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ABSTRACT
Many challenges and open issues related to the tremendous
growth in digitizing collections of cultural heritage docu-
ments have been raised, such as information retrieval in dig-
ital libraries or analyzing page content of historical books.
Recently, graphic/text segmentation in historical documents
has posed specific challenges due to many particularities
of historical document images (e.g. noise and degradation,
presence of handwriting, overlapping layouts, great variabil-
ity of page layout). To cope with those challenges, a method
based on learning texture features for historical document
image enhancement and segmentation is proposed in this
article. The proposed method is based on using the sim-
ple linear iterative clustering (SLIC) superpixels, Gabor de-
scriptors and support vector machines (SVM). It has been
evaluated on 100 document images which have been selected
from the databases of the competitions (i.e. historical docu-
ment layout analysis and historical book recognition) in the
context of ICDAR conference and HIP workshop (2011 and
2013). To demonstrate the enhancement and segmentation
quality, the evaluation is based on manually labeled ground
truth and shows the effectiveness of the proposed method
through qualitative and numerical experiments. The pro-
posed method provides interesting results on historical doc-
ument images having various page layouts and different ty-
pographical and graphical properties.

Categories and Subject Descriptors
I.4.6 [Segmentation]: Pixel classification; I.7.5 [Document
Capture]: Document analysis

Keywords
Historical document images, enhancement, segmentation,
SLIC superpixels, learning texture features, multi-scale tech-
nique.

1. INTRODUCTION
Document image analysis (DIA) has been a thriving topic
of major interest of many researchers and one of the most
explored fields in image analysis [25]. It consists of dividing a
document image (DI) layout according to the nature of the
extracted structure such as separating text from non-text
regions or partitioning text into columns, text blocks, lines,
words, etc. It starts by segmenting a DI in order to find and
classify homogeneous regions or zones, such as graphical and
textual regions [26]. Finding graphical regions can be used to
segment and analyze the graphical part of historical heritage
such as the drop caps [27], while determining text zones can
be used as a pre-processing stage for character recognition
[10], text line extraction [20], handwriting recognition [12],
etc.

Several scientific works in contemporary DIA have described
several relevant methods enabling multiple forms of indexing
based on content analysis of DIs. Nevertheless, the trans-
position of these methods for historical DIA, that are dedi-
cated initially for contemporary DIA, is not straightforward.
Grana et al. [14] stated that, despite that state of the art
methods have yielded reliable results for contemporary DIA,
analyzing historical document images (HDIs) by separating
textual regions from the graphical ones is still more challeng-
ing due to many particularities of HDIs (e.g. large variabil-
ity of page layout, noise and degradation, page skew, com-
plicated layout, random alignment, specific fonts, presence
of embellishments, variations in spacing between the char-
acters, words, lines, paragraphs and margins, overlapping
object boundaries, superimposition of information layers).
Indeed, processing HDIs usually includes several stages: pre-
processing, analysis, segmentation and characterization [19].
For the problem of historical DIA, the main challenge is to
analyze HDIs and to characterize their layouts and contents
under significant degradation levels and different noise types
and with no a priori knowledge about the layout, content,
typography, font styles, scanning resolution or DI size, etc.

Antonacopoulos et al. [4] pointed out the significant need
for robust and accurate DIA methods that deal with the id-
iosyncrasies of HDIs. In addition, Crasson and Fekete [9]
highlighted the real need for automatic processing of digi-
tized HDIs (HDI layout analysis and text/non-text separa-
tion) to facilitate the analysis and navigation in the corpus



of ancient manuscripts. Moreover, Kise [17] stated that the
analysis of pages with constrained layouts (e.g. rectangu-
lar, Manhattan) and clean DIs has almost been solved while
historical DIA is still an open problem due to the HDI par-
ticularities. Recently, few layout analysis methods for his-
torical documents have been proposed in the literature in
order to characterize the DI layout. For instance, Garz et
al. [13] proposed a part-based detection of layout entities
in ancient manuscripts using a multi-stage algorithm based
on interest points. Nevertheless, Kise [17] precised that the
most relevant methods used to analyze pages with overlap-
ping or unconstrained layouts are based on signal properties
of page components by investigating texture-based features
and techniques. Hence, texture-based methods address the
challenges of the existing state of the art ones. The use of
texture-based methods for DIA has been shown to be ef-
fective with skewed and degraded images [23]. Given that
there are significant degradations and no hypothesis con-
cerning the layout, the graphical properties or typographical
parameters of the analyzed HDI, the use of texture analysis
techniques for HDI has become an appropriate choice. Re-
cently, the superpixel approach has gained great attention
of many researchers in document image analysis fields. For
instance, Cohen et al. [8] separated drawings from back-
ground and noise of ancient documents by using spatial and
color features which were extracted from superpixels. Asi
et al. [7] proposed a learning-free approach to detect the
main text area from side-notes in ancient manuscripts based
on a coarse-to-fine scheme. First, a coarse segmentation
of the main text area was processed by using Gabor filters
(GFs). Then, the segmentation was refined by formulating
the problem as an energy minimization task and achieving
the minimum using graph cuts. Wei et al. [28] compared
three classifiers based on support vector machines (SVM),
multi-layer perceptron (MLP) and Gaussian mixture mod-
els (GMM) to detect physical structure of HDIs. They con-
cluded that both SVM and MLP classifiers had better per-
formance than GMM. Pixels were classified into four classes:
periphery, background, text or decoration, in the first clas-
sification level. Then, the three evaluated classifiers were
combined together to ensure a vote for the pixel label in
order to further improve the pixel-labeling results.

In this article, a method based on learning texture features
for HDI enhancement and segmentation is proposed to as-
sist the analysis of HDIs. The remainder of this article is
organized as follows. The proposed enhancement and seg-
mentation algorithm for HDIs based on the use of the simple
linear iterative clustering (SLIC) superpixels, Gabor descrip-
tors and SVM is detailed in Section 2. Section 3 describes
firstly the experimental protocol by presenting the corpus
and the defined ground truth (cf. Section 3.1). Secondly, to
evaluate the performance of the proposed algorithm, a set
of experiments on the “HBR2013 dataset” which have been
provided by the “Centre of competence in digitisation”1 IM-
PACT research team in the context of ICDAR conference
and HIP workshop (2011 and 2013) is detailed in Section 3.2.
Qualitative and numerical results are given to demonstrate
the enhancement and segmentation quality. Our discussion,
conclusions and future work are presented in Sections 4 and
5.

1http://digitisation.eu

2. THE PROPOSED METHOD
In this work, we are not looking for an accurate segmen-
tation, but to find regions with similar textural content as
easily, quickly and automatically as possible based on the
pixel labeling results. It has been largely proved that the
texture-based analysis methods are relevant for DIA and
characterization [16, 22]. But, it can neither segment a DI
into graphics, paragraphs, etc. nor characterize its structure
(e.g. columns, rows, paragraphs). The region segmentation
and classification tasks can be carried at the end after intro-
ducing a post-processing phase by taking into consideration
the topological or spatial relationships (e.g. hierarchy, inclu-
sion, neighborhood position). The proposed method based
on learning texture features for HDI enhancement and seg-
mentation has the possibility to be extended for consequent
DI processing such as region segmentation and classifica-
tion, by introducing a standard post-processing method (e.g.
morphological cleaning approach, multi-scale majority vot-
ing technique). Figure 1 illustrates the detailed schematic
block representation of the proposed method based on learn-
ing texture features for HDI enhancement and segmentation.

Figure 1: Flowchart of the proposed method based
on learning texture features for HDI enhancement
and segmentation.

The proposed texture learning method for HDI enhance-
ment and segmentation is conceptualized by four modular
processes:

1. Pre-processing (cf. Section 2.1),

2. Texture feature extraction (cf. Section 2.2),

3. Texture feature learning (cf. Section 2.3),

http://digitisation.eu


4. Superpixel classification and pixel labeling (cf.
Section 2.4).

2.1 Pre-processing
Firstly, a HDI is fed as input (cf. Figure 2(a)) and is read
as a gray-scale image.

(a) Input
image

(b) Zoomed
region

(c) Enhanced
image

(d) Zoomed
region

(e) Background
superpixels

(f) Zoomed
region

(g) Foreground
superpixels

(h) Zoomed
region

Figure 2: Illustration of the intermediate results of
the different steps of the pre-processing task. Fig-
ures (a) and (b) show an example of a HDI (as an
input of the proposed algorithm) and a zoomed re-
gion of it, respectively. Figures (c) and (d) illustrate
the enhanced HDI (i.e. the resulting image of the
enhancement step of the proposed algorithm) and a
zoomed region of it, respectively. Figures (e) and
(f) depict the background SLIC superpixels and a
zoomed region of it, respectively. Figures (g) and
(h) illustrate the foreground SLIC superpixels and
a zoomed region of it, respectively. Colors assigned
to the background (foreground respectively) super-
pixels which are illustrated in Figure (e) ((g) respec-
tively) are randomly generated.

Secondly, a foreground/background superpixel-based segmen-
tation is carried out by means of the SLIC superpixel tech-
nique. Instead of using a rigid structure of pixel grid for
pixel-based feature extraction and analysis, the superpixel
technique has been used in our method as the basic unit
when extracting texture features. The superpixel technique
has the advantage to be faster, more memory efficient and
more interesting to compute image features on each super-
pixel center than on each image pixel [1]. By using the SLIC
superpixel technique in the proposed method, pixels sharing
similar characteristics or properties (e.g. texture cues, con-
tour, color) are grouped into a significant polygon-shaped
region. Indeed, by setting the number of SLIC superpixels
ks equal to 0.002% of image pixels, an over-segmented image
representing a compact content map is generated. After-
wards, to segment an image into two layers (i.e., foreground
and background), the background and foreground superpix-
els are classified using the k-means algorithm based on com-
puting the mean gray-level value of each superpixel. The

mean gray-level value of each superpixel is determined by
averaging over all the gray-level pixels belonging to the su-
perpixel region. The k-means algorithm is performed on the
computed mean gray-level values of SLIC superpixels, with-
out taking into account the image spatial coordinates and by
setting the number of clusters kc equal to 2 to extract two
clusters. One represents the information of the background
(cf. Figure 2(e)) and the other represents the foreground
(e.g. noise, text fields, drawings) (cf. Figure 2(g)). Since the
foreground/background superpixel-based segmentation step
is carried out, the background superpixels of the original
gray-level image are only processed by assigning the value
of a white pixel (i.e. 255 gray-level value) to their centers
and the pixels belonging to them. Nevertheless, the values
of the gray-level foreground superpixels and their pixels of
the original gray-level image remain unchanged. Thus, an
enhanced and non-noisy background is obtained (cf. Figure
2(c)). Figure 2(c) depicts an example of an enhanced image
by the superpixel technique with a clean background.

2.2 Texture Feature Extraction
Six well-known and widely used texture-based feature sets
(autocorrelation function, Grey Level Co-occurrence Ma-
trix, Gabor filters, 3-level Haar wavelet transform, 3-level
wavelet transform using 3-tap Daubechies filter and 3-level
wavelet transform using 4-tap Daubechies filter) are eval-
uated and compared on a large corpus of historical docu-
ments in our previous work [24]. We concluded that the
Gabor-based feature set is the best ones for font segmen-
tation and for distinguishing textual regions from graphical
ones. As a consequence, Gabor filters are applied on the en-
hanced DI (cf. Figure 2(c)) by using 4 different orientations
(θg = {0, π/4, π/2, 3π/4}) and 6 distinct spatial frequencies
(fg = {2

√
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√

2, 64
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2}). An illustrative
example of the magnitudes of 24 GFs, obtained by setting
the 6 different spatial frequencies and 4 different orientations
is presented in Figure 3.

Figure 3: Illustration of the magnitudes of the spec-
ified Gabor filters by 6 different spatial frequencies
fg={2

√
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2 and 64
√

2} and 4 differ-
ent orientations θg={0, π/4, π/2 and 3π/4}.



Then, a quick and easy way to extract Gabor features on
the whole transformed image by the selective Gabor filter,
is to introduce a border replication step before the Gabor
feature extraction task. By using rectangular overlapping
processing windows, Gabor descriptors are only extracted
from the selected foreground superpixels of the transformed
image by the selective Gabor filter and the border replication
step, at four different sizes of sliding windows ((16× 16),
(32× 32), (64× 64) and (128× 128)) to adopt a multi-scale
technique.

Therefore, a Gabor-based feature vector (with dimension
48 to represent 24 Gabor filters) is produced based on the
computed mean and standard deviation of the magnitude
response of the transformed image by the selective Gabor
filter which are extracted from one analyzed sliding win-
dow. A 192-dimensional feature vector (48 Gabor indices ×
4 sliding window sizes) is subsequently formed through the
four different specified sizes of sliding windows.

2.3 Texture Feature Learning
Having the extracted Gabor features at the selected fore-
ground superpixels, the superpixel classification is based on
using a supervised machine learning (i.e. an SVM model) in
order to discriminate the textual content from the graphi-
cal one. The supervised foreground superpixel classification
task does not include spatial information. Using the com-
puted Gabor feature vectors, the superpixel classification
issue is modeled as a binary classification one (i.e. 1 for a
textual content pixel while −1 for the graphical/noise con-
tent pixel). Therefore, two classes are defined, a class of text
content pixels and another one containing all other contents
such as noise (e.g. ink stains, mold or moisture, faded out
ink, corrugated parchment or papyrus) and drawings (e.g.
ornaments, drop caps, frames, embellishments, portraits).
An SVM model using a linear kernel is trained to generate
our classification model. To train an SVM model, the ob-
tained 192-dimensional feature vectors of the selected fore-
ground superpixels for every DI of the “HBR2013 dataset”
are divided into two separate sets, namely, training set (60%)
and testing set (40%). Subsequently, the training data of
the “HBR2013 dataset” used to generate our classification
model is obtained by combining the different training sets
of a number of DIs selected randomly from the “HBR2013
dataset”. Given the training data, each marked for belonging
to one of two classes (i.e. 1 or −1), our goal is to determine
which class every foreground superpixel from the testing set
in each HDI from the “HBR2013 dataset” will be in.

2.4 Superpixel Classification and Pixel Label-
ing

Since the texture feature learning phase has been performed,
the selected foreground superpixels of the testing set are
classified. Having classified foreground superpixels as tex-
tual or other contents such as noise and drawings based on
the training data (cf. Section 2.3), a phase of labeling clus-
ters of the foreground superpixels and pixels belonging to
each superpixel in the enhanced HDI (cf. Figures 7(e), 7(f),
7(g) and 7(h)) is carried out with respect to the results of the
superpixel classification phase. Since the superpixel classifi-
cation and pixel labeling phases of the proposed algorithm
have been performed, a pixel-labeled HDI is obtained (cf.

Figures 7(q), 7(r), 7(s) and 7(t)).

3. EXPERIMENTS
We have experimentally evaluated the proposed ancient doc-
ument enhancement and segmentation algorithm on 100 pages
of ancient documents. In this section, we discuss the perfor-
mance of the proposed algorithm in detail after describing
our experimental corpus and its associated ground truth.

3.1 Experimental Corpus and Ground Truth
In this section, a brief description of the experimental corpus
and its associated ground truth is presented.

3.1.1 Experimental Corpus
Antonacopoulos et al. [3] considered a dataset as a good
one if it is realistic (i.e. it must composed of real digitized
DIs), comprehensive (i.e. it must well characterized and de-
tailed for ensuring in-depth evaluation) and flexibly struc-
tured (i.e. to facilitate a selection of sub-sets with specific
conditions).

Thus, in our experiments, we focus on real scanned HDIs.
100 images have been selected for historical document lay-
out analysis and HBR competitions as part of the improv-
ing access to text (IMPACT)2 project (an EU FP7 research
project) and in the context of ICDAR conference and HIP
workshop (2011 and 2013) [4, 5]. This dataset was called in
this work the “HBR2013 dataset”. The “HBR2013 dataset”
is composed of 100 binary, gray-scale or color HDIs which
have been digitized at 150/300 dpi (cf. Figure 4). We have
structured the “HBR2013 dataset” into two different cate-
gories differentiated by their content:

• 56 pages containing only text (cf. Figures 4(a), 4(b),
4(c) and 4(d)),

• 44 pages containing graphics and text (cf. Figures 4(e),
4(f), 4(g) and 4(h)).

The “HBR2013 dataset” which is used in different ICDAR
competitions has the following characteristics: large vari-
ability of page content (i.e. document pages are different in
writing and graphical style), complicated and complex page
layout (e.g. several columns with irregular sizes, dense print-
ing, irregular spacing, marginal notes), random alignment,
use of specific and multiple fonts and illustration styles, large
variability of editorial style and logical structure, presence of
embellishments, irregular spacings (e.g. between characters,
words, lines, paragraphs or margins), overlapping object
boundaries, varying text column widths, interspersed graph-
ics, frequent use of different kinds of graphics (e.g. orna-
ments, drop caps, frames, embellishments, portraits), noise
and degradation caused by copying, scanning or aging (e.g.
yellow pages, ink stains, mold or moisture, faded out ink,
uneven lighting due to folded, corrugated parchment or pa-
pyrus), superimposition of information layers (e.g. stamps,
handwritten notes at the margins, noise, back-to-front in-
terference, ink that was bleeding through, historical spelling
variants), page skew, scanning defects (e.g. curvature, light),

2http://impact-project.eu
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Only text

(a) (b) (c) (d)

Graphics and text

(e) (f) (g) (h)

Figure 4: HDI examples of the “HBR2013 dataset”.
Figures (a), (b), (c) and (d) illustrate few examples
of HDIs containing only textual content. Figures
(e), (f), (g) and (h) depict few examples of HDIs
containing graphical and textual content.

presence of black borders, etc. It is composed of several bi-
nary images. Moreover, few images had been digitized at
low resolution (cf. Figure 5(a)). Moreover, few images of
the “HBR2013 dataset” have copyright notices at bottom of
pages which may introduce an artificial information, there-
after inducing segmentation and characterization errors (cf.
Figure 5(b)).

3.1.2 Ground Truth
Although the issues of the realistic dataset availability and
broadband access to researchers for the performance evalua-
tion of contemporary DIs have been discussed and solved
by Antonacopoulos et al. [3], representative datasets of
HDIs are still hard to collect from several libraries. Then,
defining the associated ground truth of HDI corpus is still
not a straightforward task due to the HDI characteristics
(e.g. page skew, superimposition of information layers, such
as stamps, handwritten notes, noise, back-to-front interfer-
ence). These characteristics complicate the definition of the
appropriate and objective ground truth, the characteriza-
tion or segmentation of HDIs and make the processing of
this kind of DIs a difficult task.

Our ground truth has been manually outlined using rect-
angular regions drawn around each selected zone. The re-
gions have been ground truthed by zoning each content type
(i.e. each rectangular region has been classified into text or
graphics). Different labels for regions with different fonts
have been also defined in order to evaluate the ability of tex-
ture features to separate various text fonts. Ground truth
has been performed using the ground truthing editor, ground
truthing environment for document images (GEDI)3, a pub-
lic domain DI annotation tool that labels spatial boundaries
of regions [11]. By specifying rectangular regions on a DI

3http://gedigroundtruth.sourceforge.net/

(a) Binary images

(b) Copyright notices

Figure 5: Illustration of the limitations of the
“HBR2013 dataset”. Figure (a) shows few examples
of binary images, while Figure (b) depicts few im-
ages of the “HBR2013 dataset” which have copyright
notices at bottom of pages (zoomed regions on the
copyright notices at bottom of pages are also illus-
trated).

and assigning them to one of the many pre-defined content
types, GEDI generates an XML schema representing the lo-
cation on the page, height, width and label of each region
(cf. Figure 6). The ground truth has not been provided
for all images of the “HBR2013 dataset” by the IMPACT
research team (i.e. only six pages). Thus, the ground truth
of the “HBR2013 dataset” has been also carried out by using
the GEDI tool.

(a) Input image (b) Ground truth

Figure 6: Example of the defined ground truth . Fig-
ure (a) illustrates an example of a HDI (as an input
of the used domain DI annotation tool, GEDI). Fig-
ure (b) shows the specified and labeled rectangular
regions using GEDI. The graphical regions have red
labels (“label 1”) while the textual ones have blue
labels (“label 2”).

3.2 Evaluation and Results
By visual inspection of the obtained results of the proposed
enhancement and segmentation algorithm (cf. Figures 7(q),
7(r), 7(s) and 7(t)) for the HDIs from the“HBR2013 dataset”
(cf. Section 3.1.1), we note that the presented method in

http://gedigroundtruth.sourceforge.net/


this article provides satisfying results particularly in distin-
guishing the textual regions (green) from the graphical ones
(blue). In Figures 7(q), 7(r), 7(s) and 7(t), the selected
foreground pixels representing textual content are labeled
as green ones while those representing graphical and noise
content are labeled as blue ones. We note in Figure 7(s)
that the proposed method mis-classifies the horizontal net
and considers as textual content (green). Moreover, in Fig-
ure 7(q), we show that few foreground pixels in the drop cap,
which are located adjacent to textual content are mis-labeled
(green). This confusion can be explained by the limitations
of the Gabor-based method to separate spatially close dis-
tinct kinds of information (i.e. the vertical/horizontal spac-
ing is too small). Indeed, the Gabor features are extracted
for a specified range of frequency and direction values. Thus,
the performance of a Gabor-based method depends directly
on the layout document.

Then, in order to provide an additional analysis and get an
insight into the classification accuracy, a confusion matrix,
error matrix or contingency table (Mc) is computed through
the analysis of the testing set of the selected foreground su-
perpixels (cf. Table 1). From the Mc, several per-superpixel
classification accuracy metrics, including precision (P ), re-
call (R), F-score or F-measure (F ) and classification accu-
racy rate (CA) are performed in this work.

• The precision metric (P ) corresponds to the propor-
tion of the predicted cases that are correctly matched
to the benchmark classifications. It is considered as a
means of assessing the classification in terms of false
positives.

• The recall measure (R) indicates the proportion of
real cases that are correctly predicted. It is considered
a way to improve the classification.

• The F-measure (F ) can be computed as a score re-
sulting from the combination of the P and R accuracies
by using a harmonic mean. It assesses both the homo-
geneity and the completeness criteria of a clustering
result.

• The classification accuracy rate (CA) metric cor-
responds to the ratio of the true classified predicted
pixels and the total number of pixels [15, 21].

By analyzing the confusion matrix illustrated in Table 1,
whose elements represent the selected foreground superpix-
els, the individual class precision (Pi) and recall (Ri) are
computed, where i denotes the investigated class. Precision
is considered to be a means of assessing the classification
while recall is considered as a way of improving the classifi-
cation. We note that the graphical superpixels are classified
with 47%(P ) and 56%(R), while for the textual superpixels
we find 98%(P ) and 97%(R). Hence, the graphical class has
lower precision and recall. Thus, we show that the proposed
method tends to miss more graphical or noise superpixels
than textual ones by labeling graphical or noise superpixels
as belonging to the textual class. Thus, we note that the
proposed method is more relevant for the segmentation and
characterization of textual regions than graphical ones. This
confirms that there are less training samples from graphical

content. Moreover, the proposed method based on learning
Gabor features is adequate for textual content segmenta-
tion, since the Gabor descriptors are known to be sensitive
to the stroke width. In conclusion, the computed accuracy
classification values are very promising (cf. Table 2). 73%,
77%, 75% and 96% of per-superpixel precision (P ), recall
(R), F-measure (F ) and classification accuracy rate (CA)
are noted, respectively.

Table 1: Evaluation of the proposed method of HDI
enhancement and segmentation by calculating the
confusion matrix.

Ground truth

Graphic Text

Clustering Class 1 458673 525333 Ö P1 = 0.47

outcomes Class 2 366080 19326807 Ö P2 = 0.98

×
R1 = 0.56

×
R2 = 0.97

Table 2: Evaluation of the pixel labeling (i.e. text
and graphical pixels) by computing several classifi-
cation accuracy measures, precision (P ), recall (R),
F-measure (F ) and classification accuracy rate (CA).

Accuracy metric Value

Precision (P ) 0.73

Recall (R) 0.77

F-measure (F ) 0.75

Classification accuracy (CA) 0.96

4. DISCUSSION
The obtained results of the proposed method for enhance-
ment and segmentation of HDIs are relevant. Neverthe-
less, the fundamental question is if the proposed method for
enhancement and segmentation of HDIs has been assessed
properly or not. We should point out that the main techno-
logical bottleneck is the definition of an accurate and objec-
tive ground truth. Antonacopoulos et al. [6] stated that a
direct comparison between several algorithms is tough and
critical task for a variety of DIA applications due to the need
for a realistic data and the high requirement for an adequate
ground truth as well as the use of a set of objective evalua-
tion criteria. However, it is still hard to determine fairly the
different HDI content types. An important issue can also be
outlined which consists of the difficulty to take into account
the noisy foreground class when defining the ground truth
in the case of degraded HDIs. An and Baird [2] stipulated
that the pixel-wise classifiers rely on the accuracy of ground
truth annotations. Since the defined ground truth is not a
pixel-based one (i.e. it is defined by spatial boundaries of re-
gions with labels). This highlights the need for a pixel-based
ground truth. This issue has been also reported by Kumar
et al. [18] who outlined that the use of a zone-level ground
truth might have an influence on the accuracy of pixel-level
approach and particularly the recall measure.



In this work, the noise pixels have not been considered when
defining our ground truth. To the best of our knowledge,
there really is no defined pixel-based ground truth of HDIs
which takes account the noise pixels. It is not a straightfor-
ward task to define appropriate and objective ground truth
due to the characteristics of HDIs (e.g. page skew, superim-
position of information layers, such as stamps, handwritten
notes, noise, back-to-front interference). The first aspect of
future work will be to use a new computer-aided ground
truthing environment editor for creating and manipulating
automatically meta-data corresponding to regions of interest
on HDIs under consideration (i.e. to generate a pixel-based
ground truth including the noise pixels). Then, our results
will be improved if we include topographical or spatial re-
lationships in our algorithm. Furthermore, by integrating
a new processing stage after pixel labeling, which consists
of pixel grouping that takes into consideration the topo-
graphical relationships of pixels and their labels, e.g. some
operators from mathematical morphology, the classification
results should be improved.

5. CONCLUSIONS
The proposed method aims at enhancing and segmenting
the content of HDIs. Given that there are significant degra-
dations and no hypothesis concerning the layout, the graph-
ical properties or typographical parameters of the analyzed
HDI, the use of a texture analysis technique for HDI has
become an appropriate choice. The main idea of this arti-
cle is to ensure a graphic/text segmentation in HDIs by ex-
tracting and analyzing texture features independently of the
layout and content of the pages. A texture feature learning
phase is integrated in the proposed method that the label
of a foreground pixel is identified according to the textu-
ral characteristics of the different training sets of a num-
ber of HDI foreground pixels selected randomly from the
“HBR2013 dataset”.

This work has shown the effectiveness of the proposed HDI
enhancement and segmentation method on an experimental
corpus which is composed of 100 HDIs. The experimental
corpus is selected for historical document layout analysis
and historical book recognition competitions in the context
of ICDAR conference and HIP workshop. The proposed
method is parameter-free and applicable to a large variety
of HDIs. It does not assume a priori information regarding
HDI layout and content. It is based on GFs at varying
scale and an SVM classier trained on ground truth images
that have been pre-segemented using SLIC superpixlels. Our
future work will focusing on evaluating other classifiers such
as RBF kernel and other superpixel techniques.
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Figure 7: Examples of intermediate and resulting
“HBR2013 dataset” images of the proposed method
based on learning texture features for HDI enhance-
ment and segmentation.
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