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Abstract

We consider the problem of computing the data-cube magiofa fixed order: (i.e., all marginals that
aggregate ovek dimensions), using a single round of MapReduce. The focas the relationship between the
reducer size (number of inputs allowed at a single reducet)tae replication rate (number of reducers to which
an input is sent). We show that the replication rate is minédiwhen the reducers receive all the inputs necessary
to compute one marginal of higher order. That observatitside view the problem as one of covering set& of
dimensions with sets of a larger sizg a problem that has been studied under the name “coverinpensth We
offer a number of constructions that, for different valuég andm meet or come close to yielding the minimum
possible replication rate for a given reducer size.

1 Background
1.1 Marginals

Consider am-dimensional data cube [l11] and the computation of its nmalgiby MapReduce. Marginalof a
data cube is the aggregation of the data in all those tupsdtve fixed values in a subset of the dimensions of
the cube. We shall assume this aggregation is the sum, bei#det nature of the aggregation is unimportant in
what follows. Marginals can be represented by a list whosehts correspond to each dimension, in order. If the
value in a dimension is fixed, then the fixed value represéetslimension. If the dimension is aggregated, then
there is a * for that dimension. The number of dimensions axldch we aggregate is th@der of the marginal.

Example 1.1. Suppose: = 5, and the data cube is a relation DataCube(D1,D2,D3,D4,D5¢ére, D1 through
D5 are the dimensions, arid is the value that is aggregated.

SELECT SUM (V)
FROM DataCube
WHERE D1 = 10 AND D3 = 20 AND D4 = 30;

will sum the data values in all those tuples that have valuelfe first dimension, 20 in the third dimension, 30
in the fourth dimension, and any values in the second anddiiftiension of a five-dimensional data cube. We can
represent this marginal by the li§t0, x, 20, 30, ], and it is a second-order marginal.

1.2 Assumption: All Dimensions Have Equal Extent

We shall make the simplifying assumption that in each dinmenthere ared different values. In practice, we
do not expect to find that each dimension really has the samibauof values. For example, if one dimension
represents Amazon customers, there would be millions olgih this dimension. If another dimension represents
the date on which a purchase was made, there would “only” dagséimds of different values.
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However, it probably makes little sense to compute margimdiere we fix the Customer dimension to be
each customer, in turn; there would be too many marginatseach would have only a small significance. More
likely, we would want to group the values of dimensions in soway, e.g., customers by state and dates by
month. Moreover, we shall see that our methods really ondgliibe parametetto be an upper bound on the true
number of distinct values in a dimension. The consequenteeaxtentsnumber of distinct values) of different
dimensions being different is that some of the reducersgeitlfewer than the theoretical maximum number of
inputs allowed. That discrepancy has only a small effecherperformance of the algorithm. Moreover, if there
are really large differences among the extents of the dimeasthen an extension of our algorithms can improve
the performance. We shall defer this issue to Sefion 5.

1.3 Mapping Schemas for MapReduce Algorithms

We assume the reader is familiar with the MapReduce conmipntdtmodel [10]. Following the approach to an-
alyzing MapReduce algorithms given [n [4], we look at traffiebetween theeducer siz§maximum number of
inputs allowed at a reducer), which we always denote bgnd thereplication rate (average number of reduc-
ers to which an input needs to be sent), which we always ddnote The replication rate represents the cost
of communication between the mappers and reducers, and goioation cost is often the dominant cost of a
MapReduce computation. Typically, the larger the reducas, ghe lower the replication rate. But we want to
keep the reducer size low for two reasons: it enables coriput@ proceed in main memory, and it forces a large
degree of parallelism, both of which lead to low wall-cloaké to finish the MapReduce job.

In the theory of([4], a problem is modeled by a set of inputs {tiples or points of the data cube, here), a set of
outputs (the values of the marginals) and a relationshiywdsen the inputs and outputs that indicates which inputs
are needed to compute which outputs. In order for an algarithsolve this problem with a reducer sizethere
must be anapping schemavhich is a relationship between inputs and reducers thisfisa two properties:

1. No reducer is associated with more thgnputs, and

2. For every output, there is some reducer that is assoaidtball the inputs that output needs for its compu-
tation.

Point (1) is the definition of “reducer size,” while point (B)the requirement that the algorithm can compute
all the outputs that the problem requires. The fundameagaon that MapReduce algorithms are not just parallel
algorithms in general is embodied by point (2). In a MapRedtmmputation, every output is computed by one
reducer, independently of all other reducers.

1.4 Nave Solution: Computing One Marginal Per Reducer

Now, let us consider the problem of computing all the mangiofa data cube in the above model. If we are not
careful, the problem becomes trivial. The marginal thatragates over all dimensions is an output that requires
all 4" inputs of the data cube. Thug~= d" is necessary to compute all the marginals. But that meaneee a
single reducer as large as the entire data cube, if we arenipute all marginals in one round. As a result, it only
makes sense to consider the problem of computing a limiteof searginals in one round.

Thek!-order marginals are those that fix- £ dimensions and aggregate over the remaikidgnensions. To
compute &*"-order marginal, we neegl> d*, since such a marginal aggregates aifetuples of the cube. Thus,
we could compute all thé*"-order marginals witly = d”, using one reducer for each marginal. As a “problem”
in the sense of[4], there ar® inputs, andi”"“(z) outputs, each representing one of the marginals. Each outpu
is connected to thé* inputs over which it aggregates. Each input contribute(szbanarginals — those marginals
that fixn — k out of then dimensions in a way that agrees with the tuple in questiomat ) forqg = d*, we can
compute all thes*"-order marginals with a replication rateequal to(}.).

Forq = d*, there is nothing better we can do. However, whas larger, we have a number of options, and
the purpose of this paper is to explore these options.



2 Related Work

There have been a number of papers that look at the problesiraf MapReduce to compute marginals. Probably
the closest work to what we present here is in [15]. This pagpresses the goal of minimizing communication,
and of partitioning the work among reducers. It does not,éw@s, present concrete bounds or algorithms that
meet or approach those bounds, as we shall do here.

[14] considers constructing a data cube using a nonass@céggregation function and also examines how to
deal with nonuniformity in the density of tuples in the culiéke all the other papers mentioned, it deals with
constructing the entire data cube using multiple rounds apReduce. We consider how to compute only the
marginals of one order, using one round. We may assume tballyjpat each reducer, higher-order marginals
are computed by aggregating lower-order marginals forieffiy, but this method does not result in additional
MapReduce rounds.

[2] looks at using MapReduce to form a data cube from dat&dtor Bigtable.[[1B8] and [17] are implementa-
tions of known algorithms in MapReduce. Finally, [18] tatdsout extending MapReduce to compute data cubes
more efficiently.

3 Computing Many Marginals at One Reducer

We wish to study the tradeoff between reducer size and it rate, a phenomenon that appears in many
problems[[16] 5,14,]3]. Since we know from Section| 1.4 the minmih possible reducer size, we need to consider
whether using a larger value gfcan result in a significantly smaller valueofOur goal is to combine marginals,
in such a way that there is maximum overlap among the inpugdattto compute marginals at the same reducer.
We shall start by assuming the maximum overlap and minimyptication rate is obtained by combinirig"-
order marginals into a set of inputs suitable to compute oagymal of order higher thah. This assumption is
correct, and we shall offer a proof of the fact in Secfibn 4wevwer, we are still left with answering the question:
how do we pack all thé&'"-order marginals into as few marginals of orderas possible, for each. > k. That
will lead us to the matter of “asymmetric covering codes” covering numbers’][7,/9].

3.1 Covering Marginals

Suppose we want to compute &l -order marginals, but we are willing to use reducers of gize d™ for some
m > k. If we fix anyn — m of then dimensions of the data cube, we can send to one reducefttieples of
the cube that agree with those fixed values. We then can cemapliihe marginals that have— & fixed values, as
long as those values agree with the- m fixed values that we chose originally.

Example 3.1. Letn = 7, k = 2, andm = 3. Suppose we fix the firast— m = 4 dimensions, say using values
a1, az, az, anday. Then we can cover thémarginalsa;asasayx * * for any of the values that may appear in
the fifth dimension. We can also cover all marginalgsasas+xy+ anda;asasas*xxz, wherey and z are any of the
possible values for the sixth and seventh dimensions, ¢cégply. Thus, we can cover a total & second-order
marginals at this one reducer. That turns out to be the largesnber of marginals we can cover with one reducer
of sizeq = d°.

What we do for one assignmentof- m values ton — m of the dimensions we can do for all assignments of
values to the same dimensions, thus creafiig”™ reducers, each of siz&". Together, these reducers allow us to
compute allt**-order marginals that fix the same— m dimensions (along with any: — k of the remainingn
dimensions).

Example 3.2. Continuing ExamplE3l1, if we ugé reducers, each of which fixes the first four dimensions, then
we can cover any of th&?® marginals that fix the first four dimensions along with oneiafghsions 5, 6, or 7.

3.2 From Marginals to Sets of Dimensions

To understand why the problem is more complex than it mightapat first glance, let us continue thinking about
the simple case of Examgdle B.1. We need to cover all secathel-anarginals, not just those that fix the first four



dimensions. If we had one team &f reducers to cover each four of the seven dimensions, thenoutehsurely
cover all second-order marginals. But we don’t nee(@)ll = 21 such teams. Rather, it is sufficient to pick a
collection of sets of four of the seven dimensions, suchékaty set of five of the seven dimensions contains one
of those sets of size four.

In what follows, we find it easier to think about the sets of ditsions that are aggregated, rather than those that
are fixed. So we can express the situation above as followledfions of second-order marginals are represented
by pairs of dimensions — the two dimensions such that eaclginadrin the collection aggregates over those
two dimensions. These pairs of dimensions mustdeeredby sets of three dimensions — the three dimensions
aggregated over by one third-order marginal. Our goal, lvhie shall realize in Example3.3 below, is to find a
smallest set of tripletons such that every pair chosen fr@rars elements is contained in one of those tripletons.

In general, we are faced with the problem of covering all eétis out of n elements by the smallest possible
number of sets of sizex > k. Such a solution leads to a way to computek&fl-order marginals using as few
reducers of sizéd™ as possible. Abusing the notation, we shall refer to theafétglimensions amarginals even
though they really represent teams of reducers that comarge collections of marginals with the same fixed
dimensions. We shall call the larger sets of sizéandles The implied MapReduce algorithm takes each handle
and creates from it a team of reducers that are associatell piossible ways, with fixed values in all dimensions
except for those dimensions in the handle. Each createdeedeceives all inputs that match its associated values
in the fixed dimensions.

Example 3.3. Call the seven dimension$BC DEFG. Then here is a set of seven handles (sets of size three),
such that every marginal of size two is contained in one afithe

ABC, ADE, AFG, BDF, BEG, CDG, CEF

To see why these seven handles suffice, consider three dapesding on how many df, B, andC are in the
pair of dimensions to be covered.

Case 0: If none of4, B or C' is in the marginal, then the marginal consists of twanfE, F', andG. Note that
all six such pairs are contained in one of the last six of thedies.

Case 1: If one ofd, B, or C'is present, then the other member of the marginal is on@,af, F, or G. If A is
present, then the second and third handéB.E and AF' G together pairA with each of the latter four dimensions,
so the marginal is covered. B is present, a similar argument involving the fourth and fdtthe handles suffices,
and if C is present, we argue from the last two handles.

Case 2: If the marginal has two of, B, andC, then the first handle covers the marginal.

Incidentally, we cannot do better than Exanipld 3.3. Sincharalle of size three can cover more than three
marginals of size two, and there a@ = 21 marginals, clearly seven handles are needed.

As a strategy for evaluating all second-order marginalssahan-dimensional cube, let us see how the reducer
size and replication rate compare with the baseline of usivegreducer per marginal. Recall that if we use one
reducer per marginal, we haye= d? andr = (g) = 21. For the present method, we haye- d* andr = 7. That
is, each tuple is sent to the seven reducers that have th@imgut@lues in dimension® EFG, BCFG, and so on,
each set of attributes on which we match corresponding todheplement of one of the seven handles mentioned

in Exampld 3.B.

3.3 Covering Numbers

Let us defineC'(n, m, k) to be the minimum number of sets of sizeout of n elements such that every set of
k out of the same: elements is contained in one of the sets of sizeFor instance, Example 3.3 showed that
C(7,3,2) = 7. C(n,m, k) is called thecovering numbein [7]. The numbers”(n,m, k) guide our design of
algorithms to computé*"-order marginals. There is an important relationship betweovering numbers and
replication rate, that justifies our focus on constructigper bounds fo€ (n, m, k).

Theorem 3.4.1f ¢ = d™, then we can solve the problem of computing:&ikorder marginals of am-dimensional
data cube withr = C(n, m, k).



Proof. Each marginal in the set @(n, m, k) handles can be turned into a team of reducers, one for eatie of t
d"~™ ways to fix the dimensions that are not in the handle. Eachtigets sent to exactly one member of the
team for each handle — the reducer that corresponds to fixedss/that agree with the input. Thus, each input is
sent to exactly’(n, m, k) reducers. O

Sometimes we will want to fix some choicesrf k and study howC'(n, m, k) grows with the dimension.
In this case we will often write simplg'(n) whenm andk are clear from context.

3.4 First-Order Marginals

The casé& = 1 is quite easy to analyze. We are asking how many sets ofisies needed to cover each singleton
set, where the elements are chosen from a set ofisidéis easy to see that we can group thelements into
[n/m] sets so that each of theelements is in at least one of the sets, and there is no wayéo aththe singletons
with fewer than this number of sets of size That is,C'(n,m,1) = [n/m]. For example, If» = 7 andm = 2,
then the seven dimensiodsS3C' D EF'G can be covered by four sets of size 2, suctlés CD, EF, andFG.

3.5 2nd-Order Marginals Covered by 3rd-Order Handles

The next simplest case (5(n, 3, 2), that is, covering second-order marginals by third-ordargimals, or equiva-
lently, covering sets of two out of elements by sets of size 3. One simple observation is thdtaf sze 3 can
cover only three pairs, s6(n, 3,2) > (5)/3, or:

C(n,3,2) >n?/6 —n/6 (1)

In fact, more generalyy'(n, m, k) > (}) /(7).
Aside: We also remark that, using the probabilistic method, omesteaw that
n\ (&)
C(n,m, k) < 21n< > LS
k) (%)

k

so this simple lower bound is actual optimal up to a facto® bf (Z) However, in what follows we will give
constructions that are

(a) Explicitand, more importantly,
(b) Meet the lower bound eithexactlyor to within a constant factor.

While [7] gives us some specific optimal values@(nr, 3,2) to use as the basis of an induction, we would
like a recursive algorithm for constructing ways to covelss® size 2 by sets of size 3, and we would like this
recursion to yield solutions that are as close to the lowenbdaf Equatioh !l as possible. We can in fact give a
construction that, for an infinite numberof matches the lower bound of Equatidn 1. Suppose we have tosolu
for n dimensions. We construct a solution for dimensions as follows. First, group tBe dimensions into three
groups ofn each. Letthese groups bdy, Ao, ..., A}, {B1, Ba, ..., By}, and{Cy,Cs,...,C,}. We construct
handles of two kinds:

1. Choose all sets of three elements, one from each group}g8yCy,, such that + j + & is divisible byn.
There are evidently? such handles, since any choice from the first two groups caoingleted by exactly
one choice from the third group.

2. Use the assumed solution ferdimensions to cover all the pairs chosen from one of the threeps. So
doing adds anothedC'(n, 3,2) handles.

This set of handles covers all pairs chosen from3th@imensions. In proof, if the pair has dimensions from
different groups, then it is covered by the handle from (&} thas those two dimensions plus the unique member
of the third group such that the sum of the three indexes isitle byn. If the pair comes from a single group,
then we can argue recursively that it is covered by a handledhih (2).



Example 3.5. Letn = 3, and let the three groups b&; A5 A3, B Bs B3, andC, C2C3. From the first rule, we get
the handles413101, A1B3C3, A1 B3Cy, A3 B1C3, A5 BoCs, A3 B3Cq, A3B1C5, A3BoC1, andA33303. Notice
that the sum of the subscripts in each handle is 3, 6, or 9. rersecond rule, note that when= 3, a single
handle consisting of all the dimensions suffices. Thus, wd tteaddA; A; A3, B1 Bs Bs, andC;C3Cs. the total
number of handles is 12. This set of handles is as small am,ssince(g)/?, =12.

The recurrence that results from this construction is:
C(3n,3,2) < n?+30(n,3,2) 2)
Let us use”(n) as shorthand fo€'(n, 3, 2) in what follows. We claim that;

Theorem 3.6. For n a power of 3:C(n) = n?/6 — n/6.

Proof. We already argued th&t(n) > n?/6 — n/6, so we have only to sho@(n) < n?/6 — n/6 for n a power
of 3.

For the basis(C'(3) = 1. Obviously one set of the three elements covers all thretsafubsets of size two.
Sincel = 3%/6 — 3/6, the basis is proven.

For the induction, assumé(n) < n?/6 — n/6. Then by Equatiof]l2C(3n) < n? + 3n%/6 — 3n/6 =
3n?/2 —n/2 = (3n)%/6 — (3n)/6. O

We can get the same bound, or close to the same bound, foisvafluethat are not a power of 3 if we start
with another basis. All optimal values 6f(n) up ton = 13 are given in[[7]. Fom = 4,5, ..., 13, the values of
C(n)are3,4,6,7,11,12,17,19, 24, and 26.

Using Theorerh 314, we have the following corollary to Theoi&6.

Corollary 3.7. If ¢ = d® andn is a power of 3, then we can compute all second-order margiwith a replication
rate ofn?/6 — n/6.

Note that the bound on replication rate given by Corollai &hich is equivalentt(ﬁ;‘) /3, is exactly one third
of the replication rate that would be necessary if we usedglesieducer for each marginal (or, singe- d3, and
one second-order marginal requigsinputs, the same improvement would hold when compared veittkingd
randomly chosen second-order marginals at each reducer).

3.6 A Slower Recursion for 2nd-Order Marginals

There is an alternative recursion for constructing hantiasoffers solutions fo€’'(n, 3, 2). This recursion is not
as good asymptotically as that of Section 3.5; it uses agpmpratelyn? /4 rather tham? /6 handles. However, this
recursion gives solutions for amy not just those that are powers of 3.

Note that if we attempt to address valuesidhat are not a power & by simply rounding: up to the nearest
power of3 and using the recursive construction from the previoud@ecthen we may increase the replication
rate by a factor as large 8swhereas the recursion in this section is never suboptisnalfactor larger thag /2.

Let us call then dimensionsd; A, B Bs - - - B,,_o. We choose handles of two kinds:

1. Handles that contaid;, 4,5, and one of
B1,Bs,...,By_s
There are clearly, — 2 handles of this kind.
2. TheC(n — 2) handles that recursively cover all pairs chosen f8mBs, ..., B,,—2.

We claim that every marginal of size 2 is covered by one ofdhemdles. If the marginal has neith&r nor
A,, then clearly it is covered by one of the handles from (2)héf tnarginal has botd; andAs, then it is covered
by any of the handles from (1). And if the marginal has one lmtifdoth of A; and A,, then it has exactly one of
the B;'s. Therefore, it is covered by the handle from (1) that HasA», and thatB;.



Example 3.8. Letn = 6, and call the dimensions
ABCDEF

where A and B form the first group, and’ D E'F' form the second group. By rule (1), we include handigsC,
ABD, ABE, and ABF'. By rule (2) we have to add a cover for each pair fréEF. One choice iS¥DE,
CDF,and DEF, for a total of seven handles. This choice is not exactlynagtj since six handles of size three
suffice to cover all pairs chosen from six elements [7].

The resulting recurrence is
Cn)<n—-2+C(n-2)

We claim that for oddh > 3, C'(n) < n?/4 —n/2 + 1/4. For the basis, we know thét(3) = 1. As3?/4—3/2 +
1/4 = 1, the basis: = 3 is proved. The induction then follows from the fact that

n—2+(Mn-2>%*4—(n-2)/2+1/4=n*/d—n/2+1/4

For evenn, we could start withC'(4) = 3. But we do slightly better if we start with the valdg6) = 6, given in
[7]. That gives ug’(n) < n?/4 —n/2 for all evenn > 6.

While this recurrence gives values 6fn) that grow withn? /4 rather tham?/6, it does give us values that
the recurrence of Sectign 3.5 cannot give us.

Example 3.9. The recurrence of Sectign B.5 gives us
C(27) =117

If we want a result forn = 31, we can apply the recurrence of this section twice, to@e9) < 27 4 117 = 143

andC(31) < 29 + 143 = 172. In comparison, the lower bound on the number of handlesettéatn = 31 is
31

(%)/3 = 155.

3.7 Aside: Solving Recurrences

We are going to propose several recurrences that descdbetine constructions of sets of handles. While we do
not want to explain how one discovers the solution to eactrrence, there is a general pattern that can be used
by the reader who wants to see how the solutions are derieed63

Arecurrence like”(n) < n—2+C(n—2) from Sectiod 3.6 will have a solution that is a quadratic polyial,
sayC(n) = an® + bn + c. It turns out that the constant termis needed only to make the basis hold, but we can
get the values of andb by replacing the inequality by an equality, and then recoiggithat the terms depending
onn must be 0. In this case, we get

an*+bn+c=n—-2+an—2)>+bn-2)+c

or
an®’+bn+c=n—24an®> —4dan+4a+bn—2b+c¢

Cancelling terms and bringing the terms witho the left, we get
n(da—1) =4a—2b—2

Since a function of. cannot be a constant unless the coefficient & 0, we know thatla — 1 = 0, ora = 1/4.
The right side of the equality must also be 0, so wedféf4) — 2b — 2 = 0, orb = —1/2. We thus know that
C(n) =n?/4 —n/2 + c for some constant, depending on the basis value.



Case| {41, 42} B;'s

0 none cover
1 not needed
2 A1A2 all B;'s

Figure 1: How we cover each of the three cases: 0, 1, or 2 dimemnsf the marginal are in the first group(A4-)

3.8 Covering 2nd-Order Marginals With Larger Handles

We can view the construction of Section]3.6 as dividing tmeedisions into two groups; the first consisted of only
Ay and As, while the second group consisted of the remaining dimessiovhich we called;, B, ..., B,_2.
We then divided the second-order marginals, which are pailgnensions, according to how the pair was divided
between the groups. That is, either 0, 1, or 2 of the dimesstonld be the the first groupd;, A2 }. We treated
each of these three cases, as we can summarize in the talie[@f F

That is, marginals with zero od; and A, (Case 0) are covered recursively by the best possible setmfiés
that cover theB;’s. Marginals with both4; and A5 (Case 2) are covered by many handles, since we add o
all possible sets of size 1 formed from tBg’s. The reason we do so is that we can then cover all the mdsgina
belonging to Case 1, where exactly oneAaf and A, is present, without adding any additional handles. That is,
had we been parsimonious in Case 2, and only included ondéyauth asd; A; By, then we would not have
been able to skip Case 1.

Now, let us turn our attention to covering pairs of dimensiby sets of size larger than three; i.e., we wish
to cover second-order marginals by handles of sizefor somem > 4. We can generalize the technique of
Section[ 3.6 by using one group of size — 1, say Ay, 4s,..., A,,_1 and another group with the remaining
dimensionsBy, By, ..., B,_(,—1)- We can form handles for Case 0, where none ofAlis are in the marginal,
recursively as we did in Secti¢n 3.6. That requit§s — (m — 1), m, 2) handles. If we deal with Case — 1 by
adding toA; A, - - - A,,,—1 each of theB;’s in turn, to formn — (m — 1) additional handles, we cover all the other
cases. Of course all the cases except for Case 1, whereyesmetbf thed;’s is in the marginal, are vacuous. This
reasoning gives us a recurrence:

C(n,m,2)<n—(m—-1)4+C(n—(m—-1),m,2)

Using the technique suggested by Secfioh 3.7. along witblth@®us basis cas€(m,m,2) = 1, we get the

solution:

TLQ n m
) LA (L
Chm2) s o=~ 3 "2 -

Note that asymptotically, this solution us&%ﬂ_—l) handles, while the lower boundﬁ% handles. Therefore,
this method is worse than the theoretical minimum by a fastooughlym /2.

Example 3.10.Letn = 9 andm = 4. Call our dimensions\BCDEFGH I, whereABC is the first group and
DEFGHI the second. For Caser — 1 we use the handleda BCD, ABCE, ABCF, ABCG, ABCH, and
ABCI. For Case 0, we cover pairs frod £ F'G H I optimally, using sets of size four; one such choicB BF'G,
DEHI,and FGH 1, for a total of nine handles.

3.9 A Recursive-Doubling Method for Covering 2nd-Order Marginals

For a sparse but infinite set of valuesrgfthere is a better recursion f6f(n, m, 2). Use two groups, each with
half the dimensions, say dimensions. You can cover all pairs with one dimension irhegroup, as follows.
Assumingm dividesn, start with sets consisting of./2 members of one of the groups. We nexd/m such
sets for each group. Then, pair the sets for each group iroafliple ways, formingn? /m? handles of sizen.
These handles cover all pairs that have one member in eaap.gfo these add the recursively constructed sets of
handles for the two groups of size The implied recurrence for this method is:

C(2n,m,?2) < 4n*/m? +2C(n, m,?2)



If we useC(m,m,2) = 1 as the basis, the upper bound@fw., m, 2) implied by this recurrence is
C(n,m,2) < 2n*/m? — 1

This bound applies only for those valuesrothat arem times a power of 2. It does, however, give us an upper
bound that is only a factor of 2 (roughly) greater than thedolound of(3;) /(% ). Additionally, if we attempt to
address values of that are notn times a power o, by rounding up to the nearest such value, we increasg

a factor that approachédor large values of.. Doing so increases the replication rate by a factor of attmhoso

the construction in this section improves on that of the jonevsection for sufficiently large:.

Example 3.11. Letn = m = 4, and suppose the dimensions &&C D in the first group and? FGH in the
second group. We cover all pairs of these eight dimensiotis seits of size four, as follows. We first cover the
singletons fromd BC' D using two sets of size 2, say3 andC' D. Similarly, we cover all singletons frofi F'G H
usingEF andGH. Then we paitAB andCD in all possible ways wittEF and GH, to getABEF, ABGH,
CDEF,andCDGH. Finally, add covers for each of the groups. A single handigize fourABCD, covers all
pairs from the first group, and the handi&'G H covers all pairs from the second group, for a total of six hasd

3.10 The General Case

Finally, we offer a recurrence fa@r'(n, m, k) that works for allz and for allm > k. it does not approach the lower
bound, but it is significantly better than using one handlenparginal. This method generalizes that of Sedtioh 3.6.
We use two groups. The first has— k + 1 of the dimensions, saj;, As, ..., A,,—k+1, While the second has the
remainingn — m + k — 1 dimensions. The handles are of two types:

1. One group of handles contaiag A5 - -+ A,,,_k+1, i.€., all of group 1, plus an} — 1 dimensions from

m

group 2. There ar(a”*kjffl) of these handles, and each has exaetljnembers.

2. The other handles are formed recursively to cover the msimes of group 2, and have none of the members
of group 1. There ar€'(n — m + k — 1, m, k) of these handles.

We claim that every marginal of siZeis covered by one of these handles. If the marginal has ait dews
dimension from group 1, then it has at maést 1 from group 2. Therefore in is covered by the handles from (1).
And if the marginal has no dimensions from group 1, then itirely covered by a handle from (2). As a shorthand,
let C'(n) stand forC'(n, m, k). The recurrence fof'(n) implied by this construction is

C(n)g("_T;jf_1>+0(n—m+k—1) ®)

We shall prove that:

Theorem 3.12.C(n) < (})/(m — k + 1) for n equal to 1 plus an integer multiple of — & + 1.

Proof. The proofis an induction on.
BASIS: We knowC (m) = 1, and(’})/(m — k + 1) > 1 foranyl < k < m.
INDUCTION: We know from Equatiohql3 that

n—m+ /{ 1 N (nfm]:rkfl)
k-1 (m—Fk+1)
is an upper bound o@'(n). We therefore need to show that

Q) (n-mekory, O
m—k+1— k—1 m—k+1

(Qrocin (I ()

The left side of Equatiohl4 is all ways to piékthings out ofn. The right side counts a subset of these ways,
specifically those ways that pick either:

Equivalently,



1. Exactly one of the firsth — k& + 1 elements an& — 1 of the remaining elements, or

2. None of the firsin — k + 1 elements ané& from the remaining elements.
Thus, Equatiofil4 holds, ar@(n, m, k) < (7)/(m — k + 1) is proved. O

Theorent 3. 12 applies only for certairthat form a linear progression. However, we can prove sirbiiainds
for n that are not of the form 1 plus an integer multiplerof— k£ + 1 by using a different basis case. The only
effect the basis has is (possibly) to add a constant to thechou

The bound of Theorem 3.112 plus Theorlem 3.4 gives us an uppedban the replication rate:

Corollary 3.13. We can compute aktt*-order marginals using reducers of sige= d™, for m > k, with a
replication rate ofr < (7)/(m — k + 1).

3.11 Handles of Size 4 Covering Marginals of Size 3

We can improve on Theorem 3112 slightly for the special cdse o= 4 andk = 3. The latter theorem gives us
C(n,4,3) < (%)/2, or approximatelyC'(n,4,3) < n®/12, but we can ge€(n,4,3) < n®/16 by the following
method, at least for a sparse but infinite set of values ®&ote that in comparison, the lower bound @¢n, 4, 3)
is approximately:® /24.

To get the better upper bound, we generalize the strateggatids{3.5. Let the dimensions be placed into four
groups, withn dimensions in each group. Assume the members of each gregssigned “indexes” 1 through

1. Formn? handles consisting of those sets of dimensions, one froimg@ip, the sum of whose indexes is
a multiple ofn.

2. For each of the six pairs of groups, recursively cover tkentvers of those two groups together by a set of
C(2n,4, 3) handles.

Observe that every triple of dimensions is either from titiéferent groups, in which case it is covered by one
of the handles from (1), or it involves members of at most twaugs, in which case it is covered by a handle from
(2). We conclude that:

C(4n,4,3) <n®+6C(2n,4,3)

This recurrence is satisfied I6y(n, 4, 3) = n3/16. If we start with, say('(4,4, 3) = 1, we can show:?/16 is an
upper bound oi’(n, 4, 3) for all n > 4 that is a power of two.

Aside: It appears that this algorithm and that of Secfion 3.5naténstances of a more general algorithm. That is,
there is no useful extension (n, k + 1, k) for k > 3.

4 Optimal Handles are Subcubes

We shall now demonstrate that for a given reducer gjzbe largest number of marginals of a given orkéhat
we can cover with a single reducer occurs when the reducsradiguples needed for a marginal of some higher
orderm. The proof extends the ideas foundlin[[8] 12] regarding isapetric inequalities for the hypercube. In
general, an “isoperimetric inequality” is a lower bound ba size of the perimeter of a shape, e.g., the fact that the
circle has the smallest perimeter of any shape of a given &@gparticular families of graphs, these inequalities
are used to show that any set of nodes of a certain size musghainimum number of edges that connect the set
to a node not in the set.

We need to use these inequalities in the opposite way — tougiger bounds on the number of edgesered
i.e., both ends of the edge are in the set. For examplé] irhpt]jdea was used to show that a set;ofodes of
the n-dimensional Boolean hypercube could not cover more thhrg, ¢ edges. That upper bound, in turn, was
needed to give a lower bound on the replication rate (as ditumaf ¢, the reducer size) for MapReduce algorithms
that solve the problem of finding all pairs of inputs at Hamgnitistance 1.

Here, we have a similar goal of placing a lower bound on rafitim rate for the problem of computing the
kth-order marginals of a data cube ofdimensions, each dimension having exténtsing reducers of size.
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The necessary subgoal is to put an upper bound on the numbabofibes of: dimensions that can be wholly
contained within a set af points of this hypercube. We shall call this functifin, (¢). Technicallyd should be a
parameter, but we shall assume a fixeid what follows. We also note that the function does not dbtukepend
on the dimensiom of the data cube.

4.1 Binomial Coefficients with Noninteger Arguments

Our bound on the functioffi, ,,(¢) requires us to use a function that behaves like the binorui;sﬂ‘icients(””), but
is defined for all nonnegative andy, not just for integer values (in particular,may be noninteger, whﬁg will

be an integer in what follows). The needed generalizati@s tise gamma functionl[T](¢) = jg“f e ?dz.
Whent is an integerI'(t) = (¢ — 1)!. ButT'(¢) is defined for nonintegral as well. Integration by parts lets us
show thafl" always behaves like the factorial of one less than its argiime

D(t+1) = tT(t) (5)

If we generalize the expression f(ivf) in terms of factorials frorq}!(i—iv)! to

u\ D(u+1)
<U) ST+ DI(u—v+1) (6)

then we maintain the property of binomial coefficients thatrveed in what follows:

Lemma 4.1. If (%) is defined by the expression of Equafién 6, then

Yy
()= 65
= +
Y Y y—1
Proof. If we use Equatiofl6 to replace the binomial coefficients, ate g

I(z+1) I'(x) I'(x)

T+ )l@—y+1) Tu+D)l@—y) T@—y+1

The above equality can be proved if we use Equafion 5to replaet1) by 2I'(z), T'(z — y + 1) by (x — y)T'(z — y),
andI'(y + 1) by yT'(y). O

In what follows, we shall useéjj) with the understanding that it actually stands for the esgitn given by
Equatiori 6.

4.2 The Upper Bound on Covered Subcubes

We are now ready to prove the upper bound on the number of bebaf dimensior: that can be covered by a
set ofg nodes.

Theorem 4.2. |
q (108,49
< L
funla) < 25 (%)

Proof. The proofis a double induction, with an outer inductiorkcamd the inner induction om. BASIS: The basis

is k = 0. The “Oth-order” marginals are single points of the datae;i#nd the theorem asserts tifgt,(¢) < .
Sinceq is the largest number of points at a reducer, the basis ishisidependent af. INDUCTION: We assume
the theorem holds for smaller valuesiond alln, and also that it holds for the same valug:@fnd smaller values

of n. Partition the cube intd subcubes of dimensiom — 1, based on the value in the first dimension. Call these
subcubes thslices The inductive hypothesis applies to each slice. Supp@détihith slice hase; of theq points.
Noter:1 x; = q. There are two ways &-dimensional subcube can be covered by the origjnadints:

1. The subcube of dimensidnhas a fixed value in dimension 1, and it is contained in one®df lices.
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2. Dimension 1 is one of thedimensions of the subcube, so the subcube l{as-al )-dimensional projection
in each of the slices.

Case (1) is easy. By the inductive hypothesis, there can Ineane than

d
3 i (logg x;
> # (")
i=1

subcubes of this type covered by th@odes. For Case (2), observe that the numbérdimensional subcubes

covered can be no larger than the number of subcubes of diomeghs- 1 that are covered by the smallest of the
slices. The inductive hypothesis also applies to give uspgreubound on these numbers. Therefore, we have an

upper bound orf;, ,,(¢):
d
z; (logyw; oy Fi (loga s
< —_
fk,n(Q)—de< k )+Inilndk_l<k—1) )

We claim that Equatiolnl 7 attains its maximum value when &kt{'s are equal. We can formally prove this claim
by studying the derivatives of this function, however foedity we will only give an informal proof of this claim.

Suppose that were not true, and the largest value of thesiglf subject to the constraint th@‘f:1 T, = q,
occurred with unequait;’s. We could add to each of those;’s that had the smallest value, and subtract small
amounts from the larger;’s to maintain the constraint that the sum of thés is q. The result of this change is
to increase the minimum in the second term on the right of Eoii] at least linearly ir. However, since any
power oflog 2; grows more slowly than linearly im;, there is a negligible effect on the first term on the right of
Equatior(Y, since the sum of thg's does not change, and redistributing small amounts amagayithms will
have an effect less than the amount that is redistributed.

Now, let us substitute;; = ¢/d for all z; in Equatior¥. That change gives us a true upper boung,oriq)

which is: | ) | )
q 0844 — 08449 —
< =
o= 3 [(% )+ (020)

But Lemmal4.1 tells ug;) = (””;1) + (2:}) so we can conclude the theorem when wedet log, ¢ and

y:l{j_ I:‘

We can now apply Theorein 4.2 to show that whes the size we need to hold all tuples of the data cube that
belong to anmth-order marginal for some: > k, then the number df*®-order marginals covered by this reducer
is maximized if we send it all the tuples belonging to a maagof orderm.

Corollary 4.3. If ¢ = d™ for somem > k, then no selection of tuples for a reducer can cover moké®-order
marginals than choosing all the tuples belonging torath-order marginal.

Proof. Wheng = d™, the formula of Theoref 4.2 becomgs,, (q) = d™~*(}'). That is exactly the number of
marginals of ordek covered by a marginal of ordet. To observe why, note that we can choose to fix any &
of them dimensions that are not fixed in theth-order marginal. We can thus chodsg”, ) sets of dimensions

to fix, and this value is the same é(g) We can fix then — k dimensions in any of™~* ways, thus enabling us
to coverd™~* (') marginals of ordet:. O

4.3 The Lower Bound on Replication Rate

An important consequence of TheorEm|4.2 is that we can uselmarvations about handles and their covers to
get a lower bound on replication rate.

Corollary 4.4. If we compute alk'"-order marginals using reducers of sigethen the replication rate must be at
n log, q
leastr > (7)/(*529).
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Proof. Suppose we use some collection of reducers, wheréltheducer receiveg inputs. There arg”—* (2)
marginals that must be computed. By Theofenh 4.2, we knowethatlucer withy; inputs can compute no more
than % (*°#2 %) marginals of ordek;, so

qn—k (Z) < Z g_; (10gl;1 Qi) ®)

If we replace the occurrences @fin the expressiotog, ¢; by ¢ (but leave them ag; elsewhere), we know the
right side of Equatiohl8 is only increased. Thus, Equdiiomglies:

P (n) < (%) S a

k dF

[
We can further rewrite as: .
> G > (k)

dn (loid q)

The left side is in fact the replication rate, since it is thensof the number of inputs received by all the reducers
divided by the number of inputs. That observation provestrellary. O

In the case; = d™, Corollaryl4.4 becomes > (7)/(’}). In general, Corollar{/ 4]4 says that the replication
rate grows rather slowly with. Multiplying ¢ by d (or equivalently, adding 1 te) has the effect of multiplying

by a factor("™") /(7)) = (m + 1)/(m + 1 — k), which approaches 1 as gets large.

5 Dimensions With Different Sizes

Let us now take up the case of nonuniform extents for the déioas. Suppose that thigh dimension hag; differ-

ent values. Our first observation is that whether you focutherower bound on replication rate of Corollaryl4.4
or the upper bound of Corollafy 3113, the replication rai@ #owly growing function of the reducer size. Thus, if
thed;’s are not wildly different, we can takéto bemax; d;. If we select handles based on that assumption, many
of the reducers will get fewer thaif” inputs. But the replication rate will not be too differerifin what it would
have been had, say, all reducers been able to take the avenadper of inputs, rather than the maximum.

5.1 The General Optimization Problem

We can reformulate the problem of covering sets of dimersdioat represent marginals by larger sets that represent
handles as a problem with weights. Let tlveightof the ith dimension bew; = logd;. If ¢ is the reducer
size, then we can choose a handle to correspond to a margatadggregates over any set of dimensions, say
D;,D,,,...,D,; ,aslongas

i1 im

> wi; <logg 9
J=1

Selecting a smallest set of handles that cover all margifagize & and satisfy Equation] 9 is surely an in-
tractable problem. However, there are many heuristicsiiiat! be used. An obvious choice is a greedy algorithm.
We select handles in turn, at each step selecting the hdratledvers the most previously uncovered marginals.

5.2 Generalizing Fixed-Weight Methods

Each of the methods we have proposed for selecting handdesnérsy a fixedd can be generalized to allow
dimensions to vary. The key idea is that each method invaligding the dimensions into several groups. We
can choose to assign dimensions to groups according tovilegghts, so all the weights within each group are
similar. We can then use the maximum weight within a grouphasvalue ofd for that group. If done correctly,
that method lets us use larger handles to cover the groufifsjive smallest weights, although we still have some
unused reducer capacity typically.
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We shall consider one algorithm: the method described iti@€8.5 for covering second-order marginals by
third-order handles. Recall this algorithm dividsdimensions into three groups nfdimensions each. We can
take the first group to have the smallestveights, the third group to have the largest weights, andséoend
group to have the weights in the middle. We then take the weifjh group to be the maximum of the weights
of its members. We choosgto be 2 raised to the power that is the sum of the weights of theps. Then just
as in Sectiofi 3]5 we can cover all marginals that include émemision from two different groups by selecting
particular handles, each of which has a member from eactpgrou

We complete the construction by recursively covering thesgfeom a single group. The new element is that
the way we handle a single group depends on its weight inioeléd log g. The effective value ofn (the order
of the marginals used as handles) may not be 3; it could be amper. Therefore, we may have to use another
algorithm for the individual groups. We hope that an examylemake the idea clear.

Example 5.1. Suppose we have 12 dimensions, four of which have extent&ipweight 3), four of which have
extent between 9 and 16 (weight 4), and four of which havenekttween 17 and 64 (weight 6). We thus divide
the dimensions into groups of size 4, with weights 3, 4, andspectively. The appropriate reducer size is then
q = 23416 = 213 — 8192, We choose 16 handles of size three to cover the pairs of diorenthat are not from
the same group. Now, consider the group of four dimensiotisexient 8 (weight 3). With reducers of size 8192
we can accommodate marginals of order 4; in fact we need oalfythat reducer size to do so. Thus, a single
handle consisting of all four dimensions in the group susfice

Next, consider the group with extent 16 and weight 4. Hereameonly accommodate a third-order marginal
at a reducer of size 8192, so we have to use three handleseoftsee to cover any two of the four dimensions
in this group. And for the last group, with extent 64 and weighwe can only accommodate a second-order
marginal at a reducer, and therefore we need six handles) edaevhich is one of th(@) pairs of dimensions in
the last group. We therefore cover all pairs of the 12 dimamsiwith16 + 1 + 3 + 6 = 26 handles.

6 Conclusions and Open Problems

Our goal was to minimize the communication (“replicatiotefafor MapReduce computations of the marginals
of a data cube. We showed how strategies for assigning waddiacers so that each reducer can compute a large
number of marginals of fixed order can be viewed as the probfénovering” sets of a fixed size (“marginals”) by

a small number of larger sets than contain them (“handl&¥® have offered lower bounds and several recursive
constructions for selecting a set of handles. Except in @se,cSectiofh 315, there is a gap between the lower
and upper bounds on how many handles we need. We believeahemany opportunities for finding better
constructions of handles.

A second important contribution was the proof that our vidihe problem is valid. That is, we showed that
the strategy of giving each reducer the inputs necessargrtgpate one marginal of higher order maximized the
number of marginals a reducer could compute, given a fixeddbon the number of inputs a reducer could receive.
However, this result was predicated on there being the semmexstent for each dimension of the data cube. While
we offer some modifications to the proposed algorithms ferdhse where the extents differ in size, there is no
proof that an approach where each reducer is assigned this ifgp a higher-order marginal will be best.

Part of the problem is that when the dimensions have diftenetents, the marginals require different numbers
of inputs. Therefore, if we choose to assign one higherrardeginal to a reducer, and that marginal aggregates
over many dimensions with small extent, this reducer camcowany marginals with a relatively small number
of inputs. But if we want to compute all marginals of a fixed erdve must also compute the marginals that
aggregate over dimensions with large extents. If the nurabaputs a reducer can receive is fixed, then those
marginals must be computed by reducers that cover relgfieel marginals. Thus, an upper bound on the number
of marginals that can be covered by a reducer of fixed sizebeilinrealistic, and not attainable by all the reducers
used in a single MapReduce algorithm.
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