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Abstract

We obtain several improved solutions for the deterministic rendezvous problem in general undirected
graphs. Our solutions answer several problems left open by Dessmark et al. We also introduce
an interesting variant of the rendezvous problem which we call the deterministic treasure hunt
problem. Both the rendezvous and the treasure hunt problems motivate the study of universal
traversal sequences and universal exploration sequences with some strengthened properties. We call
such sequences strongly universal traversal (exploration) sequences. We give an explicit construction
of strongly universal exploration sequences. The existence of strongly universal traversal sequences,
as well as the solution of the most difficult variant of the deterministic treasure hunt problem, are
left as intriguing open problems.

1 Introduction

In the rendezvous problem two robots are placed in an unknown environment. The goal is to give
the two robots deterministic sequences of instructions that ensure that they would eventually meet, no
matter on which graph they are placed, and no matter when they are activated.

Formally, we model the environment by a finite, connected, undirected graph G = (V,E). The edges
incident on a vertex u ∈ V are numbered 1, 2, . . . , deg(u), in a predetermined manner, where deg(u)
is the degree of u. The adversary chooses the environment, and also when to activate each robot, and
where to place a robot when it is activated. In addition, the adversary assigns each robot a unique label
that is important for symmetry breaking.1

An active robot may traverse the graph. It does so by computing at each time step a deterministic
function from the information known to it, to an instruction. The information known to a robot
includes: the robot’s label, the number of time units that elapsed since the robot was activated and
the degree of its current vertex.2 An instruction for a robot currently in vertex u ∈ V , is a value from
the set {0, 1, . . . , deg(u)}, with the interpretation that 0 means that the robot stays in u, while a value
0 < i ≤ deg(u) means that the robot traverses the i’th edge leaving u. If a robot traverses the edge
(u, v) ∈ E leaving u, then the robot finds itself at v, the other endpoint of this edge.

A solution to the rendezvous problem is an algorithm such that for any adversary (i.e., any
environment, any two different labels, any activation times and any two initial vertices) the two robots
eventually meet. We assume the two robots move synchronously.3 The two robots meet only when they
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1If the two robots are completely identical, the rendezvous problem cannot be solved deterministically. Suppose, for example,

that G is a ring on n vertices and that the edges are labeled so that out of every vertex, edge 1 goes clockwise, while edge 2 goes
anti-clockwise. If the two robots start the same time at different vertices and follow the same instructions, they would never meet!

2Notice that the robots do not know the size of the graph. The knowledge of the graph size makes the problem easy to solve.
3For an asynchronous version of the model, see De Marco et al. [DGK+06].



are both active and are at the same vertex at the same time. In particular, the two robots may traverse
the same edge in opposite directions and still miss each other. As the robots can only meet when they
are both active, the cost of a solution on a specific instance set by the adversary, is the number of time
units that elapse from the activation of the second robot to the robots’ rendezvous.

Dessmark et al. [DFKP06] (see also [DFP03] and [KP04]) presented a solution of the rendezvous
problem which guarantees a meeting of the two robots after a number of steps which is polynomial
in n, the size of the graph, ℓ, the length of the shorter of the two labels, and τ , the difference
between their activation times. More specifically, the bound on the number of steps that they obtain is
Õ(n5

√
τℓ+ n10ℓ). Note that τ may be much larger then n10ℓ, in which case the first term in the bound

dominates the second. Dessmark et al. [DFKP06] ask whether it is possible to obtain a polynomial
bound that is independent of τ .

1.1 Backtracking. Kowalski and Malinowski [KM08] presented a deterministic solution to the
rendezvous problem that guarantees a meeting after at most Õ(n15 + ℓ3) steps. The number of steps
performed by their solution is independent of τ . However, the solution crucially uses backtracking, as
we explain now.

As we said before, the adversary chooses the environment. I.e., it chooses the graph size, n, the
graph G = (V,E) itself, and also the edge labels. In general, the labeling is not assumed to be consistent,
i.e., an edge (u, v) ∈ E may be the i-th edge of u but the j-th edge of v, where i ̸= j, and in fact some
graphs do not have any consistent labeling at all (e.g., the 3–cycle).

The solution Kowalski and Malinowski present, assumes that when a robot enters a node v after
traversing an edge e = (u, v), it is told the index j of the edge e at v. In particular, the robot may now
choose the instruction j, causing it to backtrack to v. Formally, the information known to the robot
now includes:

• The robot’s label L,

• The number of time units T that elapsed since the robot was activated,

• The degree of the current vertex d, and,

• A sequence j1, . . . , jT , such that the edge et = (vt, ut) traversed at time t, has index jt at vertex
ut.

As before the robot’s move is determined by a deterministic function f(L;T ; d; j1, . . . , jT ) ∈ {0, 1, . . . , d}.
We call this variant of the problem the rendezvous problem with backtracking.

1.2 Our results. A central result of our work is a deterministic solution that guarantees a rendezvous
within Õ(n5ℓ) time units after the activation of the second robot. When the unknown graph in which
the two robots are placed has maximum degree d, our solution guarantees a rendezvous after at most
Õ(d2n3ℓ) steps. If the graph is a simple d-regular graph, the number of steps is further reduced to
Õ(dn3ℓ). In addition to being independent of τ , our solution is more efficient than previous solutions
for all parameters and even if τ is small. More importantly, our solution (including the fastest one) does
not use backtracking.

In addition, we introduce the treasure hunt problem. In this problem, a single robot is supposed
to locate a treasure placed in an unknown location in an unknown environment, modeled again by a
finite, connected, undirected graph. The problem can be easily solved, if the treasure is present in the
graph when the robot is activated. A much more difficult case is when the robot starts roaming the
graph before the treasure is placed in the graph, and yet we would like the number of steps that the



robot makes from the time the treasure is placed until the treasure is found to be polynomial in n, the
number of vertices in the graph, no matter how long the robot has already been running.

The treasure hunt problem corresponds to a version of the rendezvous problem in which one of the
robots is completely passive. The second main result in the paper is an efficient algorithm for solving
the treasure hunt problem when backtracking is allowed. We do not know if an efficient solution is
possible when backtracking is not allowed.

1.3 Traversal sequences and non-backtracking algorithms. Aleliunas et al. [AKL+79] showed
a random walk, with high probability, covers all vertices of a graph within polynomial time. Indeed,
the rendezvous problem has a trivial solution if randomization is allowed: each robot simply performs
a random walk on the graph. The two robots will then meet, with high probability, after a polynomial
(in the size of the graph) number of steps, see, e.g., [Ald91, CTW93].

The random walk approach can be de-randomized as follows. Let G = (V,E) be a d-regular graph.
A sequence σ1 . . . σk ∈ {1, . . . , d}k defines a walk v0, v1, . . . , vk in G, that starts at v0 ∈ V , where vi is
the σi-th neighbor of vi−1. A walk v0, v1, . . . , vk is said to cover a graph G if it visits every vertex of G
at least once. A universal traversal sequence [AKL+79] for n-vertex graphs is a predetermined sequence
of instructions that when executed on any n-vertex graph, from any starting vertex, defines a walk that
visits all the vertices of the graph. Formally,

Definition 1.1. (Universal Traversal Sequences (UTSs)) A sequence σ ∈ {1, . . . , d}ℓ is a
universal traversal sequence (UTS) for connected d-regular graphs of size at most n if for every such
graph G, any numbering of its edges, and any starting vertex v0 in G, the walk defined by σ in G
covers G.

A neat probabilistic argument was used by Aleliunas et al. [AKL+79] to show that there exist
universal traversal sequences for n-vertex graphs of length Õ(n5). In fact, almost all sequences of this
length are universal traversal sequences!

Indeed, the treasure hunt problem, with the additional guarantee that the treasure is present in
the graph when the robot is activated, can be simply solved by letting the robot follow the sequence
U1U2U4 . . . U2k . . ., where Ui is a UTS for graphs of size i. A similar strategy solves the rendezvous
problem when the robots know the graph size, or when the robots are simultaneously activated.

Now, consider the treasure hunt problem when the robot starts roaming the graph before the treasure
is placed in the graph. Assume the robot employs the same strategy as before, namely, it follows the
sequence U1U2U4 . . . U2k . . .. In this case, the adversary may wait with placing the treasure until the
robot is inside some sequence Uk, for k that is much larger than the actual graph size n. The UTS
property of Uk is valid only when starting at the beginning of the sequence, not when started from the
middle. Thus, it seems we have to wait until the next sequence U2k starts, which incurs a poly(k) loss,
which for a large k is super-polynomial in n.

We are thus lead to the following problem: Is there a fixed polynomial p(·), such that for every n ≥ 1
there is a sequence Sn of instructions of length p(n), such that for every 1 ≤ k ≤ n, every contiguous
subsequence of Sn of length p(k) is a universal traversal sequence for k-vertex graphs?

Definition 1.2. (Strongly Universal Traversal Sequences (SUTSs)) Let p(·) be a polynomial.
A possibly infinite sequence σ = σ1σ2 . . ., where σi ∈ {1, . . . , d}, is a strongly universal traversal sequence
(SUTS) with cover time p(·) for connected d-regular graphs, if for any k ≥ 1, any contiguous subsequence
of σ of length p(k) is a UTS for connected d-regular graphs of size k.

Note that if for every n ≥ 1, there is a SUTS Sn of length n with cover time p(k) ≥ k, then
S1S2S4S8 . . . is an infinite SUTS with cover time 2p(·).



SUTSs, if exist, would solve both the rendezvous and the treasure hunt problems. We do not know,
however, whether SUTSs exist, and this is the main open problem raised by our work. Instead, we
can show using the standard probabilistic method the existence of slightly weaker SUTSs which are
sufficient for solving the rendezvous problem, but not the treasure hunt problem.

Definition 1.3. A sequence σ ∈ {1, . . . , d}ℓ is a strongly universal traversal sequence (SUTS) with
cover time p(·) for connected d-regular graphs of size [n′, n′′], if σ is of length at least p(n′′) and for any
integer n, n′ ≤ n ≤ n′′, any contiguous subsequence of σ of length p(n) is a UTS for connected d-regular
graphs of size n. For brevity, we say that such a sequence is an [n′, n′′]-SUTS.

Lemma 1.1. For every n, there is an [log n, n]-SUTS with cover time p(k) = O(d2k3 log k) for d-regular
graphs.

Proof: Aleliunas et al. [AKL+79] showed, by bounding the cover time of random walks on graphs,
that the probability that a random sequence of length O(d2n3 log n) over the alphabet {1, 2, . . . , d} is
not a UTS for d-regular graphs of size n, is at most 2−n2

. By the union bound, the probability that such
a random sequence is not a [log n, n]-SUTS, is at most O(n · d2n3 log n) · 2− log2 n < 1, this is because
there are less than n graph sizes, only O(d2n3 log n) places to start a subsequence, and the probability
that a specific subsequence is not a UTS for graphs of size s is at most 2−s2 . Thus, the probability that
such a random sequence is a [log n, n]-SUTS is positive, which shows that sequences with the required
properties do exist.4 2

Kowalski and Malinowski [KM08] define universal cover walks which are essentially equivalent to
our SUTSs, and almost universal cover walks which are essentially equivalent to our [n′, n′′]-SUTSs.
They prove a lemma that is essentially equivalent to Lemma 1.1.

It is worthwhile noting that the standard probabilistic method cannot be used to obtain SUTSs
that satisfy the conditions of Definition 1.2. In particular, note that a random sequence of length Ω(n)
would contain, with very high probability, Ω(logd n) consecutive 1’s, and it is easy to see that such a
subsequence is not a UTS for d-regular graphs of constant size. It is tempting to try and prove the
existence of SUTSs using the Lovász local lemma (see Erdös and Lovász [EL75] or Alon and Spencer
[AS00]). Unfortunately, all our attempts to prove the existence of SUTSs using the local lemma failed.

1.4 Exploration sequences and backtracking algorithms. One of the motivations for the
introduction of universal traversal sequences by Aleliunas et al. [AKL+79] was an attempt to obtain
a deterministic log-space algorithm for the s-t connectivity problem in undirected graphs. Such an
algorithm was recently obtained by Reingold [Rei08], thus resolving this major open problem. Reingold
[Rei08] log-space algorithm for the undirected s-t connectivity problem does not provide universal
traversal sequences for general graphs. It does provide, however, a log-space, and hence polynomial
time, construction of universal exploration sequences, a closely related notion previously introduced
by Koucký [Kou02]. Roughly speaking, exploration sequences can replace traversal sequences when
backtracking is allowed.

We analogously define strong universal exploration sequences (see Section 3) and show the existence
of strong universal exploration sequences with polynomial cover times. Furthermore, our construction
uses (non-strong) universal exploration sequences as black-boxes, and is efficient otherwise. In particular,
when using Reingold’s explicit construction of polynomially long universal exploration sequences [Rei08],
we get an explicit construction of strongly universal exploration sequences. This is used in our solution
of the treasure hunt problem when backtracking is allowed.

4The proof given actually proves the existence of [c
√
logn, n]-SUTS with cover time p(k) = O(d2k3 log k), for some c > 0. We do

not need this slightly stronger result.



1.5 Further remarks. All graphs in this paper are assumed to be connected.
In the discussion so far we often assumed that the graph G in which the robots are placed is a

d-regular graph, for some d ≥ 3. We now explain why this simplifying assumption is immaterial.
Our constructions compose universal traversal and exploration sequences. The only property of

these sequences used in the analysis is that the n’th sequence is good for all graphs of size at most n
and regular degree n. The instruction set of these sequences include 0 for staying at the current vertex,
and i ∈ {1, . . . , n} for traversing the i’th edge. We enforce a simple rule. If a robot at vertex u with
deg(u) < n gets an instruction i > deg(u), then it simply stays in place. We can think of this as adding
n− deg(u) self loops to u, in particular making the new degree of u exactly n.

To see why this works, suppose G is the graph in which the two robots walk, and that G has n
vertices and varying degrees deg(u) ≤ n. Let G′ be the graph G with n − deg(u) self loops added at
each vertex u. G′ is a graph on n vertices with regular degree n. In particular, the universal sequences
are good for G′ and the construction works.

So far we were only interested in the existence of a deterministic function that guarantees fast
rendezvous, and we ignored the complexity of the function f itself. Indeed, our non-backtracking
algorithms (as well as the solutions of Dessmark et al. [DFKP06] and [KM08]) rely on the existence of
universal traversal sequences. As we said before, the existence of universal traversal sequences is proved
using the probabilistic method. Thus, even though the deterministic solutions mentioned above require
only a polynomial number of steps, it is not currently known how to compute these steps deterministically
in polynomial time. This lead Dessmark et al. [DFKP06] to ask whether there is a solution in which
the number of steps and the computation required to determine them are both polynomial. When
backtracking is allowed, we answer this last question in the affirmative, using our explicit construction
of universal exploration sequences. We do not have such a construction when backtracking is not allowed.

Finally, we remark that our exploration sequences were improved and shortened by Xin [Xin07].

2 Deterministic rendezvous solutions

2.1 An informal discussion. A natural idea is to have each robot run a sequence of UTSs for graphs
of increasing sizes, e.g., the infinite sequence U1U2U4 . . . U2k . . ., where Un is a UTS for graphs of size n.

The sequence Un is guaranteed to cover every graph G of size n, from any starting point. A robot
running Un is thus guaranteed of meeting the other robot, if the other robot is stationary (at least for
long enough). The sequence U1U2U4 . . . U2k . . . provides, therefore, a solution for the (easy) version of
the treasure hunt problem in which the treasure is placed in the graph before the robot is activated.
Note that if the treasure is placed in a graph of size n after the robot is activated, then the robot may
have already started implementing UTS for graphs that are much larger than n, and there is no bound
that depends only on n, on the number of steps that the robot would make before it finds the treasure.

If both robots implement the sequence U1U2U4 . . . U2k . . ., then we have no guarantee that the two
robots would meet. Part of the problem, as explained in the introduction, is the need to break the
symmetry. Assume, therefore, that one of the two robots is assigned the label 0 and the other the
label 1. The case of longer labels will be dealt with later.

The next idea we explore is to have robot 0 follow the infinite sequence

0|U1|U1 0|U2|U2 0|U4|U4 . . . 0|U2k
|U2k . . .

and robot 1 follow the ‘opposite’ sequence

U10
|U1| U20

|U2| U40
|U4| . . . U2k0

|U
2k

| . . . .

This would indeed provide a solution to the rendezvous problem, provided that the two robots are
activated at the same time. It is possible to modify this solution so that it would work when the



difference between the activation times of the two robots is polynomial in the size of the graph. We
explain the solution in Section 2.2. We say, in this case, that the two robots are roughly aligned.

We are thus left with the case in which the difference between the activation time of the two robots
is large, relative to the size of the graph in which the two robots are placed. To solve this case we
introduce idle periods not only before or after the completion of a full UTS U2k , but also between every
two adjacent steps in such a sequence.

More specifically, let us say a robot is in block i if it is walking according to Ui. (We assume here
that i is a power of 2.) A robot in block i ‘rests’ for fi time units after each instruction of Ui that it
makes. The total number of time units required for implementing block i is therefore |Ui|(fi + 1).

Suppose the two robots run an n-vertex graph. The crucial parameter used in the analysis of our
rendezvous solutions is the index κ = κ(n) of the block in which the robot who started first is at the
time the second robot starts implementing its block n. (For simplicity, we assumed here that n is a
power of 2). If fκ > |Un|(fn+1) then the second robot has enough time to implement the sequence Un,
including all the idle steps added to it, while the first robot ‘sleeps’ and the two robots would meet. If
fκ ≤ |Un|(fn +1) then we have an upper bound on the difference between the starting times of the two
robots and a meeting would take place as the two robots are roughly aligned.

2.2 A basic solution of the rendezvous problem. We now describe in more detail our basic
solution to the rendezvous problem. We again assume that the two robots are assigned the labels 0
and 1. The extension of the solution to the case of general labels is fairly straightforward, and will be
described later on.

We begin by introducing some notation. For any sequence σ and a bit b ∈ {0, 1}, let

σb =
{
σ if b = 1,
0|σ| if b = 0.

In other words, σ1 is just σ, while σ0 is a sequence of 0’s whose length is equal to the length of σ.
Also let

σm1...mk = σm1σm2 . . . σmk .

Let

Dk(σ1 . . . σm) = σ10
kσ20

k . . . 0kσm0k .

In other words, the sequence Dk(σ) is obtained from the sequence σ by inserting an idle period of
length k after each step of σ. Finally, for ℓ ∈ {0, 1} we let ℓ̄ = 1− ℓ.

Let Un be a UTS for graphs of size at most n, and of length un = |Un| = Θ(nc), for some c ≥ 1.
The sequence that a robot with label ℓ ∈ {0, 1} runs is:

Du1−1((U1U1)
ℓℓ̄)Du2−1((U2U2)

ℓℓ̄) · · · Du
2k

−1((U2kU2k)
ℓℓ̄) · · ·

We let Wi = Dui−1(Ui), B
(0)
i = 0|Wi|0|Wi|WiWi and B

(1)
i = WiWi0

|Wi|0|Wi|. The sequence used by

robot 0 is B
(0)
1 B

(0)
2 B

(0)
4 . . . and the sequence used by robot 1 is B

(1)
1 B

(1)
2 B

(1)
4 . . .. We call B

(ℓ)
i the i-th

block of robot ℓ (even though this is a slight abuse of notation: i is always a power of two, and Bi is the
log i-th block). We call the subsequences WiWi and 0|Wi|0|Wi| chunks. Each block is therefore composed
of two chunks.

We let wi = |Wi| and bi = |B(0)
i | = |B(1)

i |. Note that wn = u2n = Θ(n2c) and bn = 4wn = 4u2n =
Θ(n2c). We make the technical assumption that 4un ≤ u2n, for every n = 2i.5 It follows that 16wn ≤ w2n

5This essentially corresponds to the assumption that un = |Un| = Ω(n2) that we can assume without loss of generality.



and 16bn ≤ b2n, for every n = 2i. In particular, we get that for every j ≥ 1,
∑j−1

i=0 b2i <
1
15b2j . As a

consequence, we get the following useful property: If one of the robots is activated when the other robot
is at block Bℓ, then by the time the second robot starts executing block B2ℓ, the block that follows Bℓ,
the first robot has finished much less than a fourth of this block. We are now ready to prove:

Theorem 2.1. If for every k ≥ 1, Uk is a UTS for graphs of size k, and |Uk| = Θ(kc), c ≥ 2, then the
two robots meet after at most Θ(n4c) steps after the activation of the second robot, where n is the size
of the graph in which the two robots are placed.

Proof: Let n be the size of the graph on which the two robots are placed. We assume that n is a
power of 2. (Otherwise, take the smallest power of 2 larger than n.) Let κ be the index of the block in
which the first robot to be activated is in at the time the second robot to be activated reaches block n.
Clearly κ ≥ n. We consider two cases:

Case 1: uκ ≥ bn. As the first robot ‘sleeps’ for uκ units of time after each step that it takes, the second
robot implements a full copy of Wn while the first robot is stationary and the two robots are guaranteed
to meet. This case is depicted in Figure 2.2. (It is assumed in the figure that the second robot has
label 0. The other case is similar.)

Figure 1: Case 1 in the proof of Theorem 2.1 (uκ ≥ bn).

Case 2: uκ < bn. As uκ = Θ(κc) and bn = Θ(n2c), it follows that κ ≤ O(n2). The second robot
to be activated thus finishes executing its κ-th block, and starts executing his 2κ-th block, after
O(κ2c) = O(n4c) time units. When this happens, the first robot, as discussed in the paragraph just
before Theorem 2.1, is still executing the first forth of its 2κ-th block. The situation is therefore as
depicted in Figures 2.2 and 2.2. In the first figure the first robot has label 0 while in the second figure
the first robot has label 1. In both cases one player is asleep while the other player executes a whole
copy of W2κ. The two robots are therefore guaranteed to meet before the 2κ-th block is over.

2

2.3 An Improved solution. To improve the time bound we need to make several changes. First,
we replace each UTS Un with a [log n, n]-SUTS Sn for d-regular graphs with cover time p(k) = O(kc)
and length |Sn| = p(n) (see Lemma 1.1). Second, we reduce the delay time performed after each step
from fk = |Sk| to fk = (log k)c(log log k)2c and we change the delay scheme. Instead of waiting fk time
units after each step in block k, the robot waits j time units after every j steps of the block, for j being
a power of two up to fk. More specifically, after the i’th step in block k the robot waits for ri time
units, where ri is the largest power of two for which ri|i and ri ≤ fk. We still assume the labels are 0
and 1. Formally, let

D̃k(σ1 . . . σm) = σ10
r1σ20

r2 . . . σm0rm .



Figure 2: Case 2 in the proof of Theorem 2.1. The first robot has label 0.

Figure 3: Case 2 in the proof of Theorem 2.1. The first robot has label 1.

Let Sn be a [log n, n]-SUTS for graphs of size at most n, and of length sn = |Sn| = Θ(nc), for some
c ≥ 1. The sequence that a robot with label ℓ ∈ {0, 1} runs is:

D̃1((S1S1)
ℓℓ̄) D̃2((S2S2)

ℓℓ̄) · · · D̃2k((S2kS2k)
ℓℓ̄) · · ·

Before we proceed, we prove the following useful claim:

Claim 1. If a robot that is in block k and m is a power of two, 8 ≤ m ≤ fk, then every time interval
of length t = 2m logm contains in it a continuous waiting period of length at least m.

Proof. Assume not. Fix t consecutive steps of the robot while in block k that do not contain a waiting
period of length m. The t steps include some original steps σq+1, . . . , σq+ℓ interleaved in between idle
steps. There are at most ⌈ ℓ

2i
⌉ waiting periods of 2i time in the length t sequence, for 2i = 1, 2, 4, 8, . . . , m2 ,

and in particular the sequence length is at most ℓ + ⌈ ℓ
20
⌉ + 2⌈ ℓ

21
⌉ + . . . + 2i⌈ ℓ

2i
⌉ + . . . + m

2 ⌈
ℓ

m/2⌉ ≤
ℓ(1 + logm) + m. Thus, t = 2m logm ≤ ℓ(1 + logm) + m. This implies ℓ ≥ m + 1. In particular,
there exists at least one instruction σq+i (for i < ℓ) after which there is a waiting period of length m.
A contradiction.

We are now ready to prove:

Theorem 2.2. The two robots meet after Õ(nc) steps, where n is the size of the graph.

Proof: Let κ be the block in which the first robot is in, when the second robot reaches block n.
We also let Tn be the time needed to execute the n’th block D̃n((SnSn)

ℓℓ̄), where D̃ is the modified
delay scheme. Notice that Tn = O(|Sn|fn) = Õ(nc).

We now have several cases.



• Assume fκ ≥ |Sn log2 n|. In this case the robots are not aligned and the first robot starts much
earlier than the second one. Let us look at the time when the second robot starts the active part of
block n log2 n, and let us denote m = |Sn log2 n| = p(n log2 n) = O(nc log2c n). During that period
the first robot has a continuous waiting period that lasts at least m

2 logm time (because m ≤ fκ).

However, m
2 logm = O(nc log2c−1 n) ≥ O(nc) · fn log2 n = p(n)fn log2 n, and within that period the

second robot executes at least p(n) steps. As the sequence the second robot runs is a strong UTS,
the robot covers the whole graph and the two robots meet.

We can therefore assume that fκ = (log κ)c(log log κ)2c ≤ nc(log n)2c and in particular log κ ≤ n
and κ ≤ 2n.

• Also, if κ ≤ 10n log3 n then the robots are roughly aligned and the same analysis applies as in
case 2 of Theorem 2.1, and the two robots meet within time Õ(nc).

• Thus we can assume 10n log3 n ≤ κ ≤ 2n.

Let t be the time when the second robot starts executing block 2n log3 n (notice that this happens
within O(Tn log3 n) = Õ(nc) time from the time the second robot is placed in the graph). As

κ ≥ 10n log3 n, the block lengths of the first robot are much larger than those of the second robot.
Thus, we either get a long period where the first robot is active, or a long period where it is passive
(and we might need to wait for a short while for such a period, if the first robot is close to a block
end). As the second robot keeps changing between active and passive states of length Tn log3 n, we
get to a situation where one robot is active and the other is passive for Tn log3 n time.

– If the first robot is passive during the execution of Sn log3 n we are fine.

– Otherwise, the first robot is active and the second is passive for Tn log3 n time. Now, within

any Tn log3 n ≥ p(n log3 n) ≥ p(n log2 n) log p(n log2 n) time units, the first robot does at least

p(n log2 n) ≥ p(n) steps (the condition κ ≤ 2n is important here, because it guarantees that
fκ ≤ nc log2c n = p(n log2 n)). Also, as n ≥ log κ and because Sκ is a [log κ, κ] SUTS, it
does not matter where the first robot is in his sequence, and it covers the whole graph. In
particular the two robots meet.

2

2.4 Dealing with arbitrary labels. We modify the labels. We start with a label ℓ = ℓ1 . . . ℓc.
Following Dessmark et al. we let ℓ′ = M(ℓ) = ℓ1ℓ1 . . . ℓcℓc01 ∈ {0, 1}2(c+1). This ensures that even if ℓ
is a prefix of ℓ′, M(ℓ) is not a prefix of M(ℓ′). We now describe the sequence each robot runs. For a bit

b, let D̃n,b = D̃n((SnSn)
bb). For a sequence b = b1, . . . , bk, let D̃n,b = D̃n,b1 . . . D̃n,bk . For a robot with

label ℓ, the n’th block in the sequence (for n a power of two) is: D̃n,M(ℓ).

Theorem 2.3. The two robots meet after Õ(l · nc) time, where n is the size of the graph, and l is the
length of the shorter label.

Proof: The proof follows the previous ones. We call the robot who started executing block n first,
the first robot (note that this time it may be that the robot who was activated later becomes the first
robot). The other robot is called the second robot. We let κ be the block length of the first robot, when
the second robot starts block n. If κ > 2n then the same argument as before applies. This is because
that argument did not use the labels, and also did not rely on the number of chunks in a block. The
same applies to the case where 10n log3 n ≤ κ ≤ 2n. Thus, we can focus on the case κ ≤ 10n log3 n.



Assume κ ≤ n′ = 10n log3 n, i.e., the robots are almost aligned. We now redefine first and second.
We call the robot who started executing block n′ first, the first robot, and the other the second robot.
Now, if the first robot gets to run a whole chunk of block n′ before the second robot starts block n′,
then the first robot chunks are much larger than the second robot chunks, and so one robot is asleep
and the other is awake for the duration of a whole chunk of the second robot, and as before the two
robots meet.

Otherwise, the offset between the two robots, when the second robot starts block n′, is less than one
chunk. Now, a robot with label ℓ, runs (SmSm)M(ℓ). As M(ℓ1),M(ℓ2) are not prefixes of each other,
there is an index 1 ≤ i ≤ 2(l + 1), such that they differ at index i. As the chunk lengths are now equal
(because they run the same block) the offset between the robots is kept, and is less than a chunk length.
In particular, one robot is asleep while the other is awake for a whole execution of Sm. The two robots
meet! 2

3 Universal and strongly universal exploration sequences

Let G = (V,E) be a d-regular graph. As we saw in Section 1.3, a sequence σ1σ2 · · ·σk ∈ {0, 1, 2, . . . , d}k
and a starting vertex v0 ∈ V define a walk v0, v1, . . . , vk in G. In a similar way, a sequence
τ1τ2 · · · τk ∈ {0, 1, . . . , d− 1}k and a starting edge e0 = (v−1, v0) ∈ E define a walk v−1, v0, . . . , vk
as follows: For 1 ≤ i ≤ k, if (vi−1, vi) is the s-th edge of vi, let ei = (vi, vi+1) be the (s + τi)-th edge
of vi, where we assume here that the edges of vi are numbered 0, 1, . . . , d−1, and that s+τi is computed
modulo d.

Definition 3.1. (Universal Exploration Sequences (UXSs)) A sequence τ1τ2 · · · τℓ ∈
{0, 1, . . . , d− 1}ℓ is a universal exploration sequence for d-regular graphs of size at most n if for every
connected d-regular graph G = (V,E) on at most n vertices, any numbering of its edges, and any starting
edge (v−1, v0) ∈ E, the walk obtained visits all the vertices of the graph.

The existence of UXS of length O(d2n3 log n) for d-regular graphs of size at most n can be shown
using the same probabilistic argument used to show the existence of such UTS. However, while we do not
have explicit polynomial-size UTS, Reingold [Rei08] obtains an explicit construction of polynomial-size
UXS:

Theorem 3.1. ([Rei08]) There exists a constant c ≥ 1 such that for every d ≥ 3 and n ≥ 1, a
UXS of length O(nc) for d-regular graphs of size at most n can be constructed, deterministically, in
polynomial time.

Reingold’s explicit UXSs can be easily used to turn our basic deterministic solution for the
rendezvous problem presented in the previous section into an explicit solution, in the variant of the
model in which a robot is told which edge it used to enter a vertex. Note that the knowledge of
this edge is needed to trace the walk defined by the UXS. We note, however, that the explicit solution
obtained is much less efficient than the non-explicit solution, as the constant c in Reingold’s construction
is large.

As a natural analog of SUTS, we can define:

Definition 3.2. (Strongly Universal Exploration Sequences (SUXSs)) A possibly infinite
sequence τ = τ1τ2 . . ., where τi ∈ {0, 1, . . . , d− 1}, is a strongly universal exploration sequence (SUXS)
for d-regular graphs with cover time p(·), if for any n ≥ 1, any contiguous subsequence of τ of length
p(n) is a UXS for d-regular graphs of size n.



While we cannot show the existence of strongly universal traversal sequences (SUTSs), even non-
explicitly, the main Theorem of this section shows that strongly universal exploration sequences (SUXSs)
do exist and they can be constructed deterministically in polynomial time.

Theorem 3.2. If for every n ≥ 1 there are UXS of length O(nc) for d-regular graphs of size at most n,
then there is an infinite SUXS for d-regular graphs with cover time O(n2c). Furthermore, if the UXSs
can be constructed deterministically in polynomial time, then so can the SUXS.

3.1 The sequence. The crucial property of exploration sequences used in the proof of Theorem 3.2
is that walks defined by exploration sequences can be reversed. For τ = τ1τ2 · · · τk ∈ {0, 1, . . . , d− 1}k,
we let τ−1 = τ−1

k τ−1
k−1 · · · τ

−1
1 , where τ−1

i = d− τi. It is not difficult to check that a walk defined by an
exploration sequence τ can be backtracked by executing the sequence 0τ−10. Note that if e0, e1, . . . , ek
is the sequence of edges defined by τ , starting with e0, then executing 0τ−10, starting with ek defines
the sequence ek,

←
e k,

←
e k−1, . . . ,

←
e 0, e0, where

←
e is the reverse of edge e, i.e. if e = (u, v), then

←
e = (v, u).

Also, it is not difficult to see that if τ is a universal exploration sequence for graphs of size at most n,
then so is τ−1.

In this section it is more convenient to let Un be a universal sequence of length n, rather than a
universal sequence for graphs of size n. Let Un be a sequence of length n which is a universal exploration
sequence for d-regular graphs of size at most γnα, for some γ > 0 and 0 < α < 1. We are interested in
sequences Un only when n is a power of 2. We may assume that for every k = 2i and n = 2j , where
i < j, Uk is a prefix of Un. If this condition does not hold, we can replace the sequence Un by the
sequence Ūn = U1U1U2U4 . . . Un/2. (Recall that n is assumed to be a power of 2. The sequence U1 is
used twice to ensure that |Ūn| = n.)

We now define recursively a sequence Sn. The recursion base is S1 = U1. Assume that Un =
u1u2 . . . un and that n ≥ 2. Define,

Sn = u1 Sr10S
−1
r1 0 u2 Sr20S

−1
r2 0 u3 . . . ui Sri0S

−1
ri 0 ui+1 · · · un−1 Srn−10S

−1
rn−1

0 un(3.1)

where for every 1 ≤ i < n, we let ri = 2j be the largest power of 2 where 22j | i but 22(j+1) ̸ | i (and
so ri is at most

√
i but is much smaller if i has only few 2 factors).

Before we begin the proof of Theorem 3.2 we show the sequence Sn is short.

Lemma 3.1. For every n = 2j, where j ≥ 1, we have |Sn| < 20n.

Proof: Let sn = |Sn|. It is not difficult to see that

|S2i | = |U2i |+ (|U2i | − 1) · 2(|S1|+ 1) +

i/2−1∑
j=1

⌊
|U2i | − 1

22j

⌋
2(|S2j | − |S2j−1 |)

We remind the reader that |Uℓ| = ℓ. It follows that

s2i ≤ 2i

5 + 2

i/2−1∑
j=1

s2j − s2j−1

22j

 .

The values s1, . . . , s8 can be computed directly from the definition. Doing that gives s1 = 1, s2 = 5,
s4 = 15, s8 = 31 and s16 = 87. The claim that sn < 20n for every n ≥ 16 then follows using induction.
(In fact, limn→∞ sn/n = 8.61741 . . . .) 2



3.2 Sn is strong. The key lemma we are using in the analysis is:

Lemma 3.2. Let k and n ≥ 2k2 be powers of 2. Then, every subsequence T of Sn or S−1
n of length

s2k2 + 1 ≤ 40k2 contains, as a contiguous subsequence, a full copy of Sk or S−1
k .

The proof of this lemma uses some nice combinatorial properties of the recursion. Before we give a
proof to the lemma, we show that it suffices for proving that Sn is strong (Theorem 3.2).

Proof: (of Theorem 3.2) Suppose there are UXS of length p(n) = O(nc) for d–regular graphs
of length at most n. Let En = S2p2(n). The infinite sequence is E = E1E2E4E8 . . . E2k . . .. Then, by

Lemma 3.2, any subsequence of E of length O(p2(n)) contains in it a full copy of Sp(n) or S
−1
p(n). W.l.o.g.,

let us assume it contains Sp(n).
We now look at the recursive definition of Sp(n) and ignore all the recursive calls of Sj (for j < p(n))

and their inverses. We can ignore these parts because the sequence S−1
j reverses the action of Sj . We

are left with Up(n) = u1, . . . , up(n). However, Up(n) is a UXS for graphs of size n. In particular, any
subsequence of E of size O(p2(n)) = O(n2c) covers all graphs of size n. 2

This, in particular, gives (an explicit or non-explicit) solution to the treasure hunt problem: all the
robot has to do is to run the SUXS. The adversary decides when to put the treasure, but then the
subsequence of length p(n) starting at this point is a UXS and the robot finds the treasure.

3.3 The combinatorial properties of Sn. We now turn to proving Lemma 3.2 which essentially
claims that in any sub-sequence of length s2k2 there is a full copy of Sk or S−1

k . For the proof of this
lemma we use only the recursive definition of Sn. I.e., the claim is true for any sequence u1, . . . , un, and
we do not use the fact that Un is a UXS.

We first determine what is S−1
n . We have:

S−1
n = u−1

n 0Srn−10S
−1
rn−1

u−1
n−1 0Srn−20S

−1
rn−2

u−1
n−2 · · · u−1

i+1 0Sri0S
−1
ri u−1

i · · · u−1
2 0Sr10S

−1
r1 u−1

1(3.2)

= u−1
n 0Sr10S

−1
r1 u−1

n−1 0Sr20S
−1
r2 u−1

n−2 · · · u−1
i+1 0Srn−i0S

−1
rn−i

u−1
i · · · u−1

2 0Srn−10S
−1
rn−1

u−1
1 .(3.3)

where we used the claim that ri = rn−i that we soon state and prove. The sequence S−1
n thus differs

from Sn only in elements that originate from Un and in the alignment of the 0’s.
The fact ri = rn−i is one of several combinatorial properties of the construction that we now state.

Claim 2. Let n be a power of 2.

1. If k|n then the sequence Sk is a prefix of Sn.

2. For every 1 ≤ i < n, we have ri = rn−i.

3. For any k and i, if ri|k then ri = ri mod k2.

4. Denote ⌊⌊x⌋⌋ = max{2i | 2i ≤ x , i ∈ Z+}, i.e., ⌊⌊x⌋⌋ is the largest power of 2 less than or equal
to x. Then, the first half of Sn is equal to Sn/2S⌊⌊

√
n/2⌋⌋0. Similarly, the second half of Sn starts

with a copy of S−1

⌊⌊
√

n/2⌋⌋
.

We defer the proof of the claim to later on, and we turn to the proof of Lemma 3.2.

Proof: (of Lemma 3.2) Fix k. We prove the claim by induction on n. If n = 2k2 then the claim
is vacuously satisfied as Sn and S−1

n are too short to contain a subsequence of length s2k2 + 1 = sn + 1.



Assume, therefore, that the claim holds for every m = 2j
′
that satisfies 2k2 ≤ m < n = 2j . We show

that it also holds for n. Let T be a subsequence of Sn of length s2k2 +1. Essentially the same argument
works if T is a subsequence of such length of S−1

n (because Equation (3.2) shows S−1
n is similar to Sn).

We consider the following cases:

Case 1: T is completely contained in a subsequence Sm or S−1
m of Sn, for some m < n.

The claim then follows immediately from the induction hypothesis.

Case 2: T is completely contained in a subsequence Sm0S−1
m of Sn, for some m < n.

In this case, T = T ′0T ′′, where T ′ is a suffix of Sm and T ′′ is a prefix of S−1
m . Either |T ′| ≥ 1

2s2k2 or
|T ′′| ≥ 1

2s2k2 . As a suffix of Sm is the same as a prefix of S−1
m we focus on just one case. We assume for

concreteness that |T ′′| ≥ 1
2s2k2 .

As T ′′ is a prefix of S−1
m , and |T ′′| ≥ 1

2s2k2 , it follows that m ≥ 2k2. Now, S−1
k is almost a prefix

of S−1
m , in the sense that they differ only in symbols that originate directly from Sm (this follows from

Equation (3.2) and Claim 2(1)). In particular, a prefix of S−1
m of length 1

2s2k2 , half the length of S2k2 ,
ends with a full copy of Sk, followed by 0 (by Claim 2(4)).

Case 3: T contains a symbol uℓ of Sn that originates from Un.

In this case, T = T ′uℓT
′′. Again, we either have |T ′| ≥ 1

2s2k2 or |T ′′| ≥ 1
2s2k2 . Assume again, for

concreteness, that |T ′′| ≥ 1
2s2k2 . The other case is analogous. Let

Sn,ℓ = uℓ Srℓ0S
−1
rℓ

0uℓ+1 · · ·un−1 Srn−10S
−1
rn−1

0un

be the suffix of Sn that starts with the symbol uℓ that originates from the ℓ-th symbol of Un. We
claim that the prefix of Sn,ℓ of length

1
2s2k2 contains a copy of Sk.

Let ℓ′ = ⌈ℓ/k2⌉k2 be the first index after ℓ which is divisible by k2. Clearly rℓ′ ≥ k and ri|k for every
ℓ ≤ i < ℓ′. Also, Sk is a prefix of Srℓ′ (by Claim 2(1)) and so S′ = uℓ Srℓ0S

−1
rℓ

0 · · · uℓ′Sk is a prefix of
Sn,ℓ which ends with a full copy of Sk.

For every ℓ ≤ i < ℓ′ we have ri = ri mod k2 (by Claim 2(3)), and so up to changing the symbols ui
the sequence S′ is contained in the first of half of S2k2 (which also ends with Sk), and hence the length
of |S′| is at most 1

2s2k2 , as required. 2

Finally, we turn to proving the claim:

Proof. (of Claim 2)

1. By inspecting Equation (3.1) and because Uk is a prefix of Un.

2. n is a power of 2. Now, a number ∆ that is a power of 2 that divides 1 ≤ i ≤ n must also divide
n. Hence ∆|i iff ∆|n− i. It follows that the largest power of two that divides i is also the largest
power of 2 that divides n− i and so ri = rn−i.

3. First, clearly for any k a power of 2 and any i, ri mod k ≤ ri. We know, however, that k is large
enough, i.e., ri | k, and so r2i | i and r2i | k2 and it follows that r2i | i mod k2. Thus, ri ≤ ri mod k2

and therefore ri = ri mod k2 .

4. We already saw that Sn/2 is a prefix of Sn. By inspecting Equation (3.1) we see that in fact the first

half of Sn is Sn/2Srn/2
0. If n/2 is a power of 2, n/2 = 2i, then rn/2 = 2⌊i/2⌋ = ⌊⌊2i/2⌋⌋ = ⌊⌊

√
n/2⌋⌋,

which completes the first assertion in item (4). The second assertion is similarly proved.



4 Concluding remarks and open problems

We obtained improved deterministic solutions for the rendezvous problem that are independent of τ ,
the difference between the activation times of the two robots. Furthermore, we get close to the length
of a UTS. With backtracking, we obtain a polynomial time, explicit solution.

The technique used in the paper raises the question whether there exist strongly UTSs. We define
the treasure hunt problem which is the variant of the problem where one robot is static and always
stays in the place where it is put. Strong UTS exist iff the treasure hunt problem has a solution that is
independent of τ . Standard probabilistic arguments used to show the existence of (non-strong) universal
traversal and exploration sequences cannot be used to prove the existence of strongly universal sequences,
with any cover time. We can, however, show an explicit construction of strong universal exploration
sequences. We do not know wether strong universal traversal sequences exist. We believe this last
question deserves further study.
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