
HAL Id: hal-01020695
https://inria.hal.science/hal-01020695v1

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Yael library
Matthijs Douze, Hervé Jégou

To cite this version:
Matthijs Douze, Hervé Jégou. The Yael library. 22nd ACM International Conference on Multimedia
, Nov 2014, Orlando, United States. pp.687-690, �10.1145/2647868.2654892�. �hal-01020695�

https://inria.hal.science/hal-01020695v1
https://hal.archives-ouvertes.fr

The Yael library

Matthijs Douze Hervé Jégou
Inria

Abstract

This paper introduces YAEL, a library implementing
computationally intensive functions used in large scale im-
age retrieval, such as neighbor search, clustering and in-
verted files. The library offers interfaces for C, Python and
Matlab. Along with a brief tutorial, we analyze and discuss
some implementation choices and their impact on efficiency.
http://yael.gforge.inria.fr/

1. Motivation and overview
The motivation of YAEL is twofold: We aim at providing

• core and optimized instructions and methods com-
monly used for large-scale multimedia retrieval sys-
tems;

• more sophisticated functions associated with state-of-
the-art methods, such as the Fisher vector [11, 10],
VLAD [8, 10], Hamming Embedding [5, 6] or more
generally methods based on inverted file systems, such
as selective match kernels [13].

Having these two kinds of functions implemented in the
core library, we can rapidly disseminate open source pack-
ages reproducing the results of recent papers for image re-
trieval. YAEL is intended as an API and does not implement
a retrieval system in an integrated manner: only a few test
programs are available for key tasks such as k-means. Yet
this can be done on top of it with a few dozen lines of Mat-
lab or Python code.

We provide one sample package relying on YAEL, which
implements an image retrieval system based on the Fisher
vector. Yet we mention that several of such packages are
available online, each being associated with a particular task
and publisehd method. Section 3 lists a few of these, along
with download statistics.

Design choices. YAEL is designed to handle dense data
in float, as it is primarily used for signal processing tasks

where the quality of the representation is determined by
the number of dimensions rather than the precision of the
components. In the Matlab interface, single matrices, and
float32 in Python.

YAEL was designed initially to manipulate matrices in
C. It was interfaced for Python using SWIG, which gives
low-level access to the full library. An additional Numpy
layer (ynumpy) is provided for high-level functions. The
most important functions of YAEL are wrapped in Mex to
be callable from Matlab.

Performance is very important. YAEL has computed k-
means with hundreds of thousand centroids and routinely
manipulate matrices that occupy more than 1/2 the ma-
chine’s RAM. This means it is lightweight and 64-bit clean.

The design choices of YAEL are governed by efficiency
concerns more than by portability. The library is maintained
for Linux and MacOS. Although an older version of the li-
brary was ported to Windows OS, only a few functions of
the Matlab interface work on this platform.

Dependencies. YAEL relies on as few external libraries as
possible. The only mandatory ones are BLAS/Lapack (for
performance) and the Python/C API. Other libraries (Mat-
lab’s mex, Arpack, OpenMP) are optional.

Threading. Functions of significant complexity are paral-
lelized. The level at which threading occurs must be cho-
sen carefully: at the BLAS level, the YAEL function or the
calling function. Therefore, YAEL functions often take a nt
parameter, the number of threads.

Interface. YAEL contains hundreds of functions at the C
level. Only a few are exported in Matlab and Python, as
many basic matrix operations are natively available in these
environments. In C, the functions are prefixed with the type
of data they operate on. For example, fvec max takes a fvec,
or “float vector” array as input. In Matlab, most of the func-
tions are prefixed with yael . In Python, YAEL is available
via the ynumpy module, which provides a sufficient context.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2

tim
e

(m
s)

quantile

n=1000

n=100k

n=10M

quickselect
max-heap

Figure 1. Runtime of the quickselect and max-heap methods to
find a quantile in a table of uniformly distributed scalars (one com-
puting core).

The rest of this paper is organized as follows. Section 2
lists the main functions, and shows on a few representa-
tive cases how we have optimized the functions. Section 3
shows the current impact of Yael with respect to various
indicators: number of downloads, derived packages and re-
search papers referring to the URL library.

2. Main functions
Here we review the implementation of YAEL’s main

functions, with their names in C. Table 1 gives the Python
and Matlab equivalents of these functions.

2.1. k-smallest values query

YAEL contains two implementations of the algorithm to
find the k smallest values of a table of scalars:

• The quick-select algorithm (a.k.a. Hoare method). It
amounts to applying a quick-sort on the table, but with-
out handling the fraction of the table that does not con-
tain the quantile limit.

• The max-heap algorithm, that maintains the set of k
smallest values seen so far in a max-heap. The max-
heap is a binary tree optimized to perform the oper-
ations “remove the largest value” and “insert a new
value”, both of which having complexity log(k).

Figure 1 shows that for smaller quantiles, the max-heap
is faster. The function fvec k min automatically switches
between the two versions, depending on the parameter k
and number of elements.

2.2. Searching neighbors

Image retrieval requires finding similar elements on large
scale. YAEL implements exact algorithms to retrieve near-
est neighbors. For larger scale, one may resort to indexing
structures such as those proposed in the inverted file struc-
ture of YAEL (see Subsection 2.6).

Exhaustively searching for nearest neighbors requires to
compute the distance matrix D ∈ Rm×n from the query
vectors X ∈ Rd×n to the database vectors Y ∈ Rd×m (in
the Euclidean case). Then, the smallest value in each col-
umn j of D is selected: it corresponds to the the nearest
neighbor of query j. Both computations are performed in
blocks to improve cache locality and because D may not fit
in memory.

Euclidean space. We exploit the equivalence:

D = S(X)1>n + 1>mS(Y)− 2X>Y (1)

where 1n is a n−vector of ones and S(X) is the vector of
squared norms of the columns X . The costly operation is
theX>Y , for which we use the BLAS sgemm. When more
than one nearest neighbor is required, we use a max-heap
over the columns of D, as discussed in the previous subsec-
tion.

Hamming space. To compute Hamming distances, we em-
ploy the xor and SSE4.2 popcnt instructions: the Ham-
ming distance between two 64-bit integers is computed in
two processor cycles. Hamming distances are typically em-
ployed to retrieve all vectors within a given distance to the
query. Therefore, unlike in the k-NN case, the list of neigh-
bors must be adjusted during the query.

Other distances. The cosine similarity is optimized with
matrix multiplication and cache optimization. The `1 and
χ2 distances are optimized using specific SSE instructions.

2.3. Principal Component Analysis

Dimensionality reduction with PCA is widely used.
However, many implementations are not tractable for a
large number of high-dimensional vectors,. YAEL provides
distinct implementations for Matlab and C. The Matlab
function yael pca automatically switches between the Gram
and the covariance methods [2]. Hereafter, we detail the
variants implemented in the C interface, which include both
these variants and tricks that limits the memory consump-
tion.

Computing the PCA of a set of vectors X =
[x1 . . . xn] ∈ Rd×n proceeds as follows.

• centering the data:

X̄ = X − x̄1>n with x̄ =
1

n

n∑
i=1

xi (2)

• computing the SVD decomposition of X̄: X̄ =
UΣV > where U ∈ Rd×d and V ∈ Rn×n are or-
thogonal matrices and Σ ∈ Rd×n is positive diago-
nal, padded with zeros on the right or bottom, with
elements [σ2

1 , . . . , σ
2
min(d,n)].The singular values are

sorted: σ1 ≥ σ2 ≥ · · · ≥ σmin(d,n).

Matlab function Python function Description
yael kmax Find the k largest elements of a vector (or set of vectors)
yael kmin Find the k smallest elements of a vector (or set of vectors)
yael cross distances cross distances Compute all distances between two sets of vectors
yael hamming Compute all Hamming distances between two sets of packed bit-

vectors
yael nn knn Find the nearest neighbors in a set for various distances
yael kmeans kmeans Learn a k-means quantizer from a set of input vectors
yael gmm gmm learn Estimate a GMM from an input set of vectors
yael fisher fisher Compute the GMM- Fisher vector associated with a given set
yael ivf Handle (construct, query, etc) an inverted file structure

Table 1. Main functions in the Matlab interfaces of YAEL, and corresponding Python function.

Given this decomposition, the PCA reduction of a vec-
tor x ∈ Rd (not necessarily from the initial {x1 . . . xn}) is
x′ = U>(x − x̄). Its main property is that, if vectors are
drawn from a multidimensional Gaussian, the subvector x′k
of the k first components of x′ is as close as possible to x′.
Therefore, the PCA is often used to reduce the dimension-
ality from Rd to Rk.

The only data we need to perform dimensionality reduc-
tion is x̄ and the first k columns of U . Thus, the complete
SVD is not necessary. There are two cases:

• Most often, n > d, i.e., we have enough training data.
In this case only the eigenvalues σ2

i and vectors U
for the empirical covariance matrix X̄X̄> are com-
puted. The cost of computing these eigenvectors is 9d3

flops [3, algorithm 8.3.3].

• When d > n, it is more efficient [2] to compute the
eigenvectors V of the Gram matrix X̄>X̄ . Denoting
(ui)i=1...d and (vj)i=1...n the columns of U and V re-
spectively, ui = 1/σ2

iXvi for i = 1 . . . n. The re-
maining columns can be obtained by completing the
orthonormal basis.

Finding eigenvalues in YAEL uses the Lapack ssyev
function. When the data matrixX is too large to fit in RAM,
the mean x̄ and covariance X̄X̄> are computed in a single
pass over the matrix, using YAEL’s pca online * functions.

Partial PCA. When the number of required dimensions
k � d, it is possible to efficiently compute only part of
the eigenvalues and eigenvectors. This can be done either
by:

• reducing the matrix to tridiagonal form, then only par-
tially diagonalizing this representation (Lapack func-
tion ssyevx).

• using an iterative Lanczos method [3, section 9.1] to
compute the required components. The advantage is
that the covariance matrix does not need to be com-
puted, because it is used only to perform matrix-vector

 1

 10

 100

 1000

 10000

 100000

 1 4 16 64 256 1024 4096

tim
e

(s
)

number of singular values

Full PCA
partial PCA (ssyevx)
Arpack on covariance
Arpack, matrix-vector multiply

Figure 2. Cost of computing partial PCAs using different meth-
ods, on matrices of various sizes (on a 40-core computer): black =
4096×40000, blue = 16384×160000, red = 65536×88000. Best
viewed in color.

operations X̄X̄>v for a given v ∈ Rd. YAEL uses the
Arpack ssaupd/sseupd functions.

Figure 2 shows the cost of computing a partial PCA. The
on-the-fly multiplication is more efficient when k is small
because the covariance matrix is not computed. For larger
k, Arpack is faster at first, then Lapack’s tridiagonalization.

These functions are implemented in fmat new pca part
and pca online complete part functions.

2.4. k-means Clustering

The cost of the k-means clustering is determined by that
of the nearest-neighbor search (see Section 2.2). Despite its
simplicity, the performance and stability of k-means depend
on some implementation details:

• initialization: YAEL can use a random or the
kmeans++-style initialization [1]. We observed, how-
ever, that for a large number of centroids, the random
initialization is as good, and it is much faster because
kmeans++ cannot be parallelized. The user can also
provide his own initialization for the centroids.

• vanishing clusters: sometimes no more points are as-
signed to a cluster. This happens even on “well-
behaved” datasets, for example when training product
quantization [7] vocabularies on very large vectors that
may be sparse. In this case, YAEL randomly chooses
another cluster and splits it in two, in a way that avoids
a new cluster to vanish at the next iteration. This a
done by selecting a big cluster associated with centroid
c. Two clusters are obtained from it as c− ε and c+ ε,
where ε is a small random perturbation vector.

• restarting: kmeans computes the solution to an opti-
mization problem using an iterative method that con-
verges to a local minimum. The YAEL kmeans can
perform this optimization starting from different initial
points and select the best one.

Several functions are available for k-means in the C in-
terface of YAEL, depending on the desired output (average
error per cluster, assignment, etc) and initialization options.
In Matlab, k-means is called with function yael kmeans, see
help yael kmeans for possible options. For instance, a sim-
ple call is done by

[C, I] = yael kmeans (v, k, ’niter’, niter);

where C is a matrix containing the k clusters, and I indicates
to which cluster each input vector v is assigned.

2.5. Fisher vectors

The YAEL Gaussian Mixture Model [2, Section 2.3.9]
estimation is initialized from a kmeans vocabulary of the
same size, then expectation-maximization steps are per-
formed. A set of vectors can be aggregated to a Fisher vec-
tor [11]. This is particularly useful to generate an image
representation from local descriptors.

The two functions are implemented in YAEL’s
gmm learn and gmm fisher. A toy Matlab package
implementing a baseline based on Fisher is available
online, see Section 3. A similar Python package is provided
for the open-source competition to illustrate YAEL’s
capabilities.

2.6. Inverted files

Inverted file systems [14] are a key component of exist-
ing large-scale image and video retrieval methods. For im-
age search, they are widely adopted to implement the simi-
larity computation for the methods derived from the seminal
Video-Google paper [12], where sparse bag-of-words vec-
tors are to be compared in an efficient way.

Although an inverted file system can be implemented by
a sparse matrix-vector multiplication, a devoted implemen-
tation can be more efficient. Furthermore, more precise im-
age search systems have been subsequently proposed, such
as Hamming Embedding [6], selective match kernel [13]

or nearest neighbor search with product quantization [7].
These strategies add some per-descriptor information, given
in a form of a short code, e.g., a binary vector.

YAEL implements a generic inverted system capable of
storing and exploiting such additional information in the re-
trieval phase. It can be used with any quantizer, since the
quantization is done externally. For instance, in the Matlab
interface, one can learn and produce a structure for Ham-
ming Embedding by providing a function handler for the
quantizer (exact Euclidean assignment in the example be-
low) when calling the yael ivf he function:

>> quantizer=@yael_nn;
>> qparams=yael_kmeans(xtrain, k,’niter’,20);
>> ivfhe=yael_ivf_he (k,nbits,x,quantizer,qparams);

The entry point for all operations is the function yael ivf:
adding new elements, performing queries, saving and load-
ing an inverted file, etc. A full example is given in the sub-
directory test/matlab of the YAEL package.

3. Impact of Yael

This section gives a brief overview of the impact of
YAEL, both in terms of packages that depend on it, and
with respect to usage statistics measured by the number of
downloads. In addition, we mention that about 20 papers
or reports refer to YAEL, as indicated by the results of the
Google scholar query “gforge inria yael”.

3.1. Derived software

Several software use YAEL as a core library, in partic-
ular online packages that reproduce the results of papers1.
Hereafter, we describe a few packages developed at Inria.

VLAD and Fisher – Image representations. The pack-
ages have been released to reproduce the results of the cor-
responding papers [8, 10]. They are available online on
a dedicated webpage2. The Fisher implementation repro-
duces the results of the original authors at Xerox Research
Center Europe.

Product quantization [7] is a state-of-the-art method for
approximate nearest neighbor search in the compressed do-
main. A commercial version of this algorithm is proposed
by Inria. Alternately, an open-source toy package in Matlab
is available online3, and depends on YAEL. Another pack-
age implementing approximate search with short codes im-
plements the anti-sparse binarization technique [9] is de-
rived from YAEL4.

1http://people.rennes.inria.fr/Herve.Jegou/software.html
2http://lear.inrialpes.fr/src/inria fisher
3http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html
4https://gforge.inria.fr/projects/antisparse

 0

 100

 200

 300

 400

 500

 600

2010 2011 2012 2013

do
w

nl
oa

d
pe

r
m

on
th

Figure 3. Statistics on YAEL files downloads. These measures
include all files (including documentation files and related pack-
ages), but not the SVN checkouts or updates by developers and
privileged users at Inria.

Babaz – Audio similarity search. Babaz [4] is an audio
search engine5 for video copy detection based on the audio
track. The library is also usable in applications like Shaz-
aam, however in this context there are faster and as accurate
methods specifically devoted to music search. The method
implemented has been used for Trecvid’2011, where it ob-
tained the best results for the audio part.

Selective match kernels [13] are a state-of-the-art method
for image search, with a focus on best ranking performance.
It relies on YAEL’s inverted file. A full package reproduc-
ing the paper’s results is available online in the download
section6 of YAEL.

3.2. Download statistics

YAEL is released on Inria’s gforge, a facility similar to
that provided by Sourceforge. This offers several facili-
ties like trackers and forums. It also produces usage statis-
tics. For instance, Figure 3 reports the number of downloads
per month between April 2010 (first release) and December
2013. The last version v371 and related packages have been
downloaded 2200 times in the last five months (between De-
cember 2013 and May 2014), 1275 of these downloads cor-
responding to the core library. The library clearly has an
increasing success, presumably because of the increasing
number of packages relying on it.

As a final note, several demonstrators, in-house code and
commercial software employ YAEL as a core library. YAEL
is used in the Inria bigimbaz image search engine since
2008, which indexes over 10 millions images, to perform
efficient image queries submitted by the users on the online
interface7. YAEL was used in the winning submissions to
Trecvid Multimedia Event Detection in 2012 and 2013.

5http://babaz.gforge.inria.fr/
6https://gforge.inria.fr/frs/?group id=2151
7http://bigimbaz.inrialpes.fr

4. Conclusion
YAEL is a library which offers computationally inten-

sive functions that are critical for large scale image search.
Its main purpose is to facilitate the reproducibility of re-
sults, thanks to release of packages associated with research
papers. Yael offers C, python and Matlab interfaces for
Linux and MacOS operating systems. The core functions
are heavily optimized with SSE operations and calls to La-
pack/Blas matrix libraries. The development process fol-
lows the motto “release soon, release often”.

Acknowledgements. The library was first developed in the
context of the Quaero program. It is currently supported by
ERC VIAMASS no. 336054.

References
[1] D. Arthur and S. Vassilvitskii. k-means++: the advantages

of careful seeding. In ACM-SIAM symposium on Discrete
algorithms, 2007.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[3] G. H. Golub and C. F. V. Loan. Matrix Computations. John
Hopkins University Press, Baltimore and London, second
edition, 1991.

[4] H. Jégou, J. Delhumeau, J. Yuan, G. Gravier, and P. Gros.
Babaz: a large scale audio search system for video copy de-
tection. In ICASSP, Mar. 2012.

[5] H. Jégou, M. Douze, and C. Schmid. Hamming embed-
ding and weak geometric consistency for large scale image
search. In ECCV, Oct. 2008.

[6] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image search. IJCV, 87(3):316–336,
Feb. 2010.

[7] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. Trans. PAMI, 33(1):117–128,
Jan. 2011.

[8] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010.

[9] H. Jégou, T. Furon, and J.-J. Fuchs. Anti-sparse coding
for approximate nearest neighbor search. In ICASSP, Mar.
2012.

[10] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez,
and C. Schmid. Aggregating local descriptors into compact
codes. In Trans. PAMI, 2012.

[11] F. Perronnin and C. R. Dance. Fisher kernels on visual vo-
cabularies for image categorization. In CVPR, 2007.

[12] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In ICCV, 2003.

[13] G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not
to aggregate: Selective match kernels for image search. In
ICCV, 2013.

[14] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2):6, 2006.

