an array ele-
ment of a built-in type or a user-defined data type as in the ex-
ample in Figure 6. The second argument is a function that will
take reduction variable as an input and initialize it with the iden-
tity element. Having a simple function to initialize reduction vari-
able provides the flexibility to handle initialization of any user-
defined data types such as complex numbers. The function pro-
vided in __pencil_reduction_var_init is called by the com-
piler whenever it wants to initialize the temporary variable required
to compute the reductions in parallel. This intrinsic function also
marks the beginning of reduction domain.

3.2 Reduction Builtin
__pencil_reduction is another intrinsic function that is used

to express a single reduction operation. The first argument for this
function must be the address of the reduction variable. The second
argument must be the current reduction element. The third argu-
ment is a function that implements the reduction operator. This
function must accept two variables which are of the same type
as the reduction variable and return the result of reduction oper-
ator. This function is assumed to be both commutative and asso-
ciative. Every reduction variable must be introduced through an
associated __pencil_reduction_var_init and operated upon
through __pencil_reduction.

The domain of the reduction is the set of all dynaminc instances
of __pencil_reduction.

We believe this intrinsic function approach is flexible enough to
express most user-defined reductions.

3.3 Related work
Many programming languages provide high-level abstractions to

express user-defined reductions. Google’s Map Reduce [4] frame-
work provides parallelization API through which a user can specify
custom reduction functions. Intel TBB [28] provides parallel re-
duction templates that can be specialized through custom reduction
methods. Similar to TBB, a user can express reductions in PPL [15]



1 int srand_reduction(int niter, int Nr, int Nc,
2 float image[Nr][Nc]){
3 for (int iter=0; iter<niter; iter++) {
4 float sum = 0.0; //S1
5 float sum2 = 0.0; //S2
6

7 for (int i = 0; i < Nr; i++) {
8 for (int j = 0; j < Nc; j++) {
9 sum += image[i][j]; //S3

10 sum2 += image[i][j] * image[i][j]; //S4
11 }
12 }
13

14 float meanROI = sum / NeROI; //S5
15 float varROI = (sum2 / NeROI) - meanROI*meanROI;
16 float q0sqr = varROI / (meanROI*meanROI);
17

18 diffusion( Nr, Nc, q0sqr, image, c);
19 }
20 }

Figure 4: Reduction from Rodinia’s Srand benchmark

void initialize(float *val) {

*val = 0.0;
}
float reduction_sum(float v1, float v2){
return v1 + v2;

}

void srand_reduction(int niter, int Nr, int Nc,
float image[Nr][Nc]){

for (int iter=0; iter<niter; iter++) {
float sum;
float sum2;
__pencil_reduction_var_init(&sum2, initialize);
__pencil_reduction_var_init(&sum, initialize);

for (int i = 0; i < Nr; i++) {
for (int j = 0; j < Nc; j++) {
__pencil_reduction(&sum, image[i][j],

reduction_sum);
__pencil_reduction(&sum2, image[i][j]*image[i][j],

reduction_sum);
}

}

float meanROI = sum / NeROI;
float varROI = (sum2 / NeROI) - meanROI*meanROI;
float q0sqr = varROI / (meanROI*meanROI);

diffusion( Nr, Nc, q0sqr, image, c);
}

}

Figure 5: Example from Rodinia’s Srand reduction in PENCIL

using parallel reduction templates. In both cases the user needs to
pass explicitly the range of values to be reduced. Cilk++ [7] sup-
ports a limited number of reduction operators which are used to
eliminate the contention of shared reduction variables by perform-
ing reductions in a lock-free manner.

MPI [16] includes support for several built-in reduction oper-
ators as well as the ability to define custom reduction operators in
the context of distributed computing. In MPI, a user needs to create
a custom function with fixed syntax which will be called by runtime
while reduction is performed across multiple nodes. ZPL [5] relies
on overloading for the specification of user defined reductions. The
user needs to create two functions with specific signatures, one to
return the identity element and another function that implements
reduction operator.

OpenMP 3.0 and OpenACC [35] support built-in reduction op-
erators through declarative pragma syntax. OpenMP 4.0 introduced
user-defined reductions, specifying the custom associative and com-
mutative function and identity element through a new directive:

void initialize(float *val){

*val = 0.0;
}
float reduction_sum(float v1, float v2){
return v1 + v2;

}

void kernel_correlation(int M, int N,
float data[M][N], float mean[M]){

for (int j = 0; j < M; j++) {
__pencil_reduction_var_init(&mean[j], initialize);
for (int i = 0; i < N; i++)
__pencil_reduction(&mean[j], data[i][j],

reduction_sum, NULL);
mean[j] /= N;

}
}

Figure 6: Example from PolyBench’s correlation benchmark

#pragma omp declare reduction. More recently, OpenMP 4.5
introduced pointwise reductions over arrays in C and C++.1 One
may apply user-defined and pointwise array reductions to a spe-
cific for loop which forms the domain of the reduction. If multi-
ple, imperfectly nested loops form the reduction domain, it is not
directly possible to express it through OpenMP pragmas; the pro-
grammer needs to modify the loop structure to handle such cases.
In our proposed approach the nesting depth of the reduction and its
domain are inferred from reduction builtin locations, and such that
the programmer does not need to modify the loop structure. Array
reductions that are not pointwise—such as histograms or reduc-
tions over unstructured meshes—cannot be expressed in OpenMP
or OpenACC.

4. MODELING REDUCTIONS WITHIN A
POLYHEDRAL FRAMEWORK

In polyhedral compilation, an abstract mathematical representa-
tion is used to model the program and its transformations.

4.1 Polyhedral Framework
Each statement in the program is represented using three pieces

of information: an iteration domain, an access relations and a
schedule. This representation is first extracted from the program
AST, which is then analyzed and transformed (loop optimizations
are applied during this step), and finally it is converted back into an
AST.

The iteration domain of a statement is a set that contains all the
execution instances of the statement (a statement in a loop has an
execution instance for each iteration where it is executed). Each
execution instance of the statement in the loop nest is represented
individually by an identifier for the statement and a sequence of in-
tegers (typically, the values of the outer loop iterators) that uniquely
identifies the execution instance. Instead of listing all the integer tu-
ples in the iteration domain, the integer tuples are described using
quasi-affine constraints.

A quasi-affine constraint is a constraint over integer values and
integer variables involving only the operators +, -, *, /, %, &&, ||,
<, <=, >, >=, ==, != or the ternary ?: operator. An example of a
quasi-affine constraint used in a loop nest is 10 × i + j + n > 0
where i and j are the loop iterators and n is a symbolic constant
(i.e., a variable that has an unknown but fixed value throughout the
execution). Examples of non quasi-affine constraints are i× i > 0
and n× i > 0.

In order to be able to extract the polyhedral representation, all
loop bounds and conditions need to be quasi-affine with respect to
1See http://www.openmp.org for the complete specification.
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the loop iterators and a fixed set of symbolic constants. We will
abbreviate this condition as static-affine.

The access relations map statement instances to the array ele-
ments that are read or written by those instances, where scalars
are treated as zero-dimensional arrays. An accurate representa-
tion requires that the index expressions in the input program are
static-affine. The dependence relations map statement instances to
statement instances that depend on them for their execution. These
dependence relations are derived from the access relations and the
original execution order. In particular, two instances depend on
each other if they (may) access the same array element, if at least
one of those accesses is a write and if the first is executed before
the second. Finally, the schedule determines the relative execution
order of the statement instances. Program transformations are per-
formed by modifying the schedule.

4.2 Reduction Domain
The reduction domain is defined as the set of all iterations on

which the reduction operator is applied. In pragma-based languages
such as OpenMP or OpenACC, the reduction domain is simply the
loop that is annotated with a reduction pragma. In some bench-
marks such as the Rodinia’s Srand benchmark shown in Figure 4,
the reduction domain is not a single for-loop. The programmer
needs to coalesce (flatten) multiple loops into a single one before

annotating it with pragmas. Whereas in PENCIL, since the pro-
grammer uses builtin functions that are not associated with a spe-
cific loop, no modifications of the control flow is required. Note
that the reduction domain may not be same as the iteration domain
of the __pencil_reduction statement. For example, the itera-
tion domain of statement S3 in Figure 4 is {S3(iter , i, j) : 0 ≤
iter ≤ niter ; 0 ≤ i < nr ; 0 ≤ j < nc} whereas, the reduction
domain for the reduction in S3 is {S3(i, j) : 0 ≤ i < nr ; 0 ≤ j <
nc}. The reduction operation always starts with the initialization of
the reduction variable, using __pencil_reduction_var_init.
The reduction domain is derived from the iteration domains of the
__pencil_reduction_var_init and __pencil_reduction
statements. For each __pencil_reduction statement, the re-
duction variable—the first argument of the function—is looked up
to find the dominating __pencil_reduction_var_init defin-
ing the same reduction variable. The reduction domain is obtained
from the iteration domain of __pencil_reduction by consid-
ering the loop iterators of __pencil_reduction_var_init as
parameters.

4.3 Reduction Dependences
The Figure 7 depicts the Read-after-Write (RAW) dependences

of a single reduction for the program in Figure 4. The arrows be-
tween iterations indicate the flow of data, i.e., a value produced
by the source iterator is read at the destination iteration. Because
the reduction variable is read and written in all iterations of the re-
duction domain, there is a serial dependence between them. This
dependence between iterations of the reduction domain is called a
reduction dependence. This dependence usually forces the serial
execution of the reduction. Since the reduction operator is associa-
tive, we can perform the reductions in parallel and then combine the
partial results to obtain a final reduction value. The associativity
of the reduction operation is abstracted by relaxing the reduction
dependences. We can precisely compute these reduction depen-
dences from the reduction domain. The reduction of partial results
and synchronization needed to produce the end result is modeled
by introducing an additional node in the dependence graph, called
a merge node, and adding a new dependence from all iterations in
reduction domain to the merge node as shown in Figure 8. These
are called reduction isolation dependences are necessary to prevent
the use of the reduction variable before the reduction operation is
complete when the reductions are performed in parallel. The merge
node is inserted right after the reduction loops in the input AST.
The relaxation of the serial reduction dependences into parallelism-
friendly reduction isolation dependences will accurately model the
flow of data for the parallel execution of reductions.

4.4 Reduction-Enabled Scheduling
A schedule represents the execution order of statement instances

in a program. Various transformations are performed by changing
the schedule. Dependences are used to find the valid set of sched-
ules. A schedule is said to be valid if does not violate dependences
in the input program, i.e., all the source iterations of dependences
are executed before the destination iterations. State-of-the-art poly-
hedral compilers are seriously limited in the application of affine
transformations in the presence of reductions, because of the se-
rial reduction dependence. They do not exploit the associativity of
the reduction operator. The explicit dependence manipulation as
explained in the previous section enables transformations such as
tiling and parallelization of reduction loops. Because the serial re-
duction dependences are relaxed, the polyhedral scheduler can now
safely reorder the reduction iterations.



A practical and automatic scheduling algorithm like Pluto takes a
dependence graph as input and recursively constructs schedule. At
each level of the recursion, the algorithm first checks for the com-
ponents that do not depend on each other and hence can be sched-
uled independently. Within each component, the algorithm uses
an ILP solver to construct a sequence of one-dimensional affine
functions (hyperplanes), such that each of these functions indepen-
dently respect all dependences and are optimal based on heuristics
such as induced communication. After the construction of a band
is completed, the dependence graph is updated to only contain de-
pendences that are mapped to the same values by the current hyper-
plane, and the process is repeated until the number of hyperplanes
found is equal to the dimensionality of the loop. Our dependence
based abstraction of reductions fits well with the automatic schedul-
ing algorithms enabling affine transformations for user defined re-
ductions. Because the relaxation of serial reduction dependences,
the reduction iterations can now be reordered and parallelized. The
new merge dependences represent the required data-flow of com-
bining the partial reduction results to produce the final reduction
value. It is essential for the scheduler to know about the cost of per-
forming reductions in parallel and merge dependences accurately
represent this cost. For example, consider a loop nest with a parallel
loop and a reduction loop. The scheduler should choose the parallel
loop with no loop-carried dependences as the outermost loop rather
than the reduction loop because of the cost of merge dependences.
Hence, with this approach reduction parallelism is exploited and
yields communication-free parallelism. Many of the previous ap-
proaches that just relax the reduction dependence have the problem
of treating both types of parallelism equally which could be lead to
poor schedules and additional communication.

4.5 Related work
Modeling reductions was commonly done implicitly, e.g., by ig-

noring the reduction dependences during a post parallelization step
[12, 13, 21, 25, 22, 24, 36, 33]. The first one to introduce re-
duction dependences, where Pugh and Wonnacott [23]. Similar to
most other approaches [26, 31, 27, 8] the detection and modeling
of reductions was performed on imperative statements and utiliz-
ing a precise but costly access-wise dependence analysis. In the
works of Redon and Feautrier [27, 26] the reductions are modeled
as Systems of Affine Recurrence Equations (SAREs). Array ex-
pansion allow to eliminate the memory-based dependences induced
by reductions and facilitate the recognition of induction patterns.
They also propose a polyhedral scheduling algorithm that optimally
schedules reductions together with other statements, assuming re-
ductions are computable in single time step. Such atomic reduction
computation simplifies scheduling choices while preventing sched-
ules that reorder or interleave reduction statement instances with
other statement instances. Gupta et al. [8] extended the work of Re-
don and Feautrier [26] by removing the restriction of an atomic re-
duction computation. Their scheduling algorithm tries to minimize
the latency while scheduling reductions. Compared to these works
our dependence based abstraction works on existing practical poly-
hedral scheduling algorithms such as Pluto [3]. Our approach does
not require any preprocessing such as array expansion while de-
pendences accurately model the specific atomicity constraints of
reductions.

In contrast to polyhedral optimizations for reductions, Gautam
and Rajopadhye [8] propose techniques to exploit the associativ-
ity and commutativity of reductions to decrease the complexity
of a computation in the context of dynamic programming. Their
method reuses intermediate results of reduction computations.

Stock et al. [30] describe how reduction properties can be used
to reorder stencil computations, to better exploit register reuse and
to eliminate loads and stores. However neither do they describe
the detection method nor does their method enable scheduling for
generic reductions.

Doerfert et al. [6] propose compiler techniques to automatically
detect reductions on LLVM IR. They also propose a model to relax
memory-based dependences to enable polyhedral scheduling in the
presence of reductions. However, their techniques cannot detect
reductions on arbitrary data types such as complex number multi-
plication and their reduction modeling do not account for the cost
of reductions while scheduling them.

5. CODE GENERATION
Parallelizing reductions on GPUs is a challenging task. Reduc-

tions typically have low arithmetic intensity performing just one
operation per memory load and hence are bound by the device’s
maximum memory bandwidth. The performance of reductions is
often measured by the effective bandwidth achieved by a given im-
plementation. Vendor and highly tuned libraries such as CUB and
Thrust provide an optimized implementation of reductions achiev-
ing performance above 90% percent of the peak bandwidth.

5.1 Optimizations for Reductions on GPUs
The problem of Optimizing reductions in CUDA is well studied

and the list of all the optimizations and their impact on performance
for a single reduction is explained in [14]. The important optimiza-
tions are listed below.

Kernel Decomposition. The reduction is parallelized at two lev-
els, matching the thread hierarchy of the GPUs. At the first
level, each thread block is allocated a portion of the reduction
domain. Within each thread block, a tree-based decomposi-
tion is used to perform local reductions and to produce par-
tial results. These partial results are stored in global memory.
At the second level, another kernel is launched to reduce the
partial results and produce the final value.

Shared memory utilization. Within each thread block, multiple
threads use shared memory to keep the intermediate reduc-
tion values. The tree-based reduction is performed on these
values while avoiding divergent branches. Shared memory
bank conflicts are avoided by reordering memory loads mak-
ing use of the reduction operator’s commutativity.

Complete unrolling. The kernel is specialized by completely un-
rolling the reduction tree. This is done using templates to
generate a specialized kernel for different block sizes. This
eliminates unnecessary control flow and synchronization be-
tween the threads in a thread block as the reduction proceeds.

Using shuffle instructions. Shuffle instructions [20] can be used
to accelerate fine-grained reductions within a warp. These
dedicated instructions control the exchange of data between
threads, eliminating data accesses to shared memory and the
associated synchronizations.

Multiple reductions per thread. Each thread loads and reduces
multiple elements into shared memory before the tree-based
reduction in shared memory. More work per thread will help
to hide the memory latency. The optimal number of elements
per thread depends on the architecture and is determined by
tuning this parameter along with the number of blocks and
threads per block.



5.2 Template Specialization for User-Defined
Reductions

A generic polyhedral optimizer such as PPCG can perform var-
ious optimizations such as shared memory allocation and register
promotion, memory coalescing, etc. for generic programs [34]. It
uses heuristics to determine the profitability of such optimizations.
However, it cannot perform all the specialized optimizations re-
quired for highly efficient reductions. Some of these optimizations
are specific to reductions, and applicable only to specific hardware
or device characteristics. Hence it is difficult to come up generic
heuristics for these optimizations in order to make them applica-
ble to generic programs. These optimizations are crucial to achieve
close-to-peak performance on GPUs. Hence, we follow a template-
based approach for generating efficient code for user-defined reduc-
tions. We precisely identified the reductions through programmer-
provided constructs, hence can generate efficient reduction code
capturing all the optimizations above, even on user-defined reduc-
tions.

User-defined reduction operator. A reduction is characterized by
the reduction operator, its identity element, and the domain
of the reduction. The new reduction operator is expressed in
a separate PENCIL function. It is easy to adapt the parallel
template to user-defined reductions by replacing the reduc-
tion operation with the user-defined function, and similarly
for the partial value initialization. All these function calls
are inlined to eliminate overhead. The reduction domain is
equally distributed among multiple thread blocks.

Shared memory allocation. The parallel reduction template allo-
cates temporary storage for each thread, to store partial re-
sults in the CUDA shared memory. In the case of a scalar, or
pointwise array reduction, each thread only needs one scalar
reduction accumulator to be stored in shared memory; gen-
eralized reductions may involve larger array segments. Yet
the total shared memory available varies from device to de-
vice and depends on the optimal number of threads for each
device. Therefore, the available shared memory limits cer-
tain transformations and thread block sizes. The maximum
amount of shared memory on the device is an input to our
framework. We then compute the shared memory required
to implement the reduction and use it to calculate the maxi-
mum thread block size.

Fusing multiple reductions. The template can also be adapted to
generate code for multiple fused reductions. Fusion can help
increase the arithmetic intensity of the reduction. We use the
following heuristic to determine when to fuse. Two reduc-
tions are fused if there is an overlap with global data accessed
between them. For example, if two separate reductions oper-
ate on same input array, then these two reductions are fused
and a single reduction template is generated. This optimiza-
tion is always profitable since by fusion we are enabling data
reuse in shared memory. Existing polyhedral techniques can
be used to assess the correctness of such a fusion transfor-
mation, taking into account all side-effects involved in asso-
ciated computations involved in the reductions (inductively
or not). Code generation for fused reductions is a straight-
forward extension of the above-mentioned technique: the
shared memory required is the sum of shared memory re-
quirement for individual reductions and the two reduction
functions are called one after another in the template.

Auto-tuning. The performance of the template depends on the tar-
get GPU. The following two parameters are tuned to ob-

tain optimal performance on a given architecture: number
of threads, and number of thread blocks. The reduction tem-
plate supports powers of two only for the number of threads,
so there are only few values considered starting from 2 and
up to the maximum allowed by the device. The maximum is
also limited by the required shared memory for the reduction.
The thread block size varies over the 2 to 256 interval.

6. EXPERIMENTAL EVALUATION
We implemented PENCIL reduction support in a developmental

branch of PPCG. Our framework takes a C program with PENCIL
functions as input, with reduction kernels according to the spec-
ification. It generates CUDA code automatically, which is then
auto-tuned to a particular GPU architecture. We selected a reduc-
tion template for scalar and pointwise array reductions, hence the
absence of histogram (subscript of subscript) reductions in the ex-
periments below. Since the auto-tuning search space is relatively
small for our reduction template, we could conduct an exhaustive
search of the optimization space within minutes on all examples.

We compare the performance of the generated code with highly
tuned libraries such as CUB v1.5.1 [18] and Thrust v1.8.1 [19].
Both of these libraries provide APIs for performing reductions.
The user can customize them by specifying a reduction operator
and an identity value. Note that these libraries are optimized for
a particular GPU architecture. CUB, for example, has an internal
database of the optimal values for thread block size, number of
threads and number of items per thread for all known architectures.
We also compare the performance with the OpenACC PGI 2015
compiler [32], which provides high-level directives, including re-
duction pragmas, to program accelerators. Note that the PGI Ope-
nACC compiler currently only supports a limited set of pre-defined
reduction operators.

We evaluate performance on the following three GPU architec-
tures: a desktop NVIDIA GTX 470 with peak memory bandwidth
of 133.9GB/s, the more advanced NVIDIA Quadro K4000 with
peak bandwidth of 134.9GB/s, and the low power embedded GPU
NVIDIA Jetson TK1 with peak bandwidth of 14.78GB/s. We do
not present OpenACC numbers on TK1 because the PGI compiler
does not support this architecture. All the benchmarks are compiled
with the NVIDIA CUDA 7.5 toolkit, with the -O3 optimization
flag. Reduction performance is measured as the effective band-
width utilized by the benchmark, and is computed using

Bandwidth = InputArraySize/ReductionTime.

Each benchmark is run 100 times and the average of these times
is taken as the reduction time. We also perform a dry-run before
benchmarking to hide device configuration and kernel compilation
time. In the graphs below, performance numbers are presented as a
percentage of peak bandwidth of the device.

6.1 Single Reduction Kernel
The first benchmark is a single sum reduction over an array of

222 elements. This corresponds to a single call in CUB and Thrust,
and to a single for-loop marked with a reduction pragma in Ope-
nACC. The performance of the sum benchmark for three different
data types is shown in Figures 9, 10 and 11, abbreviated as SumInt,
SumFloat and SumDouble. CUB achieves an impressive 92.4%
of the peak device bandwidth for int and 81.5% for double on the
GTX 470. The performance of Thrust is slightly lower at 73.8%
for int and float. OpenACC is only able to achieve 23.7% for int
and 45.2 for double, whereas the PENCIL reduction code generated
by our framework achieves 90.2% of the peak. This shows the im-
pact of the various optimizations described in the Section 5. There
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Figure 9: Performance on NVIDIA GeForce GTX 470
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Figure 10: Performance on NVIDIA Quadro K4000
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Figure 11: Performance on NVIDIA TK1

was a 0.53× slowdown with and without shared memory access
reordering. This optimization is essential to eliminate shared mem-
ory bank conflicts and is applicable only if the reduction operator
is commutative. Hence we expect the reduction operator to be both
associative and commutative.

The performance of CUB on the embedded TK1 is only 37.5%
of peak for int and 65.5% for double, whereas the PENCIL ver-
sion reaches 78.9% and 79.91%, respectively. We suspect that

both CUB and Thrust libraries are not tuned for the TK1 plat-
form, whereas our generated code benefited from auto-tuning. This
shows the importance and effectiveness of auto-tuning even after
all optimizations have been applied and a suitable template is be-
ing used. Table 1 collects the optimal values for the number of
thread blocks and the number of threads per block. The number of
reductions per thread depends on the problem size, grid size and
block size. This parameter is tuned implicitly while tuning for the



optimal grid and block size parameters. Note that the exhaustive
search does not take much time because of the limited search space
for reduction templates.

Benchmark GTX 470 Quadro K4000 TK1
SumInt 84, 128 128, 128 222, 128
SumFloat 84, 128 128, 128 103, 512
SumDouble 120, 256 124, 64 253, 256

Table 1: Optimal parameter values for the number of thread blocks
and for the the thread block size

Benchmark OpenACC PENCIL

GTX 470 0.51× 1.53×
Quadro K4000 0.45× 2.00×
TK1 − 1.97×

Table 2: Speedup of the SLAMBench reduction kernel relative to
the manual implementation

6.2 Srand Reduction kernel
The Srand reduction kernel shown in Figure 4 consists of two

reductions on the same array. It is quite straightforward to express
such reductions in OpenACC and PENCIL, whereas CUB or Thrust
involve two library calls along with some additional processing.
One reduction call to compute sum, an intermediate step to com-
pute the square of the input, and then another reduction call to com-
pute the sum of squares. This is clearly inefficient as input array is
traversed twice to perform reductions separately. This kernel il-
lustrates the limitations of library-based approaches in real world
applications: Figures 9, 10 and 11 show the performance of the
Srand kernel abbreviated as SrandInt, SrandFloat and SrandDouble
on different GPU architectures. The performance of PENCIL is al-
most identical to the case of a single reduction kernel. Because the
array is scanned only once, reduction time does not vary much. On
the other hand, for both CUB and Thrust, the time taken is twice
that of a single reduction because of the two array traversals. This
kernel illustrates the benefits of fusing multiple reductions, as eval-
uating multiple reduction operators per memory access made much
more effective use of the bandwidth. The OpenACC compiler was
also able to fuse the two reductions because both reductions ap-
peared in the same loop. This restriction does not apply to our
framework, which supports the fusion of different reduction ker-
nels even if they are two separate loops in the input code.

6.3 SLAMBench reduction kernel
SLAMBench [17] is a computer vision benchmark for 3D mod-

eling and tracking. The benchmark contains a reduction kernel with
32 different reductions. It is straightforward to port these reduc-
tions in PENCIL and OpenACC whereas it is tedious and inefficient
to do so in CUB and Thrust, as they involve multiple calls to the
reduction API. The comparison of our framework with OpenACC
and with SLAMBench’s manual CUDA implementation is shown
in Figures 9, 10 and 11. Because there are 32 reductions performed
for a single element, the memory bandwidth is no longer the bot-
tleneck. PENCIL outperforms both OpenACC and the manual im-
plementation. The latter is almost twice as fast as OpenACC. The
SLAMBench implementation uses shared memory to store inter-
mediate reduction values while reductions are performed in paral-
lel. In PENCIL, the reduction kernel uses all the optimizations listed

in Section 5 for all 32 reductions and auto-tuning results in a 2×
improvement on NVIDIA TK1.

7. CONCLUSION
We presented language constructs and compilation methods to

express arbitrary reductions on user-defined data types. We also
presented dependence-based abstractions of reductions that enable
polyhedral loop nest optimizations in the presence of loops car-
rying reductions. Combining polyhedral and template-based code
generation, we are able to perform complex optimizations for user-
defined reductions on GPUs, reaching close to peak performance.
This approach enables a generic polyhedral compiler to produce
highly efficient code for reductions while offering maximum ex-
pressiveness to the programmer. We demonstrated the approach on
generalized reduction patterns and we believe it may be extended
to prefix scans and radix sort algorithms.
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