Adaptive and Hierarchical Run-time Manager for Energy-Aware
Thermal Management of Embedded Systems

Anup Das, Bashir M. Al-Hashimi and Geoff V. Merrett

Modern embedded systems execute applications, which interacts with the operating system and hardware
differently depending on type of workload. These cross-layer interactions result in wide variations of chip-
wide thermal profile. In this paper, a reinforcement learning-based run-time manager is proposed that
guarantees application-specific performance requirements and controls the POSIX thread allocation and
voltage/frequency scaling for energy-efficient thermal management. This controls three thermal aspects —
peak temperature, average temperature and thermal cycling. Contrary to existing learning-based run-time
approaches that optimize energy and temperature individually, the proposed run-time manager is the first
approach to combine the two objectives, simultaneously addressing all three thermal aspects. However,
determining thread allocation and core frequencies to optimize energy and temperature is an NP-hard prob-
lem. This leads to an exponential growth in the learning table (significant memory overhead) and a corre-
sponding increase in the exploration time to learn the most appropriate thread allocation and core frequency
for a particular application workload. To confine the learning space and to minimize the learning cost, the
proposed run-time manager is implemented in a two-stage hierarchy: a heuristic-based thread allocation at
alonger time interval to improve thermal cycling, followed by a learning-based hardware frequency selection
at a much finer interval to improve average temperature, peak temperature and energy consumption. This
enables finer control on temperature in an energy-efficient manner, while simultaneously addressing scala-
bility, which is a crucial aspect for multi-'many-core embedded systems. The proposed hierarchical run-time
manager is implemented for Linux running on nVidia’s Tegra SoC, featuring four ARM Cortex-A15 cores.
Experiments conducted with a range of embedded and cpu intensive applications demonstrate that the pro-
posed run-time manager not only reduces energy consumption by an average 15% with respect to Linux,
but also improves all the thermal aspects — average temperature by 14°C, peak temperature by 16°C and
thermal cycling by 54%.

Categories and Subject Descriptors: D.4.7 [Operating System]: Organization and Design
General Terms: Run-time Manager, Reinforcement learning, Thermal management, Energy consumption

Additional Key Words and Phrases: Embedded systems, Linux operating system

1. INTRODUCTION

To accommodate the growing demand for performance, modern embedded systems in-
tegrate multiple general purpose cores on the same system-on-chip (SoC). Examples
of these SoCs are Texas Instrument’s OMAP, nVidia’s Tegra and Samsung’s Exynos. A
major challenge of these multicore SoCs is decreasing lifetime reliability, threatened by
high power densities and hence elevated operating temperatures. This leads to an ac-
celeration of device wear-out, manifesting as hard logic and intermittent timing faults.
Additionally, elevated temperature increases leakage current exponentially, resulting
in a higher energy consumption, which is critical especially for battery-operated em-
bedded systems. Energy-aware thermal management is therefore emerging as a pri-

This work is supported by the Engineering and Physical Sciences Research Council (EPSRC) Programme
Grant, EP/K034448/1. See www.prime-project.org for more information about the PRiME programme.
Author’s addresses: A. Das, B. M. Al-Hashimi and G. V. Merrett are with the School of Electronics and
Computer Science, University of Southampton, United Kingdom SO17 1BJ.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

© 201X ACM 1539-9087/201X/12-ARTXX $15.00

DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:2 A. Das et al.

mary design objective for embedded SoCs. At the other end of the multiprocessor spec-
trum, the growing prevalence of multi-'many-core systems has resulted in widespread
use of parallel programming models such as OpenMP [Dagum and Menon 1998],
MapReduce [Dean and Ghemawat 2008] and POSIX [pos 1994]. Threads of these pro-
gramming models have been used extensively in literature to design parallel applica-
tions: better utilizing the hardware resources and possibly shortening the execution
time. Determining the appropriate thread allocation on the processing cores, to satisfy
a given objective (performance, energy, or temperature), is an NP-hard problem. This
is typically managed by the operating system or the software running on the embed-
ded platform. However as we demonstrate, operating system controlled thread affinity
results in a poor thermal behavior.

Real-time applications such as video play-back and image processing are character-
ized by dynamic workloads and thermal profiles that are difficult to foresee at compile-
time. As such, static compile-time policies [Rai et al. 2011; Schor et al. 2013; Das et al.
2015a] (with limited knowledge of application-specific variations) are often outper-
formed, even by naive run-time managers, both in terms of thermal overhead and en-
ergy consumption — the two key design aspects of modern systems. This has motivated
researchers in recent years to investigate run-time approaches, thriving the develop-
ment of intelligent run-time systems for energy and thermal management [Cochran
et al. 2011b; Javaid et al. 2011; Juan et al. 2013; Ye and Xu 2014; Srinivasan et al.
2004; Sharifi et al. 2013; Shi et al. 2013; Faruque et al. 2010; Ge and Qiu 2011; Coskun
et al. 2009a; Mercati et al. 2013; 2014; Das et al. 2014; Coskun et al. 2009b; Ebi et al.
2009; Ebi et al. 2011; Shen et al. 2012].

One of the emerging thermal concerns for embedded systems is thermal cycling

i.e., the wear-out induced by thermal stress due to a mismatched coefficient of ther-
mal expansion of the adjacent material layers. Most of the earlier works on run-time
thermal optimization have focused on minimizing the average and peak temperature,
leading to reduction in temperature-related wear-outs, such as electromigration (EM),
negative bias temperature instability (NBTI) and time-dependent dielectric break-
down (TDDB) [Srinivasan et al. 2004]. As we demonstrate in this work, the voltage-
frequency control proposed in these approaches does not affect thermal cycling as sig-
nificantly as it does to minimize the average and peak temperature, limiting the adapt-
ability of these existing techniques to thermal cycling optimization.
Contributions: We propose a reinforcement-learning-based run-time manager for
energy-efficient thermal management of embedded systems, simultaneously address-
ing the three thermal aspects — peak temperature, average temperature and thermal
cycling. To provide a scalable solution to the NP-hard problem of finding the appropri-
ate thread allocation and frequency selection for an application workload, and to mini-
mize the learning overhead, the run-time manager is implemented as a two-stage hier-
archy. The objective is to control thermal cycling using thread allocation (¢hread affin-
ity — a Pthread feature) from the first stage (upper hierarchy). The chip-wide DVFS
feature of the processing cores is explored at the next stage (lower hierarchy), corre-
sponding to a given thread allocation to enable finer control over average temperature,
peak temperature and energy consumption. Following are our key contributions:

—a low overhead hierarchical run-time manager for energy-aware thermal manage-
ment, validated extensively with cpu intensive and embedded applications on an
ARM-based embedded system;

— reinforcement learning-based adaptation to application specific workload and ther-
mal variations; and

— an approach to optimize thermal cycling, simultaneously with average temperature,
peak temperature and energy consumption.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:3

The remainder of this paper is organized as follows. An overview of the related works
is provided in Section 2. The problem formulation is discussed in Section 3 motivat-
ing the choice of reinforcement learning as the solution. The hierarchical run-time
manager is discussed in Section 4 along with an overview of the fundamentals of re-
inforcement learning. Evaluation of the proposed run-time manager is presented in
Section 5 and the paper is concluded in Section 6.

2. RELATED WORKS

Dynamic thermal management (DTM) through voltage and frequency control has re-
ceived significant attention in recent years. A thermal prediction model is developed
in [Sharifi et al. 2013] based on offline thermal and power characterization of an ap-
plication. A dynamic thermal management approach is proposed in [Shi et al. 2013]
based on a lumped thermal control model. Using this, an approach is proposed to op-
timize the performance of an application with soft thermal constraints. This approach
also suffers from similar limitations as discussed before. A distributed agent-based
approach is proposed in [Faruque et al. 2010] that uses fast context-aware task mi-
gration to minimize peak temperature-related hotspots. This approach does not mini-
mize average temperature and thermal cycling. A reinforcement learning-based ther-
mal management approach is proposed in [Ge and Qiu 2011] that uses feedback from
hardware thermal sensors to adjust the voltage and frequency of processing cores. Al-
though this approach is closest to the one proposed in this work, the approach does not
optimize thermal cycling, nor does it adapt to workload-specific variations. Another
learning-based approach is proposed in [Coskun et al. 2009a] to manage temperature
of multiprocessor systems, and selects between a set of expert policies depending on
workload characteristics. HotSpot is used for temperature modeling based on thermal
characteristics of UltraSPARC. However, HotSpot has a known limitation on accuracy
and simulation time [Das et al. 2015a], making this approach difficult to use for real-
time applications. A control-theoretic approach is proposed in [Mercati et al. 2013] to
optimize the lifetime reliability of a multiprocessor system. Task scheduling decisions
are controlled at longer intervals and the voltage/frequency scaling is performed at a
shorter interval. This approach is extended in [Mercati et al. 2014] as a governor for
the Android Operating System. Another control approach is proposed in [Sironi et al.
2013] to manage the temperature of applications running on multiprocessor systems.
A thermal-safe power budgeting is proposed in [Pagani et al. 2014] for dynamic ther-
mal management of many-core system. A fast even-driven approach is proposed in [Cui
and Maskell 2012] to estimate the temperature of a multiprocessor system. Based on
this a thermal aware scheduling approach is proposed to reduce the temperature of
the system at run-time. Apart from these works, there are other studies to reduce
the power consumption of a multicore system by scaling the hardware frequency dy-
namically [Dhiman and Rosing 2009; Javaid et al. 2011; Ye and Xu 2014; Khan and
Rinner 2014]. However, as shown in [Faruque et al. 2010], these approaches cannot
guarantee to minimize a system’s thermal overhead effectively for all applications. A
cross-layer thermal optimization technique is proposed in [Das et al. 2014] to manage
temperature-related emergencies. Although these studies have shown improvement
in thermal profile leading to extended lifetime reliability using scaled voltage and fre-
quency, thermal cycling and energy consumption are not jointly addressed.

The power consumption of a system scales linearly with frequency and quadratically
with voltage. Therefore, the thermal management approaches are presumed to min-
imize energy consumption as well, which comes as a secondary benefit with thermal
improvements. Two of the most widely accepted system-level design techniques for
power optimization are dynamic voltage and frequency scaling (DVFS) [Simunic et al.
2001] and dynamic power management (DPM) [Benini et al. 1998]. In DVF'S, the volt-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:4 A. Das et al.

age and frequency are scaled down dynamically to reduce both the active and leakage
power consumption, whereas in DPM, the processing cores are shut down (or put into
sleep mode) to reduce leakage power. A continuous frequency adjustment technique is
proposed in [Jung and Pedram 2008] based on predicted workload, which is formulated
as an initial value problem (IVP). The technique in [Dhiman and Rosing 2007; Shen
et al. 2012; Shen et al. 2013; Ye and Xu 2014] uses online learning to select the most
appropriate frequency for the processing cores based on the workload characteristic
of a given application. A workload characteristic aware thread scheduler is proposed
in [Dhiman et al. 2010] based on dynamic workload characterization. In [Jung and
Pedram 2010], a supervised learning in the form of a Bayesian classifier for energy
management is proposed. This framework learns to predict the system performance
from the occupancy state of the global service queue. The predicted performance is
then used to select the frequency from a pre-computed policy table. In [Cochran et al.
2011b; 2011a], a multinominal logistic regression classifier is built using a large vol-
ume of performance counters by offline workload characterization. This classifier is
queried at run-time for a given application to predict the workload, and select the
frequency and thread packing such that performance is maximized under a power cap.

However, the assumption of thermal improvement through power control levers has
recently been challenged in [Coskun et al. 2009b], directing subsequent studies to focus
on exploring the trade-off between chip temperature and energy consumption. A dis-
tributed agent-based power and thermal optimization technique is presented in [Ebi
et al. 2009] based on control theoretic principles. Reinforcement learning is proposed
in [Ebi et al. 2011] as an alternative. Another reinforcement learning-based approach
is proposed for multi-core systems in [Shen et al. 2012] with DVFS to control the aver-
age temperature and energy consumption. None of these techniques optimize energy
and temperature considering all the three thermal aspects (peak temperature, average
temperature and thermal cycling) simultaneously.

3. PROBLEM FORMULATION

There are three dependencies that are relevant to this work — the sub-threshold leak-
age power of a system and its lifetime reliability are both dependent on temperature;
the dynamic power consumption is dependent on the voltage and frequency of oper-
ation; and the temperature is dependent on the voltage, frequency and also on the
application workload. In this section, we provide an overview of these dependencies
and formulate the objective we optimize in this work.

3.1. Power Consumption

As discussed in [He et al. 2004], a typical processor can be considered as being in one
of the three power states:

— Standby Mode: in this mode, a processor is idle. The total power consumption is com-
prised of the leakage component (P;) only;

— Active Mode: in this mode, a processor is active and executes instructions; The total
power is comprised of leakage (P,) and dynamic (P;) components; and

— Inactive Mode: in this mode, a processor is usually power gated. The total power is
comprised of the reduced leakage component (P,).

The dynamic power of a processor is directly proportional to the frequency (f) of
operation and quadratically proportional to the voltage (V), i.e.,

Pyoc fx V2 1)

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:5

Table I. MTTF considering different wear-out mechanisms.

Wear-out MTTF Comments

Electromigration (EM) %exp (Ei(#) A g)y is a material-dependent constant, J is the current den-

sity, n is empirically determined constant with a typical value
of 2 for stress related failures, E, EM is the activation en-
ergy of electromigration, K is the Boltzman’s constant, and T°
is the temperature.

E,
Negative Bias Temperature ?‘i\l BI;,{ exp (%) AN BT is a constant dependent on the fabrication process,
Instability (NBTI) GS ~ is the voltage acceleration factor and E, NBTI is the acti-
vation energy.

Hot Carrier Injection (HCI) Ao exp (ﬁ) Ao and 6 are empirically determined constants and Vp g
is the drain to source voltage.

—BT
Time Dependent Dielectric |Arppp - Ag - (V(1¥S)a P exp (% + L) Vg s is the gate voltage, T is the temperature, «, 3, X and

Breakdown (TDDB) Y are fitting parameters, A is the surface area of the gate
oxide and A7 p p g is an empirically determined constant.

E,
Stress Migration (SM) Asn |To — T| ™ "exp (%) Ag s is a material dependent constant, T(is the metal de-
position temperature and Eagnr is the activation energy.

The standyby power (P;) is given by [He et al. 2004]
Ps =V x Ileak (2)

where I, is the leakage current. Of the different leakage components, the sub-
threshold leakage current is the dominant one, and is given by

Tow =V x I, % ATQeiVTWJrBeWM] 3)

where T is the temperature, I, is the leakage current at the reference temperature, and
A,B,a, 3,7 and ¢ are the technology dependent constants. Clearly, the sub-threshold
leakage current is super-linearly dependent on the temperature. This work performs
thermal management by down scaling the frequency and controlling the thread-to-core
affinity. Temperature reduction results in reduction of leakage power and frequency
scaling reduces the dynamic power.

3.2. Energy Consumption
The energy consumption of a system is given by the area under the power curve i.e.,

E :/ P(t)dt :/ (Py+ Ps)dt 4)
0 0
where 7 is the time duration of an application.

3.3. Lifetime Reliability

The lifetime reliability is defined as the long term reliability of a circuit and is mea-
sured in terms of the mean time to permanent failure (MTTF). The MTTF due to differ-
ent wear-out mechanisms are highlighted in Table I [Srinivasan et al. 2004]. As can be
seen, average and peak temperature play an important role in determining the MTTF.
One of the emerging lifetime concern with scaled transistor geometry is thermal cy-
cling, which is defined as wear-out caused by thermal stress due to a mismatched co-
efficient of thermal expansion of the adjacent material layers. Thermal cycling related
MTTF is computed by.

1. Calculating the thermal cycles from a thermal profile using Downing’s simple rain-
bow counting algorithm [Downing and Socie 1982].

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:6 A. Das et al.

2. Calculating, from each thermal cycle, the number of cycles to failure using Coffin-
Manson’s rule [Manson 1972; Coffin Jr 1973].

Eq

Nro(i) = Ape (6T; — Trp) ™" ¢ KTmas @ (5)

where N7 (i) is the number of cycles to failure due to i*" thermal cycle, Ar¢ is an
empirically determined constant, §7; is the amplitude of the i** thermal cycle, T,
is the temperature at which elastic deformation begins, b is the Coffin-Manson ex-
ponent constant, E,... is the activation energy of thermal cycling and T;,,,.(¢) is the
maximum temperature in the i** thermal cycle.

3. Calculating the MTTF using Miner’s rule [Chaboche and Lesne 1988].

Nre 2111 ti
m

MTTF = (6)

where t; is the time for the i** thermal cycle, m is the number of thermal cycles
obtained in step 1 and Np¢ is the effective cycles to failure determined using
m

Nre = == T (7
2im1 Nec ()
Combining Equations 5-7,
MTTF = 21021 b (8

Thermal Stress

where Thermal Stress is an indication of the stress experienced due to the thermal
cycling. This is obtained using the following equation.
Thermal Stress = Z(éTi — Tpp)? x ¢ FTmasT 9)
i=1

3.4. Optimization Objective

The objective of this paper is to perform energy-aware thermal management. It is im-
portant to note that the leakage power is dependent on the average and peak temper-
ature, while the lifetime reliability is dependent on average temperature and thermal
cycling. In order to optimize both the leakage power and lifetime reliability of a sys-
tem, it is essential to optimize average temperature, peak temperature and thermal
cycling. Additionally, by scaling down the voltage and frequency to control tempera-
ture (as detailed in Section 4), dynamic power is also minimized, achieving an overall
reduction of energy consumption (Equation 4).

The primary goal of this work is therefore to optimize the three thermal parameters,
which are combined into a single objective, thermal overhead (7). This is computed
as follows. Let T7{,Ty,--- , Tk, denote the N; thermal sensor readings obtained in the
time interval ¢; to ¢; 1. The thermal overhead in this interval is given by

To(ti = tit1) = wr X mean(Tf,Té,--- ,val) +
we X max(T}, Ty, - -- ,T}Ql)+ (10)
w3 X Thermalecle(Tf, Ti .- ,val)
where ThermalCycle computes the thermal cycle related damage obtained from the
temperature time series, and w;, wy and w3 are the weights assigned to the three ther-
mal parameters. All results in this work are generated with equal weights assigned to

these thermal parameters, i.e. w; = wy = w3 = % However, the proposed approach is
orthogonal to the choice of these weights.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:7

3.5. Motivation for Machine Learning

Thermal overhead of an embedded system during the time interval ¢; — ;.1 can also
be represented as

To(ti = tiv1) = f(AppComp) + g(ArchComp) + h(EnvComp) (11)

where AppComp are the application-specific factors that contribute to temperature. As
established in [Sharifi et al. 2013; Shi et al. 2013; Faruque et al. 2010; Ge and Qiu
2011; Coskun et al. 2009a], the following factors contribute to temperature

— application workload (instruction types present in the application);
— application performance constraints.

The relationship between temperature and these components is not known with cer-
tainty. Although application characterization technique proposed in [Sharifi et al.
2013] can be used to determine the function f(AppComp), the accuracy of this ap-
proach is highly sensitive to the training set used for characterization.

ArchComp are the architectural components that contribute to temperature. As dis-
cussed in [Skadron et al. 2004], the following architectural components impact tem-
perature significantly.

— processor temperature as a function of power states;
— power consumed per instruction;

— power consumed in memory access;

— floorplan of the system-on-chip; and

— presence of heat-sink, fan, etc.

There are also environmental factors (such as ambient temperature) indicated in
Equation 11 as EnvComp, which influences the temperature.

As shown in [Das et al. 2014], temperature of an embedded system can be con-
trolled significantly by controlling the processor power states (i.e., their voltage and
frequency) and the application thread allocation (that limits context switching). How-
ever, the amount of thermal control achieved using these control levers is dependent
on the application, its cross-layer interaction with the system software and the hard-
ware, and also on the working environment. Q-learning (a variant of reinforcement
learning [Barto 1998]) provides a generic framework to identify these interactions and
to delegate appropriate control in order to optimize the long-term thermal overhead of
a system.

3.6. Choice of programming Model

Several parallel programming models have been proposed in literature. Examples in-
clude OpenMP [Dagum and Menon 1998], MapReduce [Dean and Ghemawat 2008]
and POSIX [pos 1994]. These programming models implement independent control
within a regular process that share global data but maintain their own private stack,
local variables and program counters. In this paper we adopted the POSIX program-
ming model. This choice is partially guided by the fact that the native GNU compiler
supports the POSIX standard by default, while OpenMP or MapReduce requires pro-
gramming model specific compiler support. However, the underlying approach pro-
posed here is generic and can be used with other programming models. The thread
extension to POSIX (referred to as Pthreads) describes the interface for lightweight
threads on a shared memory architecture and have a smaller context size than appli-
cation processes. Pthreads have been used extensively in literature to design parallel
applications: better utilizing the hardware resources and possibly shortening the ex-
ecution time. An application’s POSIX threads are scheduled using operating system’s
thread affinity APL

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

allocate(core_id);
inta, b;
vector<double> dct;

3 J
//Eomputefenc(corefid) { \\

XX:8 A. Das et al.
" " y '\‘
Application - . Qlearning
compute_vic(core_id) { N\ set_thread_affinity() predict_workload() update_g-table() ’

|

select_action() ’ determine_state()

<Erame_count % LTl ==

allocate(core_id); ‘ T €1 T] T
inta, b;
! tia ti tin
time———
b Operting ystem
int main () { <thread allocation> pthread_setaffinity_np(curr_thd,core_id)

inta;
double frame;

for(uint n=0; n<FRAMIES; n++) {
thread.create(cofmpute_vic(cl));
thread.create(gbmpute_en

=)

<frequency control>
<performance monitor>
<temperature monitor>

AN

Temperature
CPU cycles

cpufreq_set_frequency(core_id,freq)
joctl.read(PERF_COUNT_HW_CPU_CYCLES)
coretemp.read(core0, corel,...,coreN)
‘7 thread allocation
frequency setting

Multicore

|

run_time_manager();

}

A 4

Fig. 1. Proposed hierarchical run-time manager

4. PROPOSED RUN-TIME MANAGER

As indicated in the IEEE POSIX standard [pos 1994], Pthread implementation can be
carried out as a Kernel implementation (where functionalities are implemented as part
of the operating system), as a library implementation (where functionalities are imple-
mented as part of the user program), or a mix of both. Figure 1 describes the proposed
hierarchical run-time manager implemented as a library implementation. The appli-
cation code (typically written in a high level language such as C/C++/Java) implements
the run_time manager () function which is indicated by the solid arrow. The application
interfaces with the operating system (OS) using drivers and application programming
interfaces (APIs) as shown in the box titled Operating System. These drivers and APIs
monitor/control the hardware, which consist of processing cores, thermal sensors and
a performance monitoring unit (PMU). The monitoring parameters and control levers
are indicated against the arrows between the Operating System and Multicore Hard-
ware. Following are the details of the different components of the proposed framework,
starting with an overview of the Q-learning algorithm.

4.1. Fundamentals of Q-learning

In a standard Q-learning framework, a learning agent (the run-time manager, RTM)
repeatedly observes the current state of the system, and selects an action. The selected
action changes the system state, which is used to determine the immediate numeric
payoff. Positive payoffs are termed as profits and negative payoffs are termed as pun-
ishments. The RTM must learn to select actions in order to maximize the long-term
sum or average of the future payoffs.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:9

Initially, the RTM does not know what effects its actions have on the state of the
system, nor what immediate payoffs its actions will produce. Rather, it tries out various
actions in different states. This phase of the algorithm is known as the exploration
phase. The payoffs received in this phase (also known as RTM’s experience) are stored
in a table (termed Q-table). To make this framework sensible, the RTM needs to further
evaluate good decisions by selecting them and observing the state of the system. This
phase of the algorithm is known as the exploration-exploitation phase. In this phase,
the RTM uses a fraction (typically less than 100%) of the payoffs as experience to
update the Q-table. Finally, at the end of this phase, the RTM is said to have fully
learnt a system’s thermal behavior. This phase is known as the exploitation phase. In
this phase, the RTM always selects the best action (i.e., the action corresponding to the
highest payoff) for a system state. The mapping of different components of Q-learning
in the run-time management framework are discussed next.

4.1.1. Decision Epochs. The RTM works at the system time ticks (indicated in Fig-
ure 1). The interval between two consecutive ticks is referred to as the decision epoch
(indicated by the letter e in the figure). The decision epoch ¢; is the time interval be-
tween ticks ¢; and ¢;, 1. The learning algorithms works as follows. At time instant ¢,
the RTM performs the following steps in order

— computes payoff for the time interval ¢;_; — t;;

— updates the Q-table entry corresponding to the state and action at time ¢;_1;
— predicts the system state for the interval ¢; — ¢;11;

— selects the action for the interval ¢; — ¢; 1 based on the predicted state.

It is to be noted that, in this work we proactively manage the temperature; therefore,
the next system state is predicted and appropriate actions are enforced, before the sys-
tem reaching the state. In this way, the approach prevents thermal emergencies from
occurring (proactive), rather than reacting when such emergencies occur (reactive).

4.1.2. Payoffs. As discussed before, payoff defines the optimization objective, which in
our context is the thermal overhead (average temperature, peak temperature and ther-
mal cycling, combined using Equation 10). Since we are concerned with constrained op-
timization problem, the performance constraint needs to be incorporated in the payoff,
which is given by the following equation

R(t;) = {wt < (I8 = To(tioy =)] if Li > Le

12
ws X (Li — L) otherwise (12)

where R(t;) is the payoff calculated at time instance ¢;, L; is the application perfor-
mance during the interval ¢;,_; to t;, To(t;—1 — t;) is the thermal overhead of the sys-
tem in this interval (given by Equation 10), L. is the performance constraint, 75" is
the thermal overhead at the highest voltage and frequency, and w; and w, are respec-
tively the weights for the temperature and performance. These weights are calculated

as ;b = ;O—Z, where L"** is the performance obtained with the highest voltage and
frequency applied on the processing cores!. The performance of the system is mea-
sured as the inverse of the timing requirement. The equation is interpreted as follows:
if the performance obtained in the interval of interest is greater than the performance
constraint, the thermal overhead is used to compute the payoff. On the other hand, if
there is performance violation, the negative of the performance slack is used as the

payoff.

11t is important to note that in the proposed approach, an application is executed for a few iterations (or
frames) to determine these constants, before the reinforcement learning algorithm is initiated.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:10 A. Das et al.

4.1.3. System State. The state of a system is usually represented using CPU cycle
count, obtained by reading the performance monitoring unit. However, for some sys-
tems, especially for ARM-based SoCs, direct access to the performance registers are
disabled in the user mode of operation. For such system, CPU utilization can be used
as an alternative. Thus, the system state s; at time ¢; is

s; = Statistics(ti—1 — t;) (13)

where Statistics(t;—1 — t;) is the performance-related statistics (CPU Cycles or uti-
lization) in the interval ¢;_; — t;. A point to note here is that, the states form the rows
of the Q-table. Therefore to limit the size of the Q-table, the range of the performance-
related statistics is discretized into N, levels. The discretized value of the statistics s;
is represented as ;.

4.1.4. Action Space. The action space comprises of the thermal control levers for an
embedded system. We use processor frequency and thread affinity as actions, similar
to [Das et al. 2014]. Let the affinity be represented as a matrix

Ma(k) = (cf & - ck) (14)

where c;? is the core where thread j is allocated in the k*! configuration and c;? €
{c1,¢2, -+ ,cn.} with N, being the number of cores. Most embedded and high per-
formance systems allow chip-wide DVFS i.e., all the processing cores have the same
voltage-frequency value. Therefore, the k' action can be represented as

ap = (Ma(k) [| (Vk, fr)) (15)
i.e., an action is composed of the thread affinity matrix and the voltage-frequency val-
ues for all the cores. Here, (Vi, fi) € {(V1, f1), (Vz, f2), - ,(Vn,, fn,)} can assume one
of the N; voltage-frequency values supported on the hardware. Usually, the operating

system allows scaling the frequency only using the cpufreq API. The voltage is scaled
accordingly. Therefore, Equation 15 can be simplified to

ar = (Ma(k) || fr) (16)

The actions form the columns of the Q-table. The total number of actions of the Q-
learning is given by

N, = Ny x NM)

Clearly, the number of actions grows exponentially with an increase in the number

of threads and cores. In Section 4.2, we discuss the algorithmic modifications to limit
the number of actions of the Q-learning algorithm.

4.1.5. Q-table Update. The Q-table is a two-dimensional table composed of system
states as rows and actions as columns. The Q-table entries for the state and action
at time ¢;,_; are updated at time ¢; using the payoff as given below.

Q(8i—1,0i-1) = Q(8i—1,Gi—1) + a x R(t;) (18)

where d;_; is the action taken during time t,_y — t; and a,_1 € {a1,a2,---an,}. The
learning rate o (0 < « < 1) denote the fraction of the payoff used as learning experience
for updating the Q-table entries. The learning rate can be expressed as

1 for 0 < N < Negpiore
o = 2(N6mplf”‘e_N) for Newplore S N < NEIPZOit (19)
0 for N > Negcplmlt

where N is the number of visits, and Nezpiore, Neapioit are the constants indicat-
ing states of the learning, i.e., exploration, exploration-exploitation and exploitation.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:11

Table II. Memory and learning overhead executed on quad-core embedded system with five frequencies.

Threads Learning-table related | Learning time| Memory overhead |Learning time with
memory overhead (KB) (mins) with modification (KB) modification (mins)

10 15 0.62 0.89

6 51 73 0.93 1.34

160 230 1.25 1.79

12 810 1,162 1.87 2.68

16 2,560 3,671 2.50 3.58

These parameters are selected considering the trade-off between Q-table convergence
rate and exploration time. For a balance of these metrics, we have used Negpiore = 3
and Negpior = 8 (similar to [Das et al. 2014]), with N being the number of visits to an
entry of the Q-table.

4.1.6. Action Selection. As discussed before, the RTM selects an action at time ¢; for
controlling the thermal overhead in the time interval ¢; — ¢, 1 (proactive approach).
So, the RTM first needs to predict the state of the system for the interval ¢; — ¢;,1; sub-
sequently, the RTM selects an action that has previously resulted in the least thermal
overhead for that state. To effectively predict the system state, we use the exponential
weighted moving average (EWMA) technique (similar to [Coskun et al. 2009a])2. In
this technique, the predicted system state p;; during the time interval t; — ¢;1; is

Pirr =7 X 8 +(1—7) xp; (20)

where v is the smoothing factor. The equation is interpreted as follows. The predicted

state in the interval ¢; — ¢;,; is determined from the predicted state during the inter-

val t;_y — t; (p;) and also, the actual state during that interval (s;). It can be intuitively

reasoned that the accuracy of the proactive thermal management approach is depen-

dent on the accuracy of the prediction scheme. We provide its evaluation in Section 5.
The action selected in the interval t; — ¢, is

a;+1 = argmax Q-table(p; 1, :) (21)

where Q-table(p;1,:) is the Q-table row corresponding to the predicted state p;,; (dis-
cretized to p; 1) and the mathematical operation argmax returns the index of the high-
est argument.

4.2. Algorithmic Modifications

The size of the Q-table is a function of the number of states (/V,) and actions (/V,). This
is reported in Table II. As can be seen, with an increase in the number of threads, there
is an increase in the size of the learning table, resulting in a corresponding increase
of the memory overhead (column 2). This is crucial, especially for embedded systems,
where the on-chip memory is limited. The increase in size of the learning table also
results in an increase in the time for the learning algorithm to converge to the best
thread allocation and frequency setting for a particular application workload. This is
reported in column 3 of the table.

To address this, we propose to separate the thread allocation from the frequency
selection. Specifically, the thread allocation is changed at long term intervals (LTIs)
composed of multiple decision epochs using a greedy heuristic. The frequency selection
is performed at every decision epoch using the Q-learning. This decision is guided by

21t is to be noted that, although EWMA predicts workload to a reasonable accuracy for typical workloads on
mobile platforms, our continuing work is to investigate more sophisticated prediction algorithms, such as
those involving Kalman filtering and Probabilistic Clustering [Das et al. 2015b].

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

(=T RN - I I NEUUR SR

e e
L - R B U U

XX:12 A. Das et al.

ALGORITHM 1: run_time_-manager(): Proposed hierarchical run-time manager

Input: N, temperature samples (T:~', T:7 !, - - ,le'\gl)

Output: Thread allocation and frequency selection

if count == 0 then

Initialize M4 (i) = 0, MinR = oo, thd = core = 0, QT able[N,][N,] = 0 and t_enable = 1;

en
count ++;
Calculate Payoff (Equation 12);
Update Q-table entry (Equation 18);
Predict Next State (Equation 20);
Select Action (Equation 21);
Map action to core selection and hardware frequency;
if t_enable && (count % LTI == 0) then
Reset Q-table;
R=To(ti-1 — t:);
if R < MinR then MinR = R else Ma(i)[thd] = coreo;
if core == N. then core = 0 and thd + + else core + +;
core, = Ma(4)[thd] and Ma(i)[thd] = core;
if converge then ¢_enable = 0;
end

experiments on a real system showing that too frequent changes in thread allocation
within a program’s execution leads to degradation in performance. The hierarchical
nature of the proposed run-time manager is shown in Figure 1 in the box titled Run-
time Manager and as pseudo-code in Algorithm 1. At the start of every LTI, the run-
time manager changes thread allocation and resets the learning table; subsequently,
the Q-learning algorithm is triggered at every decision epoch to select the frequency.

The Q-learning algorithm (lines 4 - 9) is invoked at every decision epoch. A count is
incremented to keep track of the number of times the algorithm is invoked. At every
LTI decision epochs, the thread allocation is changed. The parameters needed for the
thread allocation are initialized at the first time this algorithm is invoked i.e., corre-
sponding to the count value of O (line 2). The essence of the thread allocation algorithm
is a greedy heuristic that allocates every thread to every core in order to determine if
the thermal overhead is reduced; if so, the thread allocation is retained, else the thread
allocation is returned to the previous allocation. This is performed at every LTI at lines
10 - 17 of the algorithm. The thermal overhead is computed (line 12). If this is lower
than the minimum overhead obtained thus far (MinR), the minimum overhead is up-
dated; else the thread allocation is changed to the previous value (line 13). Thread and
core selection are performed in line 14 of the algorithm. Assuming that the thread allo-
cation takes 7 times to converge, the time complexity of the thread allocation heuristic
isO(n- Ny - N.- LTI), where N, is the number of threads and N, is the number of cores.
The memory overhead and the learning time using the modified algorithm is indicated
in columns 4 and 5 of Table II for LTI = 100. The significant reduction of memory over-
head and learning time addresses the scalability of the approach for multi-/'many-core
embedded systems.

4.3. Q-learning Algorithm Demonstration

To demonstrate the working of the Q-learning algorithm, an experiment is conducted
on a quad-core platform running Linux. Figure 2 plots the frequency selection of
the proposed run-time manager executing an MPEG4 decoding application for 1000
frames of a reference 1080p video. This is shown in the figure using the solid red line.
For this experiment, the LTI is selected as 100 frames. As discussed earlier in this

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:13

3.4

3.2

3.0F

n
oo
T
1

n
[*2]
T
1

N
I
1
1

Frequency (GHz)

N
N
T
1

2.0 .

1.8 b

1.6 .

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frames

Fig. 2. Frequency selection of the run-time manager.

section, the thread affinity is changed at the start of this interval followed by a reset
of the learning table. This is confirmed from the frequency selection results obtained
using the proposed run-time manager. The first 40 frames (on average) of every LTI
are spent learning the most effective voltage-frequency setting corresponding to the
frame workload and the selected thread affinity. For the remaining 60 frames, the al-
gorithm stays in the exploitation phase, thereby always selecting the best frequency
for the corresponding workload. This trend is the same for all applications considered
in this work. Two points to be noted from these results — the selection of the long-term
interval (100 frames) is based on energy-reliability trade-off as discussed in Section 5;
and although the learning table is reset at the beginning of every LTI, transfer of
knowledge from one LTI to another is left as future work.

5. RESULTS

Experiments are conducted on nvidia’s Tegra K1 SoC (Jetson) with quad-core ARM
Cortex-A15 running Ubuntu Linux kernel 3.10.24 and supporting chip-wide DVFS. A
set of multi-threaded benchmarks are considered from MiBench [Guthaus et al. 2001],
PARSEC and the SPLASH2 [Bienia et al. 2008] suites. Each application is transformed
to a periodic structure, where the application is executed for several iterations; each it-
eration is accompanied by a deadline, which serves as the performance requirement. At
each iteration multiple threads are spawned, with each thread performing some task
on the input data. These iterations are referred to as frames throughout the remainder
of this work. It is important to note that video applications (ffmpeg, openCV.sobel etc.)
automatically align to this general structure with a frame representing a video picture
or a group of pictures (GoPs).

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:14 A. Das et al.

Agilent Technologies DC Power Analyzer
Power | L Power
Supply APOP Mg
Offline
Benchmarks) Power
Characterization
() nVidia
a Jetson Temperature
Agilent Technologies DC Power Analyzer
Power
= t Lapto
Supply = Power ptop
Run-time
N Power
Bench k S
encamar Sﬂ/ Optimization nVidia Monit
and Validation Jetson onitor
®) ain
Power
Model

Fig. 3. Framework for (a) generating power model and (b) using it for power management.

The Tegra K1 SoC supports 22 frequency levels and a thermal sensor for tempera-
ture measurement. Figure 3 shows the framework for building a power model and us-
ing it as part of the reinforcement learning algorithm for power and thermal manage-
ment. In Figure 3(a), hardware performance counters are recorded for a set of bench-
marks from the three benchmark suites. These counter readings are used together
with voltage, frequency and temperature to correlate (using a nonlinear fit) to the ac-
tual power consumption recorded from a DC power analyzer from Agilent Technologies
(N6705B). Readers can refer to [Walker et al. 2015] for details on the validation and
accuracy of this power modeling approach. The nonlinear power model is then used
at run-time as part of the run-time management for power and thermal optimization.
Benchmarks used for building the power model are different to those used for validat-
ing the proposed reinforcement learning-based approach. The data logged using this
framework is used to compute the energy consumption (Equation 4).

5.1. Workload Prediction Results

The smoothing factor v (Equation 20) defines the relative importance of the predicted
workload as compared to the actual workload of the prior frames. Figure 4 plots the ef-
fect of varying the smoothing factor v on the number of deadline misses (expressed as
a percentage of the total frames) and the power consumption (in watts) for the ffmpeg
application used to play a 1080p video. As ~ increases, the number of workload miss-
predictions (over/under) decreases until v = 0.6-0.7, beyond which the miss-prediction
again increases. Workload under-predictions (actual workload higher than the pre-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:15

10 T T T T T T T T T T T

3.65
[]Deadline Misses (%)
sk —— Power (Watts)
6 -
N 3.60
4r \/ \ L
2 ™~ L
0 I I ! | | 3.55
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y
Fig. 4. Effect of workload under-prediction.
9 (&) FFT 8 (b) openCV.sobel
1 1
3.4%10 10710
39} RMSE=1.6% g[RMSE =2.7%
[%)] (%] H
Q Q :
S 3 S 8t
O O a
) L
z 2.8 E 7
O O
2.6 6f
2.4 5
6000 6500 7000 7500 8000 2100 2150 2200
Frames Frames
9 (c) swaptions 7 (d) raytrace
1 1
3310 - . 15X 10 : :
3ol RMSE=29% | | RMSE = 3.9%

CPU Cycles
CPU Cycles

5100 2150 2200 0 100 200 300

Frames 0 actual predicted Frames

Fig. 5. Workload prediction using EWMA.

dicted workload) result in frames missing the deadline®. It is to be noted that in most
video decoders, frames missing deadline are usually dropped. This results in a glitch

3Typically, the display subsystem has a buffer of one frame. Thus, the deadline for a frame is equal to 42 ms
for a 24 fps video.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:16 A. Das et al.

(a) qvga (320x240) (b) vga (640x480) (c) svga (800x600)

-0.5 -0.5 -0.5
. -1.0 < -1.0 « -1.0
<} IS o
Iy w i
5 -15 § 15 S 1.5 pH— e
8 S o
8 8 8
a -2.0 o -2.0 a -2.0
X X K

-25 -25 -2.5

0 200 400 600 800 1,000 0 200 400 600 800 1,000 0 200 400 600 800 1,000
Frames Frames Frames
(d) 480p (852x480) (e) 720p (1280x720) (f) 1080p (1920x1080)

-0.5 0 2.0
5 10 5 -05 5
i w0 i
S -15 8 s
S 815 3]
=l o °
o < o
o -2.0 o a
R S 20 B

-2.5

25 -25
0 200 400 600 800 1,000 0 200 400 600 800 1,000 0 200 400 600 800 1,000
Frames Frames Frames

Fig. 6. Prediction error using EWMA for six resolutions of the same video.

in the output video and therefore, degrades quality of user experience. Similarly, work-
load over-predictions (actual workload lower than the predicted workload) results in
higher power consumption. As seen from the figure, a v value of 0.6-0.7 yields the best
result in terms of the number of deadline misses and power consumption. A similar
trend is observed for all other applications. We have therefore selected v = 0.6 for all
our experiments.

Figure 5 plots the difference between the actual and the predicted workload for four
different applications. The applications FFT is from MiBench benchmark suite; sobel
is an OpenCV application commonly used in mobile domain for edge detection; and
swaptions and raytrace are from the PARSEC benchmark suite. In this figure, the
actual workload is plotted in black dashed line and the predicted one in red solid line
for the four applications. The root mean square (RMS) error in workload prediction is
also reported (as percentage) for each of these applications.

The workload prediction error is dependent on the application and the input data
used for experiment; the results shown above are for one input set of data from multi-
ple data sets considered. For video decoding applications (such as an MPEG4 decoder),
the prediction error is dependent on the resolution of the video being decoded. To es-
tablish this, Figure 6 plots the % prediction error for six different resolutions of the
same video decoded using the MPEG4 codec of the ffmpeg application, which is the
most commonly used video play-back application for embedded systems. Results are
reported for the first 1000 frames for three standard definition resolutions (identified
in the figure as quga (320 x 240), vga (640 x 480) and svga (800 x 600)), and three high
definition resolutions (identified in the figure as 480p (852 x 480), 720p (1280 x 720) and
1080p (1920 x 1080)). As can be seen from the figures, the prediction error increases

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:17

300 T T r T T T T
—e— basicmath

250F | —&—sobel
-0~ jpeg

200F |--=--webpage

EPR (KJ/Years)
o
o

k:.

1 25 50 75 100
LTI (frames)

125 150 175 200

Fig. 7. Selection of long term interval.

with an increase in the resolution. This is expected because, with an increase in the
resolution, the workload difference between consecutive frames increases. In future,
other sophisticated prediction algorithms will be investigated.

5.2. Selection of Long Term Interval

To illustrate the impact of changing the LTI on energy and reliability, a joint metric —
energy per unit reliability (EPR) is introduced (EPR = Energy/Reliability). Figure 7 plots
the EPR obtained using the proposed run-time manager for the same four applications,
with LTI varying from 1 to 200. When LTI is small, there is frequent switching of ap-
plication threads. This increases the timing overhead and degrades performance. To
meet the performance requirement, the proposed run-time manager raises the hard-
ware frequency and therefore, the energy consumption is higher for lower LTI. On the
other hand, lower LTI results in finer control on thermal cycling and therefore, the
reliability values are also higher. When the LTI is increased, the energy overhead de-
creases and so does the reliability. When the two objectives are combined (as EPR),
the value of EPR first decreases and then starts increasing. This is because, initially
the decrease in energy dominates over the decrease in reliability causing a fall in ERP.
However, beyond a point, the decrease in reliability starts dominating over that in
energy consumption causing the overall EPR to increase. This is the general trend ob-
served for most applications. The value of LTI corresponding to the minimum EPR is to
be selected. We have used LTI = 100 as this results in best energy-reliability trade-off
for most applications, including those not shown explicitly in the figure.

5.3. Energy Efficient Thermal Management: The Sobel Filter Case Study

Figure 8 plots the performance and power results using the proposed run-time man-
ager in comparison with three popular Linux governors — ondemand, powersave and
performance, and with that obtained using the learning-based technique of [Juan et al.
2013], which uses DVFS only. These results are obtained by executing sobel filtering
on a 1080p video. The sobel filtering application is selected because, this application

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:18 A. Das et al.

(@ (b) ()
100 3.6
Il powersave 22 —— powersave
[performance ——performance 3.2
80| [Jondemand ——ondemand
" Il energy_opt only [9] %20 ——energy_opt only [9] 2.8
] Il proposed £ —— proposed
£ st —~ 24
g & £
w o 5]
— 18
s) 2 S 2.0) L
s 2 = = powersave
€ s 1 % 1.6 B = performance
3 g 16 AL s I A
8 [
© 0.8
14
0.4
0 0
1.6 1.92022242628303334 0 200 400 600 800 1000
Frequencies (GHz) Frames

Fig. 8. Energy efficient thermal management: sobel filter case study.

Table Ill. Thermal improvement for sobel filter.

. Average Peak Thermal Cycling
Techniques
Temperature | Temperature | Related Damage
Linux ondemand 56.6°C 61°C 3.1
Energy opt. only [Juan et al. 2013] 49.9°C 59°C 2.7x
Proposed 44.1°C 50°C 1.3x

requires a lower frames per second (fps) as compared to video decoding, and the objec-
tive is to establish the fact that the existing power governors of Linux are performance
agnostic, resulting in under or over performance.

Figure 8(a) reports the frequency selection results. As can be seen, the powersave
governor always selects the lowest frequency of 1.6GHz for all the video frames. This
results in the lowest power consumption of 1.9W (Figure 8(c)). The performance using
this approach is also the least, achieving 14.5 fps (Figure 8(b)). The fps requirement
of the application is 16 and is denoted by the dotted line. The powersave governor
therefore results in under-performance. On the other hand, the performance gover-
nor always selects the highest frequency of 3.4GHz, achieving 19 fps and resulting
in the highest power consumption of 3.3W. This governor therefore results in over-
performance. The ondemand governor performs better than the existing governors.
This governor switches between 1.6GHz and 3.4GHz. The performance achieved is
17.8 fps and results in a power consumption of 3.0W. Although the power consumption
of the ondemand governor is lower than that obtained using the performance governor,
there is still a performance slack (17.8 fps as compared to the required 16 fps), that
can be exploited to save energy.

The learning-based approach of [Juan et al. 2013] achieves the best power results
by selecting primarily between 2.4GHz and 2.6GHz, achieving 16.7 fps. The power
consumption using this approach is 2.2W, which is 16% higher as compared to the
powersave governor and 33.3% lower as compared to the performance governor. This
technique also achieves 26.7% lower power consumption compared to ondemand gov-
ernor. Finally, the proposed run-time manager has even distribution of the frequency
as seen in Figure 8(a), achieving 16 fps. The power consumption is 2.4W, 20% lower as
compared to the Linux’s default ondemand governor. It is to be noted from Figure 8(b),
that the proposed run-time manager results in a performance violation untill around
450 frames. This causes the run-time manager to scale up the voltage and frequency
in order to satisfy the performance requirement of 16 fps; This results in an increase of
power consumption (9% higher than [Juan et al. 2013]). Although not shown explicitly

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:19

Table IV. Average temperature, peak temperature and thermal cycling related damage index for different applications.

Applications (Average Temperature, Peak Temperature, Thermal Cycles)

Linux / EOpt [Juan et al. 2013] | JOpt [Shen et al. 2012] | MOpt [Das et al. 2014] Proposed
CPU Intensive Applications
_ 80.7, 85, 3.1 77.7, 83, 3.6 68.9, 75, 2.5 61.0, 64, 1.8
parsec.fluidanimate 78.8, 83, 3.3 78.0, 83, 3.1 71.0, 73, 2.7 66.8, 70, 1.7
splash2.raytrace 81.2, 85, 3.7 77.8,82,3.2 70.4,79,2.1 66.3, 71, 2.1
splash2.radix 75.3, 81, 2.7 72.1,76, 3.3 69.9, 76, 2.2 60.6, 65, 1.5
Embedded Applications

_ 51.8,62,7.1 50.6, 65, 6.2 47.1,57,2.1 40.1, 50, 2.1
mibench.fft 59.9, 69, 10 55.0, 64, 10 51.5, 60, 7.1 49.8, 53, 3.5
mibench.x264 72.6, 76, 8.7 68.9, 70, 8.3 65.6, 70, 5.3 58.1, 60, 3.1

Summary: Average Improvement of the Proposed Approach

Linux / EOpt [Juan et al. 2013] | JOpt [Shen et al. 2012] | MOpt [Das et al. 2014] | Static [Das et al. 2015a]

|

Avg. Temperature 14°C 11°C 6°C 20°C
Peak Temperature 16°C 13°C 8°C 16°C
Thermal Cycling 54% 54% 27% 407%

in this figure, the proposed approach is within 5% of the energy consumption of [Juan
et al. 2013].

Finally, Table III reports the average temperature, maximum temperature, and ther-
mal cycling related damage index for this case study, comparing the proposed run-time
manager with [Juan et al. 2013] and Linux’s default ondemand governor. As can be
seen from this table, the proposed run-time manager reduces average temperature
by 5.8°C , the peak temperature by 9°C and thermal cycling-related damage by 2x
compared to the learning-based energy minimization approach [Juan et al. 2013]. In
comparison to the Linux default governor, the proposed approach reduces the average
temperature by 12.5°C , the peak temperature by 11 °C and thermal cycling related
damage by 2.4x. To summarize the results for this case study: the proposed run-time
manager reduces power consumption by 20% with respect to default Linux. This reduc-
tion comes with additional benefit of thermal improvement of 12.5°C in terms of average
temperature, 11°C in terms of peak temperature and 2.4x in terms of thermal cycling
related damage, while delivering the required performance. Performance, energy and
temperature results are further analyzed in the subsequent sections.

5.4. Thermal Improvement

Table IV reports different thermal aspects obtained using the proposed approach for
four CPU intensive applications and three embedded applications. The CPU inten-
sive applications are obtained from the PARSEC and t heSPLASH2 benchmark suites
and the embedded applications from the MiBench benchmark suite. The results ob-
tained from the proposed run-time manager is compared with three state-of-the-art
approaches — Linux’s default ondemand governor, the joint optimization approach
of [Shen et al. 2012], and the MTTF maximization technique of [Das et al. 2014].

A general trend that can be followed from this table is that for CPU intensive ap-
plications, the average and peak temperatures are higher than that for embedded ap-
plications. The exception for x264 application (row 11) is due to the 1080p resolution
input video used for this application, which requires more CPU cycles to decode. On

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:20 A. Das et al.

Table V. Energy (KJ) and performance (fps) results for different applications.

L Performance Energy (Performance)
Applications
Requirement | Linux ‘ EOpt [Juan et al. 2013] ‘ JOpt [Shen et al. 2012] ‘ MOpt [Das et al. 2014] | Proposed
CPU Intensive Applications
12.5 fps 13.7 (17.10) 11.1 (12.58) 13.3 (12.63) 14.1(12.67) 12.5 (12.47)
parsec.fluidanimate 10.0 fps 23.3 (13.4) 17.7(9.3) 22.8(9.7) 23.2 (13.5) 18.4 (10.3)
splash2.raytrace 5.0 fps 16.4 (12.3) 10.1(8.8) 13.9 (11.2) 21.8 (12.9) 10.8 (9.7)
splash2.radix 2.5 fps 8.2(3.73) 6.5 (2.60) 8.9 (2.78) 9.1(2.92) 7.9 (2.80)
Embedded Applications

15.4 fps 1.0 (17.54) 0.8 (15.74) 0.9 (15.80) 1.1(17.71) 0.9 (16.80)

mibench.fft 3.3 fps 5.0 (4.09) 4.1(3.29) 4.9 (3.31) 5.6 (4.32) 4.8 (3.30)
mibench.x264 24 fps 1.4 (32.1) 1.25 (28.9) 1.5(31.1) 1.6 (33.4) 1.28 (29.3)

the other end, the thermal cycling (represented as thermal damage) for embedded ap-
plications are higher than that for CPU intensive applications.

As seen for the x264 application, DVFS based control adopted in [Shen et al. 2012]
improves the average temperature by 3.7°C and peak temperature by 6°C (row 11
column 3 vs column 2) with respect to Linux’s ondemand governor. However, thermal
cycling related damage is not improved significantly (less than 5%). Thus, DVFS in
isolation is not sufficient to alleviate all temperature aspects. The MTTF maximum
technique of [Das et al. 2014] uses thread affinity and DVFS combination to optimize
average temperature and thermal cycling; reducing average temperature by 7°C, this
approach is able to reduce thermal cycling related damage by 40% compared to Linux’s
default governor (row 11 column 4 vs column 2). This improvement signifies the impor-
tance of the two OS levers (DVFS and thread affinity) in controlling the different ther-
mal aspects. In comparison to all these approaches, the proposed run-time manager
(row 11, column 5) is able to achieve best results —improving the average temperature
by 14.5°C, peak temperature by 16°C and thermal cycling related damage by 2.8x with
respect to Linux. The improvement with respect to the MTTF optimization approach
of [Das et al. 2014] are 7.5°C, 10°C and 41.5%, respectively. This improvement signifies
the importance of the hierarchical nature of the proposed run-time manager to delegate
a finer control on the three temperature-related aspects. Similarly, results for the other
applications can be analyzed. The average improvements of the proposed run-time
manager compared to these state-of-the-art approaches (including the design-time-
based static approach of [Das et al. 2015a]*) are summarized in rows 13-16 of the
table. As can be seen, the proposed run-time manager outperforms all the existing ap-
proaches either in terms of average temperature, peak temperature or thermal cycling
related damage.

5.5. Energy Improvement and Performance Deviation

Table V reports the energy consumption (in KJoules) and the performance (in frames
per second) of the proposed run-time manager for the same set of applications in
comparison with the state-of-the-art approaches. The energy optimization technique
of [Juan et al. 2013] is included for comparison to determine the distance from en-
ergy optimality of the proposed run-time manager. As seen from this table, the onde-
mand governor is pessimistic for most applications, selecting higher voltage-frequency
values to always meet the performance requirement. This is due to the performance
agnostic nature of this governor. The technique of [Juan et al. 2013] achieves the low-
est energy. This is because this technique determines the minimum voltage-frequency
setting needed to execute a given application at its desired performance requirement.

4The significant improvement with respect to the design-time-based approach justifies the central theme of
this work i.e., run-time thermal management of applications with dynamic workloads.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:21

400 : : : Il scnsor sampling overhead
[1Q-learning overhead
400ms 228ms | Il DVFS overhead

350 R
1005ms

w
o
o

250

200

Runtime Manager Overhead (u s)
&
o

100

50

basicmath sobel jpeg webpage

Fig. 9. Time overhead of the proposed run-time manager.

However, all the thermal aspects are not considered in this approach. The joint op-
timization technique [Shen et al. 2012] achieves a better result, sacrificing 25% in
energy (on average) with respect to [Juan et al. 2013] to incorporate temperature in
the optimization objective. However, as discussed in previous sections, thermal cycling
is not considered in this approach. The MTTF optimization approach [Das et al. 2014]
does not consider energy consumption and therefore, this approach leads to a signifi-
cant energy overhead (116% for raytrace, average 45% for all applications) with respect
to [Juan et al. 2013]. Finally, the proposed run-time manager satisfies the performance
requirement for most applications and results in an energy reduction of average 15%
as compared to Linux, 11% as compared to [Shen et al. 2012], and 21% as compared
to [Das et al. 2014]. It is to be noted that, although thread affinity-based control (used
in [Das et al. 2014] and proposed) alleviates thermal cycling-related reliability signifi-
cantly, the execution time is extended. This results in the performance dropping below
the frames per second requirement. To overcome this, the run-time manager raises
the operating frequency slightly, resulting in a 9% increase in the energy consump-
tion with respect to the energy minimum result of [Juan et al. 2013], which does not
perform thermal management. To summarize, the proposed run-time manager outper-
forms any of the existing approaches in terms of energy-efficient thermal management.

5.6. Overheads of the Run-time Manager

Figure 9 plots the overhead of the proposed run-time manager for four applications.
A stacked bar is plotted for each application, representing three key components —
overhead of sampling the thermal sensors (identified in the figure as sensor sampling
overhead and represented as the bottom stack), overhead of the Q-learning algorithm
(identified in the figure as @-learning overhead and represented as the middle stack),
and the overhead for switching the voltage and frequency (identified in the figure as
DVFS overhead and represented as the top stack). Finally, the number on each stacked

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:22 A. Das et al.

(a) basicmath (b) sobel
20 20
+
15| 1 B +
@ 1 - i :
3 =
=10 s T . +
IS + £ + +
£ : : sl B & I
5t _ —_ + + 1 o — 1
= = 3 =
ol I] 0 + — +
PMU Workload Reward Q_Table PMU Workload Reward Q_Table
Collection Prediction Computation Update Collection Prediction Computation Update
Time Time Time Time Time Time Time Time
(©) jpeg 20 (d) webpage
20 t]
+
15} % + 15 E
—~ —~ H + +
% + « + — +
2 10} + 210 1
£ —— + g + "
Fsl T o e = s == -
—_ $ T _4'-_ ¥
of + + 1 0 + — +
PMU Workload Reward Q_Table PMU Workload Reward Q_Table
Collection Prediction Computation Update Collection Prediction Computation Update
Time Time Time Time Time Time Time Time

Fig. 10. Time overhead of the Q-learning algorithm.

bar represents the total time for processing a frame of the corresponding application.
Other components constitute less than 5us in total and are not included in the plot.

As can be seen from the figure, the overhead of the run-time manager constitutes
between 0.003% to 0.43% only. A point to note from the figure is that, the Q-learning
algorithm takes on average 20us to execute. For some application such as webpage, the
overhead is higher as compared to other applications. It is to be note that in addition
to the above overheads, the thread allocation overhead is on average 300 us and is
incurred once every 100 frames (i.e., LTT) when the thread affinity is altered.

To give further insight into the overhead of the Q-learning algorithm itself, Figure 10
plots the different components of the Q-learning algorithm as box plot showing the
variation as well as the median value. Results in the figure are shown for the same
four applications with 20 different executions. As can be seen from the figure, the time
to collect the performance statistics (indicated in the figure as PMU collection time)
for basicmath application varies from 2.5us to 8us. The top and the bottom edges of
the blue bounding box represents respectively, the 25th and the 75th percentile of the
PMU collection time, and the horizontal line (corresponding to 3us) marks the median
value. The outliers are plotted as crosses.

6. CONCLUSION

A low overhead hierarchical run-time manager is proposed for multi-‘/many-core em-
bedded systems for energy-efficient thermal management. The run-time manager em-
ploys Q-learning to select the minimum frequency of the hardware for a given thread
allocation, determined using a greedy heuristic. The run-time manager is implemented
on a real system supporting the POSIX programming model. Experiments conducted
with CPU intensive and embedded benchmarks demonstrate that the proposed ap-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:23

proach reduces energy consumption by 15% with respect to Linux, simultaneously
improving the lifetime reliability by 1.5x. Our continuing work includes Kernel imple-
mentation of the run-time manager, extending the approach to include heterogeneous
components such as GPUs and FPGAs.

Acknowledgment

This work was supported in parts by the EPSRC Grant EP/L000563/1 and
the PRIME Programme Grant EP/K034448/1 (www.prime-project.org). Experi-
mental data used in this paper can be found at DOI:10.5258/SOTON/382855
(http://dx.doi.org/10.5258/SOTON/382855).

REFERENCES

1994. IEEE Standard for Information Technology - Portable Operating System Interfaces (POSIX(R)) - Part
1: System Application Program Interface (API) - Amendment 1: Realtime Extension (C language). IEEE
Std 1003.1b-1993 (1994), 0-3. DOI: http://dx.doi.org/10.1109/IEEESTD.1994.121455

Andrew G Barto. 1998. Reinforcement learning: An introduction. MIT press.

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 1998. Dynamic Power Management of Elec-
tronic Systems. In Proceedings on the International Conference on Computer Aided Design (ICCAD).

C. Bienia, S. Kumar, and K. Li. 2008. PARSEC vs. SPLASH-2: A Quantitative Comparison of Two Multi-
threaded Benchmark Suites on Chip-Multiprocessors. In IEEE Symposium on Workload Characteriza-
tion. 47-56. DOI : http://dx.doi.org/10.1109/IISWC.2008.4636090

JL Chaboche and PM Lesne. 1988. A Non-Linear Continuous Fatigue Damage Model. Fatigue & fracture of
engineering materials & structures 11, 1 (1988), 1-17.

R. Cochran, C. Hankendi, A. Coskun, and S. Reda. 2011a. Identifying the Optimal Energy-Efficient Oper-
ating Points of Parallel Workloads. In Proceedings on the International Conference on Computer Aided
Design (ICCAD).

Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011b. Pack & Cap: Adaptive DVFS and
Thread Packing Under Power Caps. In Proceedings of the International Symposium on Microarchitec-
ture (MICRO). ACM, 175-185. DOI : http://dx.doi.org/10.1145/2155620.2155641

LF Coffin Jr. 1973. Fatigue at High Temperature. ASTM STP 520 (1973), 5-34.

A. K. Coskun, T. S. Rosing, and K. C. Gross. 2009a. Utilizing Predictors for Efficient Thermal Management in
Multiprocessor SoCs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
28, 10 (2009), 1503-1516. DOI : http://dx.doi.org/10.1109/TCAD.2009.2026357

Ayse K. Coskun, Richard Strong, Dean M. Tullsen, and Tajana Simunic Rosing. 2009b. Evaluating the Im-
pact of Job Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors. In Pro-
ceedings of the Joint Conference on Measurement and Modeling of Computer Systems (SIGMETRICS).
ACM, 169-180. DOI : http://dx.doi.org/10.1145/1555349.1555369

Jin Cui and D.L. Maskell. 2012. A Fast High-Level Event-Driven Thermal Estimator for Dynamic Thermal
Aware Scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31, 6 (2012), 904-917. DOI : http://dx.doi.org/10.1109/TCAD.2012.2183371

L. Dagum and R. Menon. 1998. OpenMP: An Industry Standard API for Shared-Memory Programming.
IEEE Computational Science Engineering 5, 1 (1998), 46-55. DOI : http://dx.doi.org/10.1109/99.660313

A. Das, A. Kumar, and B. Veeravalli. 2015a. Reliability and Energy-Aware Mapping and Scheduling of
Multimedia Applications on Multiprocessor Systems. IEEE Transactions on Parallel and Distributed
Systems (2015). DOI : http://dx.doi.org/10.1109/TPDS.2015.2412137

Anup Das, Akash Kumar, Bharadwaj Veeravalli, Rishad Shafik, Geoff Merrett, and Bashir Al-Hashimi.
2015b. Workload Uncertainty Characterization and Adaptive Frequency Scaling for Energy Minimiza-
tion of Embedded Systems. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE). San Jose, CA, USA.

Anup Das, Rishad A. Shafik, Geoff V. Merrett, Bashir M. Al-Hashimi, Akash Kumar, and Bharadwaj
Veeravalli. 2014. Reinforcement Learning-Based Inter- and Intra-Application Thermal Optimization
for Lifetime Improvement of Multicore Systems. In Proceedings of the Design Automation Conference
(DAC). ACM, Article 170, 6 pages. DOI:http://dx.doi.org/10.1145/2593069.2593199

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Com-
munication of the ACM 51, 1 (2008), 107-113. DOI:http:/dx.doi.org/10.1145/1327452.1327492

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

XX:24 A. Das et al.

Gaurav Dhiman, V. Kontorinis, Dean Tullsen, T. Rosing, Eric Saxe, and Jonathan Chew. 2010. Dynamic
Workload Characterization for Power Efficient Scheduling on CMP Systems. In International Sympo-
sium on Low Power Electronics and Design (ISLPED).

G. Dhiman and T.S. Rosing. 2009. System-Level Power Management Using Online Learning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 5 (2009), 676-689.
DOI:http://dx.doi.org/10.1109/TCAD.2009.2015740

Gaurav Dhiman and Tajana Simunic Rosing. 2007. Dynamic Voltage Frequency Scaling for Multi-tasking
Systems Using Online Learning. In International Symposium on Low Power Electronics and Design
(ISLPED).

S.D. Downing and D.F. Socie. 1982. Simple rainflow counting algorithms. International Journal of Fatigue
4,1 (1982), 31 — 40.

Thomas Ebi, Mohammad Abdullah Al Faruque, and Jorg Henkel. 2009. TAPE: Thermal-aware Agent-based
Power Economy for Multi/Many-core Architectures. In Proceedings on the International Conference on
Computer Aided Design (ICCAD). ACM, 302—-309. DOI:http:/dx.doi.org/10.1145/1687399.1687457

Thomas Ebi, David Kramer, Wolfgang Karl, and Jorg Henkel. 2011. Economic Learning for Thermal-
aware Power Budgeting in Many-core Architectures. In Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). ACM, 189-196.
DOI:http://dx.doi.org/10.1145/2039370.2039401

Mohammad Al Faruque, Janmartin Jahn, and Joerg Henkel. 2010. Runtime Thermal Management Using
Software Agents for Multi- and Many-Core Architectures. IEEE Design & Test of Computers 27, 6 (2010),
58-68.

Yang Ge and Qinru Qiu. 2011. Dynamic Thermal Management for Multimedia Applications Using
Machine Learning. In Proceedings of the Design Automation Conference (DAC). ACM, 95-100.
DOI:http://dx.doi.org/10.1145/2024724.2024746

M.R. Guthaus, J.S. Ringenberg, D. Ernst, TM. Austin, T. Mudge, and R.B. Brown. 2001. MiBench: A Free,
Commercially Representative Embedded Benchmark Suite. In IEEE Workshop on Workload Character-
ization. 3—14. DOI : http://dx.doi.org/10.1109/WWC.2001.990739

Lei He, Weiping Liao, and Mircea R. Stan. 2004. System Level Leakage Reduction Considering the Inter-
dependence of Temperature and Leakage. In Proceedings of the Design Automation Conference (DAC).
ACM, 12-17. DOI : http://dx.doi.org/10.1145/996566.996572

Haris Javaid, Muhammad Shafique, Jorg Henkel, and Sri Parameswaran. 2011. System-level Application-
aware Dynamic Power Management in Adaptive Pipelined MPSoCs for Multimedia. In Proceedings on
the International Conference on Computer Aided Design (ICCAD). IEEE, 616-623.

Da-Cheng Juan, Siddharth Garg, Jinpyo Park, and Diana Marculescu. 2013. Learning the Optimal Oper-
ating Point for Many-core Systems with Extended Range Voltage/Frequency Scaling. In Proceedings of
the International Conference on Hardware [Software Codesign and System Synthesis (CODES+ISSS).
IEEE, Article 8, 10 pages.

Hwisung Jung and M. Pedram. 2008. Continuous Frequency Adjustment Technique Based on Dynamic
Workload Prediction. In International Conference on VLSI Design.

Hwisung Jung and M. Pedram. 2010. Supervised Learning Based Power Management for Multicore Pro-
cessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29, 9 (2010),
1395-1408.

Umair Ali Khan and Bernhard Rinner. 2014. Online Learning of Timeout Policies for Dynamic Power Man-
agement. ACM Transactions on Embedded Computing Systems (TECS) 13, 4, Article 96 (2014), 96:1—
96:25 pages. DOI :http:/dx.doi.org/10.1145/2529992

SS Manson. 1972. The Challenge to Unify Treatment of High-temperature Fatigue: A Partisan Proposal Based
on Strainrange Partitioning. National Aeronautics and Space Administration.

Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and Luca Benini.
2013. Workload and User Experience-aware Dynamic Reliability Management in Multicore Pro-
cessors. In Proceedings of the Design Automation Conference (DAC). ACM, Article 2, 6 pages.
DOI:http:/dx.doi.org/10.1145/2463209.2488735

Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and Luca Benini. 2014. A
Linux-governor Based Dynamic Reliability Manager for Android Mobile Devices. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). European Design and Automation Asso-
ciation, Article 104, 4 pages.

Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad Shafique, Minming Li, and
Jorg Henkel. 2014. TSP: Thermal Safe Power: Efficient Power Budgeting for Many-core Systems in Dark
Silicon. In Proceedings of the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS).

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

Adaptive and Hierarchical Run-time Manager for Energy-Aware Thermal Management of Embedded SystemsXX:25

D. Rai, Hoeseok Yang, I Bacivarov, Jian-Jia Chen, and L. Thiele. 2011. Worst-case Temperature Analysis for
Real-Time Systems. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).
1-6. DOI:http://dx.doi.org/10.1109/DATE.2011.5763104

Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. 2013. Efficient Worst-Case Temperature
Evaluation for Thermal-Aware Assignment of Real-Time Applications on MPSoCs. Journal of Electronic
Testing 29, 4 (2013), 521-535. DOI : http://dx.doi.org/10.1007/s10836-013-5397-5

S. Sharifi, D. Krishnaswamy, and T.S. Rosing. 2013. PROMETHEUS: A Proactive Method for Thermal Man-
agement of Heterogeneous MPSoCs. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 32, 7 (2013), 1110-1123. DOI : http://dx.doi.org/10.1109/TCAD.2013.2247656

Hao Shen, Jun Lu, and Qinru Qiu. 2012. Learning based DVFS for Simultaneous Temperature, Performance
and Energy Management. In Proceedings of the International Symposium on Quality Electronic Design
(ISQED). 747-754. DOI : http://dx.doi.org/10.1109/ISQED.2012.6187575

Hao Shen, Ying Tan, Jun Lu, Qing Wu, and Qinru Qiu. 2013. Achieving Autonomous Power Management
Using Reinforcement Learning. ACM TODAES (2013).

Bing Shi, Yufu Zhang, and A. Srivastava. 2013. Dynamic Thermal Management Under Soft Thermal Con-
straints. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 21, 11 (2013), 2045-2054.
DOI:http:/dx.doi.org/10.1109/TVLSI.2012.2227854

Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni De Micheli. 2001. Dynamic
Voltage Scaling and Power Management for Portable Systems. In Proceedings of the Design Automation
Conference (DAC).

F. Sironi, M. Maggio, R. Cattaneo, G.F. Del Nero, D. Sciuto, and M.D. Santambrogio. 2013. ThermOS: System
Support for Dynamic Thermal Management of Chip Multi-processors. In International Conference on
Parallel Architectures and Compilation Techniques. DOI :http:/dx.doi.org/10.1109/PACT.2013.6618802

Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar Velusamy,
and David Tarjan. 2004. Temperature-Aware Microarchitecture: Modeling and Implementa-
tion. ACM Transactions on Architecture and Code Optimization (TACO) 1, 1 (2004), 94-125.
DOI:http://dx.doi.org/10.1145/980152.980157

Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. 2004. The Case for Lifetime
Reliability-Aware Microprocessors. In Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 276-287.

Matthew J Walker, Anup Das, Geoff V Merrett, and BM Hashimi. 2015. Run-time power estimation for
mobile ad embedded asymmetric multi-core CPUs. HiPEAC Workshop on Energy Efficiency with Het-
erogenous Computing (2015).

Rong Ye and Qiang Xu. 2014. Learning-Based Power Management for Multicore Processors via Idle Period
Manipulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 7
(2014), 1043-1055. DOI : http://dx.doi.org/10.1109/TCAD.2014.2305838

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: December 201X.

