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Abstract

Random sampling has become a critical tool in solving massive matrix problems. For linear
regression, a small, manageable set of data rows can be randomly selected to approximate a
tall, skinny data matrix, improving processing time significantly. For theoretical performance
guarantees, each row must be sampled with probability proportional to its statistical leverage
score. Unfortunately, leverage scores are difficult to compute. A simple alternative is to sample
rows uniformly at random. While this often works, uniform sampling will eliminate critical row
information for many natural instances.

We take a fresh look at uniform sampling by examining what information it does preserve.
Specifically, we show that uniform sampling yields a matrix that, in some sense, well approxi-
mates a large fraction of the original. While this weak form of approximation is not enough for
solving linear regression directly, it is enough to compute a better approximation.

This observation leads to simple iterative row sampling algorithms for matrix approximation
that run in input-sparsity time and preserve row structure and sparsity at all intermediate steps.
In addition to an improved understanding of uniform sampling, our main proof introduces a
structural result of independent interest: we show that every matrix can be made to have low
coherence by reweighting a small subset of its rows.

http://arxiv.org/abs/1408.5099v1


1 Introduction

Many fast, randomized algorithms for solving massive regression problems rely on the fundamental
building block of spectral approximation. For a tall, narrow data matrix A, these methods find
a shorter approximate data matrix, Ã, such that, for all vectors x, ‖Ãx‖2 ≈ ‖Ax‖2. A recent
explosion in work on this problem has lead to extremely fast algorithms, all of which rely on
variations of Johnson-Lindenstrauss random projections [CW13, MM13, NN12, LMP13].

By re-examining uniform sampling, a heuristic known to work for low coherence data, we give
spectral approximation algorithms that avoid projection entirely. Our methods are the first to
match state-of-the-art runtimes while preserving row structure and sparsity in all matrix operations.

It is known that for a data matrix A ∈ R
n×d, a spectral approximation can be obtained

by sampling O(d log d) rows, each with probability proportional to its statistical leverage score
[DMM06, SS08]. The leverage score of A’s ith row, ai, is τi = a⊤i (A

⊤A)+ai. A higher leverage
score indicates that ai is more important in composing the spectrum of A.

Unfortunately, leverage scores are difficult to calculate – finding them involves computing
(A⊤A)+, which is as slow as solving our regression problem in the first place! In practice, data
is often assumed to have low coherence [MT11], in which case simply selecting rows uniformly at
random works [AMT10, KMT12]. However, uniform sampling could be disastrous – if A contains
a row with some component orthogonal to all other rows, removing it will reduce the rank of A
and thus we cannot possibly preserve all vector products (‖Ãx‖2 will start sending some vectors
to 0). Any uniform sampling scheme is likely to drop any such single row.1

Possible fixes include randomly “mixing” data points to avoid degeneracies [AMT10]. However,
this approach sacrifices sparsity and structure in our data matrix, increasing storage and runtime
costs. Is there a more elegant fix? First note that sampling A by approximate leverage scores is
fine, but we may need to select more than the optimal O(d log d) rows. With that in mind, consider
the following straightforward algorithm for iterative sampling (inspired by [LMP13]):

Step 1 Reduce A significantly by sampling uniformly.

Step 2 Approximate (A⊤A)+ using the smaller matrix and estimate leverage scores for A.

Step 3 Resample rows from A using these estimates, obtaining a spectral approximation Ã.

Step 4 Repeat from Step 1 to reduce Ã further and obtain a smaller approximation.

While intuitive, this scheme was not previously known to work! Our main technical result is
proving that it does. This process (and related schemes) will quickly converge on a small spectral
approximation to A – i.e. with O(d log d) rows.

A few results come close to an analysis of such a routine – in particular, two iterative sampling
schemes are analyzed in [LMP13]. However, the first ultimately requires Johnson-Lindenstrauss
projections that mix rows, something we were hoping to avoid. The second almost maintains spar-
sity and row structure (except for possibly including rows of the identity in Ã), but its convergence
rate depends on the condition number of A.

More importantly, both of these results are similar in that they rely on the primitive that a
(possibly poor) spectral approximation to A is sufficient for approximately computing leverage
scores, which are in turn good enough for obtaining an even better spectral approximation. As

1When leverage score sampling, such a row would have the highest possible leverage score of 1.
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mentioned, uniform sampling will not in general give a spectral approximation – it does not preserve
information about all singular values. Our key contribution is a better understanding of what
information uniform sampling does preserve. It turns out that, although weaker than a spectral
approximation, the matrix obtained from uniform sampling can nonetheless give leverage score
estimates that are good enough to obtain increasingly better approximations to A.

1.1 Our Approach

Suppose we compute a set of leverage score estimates, {τ̃i}, using (Ã⊤Ã)+ in place of (A⊤A)+ for
some already obtained matrix approximation Ã. As long as our leverage score approximations are
upper bounds on the true scores (τ̃i ≥ τi) we can use them for sampling and still obtain a spectral
approximation to A [LMP13]. However, the number of samples we take will increase to

c · log d ·
n∑

i=1

τ̃i

where c is some fixed constant. Note that, when sampling by exact leverage scores, it can be shown
that

∑n
i=1 τi ≤ d so we take O(d log d) rows.

Thus, to prove that our proposed iterative algorithm works, we need to show that, if we uni-
formly sample a relatively small number of rows from A (Step 1) and estimate leverage scores
using these rows (Step 2), then the sum of our estimates will be small. Then, when we sample by
these estimated leverage scores in Step 3, we can sufficiently reduce the size of A. Note that we
will not aim to reduce A to O(d log d) height in one shot – we just need our leverage estimates to
sum to say, n/(2c log d), which allows us to cut the large matrix in half at each step.

In prior work, the sum of overestimates was bounded by estimating each leverage score to within
a multiplicative factor. This requires a spectral approximation, which is why previous iterative
sampling schemes could only boost poor spectral approximations to better spectral approximations.
Of course, a “for each” statement is not required, and we will not get one through uniform sampling.
Thus, our core result avoids this technique. Specifically, we show,

Theorem 1 (Leverage Score Approximation via Uniform Sampling). For any m, we can select
O(m) rows uniformly at random from A to obtain Ã. Then, letting {τ̃i} be a set of leverage score
estimates for A computed using Ã2, both of the following hold:

∀i, τ̃i ≥ τi,

E

[
n∑

i=1

τ̃i

]
≤ nd

m
.

The validity of our proposed iterative sampling scheme immediately follows from Theorem 1.
For example, if we set m = O(d log d) with a high enough constant, c log d

∑
τ̃i ≤ n

2 , allowing us
to cut our matrix in half. Alternatively, if we uniformly sample m = O(n) rows (say n/2) then
c log d

∑
τ̃i ≤ O(d log d), so we can cut our matrix down to O(d log d) rows. There is a convenient

tradeoff – the more rows uniformly sampled in Step 1, the more we can cut A down by in Step 3.
This tradeoff leads to natural recursive and iterative algorithms for row sampling.

2We decribe exactly how each τ̃i is computed when we prove Theorem 1 in Section 4.
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We give a proof of Theorem 1 using a clean expectation argument. By considering the estimated
leverage score for a row computed using our uniformly sampled matrix unioned with that row itself,
we can bound E τ̃i for all i.

Although not stated here for conciseness, we also prove versions of Theorem 1 with slightly
different guarantees (Theorems 3 and 4) using a technique that we believe is of independent interest.
It is well known that, if A has low coherence – that is, has a low maximum leverage score – then
uniform sampling from the matrix is actually sufficient for obtaining a full spectral approximation.
The uniform rate will upper bound the leverage score rate for every row. With this in mind, we
show a powerful fact: while many matrices do not have low coherence, for any A, we can decrease
the weight on a small subset of rows to make the matrix have low coherence. Specifically,

Lemma 1 (Coherence Reducing Reweighting). For any n× d matrix A and any coherence upper
bound α > 0 there exists a diagonal reweighting matrix W ∈ R

n×n with all entries in [0, 1] and just
(d/α) entries not equal to 1, such that:

∀i, τi(WA) ≤ α.

Intuitively, this lemma shows that uniform sampling gives a matrix that spectrally approximates
a large sub-matrix of the original data. It follows from our more general Theorem 2, which describes
exactly how leverage scores of A can be manipulated through row reweighting.

We never actually find W explicitly – simply its existence implies our uniform sampling theo-
rems! As explained, since WA has low coherence, uniform sampling would give a spectral approx-
imation to the reweighted matrix and thus a multiplicatively good approximation to each leverage
score. Thus, the sum of estimated leverage scores for WA will be low, i.e. < O(d). It can be shown
that, for any row that is not reweighted, the leverage score in A computed using a uniformly sam-
pled Ã, is never greater than the corresponding leverage score in WA computed using a uniformly
sampled W̃A. Thus, the sum of approximate leverage scores for rows in A that are not reweighted
is small by comparison to their corresponding leverage scores in WA. How about the rows that
are reweighted in WA? Lemma 1 claims there are not too many of these – we can trivially bound
their leverage score estimates by 1 and even then the total sum of estimated leverage scores will be
small.

This argument gives the result we need: even if a uniformly sampled Ã cannot be used to obtain
good per row leverage score upper bounds, it is sufficient for ensuring that the sum of all leverage
score estimates is not too high.

1.2 Road Map

Section 2 Survey prior work on randomized linear algebra and spectral matrix approximation.

Section 3 Review frequently used notation and important foundational lemmas.

Section 4 Prove that uniform sampling is sufficient for leverage score estimation (Theorem 1).

Section 5 Show the existence of small, coherence-reducing reweightings (Theorem 2, Lemma 1).

Section 6 Use this result to prove alternative versions of Theorem 1 (Theorems 3 and 4).

Section 7 Describe simple and efficient iterative algorithms for spectral matrix approximation.
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2 Background

2.1 Randomized Numerical Linear Algebra

In the past decade, fast randomized algorithms for matrix problems have risen to prominence.
Numerous results give improved running times for matrix multiplication, linear regression, and low
rank approximation – helpful surveys of this work include [Mah11] and [HMT11]. In addition to
asymptotic runtime gains, randomized alternatives to standard linear algebra tools tend to offer
significant gains in terms of data access patterns and required working memory.

Algorithms for randomized linear algebra often work by generically reducing problem size – large
matrices are compressed (using randomness) to smaller approximations which are processed deter-
ministically via standard linear algebraic methods. Methods for matrix reduction divide roughly
into two categories – random projection methods [CW09, CW13, MM13, NN12, Sar06] and sam-
pling methods [DKM04, DKM06a, DKM06b, DMM08, DM10, LMP13].

Random projection methods recombine rows or columns from a large matrix to form a much
smaller problem that approximates the original. Descending from the Johnson-Lindenstrauss
Lemma [JL84] and related results, these algorithms are impressive for their simplicity and speed –
reducing a large matrix simply requires multiplication by an appropriately chosen random matrix.

Sampling methods, on the other hand, seek to approximate large matrices by judiciously select-
ing (and reweighting) few rows or columns. Sampling itself is even simpler and faster than random
projection – the challenge becomes efficiently computing the correct measure of “importance” for
rows or columns. More important rows or columns are selected with higher probability.

2.2 Approximate Linear Regression

We focus on linear regression, i.e. solving overdetermined systems, which requires our matrix
reduction step to produce a spectral approximation Ã to the data matrix A. One possibility is
to obtain a (1 ± ǫ) approximation with O(d log d/ǫ2) rows, and to solve regression on the smaller
problem to give an approximate solution. To improve stablility and achieve log(1/ǫ) dependence,
randomized schemes can be combined with known iterative regression algorithms. These methods
only require a constant factor spectral approximation with O(d log d) rows and are addressed in
[AMT10, CRT11, CW13, MSM14, RT08].

When random projections are used, Ã = ΠA for some randomly generated matrix Π which
is known as a subspace embedding. Work on subspace embeddings goes back to [PTRV98] and
[Sar06]. Recent progress has significantly sped up the process of computing ΠA, leading to the
first input-sparsity time algorithms for linear regression (or nearly input-sparsity time if iterative
methods are employed) [CW13, MM13, NN12].

2.3 Row Sampling

As discussed, an alternative route to spectral matrix approximation is importance sampling. Specif-
ically, O(d log d/ǫ2) rows can be sampled with probability proportional to their leverage scores, as
suggested in [DMM06] and proved by Spielman and Srivastava [SS08]. Spielman and Srivastava
were specifically focused on spectral approximations for the edge-vertex incidence matrix of a graph.
This is more commonly referred to as spectral sparsification – a primitive that has been very impor-
tant in literature on graph algorithms. Each row in a graph’s (potentially tall) edge-vertex incident
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matrix corresponds to an edge and the row’s leverage score is exactly the edge’s weighted effective
resistance, whicth is used as the sampling probability in [SS08].

This application illustrates an important point: when applied to spectral graph sparsification,
it is critical that the A is compressed via sampling instead of random projection. Sampling ensures
that Ã contains only reweighted rows from A – i.e. it remains an edge-vertex incidence matrix. In
general, sampling is interesting because it preserves row structure. Even if that structure is just a
certain level of sparsity, it can reduce memory requirements and accelerate matrix operations.

While leverage scores for the edge-vertex incidence matrix of a graph can be computed quickly
[KMP10, ST04], in general, computing leverage scores requires evaluating (A⊤A)+, which is as
difficult as solving regression in the first place. Li, Miller, and Peng address this issue with methods
for iteratively computing good row samples [LMP13]. Their algorithms achieve input-sparsity time
regression, but are fairly involved and rely on intermediate operations that ultimately require
Johnson-Lindenstrauss projections, mixing rows and necessitating dense matrix operations. An
alternative approach from [LMP13] does preserve row structure (except for possible additions of
rows from the identity to intermediate matrices) but converges in a number of steps that depends
on A’s condition number.

3 Notation and Preliminaries

3.1 Singular Value Decomposition and Pseudoinverse

For any A ∈ R
n×d with rank r, we write the reduced singular value decomposition, A = UΣV⊤.

U ∈ R
n×r and V ∈ R

d×r have orthonormal columns and Σ ∈ R
r×r is diagonal and contains

the nonzero singular values of A. A⊤A = VΣU⊤UΣV⊤ = VΣ2V⊤. Let (A⊤A)+ denote the
Moore-Penrose pseudoinverse of A⊤A. (A⊤A)+ = V(Σ−1)2V⊤.

3.2 Spectral Approximation

For any λ ≥ 1, we say that Ã ∈ R
n′×d is a λ-spectral approximation of A ∈ R

n×d if, ∀x ∈ R
d

1

λ
‖Ax‖2 ≤ ‖Ãx‖2 ≤ ‖Ax‖2, or equivalently

1

λ
x⊤A⊤Ax ≤ x⊤Ã⊤Ãx ≤ x⊤A⊤Ax. (1)

Letting σi denote the ith singular value of a matrix, λ-spectral approximation implies:

∀i, 1

λ
σi(A) ≤ σi(Ã) ≤ σi(A).

So, a spectral approximation preserves the magnitude of matrix-vector multiplication with A, the
value of A⊤A’s quadratic form, and consequently, each singular value of A. For conciseness, we
sometimes write 1

λA
⊤A � Ã⊤Ã � A⊤A whereC � D indicates thatD−C is positive semidefinite.

Even more succinctly, Ã⊤Ã ≈λ A⊤A denotes the same condition.

3.3 Leverage Scores

The leverage score of the ith row a⊤i of A is:

τi(A)
def
= a⊤i (A

⊤A)+ai. (2)

5



We also define the related cross leverage score as τij(A)
def
= a⊤i (A

⊤A)+aj. Let τ (A) be a vector
containing A’s n leverage scores. τ (A) is the diagonal of A(A⊤A)+A⊤, which is a projection
matrix. Therefore, τi(A) = 1

⊤
i A(A⊤A)+A⊤

1i ≤ 1. In addition to this individual bound, because
A(A⊤A)+A⊤ is a projection matrix, the sum of A’s leverage scores is equal to the matrix’s rank:

n∑

i=1

τi(A) = tr(A(A⊤A)+A⊤) =
n∑

i=1

λi(A) = rank(A(A⊤A)+A⊤) = rank(A) ≤ d. (3)

A row’s leverage score measures how important it is in composing the row space of A. If a row has
a component orthogonal to all other rows, its leverage score is 1. Removing it would decrease the
rank of A, completely changing its row space. If all rows are the same, each has leverage score d/n.
The coherence of A is ‖τ (A)‖∞. If A has low coherence, no particular row is especially important.
If A has high coherence, it contains at least one row whose removal would significantly affect the
composition of A’s row space. A characterization that helps with this intuition follows:

Lemma 2. For all A ∈ R
n×d and i ∈ [n] we have that

τi(A) = min
A⊤x=ai

‖x‖22.

Let xi denote the optimal x for ai. The jth entry of xi is given by x
(j)
i = τij(A).

Proof. For the solution xi to have minimal norm, we must have xi ⊥ ker(A⊤). Thus, xi ∈ im(A)
and we can write xi = Ac for some c ∈ R

d. Using the constraints of the optimization problem
we have that A⊤xi = A⊤Ac = ai. Thus c = (A⊤A)

+
ai, so xi = A(A⊤A)

+
ai. This gives

x
(j)
i = a⊤j (A

⊤A)
+
ai = τij(A). Furthermore:

‖xi‖22 = a⊤i (A
⊤A)

+
A⊤A(A⊤A)

+
ai

= a⊤i (A
⊤A)

+
ai = τi(A).

We often approximate the leverage scores of A by computing them with respect to some other
matrix B ∈ R

n′×d. We define the generalized leverage score:

τBi (A)
def
=

{
a⊤i (B

⊤B)+ai if ai ⊥ ker(B),

∞ otherwise.
(4)

If ai has an component in ker(B), we set its generalized leverage score to ∞, since it might
be the only row in A pointing in this direction. Thus, when sampling rows, we cannot remove it.
We could set the generalized leverage score to 1, but using ∞ simplifies notation in some of our
proofs. If B is a spectral approximation for A, then every generalized leverage score is a good
multiplicative approximation to its corresponding true leverage score:

Lemma 3 (Leverage Score Approximation via Spectral Approximation - Lemma 4.3 of [LMP13]). If
B is a λ-spectral approximation of A, so 1

λA
⊤A � B⊤B � A⊤A, then τi(A) ≤ τBi (A) ≤ λ · τi(A).

Proof. This follows simply from the definition of leverage scores and generalized leverage scores
and the fact that 1

λA
⊤A � B⊤B � A⊤A implies λ(A⊤A)+ � (B⊤B)+ � A⊤A.
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3.4 Leverage Score Sampling

Sampling rows from A according to their exact leverage scores gives a spectral approximation for
A with high probability. Sampling by leverage score overestimates also suffices. Formally:

Lemma 4 (Spectral Approximation via Leverage Score Sampling). Given an error parameter
0 < ǫ < 1, let u be a vector of leverage score overestimates, i.e., τi(A) ≤ ui for all i. Let α be a
sampling rate parameter and let c be a fixed positive constant. For each row, we define a sampling
probability pi = min{1, α ·uic log d}. Furthermore, let Sample(u, α) denote a function which returns
a random diagonal matrix S with independently chosen entries. Sii =

1√
pi

with probability pi and 0

otherwise.
If we set α = ǫ−2, S = Sample(u, ǫ−2) has at most

∑
imin{1, α · uic log d} ≤ αc log d‖u‖1 non-

zero entries and 1√
1+ǫ

SA is a 1+ǫ
1−ǫ-spectral approximation for A with probability at least 1− d−c/3.

For completeness, we prove Lemma 4 in Appendix A using a matrix concentration result of [Tro12].

4 Leverage Score Estimation via Uniform Sampling

In this section, we prove Theorem 1 using a simple expectation argument. We restate a more
complete version of the theorem below:

Theorem 1 (Full Statement). Given any A ∈ R
n×d. Let S denote a uniformly random sample of

m rows from A and let S ∈ R
n×n be its diagonal indicator matrix (i.e. Sii = 1 for i ∈ S, Sii = 0

otherwise). Define

τ̃i
def
=




τSAi (A) if i ∈ S,

1
1+ 1

τSA
i

(A)

otherwise.

Then, τ̃i ≥ τi(A) for all i and

E

[
n∑

i=1

τ̃i

]
≤ nd

m
.

Proof. First we show that our estimates are valid leverage score upper bounds, i.e. τ̃i ≥ τi(A). Let
S(i) be the diagonal indicator matrix for S ∪ {i}. We claim that, for all i,

τ̃i = τS
(i)

A

i (A) . (5)

This is proved case-by-case:

1. When i ∈ S, S = S(i) so it holds trivially.

2. When i /∈ S and ai 6⊥ ker(SA), then by definition, τSAi (A) = ∞ and τ̃i = 1
1+ 1

∞

= 1 =

τS
(i)

A
i (A).
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3. When i /∈ S and ai ⊥ ker(SA) then by the Sherman-Morrison formula for pseudoinverses
[Mey73, Thm 3],

τS
(i)A

i (A) = a⊤i
(
A⊤S2A+ aia

⊤
i

)+
ai

= a⊤i

((
A⊤S2A

)+
−
(
A⊤S2A

)+
aia

⊤
i

(
A⊤S2A

)+

1 + a⊤i (A⊤S2A)
+
ai

)
ai

(Sherman-Morrison formula)

= τSAi (A)− τSAi (A)2

1 + τSAi (A)
=

1

1 + 1
τSA

i
(A)

= τ̃i.

By (5) and the fact that A⊤S(i)2A � A⊤A (see Lemma 3), we have τ̃i = τS
(i)

A
i (A) ≥ τi(A), so

our estimates are upper bounds as desired. It remains to upper bound the expected sum of τ̃i. We
can break down the sum as

n∑

i=1

τ̃i =
∑

i∈S
τ̃i +

∑

i 6∈S
τ̃i.

The first term is simply the sum of SA’s leverage scores, so it is equal to rank(SA) ≤ d by (3).
To bound the second term, consider a random process that first selects S, then selects a random
row i 6∈ S and returns τ̃i. There are always exactly n−m rows 6∈ S, so the value returned by this
random process is, in expectation, exactly equal to 1

n−m · E
∑

i 6∈S τ̃i.
This random process is also equivalent to randomly selecting a set S′ of m + 1 rows, then

randomly choosing a row i ∈ S′A and returning its leverage score! In expectation it is therefore
equal to the average leverage score in S′A. S′A has m+ 1 rows and its leverage scores sum to its
rank, so we can bound its average leverage score by d

m+1 . Overall we have:

E

[
n∑

i=1

τ̃i

]
≤ d+ (n−m) · d

m+ 1
≤ d(n+ 1)

m+ 1
≤ nd

m
.

5 Coherence Reducing Reweighting

In this section, we prove Theorem 2, which shows that we can reweight a small number of rows
in any matrix A to make it have low coherence. This structural result may be of independent
interest. It is also fundamental in proving Theorem 3, a slightly stronger and more general version
of Theorem 1 that we will prove in Section 6.

Actually, for Theorem 2 we prove a more general statement, studying how to select a diagonal
row reweighting matrix W to arbitrarily control the leverage scores of WA. One simple conjecture
would be that, given a vector u, there always exists a W such that τi(WA) = ui. This conjecture is
unfortunately not true - if A is the identity matrix, then τi(WA) = 0 if Wii = 0 and τi(WA) = 1
otherwise. Instead, we show the following:

8



Theorem 2 (Leverage Score Bounding Row Reweighting). For any A ∈ R
n×d and any vector

u ∈ R
n with ui > 0 for all i, there exists a diagonal matrix W ∈ R

n×n with 0 �W � I such that:

∀i, τi (WA) ≤ ui, (6)

and

∑

i:Wii 6=1

ui ≤ d. (7)

Note that (6) is easy to satisfy – it holds if we set W = 0. Hence, the main result is the
second claim . Not only does a W exist that gives the desired leverage score bounds, but it is only
necessary to reweight rows in A with a low total weight in terms of u.

For any incoherence parameter α, if we set ui = α for all i, then this theorem shows the existence
of a reweighting that reduces coherence to α. Such a reweighting has

∑
i:Wii 6=1 α ≤ d and therefore

|{i : Wii 6= 1}| ≤ d
α . So, we see that Lemma 1 follows as a special case of Theorem 2.

In order to prove Theorem 2, we first give two technical lemmas which are proved in Appendix A.
Lemma 5 describes how the leverage scores of A evolve when a single row of A is reweighted. We
show that, when we decrease the weight of a row, that row’s leverage score decreases and the
leverage score of all other rows increases.

Lemma 5 (Leverage Score Changes Under Rank 1 Updates). Given any A ∈ R
n×d, γ ∈ (0, 1),

and i ∈ [n], let W be a diagonal matrix such that Wii =
√
1− γ and Wjj = 1 for all j 6= i. Then,

τi (WA) =
(1− γ) τi (A)

1− γτi (A)
≤ τi (A) ,

and for all j 6= i,

τj (WA) = τj (A) +
γτij (A)2

1− γτi (A)
≥ τj (A) .

Next we claim that leverage scores are lower semi-continuous in the weighting of the rows. This
allows us to reason about weights that arise as the limit of Algorithm 1 for computing them.

Lemma 6 (Leverage Scores are Lower Semi-continuous). τ (WA) is lower semi-continuous in the

diagonal matrix W, i.e. for any sequence W(k) →W with W
(k)
ii ≥ 0 for all k and i, we have

τi
(
WA

)
≤ lim inf

k→∞
τi

(
W(k)A

)
.

With Lemmas 5 and 6 in place, we are ready to prove the main reweighting theorem.

Proof of Theorem 2. We prove the existence of the required W by considering the limit of the
following algorithm for computing a reweighting matrix.
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Algorithm 1 Compute Reweighting (a.k.a the whack-a-mole algorithm)

Initialize W = I

while true do

for i = 1 to n do

if τi(WA) ≥ ui then
if τi(WA) < 1 then

Decrease Wii so that τi(WA) = ui.
else

Set Wii = 0
end if

end if

end for

end while

return W

For all k ≥ 0, let W(k) be the value of W after the kth update to the weight. We show that
W = limk→∞W(k) meets the conditions of Theorem 2. First note that Algorithm 1 is well defined
and that all entries of W(k) are non-negative for all k ≥ 0. To see this, suppose we need to decrease

W
(k)
ii so that τi(W

(k+1)A) = ui. Note that the condition τi(W
(k)A) < 1 gives

lim
γ→1

(1− γ) τi
(
W(k)A

)

1− γτi
(
W(k)A

) = 0.

Therefore, Lemma 5 shows that we can make τi(W
(k+1)A) arbitrary small by setting γ close enough

to 1. Since the leverage score for row i is continuous, this implies that W(k+1) exists as desired.
Since, the entries of W(k) are non-negative and decrease monotonically by construction, clearly

W exists. Furthermore, since setting Wii = 0 makes τi(WA) = 0, we see that, by construction,

lim inf
k→∞

τi

(
W(k)A

)
≤ ui for all i ∈ [n].

Therefore, by Lemma 6 we have that τi(WA) ≤ ui.

It only remains to show that
∑

i:Wii 6=1 ui ≤ d. Let k be the first iteration such that W
(k)
ii 6= 1

for any i such that Wii 6= 1. Let S ⊆ [n] be the set of rows such that W
(k)
ii = 0 and let

T = {i : Wii 6= 1} − S. Since decreasing the weight of one row increases the leverage scores of all
other rows, we have

∑

i∈T∪S
ui ≤

∑

i∈T
τi

(
W(k)A

)
+
∑

i∈S
1

≤ rank
(
W(k)A

)
+ |S| .

When we set Wii = 0, it must be the case that τi(WA) = 1. In this case, removing the ith row
decreases the rank of WA by 1 and hence rank(W(k)A) ≤ d− |S|. Therefore,

∑

i:Wii 6=1

ui =
∑

i∈T∪S
ui ≤ d.
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6 Leverage Score Approximation via Undersampling

Theorem 1 alone is enough to prove that a variety of iterative methods for spectral matrix approxi-
mation work. However, in this section we prove Theorem 3, a slight strengthening and generalization
that improves runtime bounds, proves correctness for some alternative sampling schemes, and gives
some more intuition for why uniform sampling allows us to obtain leverage score estimates with
low total sum.

Theorem 3 relies on Theorem 2, which intuitively shows that a large fraction of our matrix A

has low coherence. Sampling rows uniformly will give a spectral approximation for this portion of
our matrix. Then, since few rows are reweighted in WA, even loose upper bounds on the leverage
scores for those rows will allow us to bound the total sum of estimated leverage scores when we
sample uniformly.

Formally, we show an upper bound on the sum of estimated leverage scores obtained from
undersampling A according to any set of leverage score upper bounds. Uniform sampling A can
simply be viewed as undersamplingA when all we know is that each leverage score is upper bounded
by 1. That is, in the uniform case, we set u = 1.

The bound in Theorem 3 holds with high probability, rather than in expectation like the bound
in Theorem 1. This gain comes at a cost of requiring our sampling rate to be higher by a factor of
log d. At the end of this section we show how the log d factor can be removed at least in the case
of uniform sampling, giving a high probability statement that matches the bound of Theorem 1.

Theorem 3 (Leverage Score Approximation via Undersampling). Let u be a vector of leverage
score overestimates, i.e., τi(A) ≤ ui for all i. For some undersampling parameter α ∈ (0, 1], let

S′ =
√
α
√

3
4 · Sample (u, 9α). Let u

(new)
i = min{τS′A

i (A), ui}. Then, with high probability, u
(new)
i is

a leverage score overestimate, i.e. τi(A) ≤ u
(new)
i , and

n∑

i=1

u
(new)
i ≤ 3d

α
.

Furthermore, S′ has O (α ‖u‖1 log d) nonzeros.

Proof. Let S =
√

3
4 · Sample (u, 9). Since u is a set of leverage score overestimates, Lemma 4 (with

ǫ = 1/3) shows that, with high probability,

A⊤S2A � A⊤A.

In Sample, when we include a row, we reweight it by 1/
√
pi. For S

′ =
√
α
√

3
4 · Sample (u, 9α),

we sample at a rate lower by a factor of α as compared with S, so we weight rows by a factor of
1√
α
higher. The

√
α multiplied by S′ makes up for this difference. Thus, S′ is equivalent to S with

some rows removed. Therefore:

A⊤S′2A � A⊤S2A � A⊤A.

So, for all i, τi(A) ≤ τS
′
A

i (A). By assumption τi(A) ≤ ui, so this proves that τi(A) ≤ u
(new)
i .

11



By Theorem 2, there is a diagonal matrixW such that τi(WA) ≤ αui for all i and
∑

i:Wii 6=1 αui ≤
d. For this W, using the fact that u

(new)
i = min{τS′A

i (A), ui}, we have

n∑

i=1

u
(new)
i ≤

∑

i:Wii 6=1

ui +
∑

i:Wii=1

τS
′
A

i (A)

≤ d

α
+

∑

i:Wii=1

τS
′
A

i (A)

=
d

α
+

∑

i:Wii=1

τS
′A

i (WA). (8)

Using W � I, we have
τS

′
A

i (WA) ≤ τS
′
WA

i (WA). (9)

Now, note that S′ =
√
α
√

3
4 ·Sample (u, 9α) =

√
α
√

3
4 ·Sample (αu, 9). Since αu is an overestimate

of leverage scores for WA, Lemma 4 (again with ǫ = 1/3) shows that α· 12A⊤W2A � A⊤WS′2WA.
Hence (9) along with Lemma 3 shows that

τS
′A

i (WA) ≤ 2

α
τi(WA).

Combining with (8), we have

n∑

i=1

u
(new)
i ≤ d

α
+

2

α

∑

i:Wii=1

τi(WA)

≤ d

α
+

2d

α
≤ 3d

α
.

Choosing an undersampling rate α is equivalent to choosing a desired sampling rate and setting
α accordingly. From this perspective, it is clear that the above theorem gives an extremely simple
way to iteratively improve leverage scores. Start with u(1) with ‖u(1)‖1 = s1. Undersample at
rate 6d

s1
to obtain a sample of size O(d log d), which gives new leverage score estimates u(2) with

‖u(2)‖1 = 3d
6d/s1

= s1
2 . Repeat this process, cutting the sum of leverage score estimates in half with

each iteration. Recall that we restrict α < 1, so once the sum of leverage score estimates converges
on O(d), this halving process halts – as expected, we can not keep cutting the sum further.

6.1 Improved Bound for Uniform Sampling

The algorithm just described corresponds to Algorithm 3 in Section 7 and differs somewhat from
approaches discussed earlier (e.g. our proposed iterative algorithm from Section 1). It always
maintains a sample of just O(d log d) rows that is improved iteratively.

Consider instead sampling few rows from A with the goal of estimating leverage scores well
enough to obtain a spectral approximation with n/2 rows. In the uniform sampling case, when
u = 1, if we set α = d log d

6n for example, then sampling O(α‖u‖1 log d) = O(d log2 d) rows uniformly
will give us leverage score estimates summing to n

2 log d . This is good enough to cut our original

12



matrix in half. However, we see that we have lost a log d factor to Theorem 1, which let us cut
down to expected size n

2 by sampling just O(d log d) rows uniformly.
At least when u = 1, this log d factor can be eliminated. In Theorem 3, we set S′ =

√
α
√

3
4 · Sample (u, 9α), meaning that rows selected for S′ are included with weight

√
α
√

3
4 · 1√

pi
=

√
3α

4·min{1,9αc log d} . Instead of reweighting rows, consider simply setting all non-zero values in S′ to

be 1. We know that our leverage score estimates will still be overestimates as we still have S′ � I

and so A⊤S′2A � A⊤A. Further
Formally, consider two cases:

1. (1 ≤ 9αc log d). In this case, S′A is simply A itself, so we know our leverage score estimates
are exact and thus their sum is ≤ d. We can use them to obtain a spectral approximation
with O(d log d) rows.

2. (1 > 9αc log d). In this case, we reweight rows by
√
α
√

3
4 · 1√

pi
=
√

3α
4·9αc log d =

√
3

4·9c log d .

Thus, increasing weights in S′ to 1 will reduce leverage score estimates by a factor of 3
4·9c log d .

So overall we have:

n∑

i=1

u
(new)
i ≤

∑

i:Wii 6=1

ui +
∑

i:Wii=1

τS
′
A

i (A)

≤ |{i : Wii 6= 1}|+ 3

4 · 9c log d ·
2d

α
.

Recall from Lemma 4 that sampling by u(new) actually gives a matrix with
∑

i min{1, u(new)
i ·

ǫ−2c log d} rows. Thus, we obtain a 1+ǫ
1−ǫ -spectral approximation to A with the following

number of rows:

|{i : Wii 6= 1}|+ ǫ−2c log d · 3

4 · 9c log d ·
2d

α
≤ d

α
+

ǫ−2d

6α
.

Setting α = m
n·9c log d for some m ≤ n so that Sample(1, 9α) samples rows at rate m/n yields the

following theorem:

Theorem 4. Given A ∈ R
n×d, suppose we sample rows uniformly and independently at rate m

n ,
without reweighting, to obtain SA. Computing τ̃i = min{1, τSAi (A)} for each row and resampling
from A by these estimates will, with high probability, return a 1+ǫ

1−ǫ -spectral approximation to A with

at most O(nd log dǫ
−2

m ) rows.

Choosing m = O(d log d) allows us to find a spectral approximation of size n
2 , as long as

O(d log d) < n. This matches the bound of Theorem 1, but holds with high probability.

7 Applications to Row Sampling Algorithms

As discussed in the introduction, Theorems 1, 3, and 4 immediately yield new, extremely simple
algorithms for spectral matrix approximation. For clarity, we initially present versions running in
nearly input-sparsity time. However, we later explain how our first algorithm can be modified with
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standard techniques to remove log factors, achieving input-sparsity time and thus matching state-of-
the-art results [CW13, MM13, NN12]. Our algorithms rely solely on row sampling, which preserves
matrix sparsity and structure, possibly improving space usage and runtime for intermediate system
solves.

7.1 Algorithm Descriptions

The first algorithm we present, Repeated Halving, is a simple recursive procedure. We uniformly
sample n

2 rows from A to obtain A′. By Theorems 1 and 4, estimating leverage scores of A with
respect to this sample allows us to immediately find a spectral approximation to A with O(d log d)
rows. Of course, A′ is still large, so computing these estimates would be slow. Thus, we recursively
find a spectral approximation of A′ and use this to compute the estimated leverage scores.

Algorithm 2 Repeated Halving

input: n× d matrix A

output: spectral approximation Ã consisting of O(d log d) rescaled rows of A

1: Uniformly sample n
2 rows of A to form A′

2: If A′ has > O(d log d) rows, recursively compute a spectral approximation Ã′ of A′

3: Compute approximate generalized leverage scores of A w.r.t. Ã′

4: Use these estimates to sample rows of A to form Ã

5: return Ã

The second algorithm, Refinement Sampling, makes critical use of Theorem 3, which shows
that, given a set of leverage score upper bounds, we can undersample by these estimates and still
significantly improve their quality with each iteration. We start with all of our leverage score upper
bounds set to 1 so we have ‖τ̃‖1 = n. In each iteration, we sample O(d log d) rows according to our

upper bounds, meaning that we undersample at rate α = O
(

d
‖τ̃‖1

)
. By Theorem 3, we cut ‖τ̃‖1

by a constant fraction in each iteration. Thus, within log(n) rounds, ‖τ̃‖1 will be O(d) and we can
simply use our estimates to directly obtain a spectral approximation to A with O(d log d) rows.

Algorithm 3 Refinement Sampling

input: n× d matrix A

output: spectral approximation Ã consisting of O(d log d) rescaled rows of A

1: Initialize a vector of leverage score upper bounds, τ̃ , to 1

2: while ‖τ̃‖1 > O(d) do
3: Undersample O(d log d) rows of A with probabilities proportional to τ̃ to form Ã

4: Compute a vector u of approximate generalized leverage scores of A w.r.t. Ã
5: Set τ̃i = min(τ̃i, ui)
6: end while

7: Use the final τ̃ to sample O(d log d) rows from A to form Ã

8: return Ã
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7.2 Runtime Analysis

In analyzing the runtimes of these algorithms, we assume n = O(poly(d)), which is a reasonable
assumption for any practical regression problem.3 Furthermore, we use the fact that a d×d system
can be solved in time dω, where ω is the matrix multiplication exponent. However, we emphasize
that, depending on the structure and sparsity of A, alternative system solving methods may yield
faster results or runtimes with different trade offs. For example, if the rows of A are sparse, solving
a system in Ã, where Ã consists of O(d log d) rescaled rows from A may be accelerated by using
iterative conjugate gradient, or other Krylov subspace methods (which can also avoid explicitly
computing Ã⊤Ã) . It is best to think of dω as the runtime of the fastest available system solver in
your domain, and the quoted runtimes as general guidelines that will change somewhat depending
on exactly how the above algorithms are implemented.

First, we give an important primitive showing that estimates of generalized leverage scores can
be computed efficiently. Computing exact generalized leverage scores is slow and we only need
constant factor approximations, which will only increase our sampling rates and hence number of
rows sampled by a constant factor.

Lemma 7. Given B containing O(d log d) rescaled rows of A, for any θ > 0, it is possible to
compute an estimate of τB(A), τ̃ , in O(dω log d+ nnz(A)θ−1) time such that, w.h.p. in d, for all
i, τ̃i ≥ τBi (A) and τ̃i ≤ dθτBi (A).

By setting θ = O( 1
log d), we can obtain constant factor approximations to generalized leverage

scores in time O(dω log d+ nnz(A) log d).

Proof Sketch. Lemma 7 follows from a standard technique that uses Johnson-Lindenstrauss pro-
jections [AT11, LMP13, SS08]. Presuming ai ⊥ ker(B), the general idea is to write τ

B
i (A) =

a⊤i (B
⊤B)+ai = ‖B(B⊤B)+ai‖22. If we instead compute ‖GB(B⊤B)+ai‖22, where G is a random

Gaussian matrix with O(θ−1) rows, then by the Johnson-Lindenstrauss Lemma, with high proba-
bility, the approximation will be within a dθ factor of ‖B(B⊤B)+ai‖22 for all i (See Lemma 4.5 of
[LMP13]).

The naive approach requires multiplying every row by (B⊤B)+, which has height d and would
thus incur cost nnz(A)d. Computing GB(B⊤B)+ takes at most O(nnz(A)θ−1) time to compute
GB, and O(dω log d) time to compute (B⊤B) and invert it. It then takes less than time O(dω) to
multiply these two matrices. With GB(B⊤B)+ in hand, we just need to multiply by each row in A

to obtain our generalized leverage scores, which takes time O(nnz(A)θ−1). If we use an alternative
system solver instead of explicitly computing (B⊤B)+, the JL reduction means we only need to
solve O(θ−1) systems in B to compute GB(B⊤B)+ (one for each row of G).

A slight modification is needed to handle the case when ai 6⊥ ker(B) – we need to check whether
the vector has a component in the null-space of B. There are a variety of ways to handle this
detection. For example, we can choose a random gaussian vector g and compute g − (B⊤B)+Bg.
This gives a random vector in the null space of B, so computing its dot product with any row ai
will tell us (with probability 1) whether ai is orthogonal to the null space or not.

With this primitive in place, we can analyze the runtime of our two algorithms. For simplicity,
we just give runtimes for computing a constant factor spectral approximation to A. Such an
approximation is sufficient for use as a preconditioner in iterative regression algorithms [AMT10,

3A simple method for handling even larger values of n is outlined in [LMP13].
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CW13, RT08]. Furthermore, it allows us to compute leverage scores of A up to a constant factor,
from which we can sample rows to directly obtain a (1+ ǫ) approximation with O(d log dǫ−2) rows.
By Lemma 7 the runtime of this final refinement is just O(nnz(A) log d+ dω log d).

Lemma 8. Repeated Halving (Algorithm 2) runs in O(nnz(A) log d + dω log(n/d) log d) time,
outputting a matrix with Ã with O(d log d) rows such that Ã⊤Ã ≈2 A

⊤A.

Proof. The proof is by induction – it suffices to show that the work done at the top level is
O(nnz(A) log d+dω log d). At each of the O(log(n/d)) levels of recursion, we cut our matrix in half
uniformly so nnz(A) will also be cut approximately in half with high probability.

By Theorem 4, sampling by τA
′

i (A) allows us to obtain Ã with O(d log d) rows. If we instead
use Ã′, our estimated leverage scores increase by at most a constant factor (since Ã′ is a constant
factor spectral approximation to A′). Furthermore, using Lemma 7 to approximate generalized
leverage scores increases our estimates by another constant factor at most. Overall, Ã will have
O(d log d) rows as desired and our runtime at the top level is just the runtime of estimating leverage
scores from Lemma 7 – O(nnz(A) log d+ dω log d).

Lemma 9. Refinement Sampling (Algorithm 3) runs in O(nnz(A) log(nd ) log d+dω log(nd ) log d)

time, outputting a matrix with Ã with O(d log d) rows such that Ã⊤Ã ≈2 A
⊤A.

Proof. The row count of Ã and the fact that it spectrally approximates A follows from the ter-
mination condition and Lemma 4. By Lemma 7, each iteration runs in O(nnz(A) log d+ dω log d)
time. Thus it suffices to show that the algorithm terminates after O(log(n/d)) iterations. At each
iteration, we undersample by a factor α = c·d

‖τ̃‖1
for some constant c. So by Theorem 3, ‖τ̃‖1

decreases to 3d
α = 3‖τ̃‖1

c . Setting c = 6, we cut ‖τ̃ ‖1 in half each time. Since we start with ‖τ̃‖1 = n
and stop when ‖τ̃‖1 = O(d), we terminate in O(log(n/d)) iterations.

7.3 Achieving Input Sparsity Time

We briefly note that, using techniques from [LMP13], it is possible to remove the log d factor on
the nnz(A) term to achieve true input-sparsity time with Repeated Halving. The general idea is
that, instead of using Lemma 7 to estimate generalized leverage scores from up to a constant factor
using A′, we only estimate them up to a dθ factor for some constant 0 < θ < 1. Using these rough
estimates, we obtain Ã with O(d1+θ log d) rows. Then, for the rows in Ã, we can again compute
generalized leverage scores with respect to A′, now up to constant factors, and reduce down to just
O(d log d) rows. In total, each iteration will take time O(θ−1 nnz(A) + dω log d + d2+θ log2 d), so
obtaining a constant factor approximation to A takes time O(θ−1 nnz(A)+ dω log2 d+ d2+θ log3 d).
Recall that we assume n = poly(d), so we have log(n/d) = O(log d) iterations.

In order to obtain a (1+ ǫ)-spectral approximation with only O(d log dǫ−2) rows, we first obtain
a constant factor approximation, Ã, with O(d log d) rows. We then use leverage scores estimated
with Ã to compute a (1 + ǫ/2) approximation to A with O(d1+θ log dǫ−2) rows. Finally, we again
use leverage scores estimated with Ã and Lemma 7 with θ = O(1/ log d) to a compute a (1 +
ǫ/2) approximation to this smaller matrix with only O(d log dǫ−2) rows. This takes total time
O(θ−1 nnz(A) + dω log d + d2+θ log2 dǫ−2). The d2+θ log2 dǫ−2 comes from applying Lemma 7 to
refine our second approximation, which has O(d1+θ log dǫ−2) rows and thus at most O(d2+θ log dǫ−2)
nonzero entries. Overall, the technique yields:
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Lemma 10. Given any constant 0 < θ ≤ 1, and any error 0 ≤ ǫ < 14, w.h.p. in d we can compute
a matrix Ã with O(d log dǫ−2) rows such that Ã⊤Ã ≈1+ǫ A

⊤A in O(nnz(A)+ dω log2 d+ d2+θǫ−2)
time.

As is standard, log d factors on the d2+θ term are ‘hidden’ as we can just slightly increase the
value of θ to subsume them. The full tradeoff parameterized by θ is:

O(θ−1 nnz(A) + dω log2 d+ d2+θ(log3 d+ log2 dǫ−2)).

7.4 General Sampling Framework

It is worth mentioning that Algorithms 2 and 3 are two extremes on a spectrum of algorithms
between halving and refinement sampling. Generically, the full space of algorithms can be summa-
rized using the pseudocode in Algorithm 4. For notation, note that A always refers to our original
data matrix. Â is the data matrix currently being processed in the recursive call to Algorithm 4.

Algorithm 4 Generic Row Sampling Scheme

input: original n× d matrix A, current n̄× d matrix Â.
output: approximation Ã consisting of O(d log d) rescaled rows of A

1: Uniform sample n1 rows of Â, A1

2: Approximate A1 with a row sample, A2, recursively
3: Estimate generalized leverage scores using A2 and use them to sample n3 rows of either Â or

A itself to obtain A3

4: Approximate A3 with a row sample, A4, recursively
5: return A4

Different choices for n1 and n3 lead to different algorithms. Note that the last recursion to
approximate A4 has error build up incurred from sampling to create A3. As a result, this generic
scheme has error buildup, but it can be removed by sampling w.r.t. A instead of Â.

Note that if we choose n1 = O(d log d), we can simply set A2 ← A1, and the first recursive
call in Line 2 is not necessary. Also, Theorem 3 gives that, if we pick n1 sufficiently large, n3 can
be bounded by O(d log d). This would then remove the last recursive call to compute A4. Such
modifications lead to head and tail recursive algorithms, as well as a variety of intermediate forms:

1. Head recursive algorithm, n1 = n/2, giving Algorithm 2 (Repeated Halving).

2. Tail recursive algorithm, n1 = d log d, n3 = n
2 , sampled w.r.t. Â. At each step error com-

pounds so setting error to 1
logn per step gives a constant factor approximation.

3. n1 = d log d, n3 = d log d, sampled w.r.t. A, giving Algorithm 3 (Refinement Sampling).

4. For situations where iterations are expensive, e.g. MapReduce, a useful choice of parameters
is likely n1 = n3 = O(

√
nd log d), This allows one to compute A2 and A4 without recursion,

while still giving speedups.

4If ǫ < 1/poly(d), then O(d log dǫ−2) > n, so we can trivially return Ã = A in O(nnz(A)) time.
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A Properties of Leverage Scores

A.1 Spectral Approximation via Leverage Score Sampling

Here we prove Lemma 4, which states that it is possible to obtain a spectral approximation by
sampling rows fromA independently with probabilities proportional to leverage score overestimates.

Lemma 4 (Spectral Approximation via Leverage Score Sampling). Given an error parameter
0 < ǫ < 1, let u be a vector of leverage score overestimates, i.e., τi(A) ≤ ui for all i. Let α be a
sampling rate parameter and let c be a fixed positive constant. For each row, we define a sampling
probability pi = min{1, α ·uic log d}. Furthermore, we define a function Sample(u, α), which returns
a random diagonal matrix S with independently chosen entries. Sii =

1√
pi

with probability pi and 0

otherwise.
Setting α = ǫ−2, S has at most

∑
i min{1, α · uic log d} ≤ αc log d‖u‖1 non-zero entries and

1√
1+ǫ

SA is a 1+ǫ
1−ǫ-spectral approximation for A with probability at least 1− d−c/3.

We rely on the following matrix concentration result, which is a variant of Corollary 5.2 from
[Tro12], given by Harvey in [Har12]:

Lemma 11. Let Y1...Yk be independent random positive semidefinite matrices of size d × d. Let
Y =

∑k
i Yi and let Z = E[Y]. If Yi � R · Z then

P

[
k∑

i

Yi � (1− ǫ)Z

]
≤ de

−ǫ
2

2R ,

and

P

[
k∑

i

Yi � (1 + ǫ)Z

]
≤ de

−ǫ
2

3R .
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Proof of Lemma 4. For each row ai of A choose Yi =
aia

⊤

i

pi
with probability pi, and 0 otherwise.

So (SA)⊤(SA) =
∑

iYi. Note that Z = E[
∑

i Yi] =
∑

i E[Yi] =
∑

i aia
⊤
i = A⊤A, as desired. To

apply Lemma 11, we will want to show that

∀i,Yi �
1

c log dǫ−2
·A⊤A. (10)

First, consider when pi < 1. The pi = 1 is slightly less direct, and we will deal with it shortly.
α = ǫ−2 ≥ 1, so pi < 1 implies that τi(A) ≤ ui ≤ 1

c log d . We have

Yi �
aia

⊤
i

ui · c log dǫ−2
� aia

⊤
i

τi(A) · c log dǫ−2
� 1

c log dǫ−2
·A⊤A, (11)

since

aia
⊤
i

τi(A)
� A⊤A. (12)

Equation (12) is proved by showing that, for all x ∈ R
d, x⊤aia⊤i x ≤ τi(A) · x⊤A⊤Ax. We can

assume without loss of generality that x is in the column space of A⊤A since, letting x′ be the
component of x in the null space of (A⊤A), 0 = x′⊤(A⊤A)x′ = x′⊤aia⊤i x

′. Now, with x in the

column space, for some y we can write x = (A⊤A)
+/2

y where (A⊤A)+/2 = VΣ−1V⊤ (recall that
(A⊤A)+ = VΣ−2V⊤ if the SVD of A is given by A = UΣV⊤). So now we consider

y⊤(A⊤A)+/2aia
⊤
i (A

⊤A)+/2y.

(A⊤A)+/2aia
⊤
i (A

⊤A)+/2 is rank 1, so its maximum (only) eigenvalue is equal to its trace. By
the cyclic property, tr((A⊤A)+/2aia

⊤
i (A

⊤A)+/2) = tr(a⊤i (A
⊤A)+ai) = τi(A). Furthermore, the

matrix is positive semidefinite, so

y⊤(A⊤A)+/2aia
⊤
i (A

⊤A)+/2y ≤ τi(A)‖y‖22 = τi(A) · y⊤(A⊤A)
+/2

(A⊤A)(A⊤A)
+/2

y,

which gives us (12) and thus (10) when pi < 1.
Equation (10) does not hold directly when pi = 1. In this case, Yi = aia

⊤
i with probability

1. However, selecting Yi is exactly the same as selecting and summing c log dǫ−2 random variables

Y
(1)
i , ...,Y

(c log dǫ−2)
i , each equal to 1

c log dǫ−2 · aia⊤i with probability 1, and thus clearly satisfying

Y(j) � 1

c log dǫ−2
·A⊤A. (13)

We can symbolically replace Yi in our Lemma 11 sums with these smaller random variables, which
does not change Z = E[Y], but proves concentration. We conclude that:

(1− ǫ) ·A⊤A �
∑

i

Yi � (1 + ǫ) ·A⊤A

with probability at least

1− de
−c log dǫ

−2
ǫ
2

3 ≥ 1− d1−c/3.

As noted, Ã⊤Ã = A⊤S2A =
∑

iYi, so this gives us that 1√
1+ǫ

SA is a 1+ǫ
1−ǫ -spectral ap-

proximation to A with high probability. Furthermore, by a standard Chernoff bound, S has∑
imin{1, ui · αc log d} ≤ αc log d‖u‖1 nonzero entries with high probability.
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A.2 Rank 1 Updates

Here we prove Lemma 5, making critical use of the Sherman-Morrison formula for the Moore-
Penrose pseudoinverse [Mey73, Thm 3].

Lemma 5 (Leverage Score Changes Under Rank 1 Updates). Given any A ∈ R
n×d, γ ∈ (0, 1),

and i ∈ [n], let W be a diagonal matrix such that Wii =
√
1− γ and Wjj = 1 for all j 6= i. Then,

we have

τi(WA) =
(1− γ)τi(A)

1− γτi(A)
≤ τi(A),

and for all j 6= i,

τj(WA) = τj(A) +
γτij(A)2

1− γτi(A)
≥ τj(A).

Proof.

τi(WA) = 1iWA
(
A⊤W2A

)+
A⊤W⊤

1i
⊤ (definition of leverage scores)

= (1− γ)a⊤i
(
A⊤A− γaia

⊤
i

)+
ai (definition of W)

= (1− γ)a⊤i

(
(A⊤A)+ + γ

(A⊤A)+aia
⊤
i (A

⊤A)+

1− γa⊤i (A
⊤A)+ai

)
ai (Sherman-Morrison formula)

= (1− γ)

(
τi(A) +

γτi(A)2

1− γτi(A)

)

=
(1− γ)τi(A)

1− γτi(A)

≤ τi(A).

Similarly,

τj(WA) = a⊤j
(
A⊤A− γaia

⊤
i

)+
aj

= a⊤j

(
(A⊤A)+ + γ

(A⊤A)+aia
⊤
i (A

⊤A)+

1− γa⊤i (A
⊤A)+ai

)
aj

= τj(A) +
γτij(A)2

1− γτi(A)

≥ τj(A).

A.3 Lower Semi-continuity of Leverage Scores

Here we prove Lemma 6 by providing a fairly general inequality, Lemma 12, for relating leverage
scores under one set of weights to leverage scores under another.
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Lemma 6 (Leverage Scores are Lower Semi-continuous). τ (WA) is lower semi-continuous in the

diagonal matrix W, i.e. for any sequence W(k) →W with W
(k)
ii ≥ 0 for all k and i, we have

τi(WA) ≤ lim inf
k→∞

τi(W
(k)A). (14)

Lemma 12 (Comparing Leverage Scores). Let W,W ∈ R
n×n be non-negative diagonal matrices

and suppose that Wii > 0 and Wii > 0 for some i ∈ [n]. Then

τi(WA) ≤ W
2
ii

W2
ii

(
1 +

√
λmax

(
A
(
A⊤W

2
A
)+

A⊤
)
‖W −W‖∞

)2

τi(WA). (15)

Proof. Scaling the variables in Lemma 2 we have that there exists x ∈ R
d such that

A⊤Wx = ai and ‖x‖22 =
τi(WA)

W2
ii

. (16)

Note that A⊤ (W−W
)
x is in the image of A⊤W as A⊤Wx = ai and Wii 6= 0. Consequently,

A⊤Wy = A⊤ (W −W
)
x(k) for y

def
= WA

(
A⊤W

2
A
)+

A⊤ (W −W
)
x.

Since A⊤W(x+ y) = ai, Lemma 2 implies

τi(WA) ≤W
2
ii ‖x+ y‖22 . (17)

We can bound the contribution of y by

‖y‖22 ≤
∥∥∥∥WA

(
A⊤W

2
A
)+

A⊤ (W−W
)
x

∥∥∥∥
2

2

≤ λmax

(
A
(
A⊤W

2
A
)+

A⊤
)∥∥W −W

∥∥2
∞ ‖x‖

2
2. (18)

Applying triangle inequality to (16), (17), and (18) yields the result.

Proof of Lemma 6. For any i ∈ [n] such that Wii = 0 (14) follows trivially from the fact that
leverage scores are non-negative. For any i ∈ [n] such that Wii > 0, since W(k) → W we

know that, for all sufficiently large k ≥ N for some fixed value N , it is the case that W
(k)
ii > 0.

Furthermore, this implies that as k → ∞ we have W
2
ii/(W

(k)
ii )2 → 1 and

∥∥W(k) −W
∥∥
∞ → 0.

Applying Lemma 12 with W = W(k) and taking lim infk→∞ on both sides of (15) gives the
result.
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