
ar
X

iv
:1

50
9.

08
85

5v
1

 [c
s.

D
B

]
29

 S
ep

 2
01

5

Computing Marginals Using MapReduce

Foto Afrati∗ Shantanu Sharma† Jeffrey D. Ullman‡ Jonathan R. Ullman§

August 21, 2018

Abstract

We consider the problem of computing the data-cube marginals of a fixed orderk (i.e., all marginals that
aggregate overk dimensions), using a single round of MapReduce. The focus ison the relationship between the
reducer size (number of inputs allowed at a single reducer) and the replication rate (number of reducers to which
an input is sent). We show that the replication rate is minimized when the reducers receive all the inputs necessary
to compute one marginal of higher order. That observation lets us view the problem as one of covering sets ofk

dimensions with sets of a larger sizem, a problem that has been studied under the name “covering numbers.” We
offer a number of constructions that, for different values of k andm meet or come close to yielding the minimum
possible replication rate for a given reducer size.

1 Background

1.1 Marginals

Consider ann-dimensional data cube [11] and the computation of its marginals by MapReduce. Amarginalof a
data cube is the aggregation of the data in all those tuples that have fixed values in a subset of the dimensions of
the cube. We shall assume this aggregation is the sum, but theexact nature of the aggregation is unimportant in
what follows. Marginals can be represented by a list whose elements correspond to each dimension, in order. If the
value in a dimension is fixed, then the fixed value represents the dimension. If the dimension is aggregated, then
there is a * for that dimension. The number of dimensions overwhich we aggregate is theorderof the marginal.

Example 1.1. Supposen = 5, and the data cube is a relation DataCube(D1,D2,D3,D4,D5,V). Here, D1 through
D5 are the dimensions, andV is the value that is aggregated.

SELECT SUM(V)

FROM DataCube

WHERE D1 = 10 AND D3 = 20 AND D4 = 30;

will sum the data values in all those tuples that have value 10in the first dimension, 20 in the third dimension, 30
in the fourth dimension, and any values in the second and fifthdimension of a five-dimensional data cube. We can
represent this marginal by the list[10, ∗, 20, 30, ∗], and it is a second-order marginal.

1.2 Assumption: All Dimensions Have Equal Extent

We shall make the simplifying assumption that in each dimension there ared different values. In practice, we
do not expect to find that each dimension really has the same number of values. For example, if one dimension
represents Amazon customers, there would be millions of values in this dimension. If another dimension represents
the date on which a purchase was made, there would “only” be thousands of different values.

∗NTU Athens
†Ben Gurion University
‡Stanford University
§Northeastern University

1

http://arxiv.org/abs/1509.08855v1

However, it probably makes little sense to compute marginals where we fix the Customer dimension to be
each customer, in turn; there would be too many marginals, and each would have only a small significance. More
likely, we would want to group the values of dimensions in some way, e.g., customers by state and dates by
month. Moreover, we shall see that our methods really only need the parameterd to be an upper bound on the true
number of distinct values in a dimension. The consequence oftheextents(number of distinct values) of different
dimensions being different is that some of the reducers willget fewer than the theoretical maximum number of
inputs allowed. That discrepancy has only a small effect on the performance of the algorithm. Moreover, if there
are really large differences among the extents of the dimensions, then an extension of our algorithms can improve
the performance. We shall defer this issue to Section 5.

1.3 Mapping Schemas for MapReduce Algorithms

We assume the reader is familiar with the MapReduce computational model [10]. Following the approach to an-
alyzing MapReduce algorithms given in [4], we look at tradeoffs between thereducer size(maximum number of
inputs allowed at a reducer), which we always denote byq, and thereplication rate(average number of reduc-
ers to which an input needs to be sent), which we always denoteby r. The replication rate represents the cost
of communication between the mappers and reducers, and communication cost is often the dominant cost of a
MapReduce computation. Typically, the larger the reducer size, the lower the replication rate. But we want to
keep the reducer size low for two reasons: it enables computation to proceed in main memory, and it forces a large
degree of parallelism, both of which lead to low wall-clock time to finish the MapReduce job.

In the theory of [4], a problem is modeled by a set of inputs (the tuples or points of the data cube, here), a set of
outputs (the values of the marginals) and a relationship between the inputs and outputs that indicates which inputs
are needed to compute which outputs. In order for an algorithm to solve this problem with a reducer sizeq, there
must be amapping schema, which is a relationship between inputs and reducers that satisfies two properties:

1. No reducer is associated with more thanq inputs, and

2. For every output, there is some reducer that is associatedwith all the inputs that output needs for its compu-
tation.

Point (1) is the definition of “reducer size,” while point (2)is the requirement that the algorithm can compute
all the outputs that the problem requires. The fundamental reason that MapReduce algorithms are not just parallel
algorithms in general is embodied by point (2). In a MapReduce computation, every output is computed by one
reducer, independently of all other reducers.

1.4 Näıve Solution: Computing One Marginal Per Reducer

Now, let us consider the problem of computing all the marginals of a data cube in the above model. If we are not
careful, the problem becomes trivial. The marginal that aggregates over all dimensions is an output that requires
all dn inputs of the data cube. Thus,q = dn is necessary to compute all the marginals. But that means we need a
single reducer as large as the entire data cube, if we are to compute all marginals in one round. As a result, it only
makes sense to consider the problem of computing a limited set of marginals in one round.

Thekth-order marginals are those that fixn−k dimensions and aggregate over the remainingk dimensions. To
compute akth-order marginal, we needq ≥ dk, since such a marginal aggregates overdk tuples of the cube. Thus,
we could compute all thekth-order marginals withq = dk, using one reducer for each marginal. As a “problem”
in the sense of [4], there aredn inputs, anddn−k

(

n
k

)

outputs, each representing one of the marginals. Each output
is connected to thedk inputs over which it aggregates. Each input contributes to

(

n
k

)

marginals – those marginals
that fixn− k out of then dimensions in a way that agrees with the tuple in question. That is, forq = dk, we can
compute all thekth-order marginals with a replication rater equal to

(

n
k

)

.
For q = dk, there is nothing better we can do. However, whenq is larger, we have a number of options, and

the purpose of this paper is to explore these options.

2

2 Related Work

There have been a number of papers that look at the problem of using MapReduce to compute marginals. Probably
the closest work to what we present here is in [15]. This paperexpresses the goal of minimizing communication,
and of partitioning the work among reducers. It does not, however, present concrete bounds or algorithms that
meet or approach those bounds, as we shall do here.

[14] considers constructing a data cube using a nonassociative aggregation function and also examines how to
deal with nonuniformity in the density of tuples in the cube.Like all the other papers mentioned, it deals with
constructing the entire data cube using multiple rounds of MapReduce. We consider how to compute only the
marginals of one order, using one round. We may assume that locally, at each reducer, higher-order marginals
are computed by aggregating lower-order marginals for efficiency, but this method does not result in additional
MapReduce rounds.

[2] looks at using MapReduce to form a data cube from data stored in Bigtable. [13] and [17] are implementa-
tions of known algorithms in MapReduce. Finally, [18] talksabout extending MapReduce to compute data cubes
more efficiently.

3 Computing Many Marginals at One Reducer

We wish to study the tradeoff between reducer size and replication rate, a phenomenon that appears in many
problems [16, 5, 4, 3]. Since we know from Section 1.4 the minimum possible reducer size, we need to consider
whether using a larger value ofq can result in a significantly smaller value ofr. Our goal is to combine marginals,
in such a way that there is maximum overlap among the inputs needed to compute marginals at the same reducer.

We shall start by assuming the maximum overlap and minimum replication rate is obtained by combiningkth-
order marginals into a set of inputs suitable to compute one marginal of order higher thank. This assumption is
correct, and we shall offer a proof of the fact in Section 4. However, we are still left with answering the question:
how do we pack all thekth-order marginals into as few marginals of orderm as possible, for eachm > k. That
will lead us to the matter of “asymmetric covering codes” or “covering numbers” [7, 9].

3.1 Covering Marginals

Suppose we want to compute allkth-order marginals, but we are willing to use reducers of sizeq = dm for some
m > k. If we fix anyn −m of then dimensions of the data cube, we can send to one reducer thedm tuples of
the cube that agree with those fixed values. We then can compute all the marginals that haven− k fixed values, as
long as those values agree with then−m fixed values that we chose originally.

Example 3.1. Letn = 7, k = 2, andm = 3. Suppose we fix the firstn −m = 4 dimensions, say using values
a1, a2, a3, anda4. Then we can cover thed marginalsa1a2a3a4x ∗ ∗ for any of the valuesx that may appear in
the fifth dimension. We can also cover all marginalsa1a2a3a4∗y∗ anda1a2a3a4∗∗z, wherey andz are any of the
possible values for the sixth and seventh dimensions, respectively. Thus, we can cover a total of3d second-order
marginals at this one reducer. That turns out to be the largest number of marginals we can cover with one reducer
of sizeq = d3.

What we do for one assignment ofn−m values ton−m of the dimensions we can do for all assignments of
values to the same dimensions, thus creatingdn−m reducers, each of sizedm. Together, these reducers allow us to
compute allkth-order marginals that fix the samen −m dimensions (along with anym − k of the remainingm
dimensions).

Example 3.2. Continuing Example 3.1, if we used4 reducers, each of which fixes the first four dimensions, then
we can cover any of the3d5 marginals that fix the first four dimensions along with one of dimensions 5, 6, or 7.

3.2 From Marginals to Sets of Dimensions

To understand why the problem is more complex than it might appear at first glance, let us continue thinking about
the simple case of Example 3.1. We need to cover all second-order marginals, not just those that fix the first four

3

dimensions. If we had one team ofd4 reducers to cover each four of the seven dimensions, then we would surely
cover all second-order marginals. But we don’t need all

(

7
2

)

= 21 such teams. Rather, it is sufficient to pick a
collection of sets of four of the seven dimensions, such thatevery set of five of the seven dimensions contains one
of those sets of size four.

In what follows, we find it easier to think about the sets of dimensions that are aggregated, rather than those that
are fixed. So we can express the situation above as follows. Collections of second-order marginals are represented
by pairs of dimensions – the two dimensions such that each marginal in the collection aggregates over those
two dimensions. These pairs of dimensions must becoveredby sets of three dimensions – the three dimensions
aggregated over by one third-order marginal. Our goal, which we shall realize in Example 3.3 below, is to find a
smallest set of tripletons such that every pair chosen from seven elements is contained in one of those tripletons.

In general, we are faced with the problem of covering all setsof k out ofn elements by the smallest possible
number of sets of sizem > k. Such a solution leads to a way to compute allkth-order marginals using as few
reducers of sizedm as possible. Abusing the notation, we shall refer to the setsof k dimensions asmarginals, even
though they really represent teams of reducers that computelarge collections of marginals with the same fixed
dimensions. We shall call the larger sets of sizem handles. The implied MapReduce algorithm takes each handle
and creates from it a team of reducers that are associated, inall possible ways, with fixed values in all dimensions
except for those dimensions in the handle. Each created reducer receives all inputs that match its associated values
in the fixed dimensions.

Example 3.3. Call the seven dimensionsABCDEFG. Then here is a set of seven handles (sets of size three),
such that every marginal of size two is contained in one of them:

ABC, ADE, AFG, BDF, BEG, CDG, CEF

To see why these seven handles suffice, consider three cases,depending on how many ofA, B, andC are in the
pair of dimensions to be covered.

Case 0: If none ofA, B or C is in the marginal, then the marginal consists of two ofD, E, F , andG. Note that
all six such pairs are contained in one of the last six of the handles.

Case 1: If one ofA, B, or C is present, then the other member of the marginal is one ofD, E, F , or G. If A is
present, then the second and third handles,ADE andAFG together pairA with each of the latter four dimensions,
so the marginal is covered. IfB is present, a similar argument involving the fourth and fifthof the handles suffices,
and ifC is present, we argue from the last two handles.

Case 2: If the marginal has two ofA, B, andC, then the first handle covers the marginal.

Incidentally, we cannot do better than Example 3.3. Since nohandle of size three can cover more than three
marginals of size two, and there are

(

7
2

)

= 21 marginals, clearly seven handles are needed.
As a strategy for evaluating all second-order marginals of aseven-dimensional cube, let us see how the reducer

size and replication rate compare with the baseline of usingone reducer per marginal. Recall that if we use one
reducer per marginal, we haveq = d2 andr =

(

7
5

)

= 21. For the present method, we haveq = d3 andr = 7. That
is, each tuple is sent to the seven reducers that have the matching values in dimensionsDEFG, BCFG, and so on,
each set of attributes on which we match corresponding to thecomplement of one of the seven handles mentioned
in Example 3.3.

3.3 Covering Numbers

Let us defineC(n,m, k) to be the minimum number of sets of sizem out of n elements such that every set of
k out of the samen elements is contained in one of the sets of sizem. For instance, Example 3.3 showed that
C(7, 3, 2) = 7. C(n,m, k) is called thecovering numberin [7]. The numbersC(n,m, k) guide our design of
algorithms to computekth-order marginals. There is an important relationship between covering numbers and
replication rate, that justifies our focus on constructive upper bounds forC(n,m, k).

Theorem 3.4. If q = dm, then we can solve the problem of computing allkth-order marginals of ann-dimensional
data cube withr = C(n,m, k).

4

Proof. Each marginal in the set ofC(n,m, k) handles can be turned into a team of reducers, one for each of the
dn−m ways to fix the dimensions that are not in the handle. Each input gets sent to exactly one member of the
team for each handle – the reducer that corresponds to fixed values that agree with the input. Thus, each input is
sent to exactlyC(n,m, k) reducers.

Sometimes we will want to fix some choices ofm, k and study howC(n,m, k) grows with the dimensionn.
In this case we will often write simplyC(n) whenm andk are clear from context.

3.4 First-Order Marginals

The casek = 1 is quite easy to analyze. We are asking how many sets of sizem are needed to cover each singleton
set, where the elements are chosen from a set of sizen. It is easy to see that we can group then elements into
⌈n/m⌉ sets so that each of then elements is in at least one of the sets, and there is no way to cover all the singletons
with fewer than this number of sets of sizem. That is,C(n,m, 1) = ⌈n/m⌉. For example, Ifn = 7 andm = 2,
then the seven dimensionsABCDEFG can be covered by four sets of size 2, such asAB, CD, EF , andFG.

3.5 2nd-Order Marginals Covered by 3rd-Order Handles

The next simplest case isC(n, 3, 2), that is, covering second-order marginals by third-order marginals, or equiva-
lently, covering sets of two out ofn elements by sets of size 3. One simple observation is that a set of size 3 can
cover only three pairs, soC(n, 3, 2) ≥

(

n

2

)

/3, or:

C(n, 3, 2) ≥ n2/6− n/6 (1)

In fact, more generally,C(n,m, k) ≥
(

n
k

)

/
(

m
k

)

.
Aside: We also remark that, using the probabilistic method, one can show that

C(n,m, k) ≤ 2 ln

(

n

k

)

·

(

n
k

)

(

m
k

)

so this simple lower bound is actual optimal up to a factor of2 ln
(

n

k

)

. However, in what follows we will give
constructions that are

(a) Explicit and, more importantly,

(b) Meet the lower bound eitherexactlyor to within a constant factor.

While [7] gives us some specific optimal values ofC(n, 3, 2) to use as the basis of an induction, we would
like a recursive algorithm for constructing ways to cover sets of size 2 by sets of size 3, and we would like this
recursion to yield solutions that are as close to the lower bound of Equation 1 as possible. We can in fact give a
construction that, for an infinite number ofn, matches the lower bound of Equation 1. Suppose we have a solution
for n dimensions. We construct a solution for3n dimensions as follows. First, group the3n dimensions into three
groups ofn each. Let these groups be{A1, A2, . . . , An}, {B1, B2, . . . , Bn}, and{C1, C2, . . . , Cn}. We construct
handles of two kinds:

1. Choose all sets of three elements, one from each group, sayAiBjCk, such thati + j + k is divisible byn.
There are evidentlyn2 such handles, since any choice from the first two groups can becompleted by exactly
one choice from the third group.

2. Use the assumed solution forn dimensions to cover all the pairs chosen from one of the threegroups. So
doing adds another3C(n, 3, 2) handles.

This set of handles covers all pairs chosen from the3n dimensions. In proof, if the pair has dimensions from
different groups, then it is covered by the handle from (1) that has those two dimensions plus the unique member
of the third group such that the sum of the three indexes is divisible byn. If the pair comes from a single group,
then we can argue recursively that it is covered by a handle added in (2).

5

Example 3.5. Letn = 3, and let the three groups beA1A2A3, B1B2B3, andC1C2C3. From the first rule, we get
the handlesA1B1C1,A1B2C3,A1B3C2,A2B1C3,A2B2C2,A2B3C1,A3B1C2, A3B2C1, andA3B3C3. Notice
that the sum of the subscripts in each handle is 3, 6, or 9. For the second rule, note that whenn = 3, a single
handle consisting of all the dimensions suffices. Thus, we need to addA1A2A3, B1B2B3, andC1C2C3. the total
number of handles is 12. This set of handles is as small as possible, since

(

9
2

)

/3 = 12.

The recurrence that results from this construction is:

C(3n, 3, 2) ≤ n2 + 3C(n, 3, 2) (2)

Let us useC(n) as shorthand forC(n, 3, 2) in what follows. We claim that;

Theorem 3.6. For n a power of 3:C(n) = n2/6− n/6.

Proof. We already argued thatC(n) ≥ n2/6− n/6, so we have only to showC(n) ≤ n2/6− n/6 for n a power
of 3.

For the basis,C(3) = 1. Obviously one set of the three elements covers all three of its subsets of size two.
Since1 = 32/6− 3/6, the basis is proven.

For the induction, assumeC(n) ≤ n2/6 − n/6. Then by Equation 2,C(3n) ≤ n2 + 3n2/6 − 3n/6 =
3n2/2− n/2 = (3n)2/6− (3n)/6.

We can get the same bound, or close to the same bound, for values of n that are not a power of 3 if we start
with another basis. All optimal values ofC(n) up ton = 13 are given in [7]. Forn = 4, 5, . . . , 13, the values of
C(n) are 3, 4, 6, 7, 11, 12, 17, 19, 24, and 26.

Using Theorem 3.4, we have the following corollary to Theorem 3.6.

Corollary 3.7. If q = d3 andn is a power of 3, then we can compute all second-order marginals with a replication
rate ofn2/6− n/6.

Note that the bound on replication rate given by Corollary 3.7, which is equivalent to
(

n
2

)

/3, is exactly one third
of the replication rate that would be necessary if we used a single reducer for each marginal (or, sinceq = d3, and
one second-order marginal requiresd2 inputs, the same improvement would hold when compared with packingd
randomly chosen second-order marginals at each reducer).

3.6 A Slower Recursion for 2nd-Order Marginals

There is an alternative recursion for constructing handlesthat offers solutions forC(n, 3, 2). This recursion is not
as good asymptotically as that of Section 3.5; it uses approximatelyn2/4 rather thann2/6 handles. However, this
recursion gives solutions for anyn, not just those that are powers of 3.

Note that if we attempt to address values ofn that are not a power of3 by simply roundingn up to the nearest
power of3 and using the recursive construction from the previous section, then we may increase the replication
rate by a factor as large as9, whereas the recursion in this section is never suboptimal by a factor larger than3/2.

Let us call then dimensionsA1A2B1B2 · · ·Bn−2. We choose handles of two kinds:

1. Handles that containA1, A2, and one of

B1, B2, . . . , Bn−2

There are clearlyn− 2 handles of this kind.

2. TheC(n− 2) handles that recursively cover all pairs chosen fromB1, B2, . . . , Bn−2.

We claim that every marginal of size 2 is covered by one of these handles. If the marginal has neitherA1 nor
A2, then clearly it is covered by one of the handles from (2). If the marginal has bothA1 andA2, then it is covered
by any of the handles from (1). And if the marginal has one but not both ofA1 andA2, then it has exactly one of
theBi’s. Therefore, it is covered by the handle from (1) that hasA1, A2, and thatBi.

6

Example 3.8. Letn = 6, and call the dimensions

ABCDEF

whereA andB form the first group, andCDEF form the second group. By rule (1), we include handlesABC,
ABD, ABE, andABF . By rule (2) we have to add a cover for each pair fromCDEF . One choice isCDE,
CDF , andDEF , for a total of seven handles. This choice is not exactly optimal, since six handles of size three
suffice to cover all pairs chosen from six elements [7].

The resulting recurrence is
C(n) ≤ n− 2 + C(n− 2)

We claim that for oddn ≥ 3, C(n) ≤ n2/4− n/2+ 1/4. For the basis, we know thatC(3) = 1. As 32/4− 3/2+
1/4 = 1, the basisn = 3 is proved. The induction then follows from the fact that

n− 2 + (n− 2)2/4− (n− 2)/2 + 1/4 = n2/4− n/2 + 1/4

For evenn, we could start withC(4) = 3. But we do slightly better if we start with the valueC(6) = 6, given in
[7]. That gives usC(n) ≤ n2/4− n/2 for all evenn ≥ 6.

While this recurrence gives values ofC(n) that grow withn2/4 rather thann2/6, it does give us values that
the recurrence of Section 3.5 cannot give us.

Example 3.9. The recurrence of Section 3.5 gives us

C(27) = 117

If we want a result forn = 31, we can apply the recurrence of this section twice, to getC(29) ≤ 27 + 117 = 143
andC(31) ≤ 29 + 143 = 172. In comparison, the lower bound on the number of handles needed forn = 31 is
(

31
2

)

/3 = 155.

3.7 Aside: Solving Recurrences

We are going to propose several recurrences that describe inductive constructions of sets of handles. While we do
not want to explain how one discovers the solution to each recurrence, there is a general pattern that can be used
by the reader who wants to see how the solutions are derived; see [6].

A recurrence likeC(n) ≤ n−2+C(n−2) from Section 3.6 will have a solution that is a quadratic polynomial,
sayC(n) = an2 + bn+ c. It turns out that the constant termc is needed only to make the basis hold, but we can
get the values ofa andb by replacing the inequality by an equality, and then recognizing that the terms depending
onn must be 0. In this case, we get

an2 + bn+ c = n− 2 + a(n− 2)2 + b(n− 2) + c

or
an2 + bn+ c = n− 2 + an2 − 4an+ 4a+ bn− 2b+ c

Cancelling terms and bringing the terms withn to the left, we get

n(4a− 1) = 4a− 2b− 2

Since a function ofn cannot be a constant unless the coefficient ofn is 0, we know that4a− 1 = 0, or a = 1/4.
The right side of the equality must also be 0, so we get4(1/4) − 2b − 2 = 0, or b = −1/2. We thus know that
C(n) = n2/4− n/2 + c for some constantc, depending on the basis value.

7

Case {A1, A2} Bi’s
0 none cover
1 not needed
2 A1A2 all Bi’s

Figure 1: How we cover each of the three cases: 0, 1, or 2 dimensions of the marginal are in the first group (A1A2)

3.8 Covering 2nd-Order Marginals With Larger Handles

We can view the construction of Section 3.6 as dividing the dimensions into two groups; the first consisted of only
A1 andA2, while the second group consisted of the remaining dimensions, which we calledB1, B2, . . . , Bn−2.
We then divided the second-order marginals, which are pairsof dimensions, according to how the pair was divided
between the groups. That is, either 0, 1, or 2 of the dimensions could be the the first group{A1, A2}. We treated
each of these three cases, as we can summarize in the table of Fig. 1.

That is, marginals with zero ofA1 andA2 (Case 0) are covered recursively by the best possible set of handles
that cover theBi’s. Marginals with bothA1 andA2 (Case 2) are covered by many handles, since we add toA1A2

all possible sets of size 1 formed from theBi’s. The reason we do so is that we can then cover all the marginals
belonging to Case 1, where exactly one ofA1 andA2 is present, without adding any additional handles. That is,
had we been parsimonious in Case 2, and only included one handle, such asA1A2B1, then we would not have
been able to skip Case 1.

Now, let us turn our attention to covering pairs of dimensions by sets of size larger than three; i.e., we wish
to cover second-order marginals by handles of sizem, for somem ≥ 4. We can generalize the technique of
Section 3.6 by using one group of sizem − 1, sayA1, A2, . . . , Am−1 and another group with the remaining
dimensions,B1, B2, . . . , Bn−(m−1). We can form handles for Case 0, where none of theAi’s are in the marginal,
recursively as we did in Section 3.6. That requiresC(n− (m− 1),m, 2) handles. If we deal with Casem− 1 by
adding toA1A2 · · ·Am−1 each of theBi’s in turn, to formn− (m− 1) additional handles, we cover all the other
cases. Of course all the cases except for Case 1, where exactly one of theAi’s is in the marginal, are vacuous. This
reasoning gives us a recurrence:

C(n,m, 2) ≤ n− (m− 1) + C(n− (m− 1),m, 2)

Using the technique suggested by Section 3.7. along with theobvious basis caseC(m,m, 2) = 1, we get the
solution:

C(n,m, 2) ≤
n2

2(m− 1)
−

n

2
+ 1−

m

2(m− 1)

Note that asymptotically, this solution usesn
2

2(m−1) handles, while the lower bound isn(n−1)
m(m−1) handles. Therefore,

this method is worse than the theoretical minimum by a factorof roughlym/2.

Example 3.10. Letn = 9 andm = 4. Call our dimensionsABCDEFGHI, whereABC is the first group and
DEFGHI the second. For Casem − 1 we use the handlesABCD, ABCE, ABCF , ABCG, ABCH , and
ABCI. For Case 0, we cover pairs fromDEFGHI optimally, using sets of size four; one such choice isDEFG,
DEHI, andFGHI, for a total of nine handles.

3.9 A Recursive-Doubling Method for Covering 2nd-Order Marginals

For a sparse but infinite set of values ofn, there is a better recursion forC(n,m, 2). Use two groups, each with
half the dimensions, sayn dimensions. You can cover all pairs with one dimension in each group, as follows.
Assumingm dividesn, start with sets consisting ofm/2 members of one of the groups. We need2n/m such
sets for each group. Then, pair the sets for each group in all possible ways, forming4n2/m2 handles of sizem.
These handles cover all pairs that have one member in each group. To these add the recursively constructed sets of
handles for the two groups of sizen. The implied recurrence for this method is:

C(2n,m, 2) ≤ 4n2/m2 + 2C(n,m, 2)

8

If we useC(m,m, 2) = 1 as the basis, the upper bound onC(n,m, 2) implied by this recurrence is

C(n,m, 2) ≤ 2n2/m2 − 1

This bound applies only for those values ofn that arem times a power of 2. It does, however, give us an upper
bound that is only a factor of 2 (roughly) greater than the lower bound of

(

n
2

)

/
(

m
2

)

. Additionally, if we attempt to
address values ofn that are notm times a power of2, by rounding up to the nearest such value, we increasen by
a factor that approaches2 for large values ofn. Doing so increases the replication rate by a factor of at most 4, so
the construction in this section improves on that of the previous section for sufficiently largem.

Example 3.11. Let n = m = 4, and suppose the dimensions areABCD in the first group andEFGH in the
second group. We cover all pairs of these eight dimensions with sets of size four, as follows. We first cover the
singletons fromABCD using two sets of size 2, sayAB andCD. Similarly, we cover all singletons fromEFGH
usingEF andGH . Then we pairAB andCD in all possible ways withEF andGH , to getABEF , ABGH ,
CDEF , andCDGH . Finally, add covers for each of the groups. A single handle of size four,ABCD, covers all
pairs from the first group, and the handleEFGH covers all pairs from the second group, for a total of six handles.

3.10 The General Case

Finally, we offer a recurrence forC(n,m, k) that works for alln and for allm > k. it does not approach the lower
bound, but it is significantly better than using one handle per marginal. This method generalizes that of Section 3.6.
We use two groups. The first hasm− k+1 of the dimensions, sayA1, A2, . . . , Am−k+1, while the second has the
remainingn−m+ k − 1 dimensions. The handles are of two types:

1. One group of handles containsA1A2 · · ·Am−k+1, i.e., all of group 1, plus anyk − 1 dimensions from
group 2. There are

(

n−m+k−1
k−1

)

of these handles, and each has exactlym members.

2. The other handles are formed recursively to cover the dimensions of group 2, and have none of the members
of group 1. There areC(n−m+ k − 1,m, k) of these handles.

We claim that every marginal of sizek is covered by one of these handles. If the marginal has at least one
dimension from group 1, then it has at mostk − 1 from group 2. Therefore in is covered by the handles from (1).
And if the marginal has no dimensions from group 1, then it is surely covered by a handle from (2). As a shorthand,
let C(n) stand forC(n,m, k). The recurrence forC(n) implied by this construction is

C(n) ≤

(

n−m+ k − 1

k − 1

)

+ C(n−m+ k − 1) (3)

We shall prove that:

Theorem 3.12.C(n) ≤
(

n

k

)

/(m− k + 1) for n equal to 1 plus an integer multiple ofm− k + 1.

Proof. The proof is an induction onn.
BASIS: We knowC(m) = 1, and

(

m
k

)

/(m− k + 1) ≥ 1 for any1 ≤ k < m.
INDUCTION: We know from Equation 3 that

(

n−m+ k − 1

k − 1

)

+

(

n−m+k−1
k

)

(m− k + 1)

is an upper bound onC(n). We therefore need to show that
(

n

k

)

m− k + 1
≥

(

n−m+ k − 1

k − 1

)

+

(

n−m+k−1
k

)

m− k + 1

Equivalently,
(

n

k

)

≥ (m− k + 1)

(

n−m+ k − 1

k − 1

)

+

(

n−m+ k − 1

k

)

(4)

The left side of Equation 4 is all ways to pickk things out ofn. The right side counts a subset of these ways,
specifically those ways that pick either:

9

1. Exactly one of the firstm− k + 1 elements andk − 1 of the remaining elements, or

2. None of the firstm− k + 1 elements andk from the remaining elements.

Thus, Equation 4 holds, andC(n,m, k) ≤
(

n
k

)

/(m− k + 1) is proved.

Theorem 3.12 applies only for certainn that form a linear progression. However, we can prove similar bounds
for n that are not of the form 1 plus an integer multiple ofm − k + 1 by using a different basis case. The only
effect the basis has is (possibly) to add a constant to the bound.

The bound of Theorem 3.12 plus Theorem 3.4 gives us an upper bound on the replication rate:

Corollary 3.13. We can compute allkth-order marginals using reducers of sizeq = dm, for m > k, with a
replication rate ofr ≤

(

n

k

)

/(m− k + 1).

3.11 Handles of Size 4 Covering Marginals of Size 3

We can improve on Theorem 3.12 slightly for the special case of m = 4 andk = 3. The latter theorem gives us
C(n, 4, 3) ≤

(

n
3

)

/2, or approximatelyC(n, 4, 3) ≤ n3/12, but we can getC(n, 4, 3) ≤ n3/16 by the following
method, at least for a sparse but infinite set of values ofn. Note that in comparison, the lower bound forC(n, 4, 3)
is approximatelyn3/24.

To get the better upper bound, we generalize the strategy of Section 3.5. Let the dimensions be placed into four
groups, withn dimensions in each group. Assume the members of each group are assigned “indexes” 1 throughn.

1. Formn3 handles consisting of those sets of dimensions, one from each group, the sum of whose indexes is
a multiple ofn.

2. For each of the six pairs of groups, recursively cover the members of those two groups together by a set of
C(2n, 4, 3) handles.

Observe that every triple of dimensions is either from threedifferent groups, in which case it is covered by one
of the handles from (1), or it involves members of at most two groups, in which case it is covered by a handle from
(2). We conclude that:

C(4n, 4, 3) ≤ n3 + 6C(2n, 4, 3)

This recurrence is satisfied byC(n, 4, 3) = n3/16. If we start with, say,C(4, 4, 3) = 1, we can shown3/16 is an
upper bound onC(n, 4, 3) for all n ≥ 4 that is a power of two.
Aside: It appears that this algorithm and that of Section 3.5 arenot instances of a more general algorithm. That is,
there is no useful extension toC(n, k + 1, k) for k > 3.

4 Optimal Handles are Subcubes

We shall now demonstrate that for a given reducer sizeq, the largest number of marginals of a given orderk that
we can cover with a single reducer occurs when the reducer gets all tuples needed for a marginal of some higher
orderm. The proof extends the ideas found in [8, 12] regarding isoperimetric inequalities for the hypercube. In
general, an “isoperimetric inequality” is a lower bound on the size of the perimeter of a shape, e.g., the fact that the
circle has the smallest perimeter of any shape of a given area. For particular families of graphs, these inequalities
are used to show that any set of nodes of a certain size must have a minimum number of edges that connect the set
to a node not in the set.

We need to use these inequalities in the opposite way – to giveupper bounds on the number of edgescovered;
i.e., both ends of the edge are in the set. For example, in [4] the idea was used to show that a set ofq nodes of
then-dimensional Boolean hypercube could not cover more thanq

2 log2 q edges. That upper bound, in turn, was
needed to give a lower bound on the replication rate (as a function of q, the reducer size) for MapReduce algorithms
that solve the problem of finding all pairs of inputs at Hamming distance 1.

Here, we have a similar goal of placing a lower bound on replication rate for the problem of computing the
kth-order marginals of a data cube ofn dimensions, each dimension having extentd, using reducers of sizeq.

10

The necessary subgoal is to put an upper bound on the number ofsubcubes ofk dimensions that can be wholly
contained within a set ofq points of this hypercube. We shall call this functionfk,n(q). Technically,d should be a
parameter, but we shall assume a fixedd in what follows. We also note that the function does not actually depend
on the dimensionn of the data cube.

4.1 Binomial Coefficients with Noninteger Arguments

Our bound on the functionfk,n(q) requires us to use a function that behaves like the binomial coefficients
(

x

y

)

, but
is defined for all nonnegativex andy, not just for integer values (in particular,x may be noninteger, whiley will
be an integer in what follows). The needed generalization uses the gamma function [1]Γ(t) =

∫ inf

0 xt−1e−xdx.
Whent is an integer,Γ(t) = (t − 1)!. But Γ(t) is defined for nonintegralt as well. Integration by parts lets us
show thatΓ always behaves like the factorial of one less than its argument:

Γ(t+ 1) = tΓ(t) (5)

If we generalize the expression for
(

u

v

)

in terms of factorials from u!
v!(u−v)! to

(

u

v

)

=
Γ(u+ 1)

Γ(v + 1)Γ(u− v + 1)
(6)

then we maintain the property of binomial coefficients that we need in what follows:

Lemma 4.1. If
(

x

y

)

is defined by the expression of Equation 6, then

(

x

y

)

=

(

x− 1

y

)

+

(

x− 1

y − 1

)

Proof. If we use Equation 6 to replace the binomial coefficients, we get

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
=

Γ(x)

Γ(y + 1)Γ(x− y)
+

Γ(x)

Γ(y)Γ(x− y + 1)

The above equality can be proved if we use Equation 5 to replaceΓ(x+1) byxΓ(x), Γ(x− y + 1) by (x − y)Γ(x− y),
andΓ(y + 1) by yΓ(y).

In what follows, we shall use
(

u

v

)

with the understanding that it actually stands for the expression given by
Equation 6.

4.2 The Upper Bound on Covered Subcubes

We are now ready to prove the upper bound on the number of subcubes of dimensionk that can be covered by a
set ofq nodes.

Theorem 4.2.

fk,n(q) ≤
q

dk

(

logd q

k

)

Proof. The proof is a double induction, with an outer induction onk and the inner induction onn. BASIS: The basis
is k = 0. The “0th-order” marginals are single points of the data cube, and the theorem asserts thatf0,n(q) ≤ q.
Sinceq is the largest number of points at a reducer, the basis is holds, independent ofn. INDUCTION: We assume
the theorem holds for smaller values ofk and alln, and also that it holds for the same value ofk and smaller values
of n. Partition the cube intod subcubes of dimensionn− 1, based on the value in the first dimension. Call these
subcubes theslices. The inductive hypothesis applies to each slice. Suppose that theith slice hasxi of theq points.
Note

∑d

i=1 xi = q. There are two ways ak-dimensional subcube can be covered by the originalq points:

1. The subcube of dimensionk has a fixed value in dimension 1, and it is contained in one of thed slices.

11

2. Dimension 1 is one of thek dimensions of the subcube, so the subcube has a(k− 1)-dimensional projection
in each of the slices.

Case (1) is easy. By the inductive hypothesis, there can be nomore than

d
∑

i=1

xi

dk

(

logd xi

k

)

subcubes of this type covered by theq nodes. For Case (2), observe that the number ofk-dimensional subcubes
covered can be no larger than the number of subcubes of dimension k− 1 that are covered by the smallest of thed
slices. The inductive hypothesis also applies to give us an upper bound on these numbers. Therefore, we have an
upper bound onfk,n(q):

fk,n(q) ≤

d
∑

i=1

xi

dk

(

logd xi

k

)

+min
i

xi

dk−1

(

logd xi

k − 1

)

(7)

We claim that Equation 7 attains its maximum value when all thexi’s are equal. We can formally prove this claim
by studying the derivatives of this function, however for brevity we will only give an informal proof of this claim.

Suppose that were not true, and the largest value of the rightside, subject to the constraint that
∑d

i=1 xi = q,
occurred with unequalxi’s. We could addǫ to each of thosexi’s that had the smallest value, and subtract small
amounts from the largerxi’s to maintain the constraint that the sum of thexi’s is q. The result of this change is
to increase the minimum in the second term on the right of Equation 7 at least linearly inǫ. However, since any
power oflog xi grows more slowly than linearly inxi, there is a negligible effect on the first term on the right of
Equation 7, since the sum of thexi’s does not change, and redistributing small amounts among logarithms will
have an effect less than the amount that is redistributed.

Now, let us substitutexi = q/d for all xi in Equation 7. That change gives us a true upper bound onfk,n(q)
which is:

fk,n(q) ≤
q

dk

[(

logd q − 1

k

)

+

(

logd q − 1

k − 1

)]

But Lemma 4.1 tells us
(

x
y

)

=
(

x−1
y

)

+
(

x−1
y−1

)

, so we can conclude the theorem when we letx = logd q and
y = k.

We can now apply Theorem 4.2 to show that whenq is the size we need to hold all tuples of the data cube that
belong to anmth-order marginal for somem > k, then the number ofkth-order marginals covered by this reducer
is maximized if we send it all the tuples belonging to a marginal of orderm.

Corollary 4.3. If q = dm for somem > k, then no selection ofq tuples for a reducer can cover morekth-order
marginals than choosing all the tuples belonging to anmth-order marginal.

Proof. Whenq = dm, the formula of Theorem 4.2 becomesfk,n(q) = dm−k
(

m
k

)

. That is exactly the number of
marginals of orderk covered by a marginal of orderm. To observe why, note that we can choose to fix anym− k
of them dimensions that are not fixed in themth-order marginal. We can thus choose

(

m
m−k

)

sets of dimensions
to fix, and this value is the same as

(

m

k

)

. We can fix them− k dimensions in any ofdm−k ways, thus enabling us
to coverdm−k

(

m

k

)

marginals of orderk.

4.3 The Lower Bound on Replication Rate

An important consequence of Theorem 4.2 is that we can use ourobservations about handles and their covers to
get a lower bound on replication rate.

Corollary 4.4. If we compute allkth-order marginals using reducers of sizeq, then the replication rate must be at
leastr ≥

(

n
k

)

/
(

logd q
k

)

.

12

Proof. Suppose we use some collection of reducers, where theith reducer receivesqi inputs. There aredn−k
(

n

k

)

marginals that must be computed. By Theorem 4.2, we know thata reducer withqi inputs can compute no more
than qi

dk

(

logd qi
k

)

marginals of orderk, so

dn−k

(

n

k

)

≤
∑

i

qi
dk

(

logd qi
k

)

(8)

If we replace the occurrences ofqi in the expressionlogd qi by q (but leave them asqi elsewhere), we know the
right side of Equation 8 is only increased. Thus, Equation 8 implies:

dn−k

(

n

k

)

≤

(

logd q

k

)

dk

∑

i

qi

We can further rewrite as:
∑

i qi
dn

≥

(

n
k

)

(

logd q

k

)

The left side is in fact the replication rate, since it is the sum of the number of inputs received by all the reducers
divided by the number of inputs. That observation proves thecorollary.

In the caseq = dm, Corollary 4.4 becomesr ≥
(

n

k

)

/
(

m

k

)

. In general, Corollary 4.4 says that the replication
rate grows rather slowly withq. Multiplying q by d (or equivalently, adding 1 tom) has the effect of multiplyingr
by a factor

(

m+1
k

)

/
(

m

k

)

= (m+ 1)/(m+ 1− k), which approaches 1 asm gets large.

5 Dimensions With Different Sizes

Let us now take up the case of nonuniform extents for the dimensions. Suppose that theith dimension hasdi differ-
ent values. Our first observation is that whether you focus onthe lower bound on replication rate of Corollary 4.4
or the upper bound of Corollary 3.13, the replication rate isa slowly growing function of the reducer size. Thus, if
thedi’s are not wildly different, we can taked to bemaxi di. If we select handles based on that assumption, many
of the reducers will get fewer thandm inputs. But the replication rate will not be too different from what it would
have been had, say, all reducers been able to take the averagenumber of inputs, rather than the maximum.

5.1 The General Optimization Problem

We can reformulate the problem of covering sets of dimensions that represent marginals by larger sets that represent
handles as a problem with weights. Let theweight of the ith dimension bewi = log di. If q is the reducer
size, then we can choose a handle to correspond to a marginal that aggregates over any set of dimensions, say
Di1 , Di2 , . . . , Dim , as long as

m
∑

j=1

wij ≤ log q (9)

Selecting a smallest set of handles that cover all marginalsof sizek and satisfy Equation 9 is surely an in-
tractable problem. However, there are many heuristics thatcould be used. An obvious choice is a greedy algorithm.
We select handles in turn, at each step selecting the handle that covers the most previously uncovered marginals.

5.2 Generalizing Fixed-Weight Methods

Each of the methods we have proposed for selecting handles assuming a fixedd can be generalized to allow
dimensions to vary. The key idea is that each method involvesdividing the dimensions into several groups. We
can choose to assign dimensions to groups according to theirweights, so all the weights within each group are
similar. We can then use the maximum weight within a group as the value ofd for that group. If done correctly,
that method lets us use larger handles to cover the group(s) with the smallest weights, although we still have some
unused reducer capacity typically.

13

We shall consider one algorithm: the method described in Section 3.5 for covering second-order marginals by
third-order handles. Recall this algorithm divides3n dimensions into three groups ofn dimensions each. We can
take the first group to have the smallestn weights, the third group to have the largest weights, and thesecond
group to have the weights in the middle. We then take the weight of a group to be the maximum of the weights
of its members. We chooseq to be 2 raised to the power that is the sum of the weights of the groups. Then just
as in Section 3.5 we can cover all marginals that include one dimension from two different groups by selectingn2

particular handles, each of which has a member from each group.
We complete the construction by recursively covering the pairs from a single group. The new element is that

the way we handle a single group depends on its weight in relation to log q. The effective value ofm (the order
of the marginals used as handles) may not be 3; it could be any number. Therefore, we may have to use another
algorithm for the individual groups. We hope that an examplewill make the idea clear.

Example 5.1. Suppose we have 12 dimensions, four of which have extent up to8 (weight 3), four of which have
extent between 9 and 16 (weight 4), and four of which have extent between 17 and 64 (weight 6). We thus divide
the dimensions into groups of size 4, with weights 3, 4, and 6,respectively. The appropriate reducer size is then
q = 23+4+6 = 213 = 8192. We choose 16 handles of size three to cover the pairs of dimensions that are not from
the same group. Now, consider the group of four dimensions with extent 8 (weight 3). With reducers of size 8192
we can accommodate marginals of order 4; in fact we need only half that reducer size to do so. Thus, a single
handle consisting of all four dimensions in the group suffices.

Next, consider the group with extent 16 and weight 4. Here we can only accommodate a third-order marginal
at a reducer of size 8192, so we have to use three handles of size three to cover any two of the four dimensions
in this group. And for the last group, with extent 64 and weight 6, we can only accommodate a second-order
marginal at a reducer, and therefore we need six handles, each of which is one of the

(

4
2

)

pairs of dimensions in
the last group. We therefore cover all pairs of the 12 dimensions with16 + 1 + 3 + 6 = 26 handles.

6 Conclusions and Open Problems

Our goal was to minimize the communication (“replication rate”) for MapReduce computations of the marginals
of a data cube. We showed how strategies for assigning work toreducers so that each reducer can compute a large
number of marginals of fixed order can be viewed as the problemof “covering” sets of a fixed size (“marginals”) by
a small number of larger sets than contain them (“handles”).We have offered lower bounds and several recursive
constructions for selecting a set of handles. Except in one case, Section 3.5, there is a gap between the lower
and upper bounds on how many handles we need. We believe thereare many opportunities for finding better
constructions of handles.

A second important contribution was the proof that our view of the problem is valid. That is, we showed that
the strategy of giving each reducer the inputs necessary to compute one marginal of higher order maximized the
number of marginals a reducer could compute, given a fixed bound on the number of inputs a reducer could receive.
However, this result was predicated on there being the same size extent for each dimension of the data cube. While
we offer some modifications to the proposed algorithms for the case where the extents differ in size, there is no
proof that an approach where each reducer is assigned the inputs for a higher-order marginal will be best.

Part of the problem is that when the dimensions have different extents, the marginals require different numbers
of inputs. Therefore, if we choose to assign one higher-order marginal to a reducer, and that marginal aggregates
over many dimensions with small extent, this reducer can cover many marginals with a relatively small number
of inputs. But if we want to compute all marginals of a fixed order, we must also compute the marginals that
aggregate over dimensions with large extents. If the numberof inputs a reducer can receive is fixed, then those
marginals must be computed by reducers that cover relatively few marginals. Thus, an upper bound on the number
of marginals that can be covered by a reducer of fixed size willbe unrealistic, and not attainable by all the reducers
used in a single MapReduce algorithm.

References

[1] Gamma function. https://en.wikipedia.org/wiki/Gamma function.

14

[2] A. Abelló, J. Ferrarons, and O. Romero. Building cubes with mapreduce. InDOLAP 2011, ACM 14th Interna-
tional Workshop on Data Warehousing and OLAP, Glasgow, United Kingdom, October 28, 2011, Proceedings,
pages 17–24, 2011.

[3] F. N. Afrati, S. Dolev, S. Sharma, and J. D. Ullman. Boundsfor overlapping interval join on mapreduce. In
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium,
March 27th, 2015., pages 3–6, 2015.

[4] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on the cost of a map-reduce
computation.PVLDB, 6(4):277–288, 2013.

[5] F. N. Afrati and J. D. Ullman. Matching bounds for the all-pairs mapreduce problem. In17th International
Database Engineering & Applications Symposium, IDEAS ’13,Barcelona, Spain - October 09 - 11, 2013,
pages 3–4, 2013.

[6] A. V. Aho and J. D. Ullman.Foundations of Computer Science: C Edition. W. H. Freeman, 1995.

[7] D. Applegate, E. M. Rains, and N. J. A. Sloane. On Asymmetric Coverings and Covering Numbers.Journal
on Combinatorial Designs, 11:2003, 2003.

[8] B. Bollabas. Combinatorics: set systems, hypergraphs, families of vectors, and combinatorial probability.
Cambridge University Press, 1986.

[9] J. N. Cooper, R. B. Ellis, and A. B. Kahng. Asymmetric Binary Covering Codes.Journal on Combinatorial
Theory, Series A, 100(2):232–249, 2002.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. InOSDI, 2004.

[11] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator gener-
alizing group-by, cross-tab, and sub-total. InProceedings of the Twelfth International Conference on Data
Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, pages 152–159, 1996.

[12] S. Hoory, N. Linial, and A. Widgerson. Expander graphs and their applications.Bulletin (New Series) of the
AMS, 43(4):439–561, 2006.

[13] S. Lee, J. Kim, Y.-S. Moon, and W. Lee. Efficient distributed parallel top-down computation of rolap data
cube using mapreduce. In A. Cuzzocrea and U. Dayal, editors,Data Warehousing and Knowledge Discovery,
volume 7448 ofLecture Notes in Computer Science, pages 168–179. Springer Berlin Heidelberg, 2012.

[14] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Data cube materialization and mining over mapreduce.
IEEE Trans. Knowl. Data Eng., 24(10):1747–1759, 2012.

[15] K. Rohitkumar and S. Patil. Data cube materialization using mapreduce.International Journal of Innovative
Research in Computer and Communication Engineering, 11(2):6506–6511, 2014.

[16] J. D. Ullman. Designing good mapreduce algorithms.ACM Crossroads, 19(1):30–34, 2012.

[17] B. Wang, H. Gui, M. Roantree, and M. F. O’Connor. Data cube computational model with hadoop mapre-
duce. InWEBIST 2014 - Proceedings of the 10th International Conference on Web Information Systems and
Technologies, Volume 1, Barcelona, Spain, 3-5 April, 2014, pages 193–199, 2014.

[18] Z. Wang, Y. Chu, K. Tan, D. Agrawal, A. El Abbadi, and X. Xu. Scalable data cube analysis over big data.
CoRR, abs/1311.5663, 2013.

15

	1 Background
	1.1 Marginals
	1.2 Assumption: All Dimensions Have Equal Extent
	1.3 Mapping Schemas for MapReduce Algorithms
	1.4 Naïve Solution: Computing One Marginal Per Reducer

	2 Related Work
	3 Computing Many Marginals at One Reducer
	3.1 Covering Marginals
	3.2 From Marginals to Sets of Dimensions
	3.3 Covering Numbers
	3.4 First-Order Marginals
	3.5 2nd-Order Marginals Covered by 3rd-Order Handles
	3.6 A Slower Recursion for 2nd-Order Marginals
	3.7 Aside: Solving Recurrences
	3.8 Covering 2nd-Order Marginals With Larger Handles
	3.9 A Recursive-Doubling Method for Covering 2nd-Order Marginals
	3.10 The General Case
	3.11 Handles of Size 4 Covering Marginals of Size 3

	4 Optimal Handles are Subcubes
	4.1 Binomial Coefficients with Noninteger Arguments
	4.2 The Upper Bound on Covered Subcubes
	4.3 The Lower Bound on Replication Rate

	5 Dimensions With Different Sizes
	5.1 The General Optimization Problem
	5.2 Generalizing Fixed-Weight Methods

	6 Conclusions and Open Problems

