
SplitBox: Toward Efficient Private Network
Function Virtualization

Hassan Jameel Asghar
Data61, CSIRO

hassan.asghar@data61.csiro.au

Luca Melis
University College London
luca.melis.14@ucl.ac.uk

Cyril Soldani
University of Liége

cyril.soldani@ulg.ac.be

Emiliano De Cristofaro
University College London
e.decristofaro@ucl.ac.uk

Mohamed Ali Kaafar
Data61, CSIRO

dali.kaafar@data61.csiro.au

Laurent Mathy
University of Liége

laurent.mathy@ulg.ac.be

ABSTRACT
This paper presents SplitBox, a scalable system for privately
processing network functions that are outsourced as software
processes to the cloud. Specifically, providers processing the
network functions do not learn the network policies instruct-
ing how the functions are to be processed. We first propose
an abstract model of a generic network function based on
match-action pairs, assuming that this is processed in a dis-
tributed manner by multiple honest-but-curious providers.
Then, we introduce our SplitBox system for private network
function virtualization and present a proof-of-concept im-
plementation on FastClick – an extension of the Click mod-
ular router – using a firewall as a use case. Our experimen-
tal results show that SplitBox achieves a throughput of over
2 Gbps with 1 kB-sized packets on average, traversing up to
60 firewall rules.

CCS Concepts
•Security and privacy→ Security protocols; •Networks
→Middleboxes / network appliances;

Keywords
Middlebox Privacy; Secret Sharing; Network Function Vir-
tualization; Firewalls

1. INTRODUCTION
Network function virtualization (NFV) is increasingly be-

ing adopted by organizations worldwide, moving network
functions traditionally implemented on hardware middle-
boxes (MBs) – e.g., firewalls, NAT, intrusion detection sys-
tems – to flexible and easier to maintain software processes.
Network functions can thus be executed on virtual machines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’16 August 22-26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940150

(VMs), with cloud providers processing traffic destined to,
or originating from, an enterprise network (the client) based
on a set of policies governing the network functions. This,
however, implies that confidential information as well as
sensitive network policies (e.g., the firewall rules) are re-
vealed to the cloud, whereas in the traditional setting, such
policies would only be known to the client’s network admin-
istrators. Disclosing such policies can reveal sensitive details
such as the IP addresses of hosts, the topology of the client’s
private network, and/or important practices [8, 13].

This motivates the need to allow processing outsourced
network functions without revealing the policies: we de-
note this problem as Private Network Function Virtualiza-
tion (PNFV), as done in [11]. We argue that PNFV solutions
should not only provide strong security guarantees, but also
satisfy compatibility with existing infrastructures (e.g., not
requiring third parties, sending/receiving traffic, take part in
new protocols) as well as high throughput in order to match
the quality of service expected of network functions. In prac-
tice, this precludes the use of some standard cryptographic
tools as well as other approaches which we review in Sec-
tion 2.

Several attempts have recently been made to support
PNFV or similar functionalities [8, 10, 11, 13], assuming the
cloud to be honest-but-curious (i.e., the cloud processes the
network functions as instructed but may try to learn the un-
derlying policies). However, none of these simultaneously
achieve security, compatibility, and high throughput, or their
coverage of network functions is limited as they are only ap-
plicable to firewall rules that either allow or drop a packet.

Our intuition is to leverage the distributed nature of cloud
VMs: rather than assuming that a single VM processes a
client’s network function, we distribute the functionality to
several VMs residing on multiple clouds or multiple com-
pute nodes in the same cloud. Assuming that not all VMs in
the cloud are simultaneously under the control of the adver-
sary (for instance, a passive attacker cannot gain access to all
nodes running the distributed VMs), we are able to provide
a scalable and secure solution. As discussed throughout the
paper, achieving this solution is not straightforward and, in
the process, we overcome several challenges.

We start by presenting an abstract definition of a network

7

http://dx.doi.org/10.1145/2940147.2940150

function. Then, we introduce a novel system, which we
name SplitBox, geared to privately and efficiently compute
this abstract network function in such a way that the cloud,
comprising of several middleboxes implemented as VMs,
cannot learn the policies. Finally, we implement and eval-
uate SplitBox on a firewall test case, showing that it can
achieve a throughput of over 2 Gbps with 1 kB-sized pack-
ets, on average, traversing up to 60 rules.

2. RELATED WORK
Khakpour and Liu [8] present a scheme based on Bloom

Filters (BFs) to privately outsource firewalls. Besides only
considering one use case, their solution is not provably se-
cure as BFs are not one-way. Privately outsourcing firewalls
is also considered by Shi et al. [13], who rely on CLT mul-
tilinear maps [5], which have been shown to be insecure [4].
Jagadeesan et al. [7] introduce a secure multi controller ar-
chitecture for SDNs based on secure multi-party computa-
tion, which can potentially be employed for NFV. How-
ever, their implementationtakes more than 13 minutes to ex-
ecute with 4096 flow table entries. Melis et al. [11] inves-
tigate the feasibility of provably-secure PNFV for generic
network functions: they introduce two constructions based
on fully homomorphic encryption and public-key encryp-
tion with keyword search (PEKS) [3], however, with high
computational and communication overhead (e.g., it takes at
least 250ms in their experiments to process 10 firewall rules)
which makes it unfeasible for real-world deployment.

Blindbox [12] considers a setting in which a sender (S)
and a receiver (R) communicate via HTTPS through a mid-
dlebox (MB) which has a set of rules for packet inspection
that only it knows. The MB should not be able to decrypt
traffic between S and R, while S and R should not learn the
rules. Although Blindbox achieves a 166Mbps throughput,
it operates in a different setting than ours, in which R should
set and know the rules (policies), while S and MB should
not. Also, it only considers actions limited to drop, allow,
or report, while we also consider modifying packet contents.
Furthermore, the HTTPS connection setup requires around
1.5 minutes with thousands of rules, which suggests that
BlindBox may not be practical for applications with short-
lived connections.

Finally, Embark [10] enables a cloud provider to support
middlebox outsourcing, such as firewalls and NATs, while
maintaining confidentiality of an enterprise’s network pack-
ets and policies. Specifically, it uses symmetric-key encryp-
tion to allow communication between enterprises and third-
parties or enterprise-to-enterprise. A key difference between
Embark and our solution is that we allow complex actions
(besides allow/block) to be performed on the packet without
revealing them to the cloud, e.g., NAT rules, while Embark
can only do so in the clear.

3. PRELIMINARIES
System and Trust Model. Figure 1 illustrates our PNFV
model, consisting of two types of cloud middleboxes (MBs):
an entry MB A and t ≥ 2 cloud MBs B(t), which collab-

Cloud A Cloud B

Node 1

Node 2

Internal/Private
 Network

Incoming
traffic

 = Middlebox

 = Compute Node

Legend

A

B1

B2

B3

C

B(t)

Figure 1: Our system model with Cloud A hosting MBA as a VM
in one of its compute nodes. Cloud B hosts the MBs B(t) with
t = 3 as VMs (not all t reside on the same compute node). The
client MB C resides at the edge of the client’s internal network. A
and B(t) collaboratively compute network functions for the client.

oratively compute a network function on behalf of a client.
The client has its own MB, denoted C, at the edge of its in-
ternal network. A receives an incoming packet, does some
computations on it, “splits” the result into t parts, and for-
wards part j to Bj ∈ B(t). Bj performs local computations
and forwards its part to C, which reconstructs the network
function’s final result.
Assumptions. We assume an honest-but-curious adversary
which can corrupt1 either A or up to t − 1 MBs from B(t),
and it cannot corruptA and any MB in B(t) simultaneously.
In practice, one can assume A to be running on a different
cloud provider than B(t) and that not all MBs in B(t) reside
on the same node.
Network Functions. We define a packet x as a binary string
of arbitrary length, i.e., x ∈ {0, 1}∗. Our network functions
will be applicable to the first n bits of x. A matching func-
tion is a boolean functionm : {0, 1}n → {0, 1}. Its comple-
ment, i.e., the function 1 −m, is denoted by m. An action
function is a transformation a : {0, 1}n → {0, 1}n. m(x)
(resp., a(x)) denote evaluating m (resp., a) on the substring
x(1, n) (i.e., the first n bits of x). If |x| > n, a keeps the
part x(n + 1, ∗) of x unaltered. We also define the identity
action function I(x) = x.

Let M and A be finite sets of matching and action func-
tions, with I ∈ A. A network function ψ = (M,A) is a
binary tree with edge set M and node set A such that each
node is an action function a ∈ A and each edge is either a
matching function m ∈ M or a complement m of a match-
ing function m ∈ M . A node is either a leaf node or a
parent node. A parent node has two child nodes. The left
child node is the identity action function I . The edge con-
necting the right child node is a matching function m ∈ M ,
whereas the edge connecting the left child node is its com-
plement m. The root node is the identity action function I .
Clearly, there exists a binary relation fromM toA, such that
for each (m, a) from this relation there exists a parent node
in ψ such that the left child is connected via the edge m and
the right child via the edge m, and the right child is a.

We call each pair (m, a) in ψ a policy. Policies serve
1The adversary may change the behavior of a MB from honest to
honest-but-curious.

8

Algorithm 1: Traversal
Input: Packet x, network function ψ.

1 Make a read-only copy xr and a writeable copy xw of x.
2 Start from the root node.
3 Compute xw ← a(xw), where a is the current node.
4 if the current node is a leaf node then
5 output xw and stop.
6 else
7 Compute m(xr), where m is the right hand side edge.
8 if m(xr) = 1 then
9 Move to the right child node.

10 else
11 Move to the left child node.
12 Go to step 3.

I

I a1

I a2

I

I ak

m1 m1

m2 m2

mk mk

(a) Network function with k
distinct policies.

I

I a1

I a2

m1 m1

m2 m2

I a2

m2 m2

I a3

m3 m3

(b) Network function with 3 distinct poli-
cies. Policy (m2, a2) is repeated twice.

Figure 2: Network functions as binary trees.

as building blocks of a network function. The set of poli-
cies of ψ is the set of distinct policies (m, a) in ψ. A
network function is evaluated on input x ∈ {0, 1}∗, de-
noted ψ(x), using Algorithm 1. Figure 2(a) shows a net-
work function with k distinct policies: whenever a match is
found, the corresponding action is performed and the func-
tion terminates. The function in Figure 2(b) has 3 distinct
policies, (m1, a1), (m2, a2) and (m3, a3), and (m2, a2) is
repeated twice. This function does not terminate immedi-
ately after a match has been found (e.g., path m1m2). Since
a ◦ I = I ◦ a = a, we can easily “plug” individual policy
trees to construct more complex network functions.

Coverage. Our abstract definition of network functions cap-
tures many network functions used in practice. These in-
clude firewalls, NAT and load balancers. Such functions
usually perform a matching step to inspect some parts of a
packet and modify contents of the packet subsequently. In
the case of firewalls, modifications may also include drop-
ping a packet.

Branching and chaining. Our definitions support branch-
ing, i.e., network functions that do not necessarily apply all
policies on a packet. This is achieved by including multiple
exit points, i.e., leaf nodes. Definitions also support chain-
ing, e.g., ψ1’s output is ψ2’s input, however, in our proposed
privacy-preserving solution chaining is not possible, since
outputs of the MBs in B(t) need to be combined to recon-
struct a transformed packet.

Policies. We restrict m to substring matching and a to be
substring substitution. We also introduce the don’t care bit
denoted by ∗ in our alphabet. Given strings x ∈ {0, 1}n
and y ∈ {0, 1, ∗}n, we say x = y if x(i) = y(i) for all
i ∈ [n] such that y(i) 6= ∗. Given x ∈ {0, 1}∗, matching
function m is defined as m(x) = 1 if x(1, n) = µ and 0
otherwise, where µ ∈ {0, 1, ∗}n. We call µ the match of m.
Given x ∈ {0, 1}n and z ∈ {0, 1, ∗}n, x ← z represents
replacing each x(i) with z(i) if z(i) 6= ∗, and leaving x(i)
as is if z(i) = ∗, for all i ∈ [n]. Given x ∈ {0, 1}∗, the
action function a is defined as a(x) = x(1, n) ← α, where
α ∈ {0, 1, ∗}n. We call α the action of a. For the identity
function I , α = ∗n.
Definitions. Throughout the rest of the paper, we use the
following definitions: let z ∈ {0, 1, ∗}n, the projection of z,
denoted πz , is a string ∈ {0, 1}n, s.t. πz(i) = 1 if z(i) ∈
{0, 1} and πz(i) = 0 if z(i) = ∗. The masking of a x ∈
{0, 1}n using πz ∈ {0, 1}n, denoted ω(πz, x), returns x′

s.t. x′(i) = x(i) if πz(i) = 1 and x′(i) = 0 if πz(i) =
0. H : {0, 1}n → {0, 1}q denotes a cryptographic hash
function; ⊕ denotes bitwise XOR. The Hamming weight of
a string x ∈ {0, 1}n is wt(x). Finally, x ←$ {0, 1}n means
sampling a binary string of length n uniformly at random.

4. INTRODUCING SPLITBOX
Privacy Requirements. We start by describing an ideal set-
ting in which a trusted third party, T , computes a network
function ψ for the client. Upon receiving a packet x, A for-
wards it to T , which provides the result of ψ(x) to C. Here
A learns x but not ψ(x) and B(t) neither x nor ψ(x). In
this section, we introduce our private NFV solution, Split-
Box, aiming to simulate this ideal setting. However, we fall
slightly short in that the MBs B(t) learn the projection πµ
and the output m(x) for each m ∈M , however, they do not
learn the match µ for any m ∈ M beyond what is learnable
from πµ. Although this could reveal information such as
which field of the packet the current matching function cor-
responds to, we do not consider it to be a strong limitation
since this might be obvious from the type of NFV considered
anyway. For example, if it is a firewall, then it is common
knowledge that the fields it operates on will include IP ad-
dress fields.
Design Aims. We consider the following design aims, i.e.,
the solution should: (a) be secure; (b) be computationally
fast; (c) limit MB-to-MB communication complexity.
High-Level Overview. In a nutshell, if we assume that ψ
includes a single policy (m, a), our strategy to hide m is to
let C blind µ by XORing it with a random binary string s and
sending the hash of the result to each MB in B(t); whereas,
to hide a, C computes t shares of the action α using a t-
out-of-t secret sharing scheme and sends share j to Bj . In
addition,A encrypts the contents of a packet x by XORing it
with the blind s, and sends it to the MBs in B(t), which can
then compute matches and actions on this encrypted packet.
We present the details of SplitBox using a set of algorithms,
grouped based on the MB executing them. Figure 3 shows a
high-level overview of all the algorithms computed by each

9

Split
Packet

Global SetupSetup
Lookup
Tables

Hide
Match

Split
Action

Private Traversal

Compute
Match

Compute
Action

Merge
Shares

packet in

packet out

Middleboxes

Setup

Packet
Processing

A B(t) C

Figure 3: Breakdown of algorithms executed by each MB in Split-
Box.

Algorithm 2: Global Setup (C)
Input: Parameters n and l, network function ψ = (M,A).

1 for j = 1 to t do
2 Send ψpriv to Bj .
3 Run Setup Lookup Tables with parameter l, M .
4 for each m ∈M do
5 Run Hide Match algorithm.
6 for each a ∈ A do
7 Run Split Action algorithm.

MB. We assume ψpriv to be the private version of the net-
work function ψ whose matching and action functions are
replaced by unique identifiers.

Middlebox C. The initial setup is performed by C via Algo-
rithm 2. This includes creating lookup tables (Algorithm 3),
hiding the matching functions (Algorithm 4), and splitting
the action functions (Algorithm 5). There are two lookup
tables in Algorithm 3: S for A and S̃ for B(t). Table S
contains l “blinds” which are random binary strings used to
encrypt a packet by XORing. For each blind s ∈ S and for
each m ∈ M , the portion of the blind corresponding to the
projection of the match µ is extracted and then XORed with
µ. Finally this value is hashed using H and stored in the cor-
responding row of S̃. The Hide Match algorithm simply
sends the projection πµ of each match µ to B(t). This tells
B(t) which locations of the incoming packet are relevant for
the current match. The Split Action algorithm com-
putes t shares of the action α and action projection πα, for
each a ∈ A and sends them to B(t). C uses one more al-
gorithm, Algorithm 6 to reconstruct the transformed packet.
This algorithm XORs the cumulative action shares α′j and
cumulative action projection shares β′j from Bj to compute
the final action α′ and action projection β′. It also XORs the
encrypted packet received fromA with the current blind s in
the lookup table S, in order to reconstruct the final packet.
Note that we have modelled dropping a packet as setting
x(1, n) to 0n.

Middlebox A. This MB only runs Algorithm 7, which

Algorithm 3: Setup Lookup Tables (C)
Input: Parameter l, set M .

1 Initialize empty table S with l cells.
2 Initialize empty table S̃ with l × |M | cells.
3 for i = 1 to l do
4 Sample si ←$ {0, 1}n.
5 Insert si in cell i of S.
6 for j = 1 to |M | do
7 Compute s̃i,j = ω(πµj , si), where µj is the match of

mj .
8 Compute H(µj ⊕ s̃i,j).
9 Insert H(µj ⊕ s̃i,j) in cell (i, j) of S̃.

10 Send S to A.
11 Send S̃ to B(t).

Algorithm 4: Hide Match (C)
Input: Matching function m ∈M with match µ.

1 Send πµ to B(t).

maintains a counter initially set to 0 and incremented every
time a new packet x arrives. The value of the counter corre-
sponds to a blind in the lookup table S. Therefore its range
is [l] (barring the initial value of 0). The algorithm makes
two copies of an incoming packet x, xr (read-only copy)
for matching to be sent to B(t), and xw (writeable copy) for
action functions to be sent to C. Both xr and xw are XORed
with the blind in S corresponding to the counter. The current
counter value is also given to B(t) and C.
Middleboxes B(t). Each MB Bj performs a private version
of the Traversal algorithm as shown in Algorithm 8. Bj
first initializes cumulative action strings α′j and cumulative
action projection strings β′j as strings of all zeros. Within
the Private Traversal algorithm, Bj executes the ac-
tion functions using Algorithm 9 and matching functions
using Algorithm 10. The Compute Action algorithm
essentially updates α′j and β′j by XORing with the action
share and action projection share of the current action. The
Compute Match algorithm uses the read-only copy xr. It
extracts the bits of xr corresponding to the current match
projection πµ. It then looks up the counter value i (sent by
A) and the index of the matching function in the lookup ta-
ble S̃ and extracts the hashed match. This is then compared
with the hash of the relevant bits of xr.

5. ANALYSIS
Correctness. Given ψ = (M,A), for a matching function
m ∈M , as long asm can be represented as substring match-
ing, SplitBox correctly computes the match. That is, if m is
an equality test or range test for powers of 2 in binary (e.g.,
IP addresses in the range 127. ∗ . ∗ .32 to 127. ∗ . ∗ .64),
then it can be successfully computed by SplitBox. Our
model also allows for arbitrary ranges by dividing m into
smaller matches that check equality matching of individual
bits. However, such a representation can potentially make
ψ very large. We can correctly compute action functions as

10

Algorithm 5: Split Action (C)
Input: Action function a ∈ A with action α.

1 Sample α1, α2, . . . , αt−1 ←$ {0, 1}n.
2 Let α̃ = ω(πα, α). Compute αt = α̃⊕ α1 ⊕ · · · ⊕ αt−1.
3 Sample β1, β2, . . . , βt−1 ←$ {0, 1}n.
4 Compute βt = πα ⊕ β1 ⊕ · · · ⊕ βt−1.
5 for j = 1 to t do
6 Give αj , βj to Bj .

Algorithm 6: Merge Shares (C)

Input: Index i, packet copy xw, α′j and β′j from Bj for j ∈ [t].
1 Compute α′ ← α′1 ⊕ · · · ⊕ α′t.
2 Compute β′ ← β′1 ⊕ · · · ⊕ β′t.
3 Compute x← xw ⊕ si, where si ∈ S.
4 for i = 1 to n do
5 if β′(i) = 1 then
6 x(i)← α′(i)

7 if x(1, n) = 0n then
8 Drop x.
9 else

10 Forward x.

long as they satisfy two properties: (a) they are applied to the
initial packet x only, and not on its transformed versions; (b)
any two action projections βi and βj do not overlap on their
non-zero bits. Note that this does not restrict the number
of times the identity function I can be applied, as its action
projection is 0n.
Security.While we refer to the full version of the paper
for the security proofs [1], here we mention two impor-
tant points: if SplitBox is used for match projections whose
Hamming weight is low, then the B(t) can brute-force H
to find its pre-image. This reveals µ ⊕ s for some blind s,
which allows the adversary to learn more than simply look-
ing at the output of m. Namely, if m(x) = 0, the adversary
learns which relevant bits of an incoming packet x do not
match with the stored match. The second point relates to
the length of the look-up table l: ideally l should be large
enough so that the same blind is not re-used before a long
period of time. However, high throughput would require a
prohibitively large value of l. Therefore, we propose the fol-
lowing mitigation strategy: with probability 0 < 1− ρ < 1,
A, sends a uniform random string from {0, 1}n (dummy
packet), rather than the next packet in the queue. Thus, any
MB in B(t) does not know if the two packets correspond-
ing to the same blind are two actual packets (the probabil-
ity is ρ2). The downside is that this reduces the (effective)
throughput by a factor of ρ. A can indicate to C if the cur-
rent packet is a dummy packet by sending a bit through B(t)
to C using a t-out-of-t secret sharing scheme (XORing with
random bits).

6. IMPLEMENTATION
In this section, we discuss our proof-of-concept imple-

mentation of SplitBox inside FastClick [2], an extension of
the Click modular router [9] which provides fast user-space

Algorithm 7: Split Packet (A)
Input: Packet x, lookup table S.

1 Get the index i ∈ [l] corresponding to the current value of the
counter.

2 Let xw ← x⊕ si (writeable copy), where si ∈ S.
3 Compute xr ← x(1, n)⊕ si (read-only copy), where si ∈ S.
4 for j = 1 to t do
5 Send xr, i to Bj .
6 Send xw, i to C.

Algorithm 8: Private Traversal (B(t))
Input: Index i, read-only copy xr, network function ψpriv.

1 Initialize empty strings α′j ← 0n and β′j ← 0n.
2 Start from the root node.
3 Update α′j and β′j by running the Compute Action

algorithm on the current node a.
4 if the current node is a leaf node then
5 Send i, α′j and β′j to party C and stop.
6 else
7 Run Compute Match algorithm on i, m and xr, where

m is the right hand side edge.
8 if Compute Match outputs 1 then
9 Go to the right child node.

10 else
11 Go to the left child node.
12 Go to step 3.

packet I/O and easy configuration via automatic handling of
multi-threading and multiple hardware queues. We also use
Intel DPDK [6] as the underlying packet I/O framework.
We implemented three main FastClick elements: element
Entry corresponding to MB A, Processor correspond-
ing to MBs B, and Client to C. Client implements
the Merge Shares algorithm. The other algorithms of
C are executed outside the FastClick elements, and used to
configure the above three elements. The hash function H
is implemented using OpenSSL’s SHA-1, aiming to achieve
a compromise between security, digest length, and compu-
tation speed, as hash functions which have larger message
digests will lead to overly large lookup tables. Client
uses a circular buffer to collect packet shares until all have
been received and the final packet can be reconstructed. For
communication between our elements, we use UDP packets:
UDP and L2 processing relies on standard Click elements
such as UDPIPEncap. Finally, we also add a few elements
to help in our delay measurements, as explained below.

To evaluate our implementation, we focus on a firewall
use case, using a network function tree similar to that in Fig-
ure 2(a). A single action is applied, either the identity ac-
tion, if the packet is allowed, or marking the packet with a
drop message (0n), if it should be dropped. We use three
commodity PCs for our experiments (8-core Intel Xeon E5-
2630 with 2.4GHz CPU and 16 GB of RAM): one for both
Entry and Client, in order to use the same clock for de-
lay measurements, and the other two as two Processors.
The four nodes (including the two on the same machine) are
connected through Intel X520 NICs, with 10-Gbps SFP+ ca-

11

Algorithm 9: Compute Action (B(t))
Input: Pair of cumulative action and cumulative action

projection shares (α′j , β
′
j) of Bj , pair of action and

action projection shares (αj , βj) of action function
a ∈ A of Bj .

1 Compute α′j ← α′j ⊕ αj .
2 Compute β′j ← β′j ⊕ βj .
3 Output α′j , β

′
j .

Algorithm 10: Compute Match (B(t))
Input: Read-only copy xr, index i ∈ [l], lookup table S̃, index

j ∈ [|M |] of mj ∈M with match µj .
1 Lookup table S̃ at index (i, j) to obtain H(s̃i,j).
2 Extract x̃r ← ω(πµj , xr).
3 Compute H(x̃r).
4 if H(x̃r) = H(µj ⊕ s̃i,j) then // m(x) = 1
5 Output 1.
6 else // m(x) = 0
7 Output 0.

bles. The topology is thus very similar to the one in Figure 1,
except that we only have t = 2 in B(t), and that A and C
share the same physical machine. Another difference is that
our machines are connected directly, without intermediate
routers between them. We use a trace captured at one of our
campus border router (pre-loaded into memory) as input for
the Entry element, which executes the Split Packet
algorithm on a single core. Then, each output of Entry
(one for C and one per Bj) is encapsulated inside an UDP
packet and sent to the corresponding output device, using
one core per device.

On each Bj machine, the packets are read from the in-
put device, decapsulated, and then passed to a Processor
element which does the actual filtering. The resulting ac-
tion packets are then re-encapsulated and sent through the
NIC towards the client. This operation is done on a single
core, but several cores can easily be used in parallel.With
FastClick, it suffices to launch Click with more cores, and
the system will automatically create the corresponding num-
ber of hardware queues on the NICS, and assign a core to
each queue. On the client side, each of the three input
NICs has an associated core. Incoming packets are decap-
sulated, and then passed to the Client element, which re-
constructs the final packets (on its own core). Reconstructed
packets which are not marked as dropped are then passed
to a receiver pipeline, which computes the entry-to-exit de-
lay, counts packets and measures reception bandwidth. To
measure delays, the packets in the in-memory list are tagged
with a sequence number in the packet payload, before the
transmission begins. This number allows to match the exit
timestamp with an entry timestamp, which is kept in mem-
ory. This allows to avoid storing the timestamp itself in the
packet, which would increase the delay measured.

The SplitBox setup is compared against a simpler setup
using an IPFilter element on a single machine, to act as
a non-private outsourced firewall with the same rules. The

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

M
a
x
 a

ch
ie

v
a
b

le
 b

a
n
d

w
id

th
 w

/o
 l
o
ss

 (
/

G
b

p
s)

Number of traversed rules

IPFilter
SplitBox 4 cores
SplitBox 3 cores
SplitBox 2 cores
SplitBox 1 core

Figure 4: Achievable bandwidth drops sharply with the number of
traversed rules.

IPFilter element sends only the non-dropped packets
(without encapsulation) directly to an output device, which
is connected to an input device feeding the receiver pipeline.

7. PERFORMANCE EVALUATION
We now present the results of the experiment described

above, with various input bit-rates and different number of
rules, while measuring loss rate and delays. While we have
to forward all packets to the client, a non-private outsourced
firewall can drop the rejected packets immediately. Thus, its
achievable bit-rate will depend on a combination of the input
traffic and the ruleset. To normalize results in our analysis,
we craft rulesets such that all packets are accepted. While
it changes nothing for SplitBox, it is a worst-case for the
IPFilter-based testcase. At the same time, we tightly
control the number of match attempts per packet, in order to
evaluate the impact of the average number of rules traversed
by a packet before it matches.

Figure 4 illustrates the evolution of the maximum achiev-
able bandwidth (taken as inducing less than 0.001% losses),
as a function of the number of traversed rules (i.e., the num-
ber of match attempts per packet). Our trace packets are
about 1 kB on average, so that 8 Gbps corresponds to about
1 Mpps. We observe that the bandwidth decreases signif-
icantly with more traversed rules with SplitBox (PNFV),
mainly due to the hashing function, which is called on the
packet header once per match attempt. Not only is this more
computationally expensive than simpler comparisons, but it
is also done each time on different data (as we need to first
XOR packet header with match projection), taking no ad-
vantage of the cache. Fortunately, the Processor opera-
tion is inherently parallelizable, thus, allocating more cores
speeds things up. Note that the average number of traversed
rules in a real firewall is significantly lower than the total
number of rules. Therefore, it is particularly important to
choose the order of match attempts according to the traf-
fic distribution, and/or to use a more complex tree structure
minimizing the number of match attempts.

Finally, in Figure 5, we plot the delays as a function of
firewall load (i.e., current input bandwidth over maximum
achievable bandwidth). Note that the delays do not follow

12

 0

 100

 200

 300

 400

 500

 20 30 40 50 60 70 80 90 100

D
e
la

y
 (

µ
s)

Firewall load (%)

IPFilter
SplitBox 4 Cores
SplitBox 3 Cores
SplitBox 2 Cores
SplitBox 1 Core

Figure 5: Delay increases with the firewall load.

the same dependency w.r.t. the number of match attempts per
packet. Although these increase slightly with the number of
traversed rules, they are mostly governed by queuing delays
in the system (in NICs rings, or in-memory rings exchanging
packets between the different processing cores). The number
of blinds l seems to have little impact on the performance:
with l ranging from 64 to 65,536, we observe no noticeable
difference, except for additional memory consumption.

In conclusion, our SplitBox proof-of-concept implementa-
tion for a firewall use case achieves comparable performance
to a non-private version, providing acceptable throughput
and delays for small rulesets. Larger rulesets should be care-
fully laid out in order to minimize the number of match at-
tempts per packet.

8. CONCLUSION & FUTURE WORK
This paper presented SplitBox, a novel scalable system

that allows a cloud service provider to privately compute
network functions on behalf of a client, in such a way that
the cloud does not learn the network policies. It provides
strong security guarantees in the honest-but-curious model,
based on cryptographic secret sharing. We experiment with
our implementation using firewall as a test case, and achieve
a throughput in the order of 2 Gbps, with packets of aver-
age size 1 kB traversing about 60 firewall rules. In future
work, we plan to consider more diverse types of matches
(that allow matching on arbitrary ranges) and actions (that

allow overlapping non-zero bits), as well as using k-out-of-t
secret sharing schemes rather than t-out-of-t.

9. REFERENCES
[1] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro,

M. A. Kaafar, and L. Mathy. SplitBox: Toward
Efficient Private Network Function Virtualization
(Full Version). http://arxiv.org/abs/1605.03772, 2016.

[2] T. Barbette, C. Soldani, and L. Mathy. Fast userspace
packet processing. In ANCS, 2015.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Eurocrypt, 2004.

[4] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle.
Cryptanalysis of the Multilinear Map over the
Integers. In Eurocrypt, 2015.

[5] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical
Multilinear Maps over the Integers. In CRYPTO, 2013.

[6] Intel. Intel Data Plane Development Kit.
http://dpdk.org/.

[7] N. A. Jagadeesan, R. Pal, K. Nadikuditi, Y. Huang,
E. Shi, and M. Yu. A Secure Computation Framework
for SDNs. In HotSDN ’14, 2014.

[8] A. R. Khakpour and A. X. Liu. First Step Toward
Cloud-Based Firewalling. In SRDS, 2012.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3), 2000.

[10] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and
Z. Liu. Embark: Securely Outsourcing Middleboxes to
the Cloud. In NSDI, 2016.

[11] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A.
Kaafar. Private Processing of Outsourced Network
Functions: Feasibility and Constructions. In ACM
Workshop on SDN-NFV Security, 2016.

[12] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
BlindBox: Deep Packet Inspection over Encrypted
Traffic. In SIGCOMM, 2015.

[13] J. Shi, Y. Zhang, and S. Zhong. Privacy-preserving
Network Functionality Outsourcing.
http://arxiv.org/abs/1502.00389, 2015.

13

http://arxiv.org/abs/1605.03772
http://dpdk.org/
http://arxiv.org/abs/1502.00389

