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We examine trade-offs among stakeholders in ad auctions. Our metrics are the revenue for the utility of the
auctioneer, the number of clicks for the utility of the users and the welfare for the utility of the advertis-
ers. We show how to optimize linear combinations of the stakeholder utilities, showing that these can be
tackled through a GSP auction with a per-click reserve price. We then examine constrained optimization of
stakeholder utilities.

We use simulations and analysis of real-world sponsored search auction data to demonstrate the feasible
trade-offs, examining the effect of changing the allowed number of ads on the utilities of the stakeholders.
We investigate both short term effects, when the players do not have the time to modify their behavior, and
long term equilibrium conditions.

Finally, we examine a combinatorially richer constrained optimization problem, where there are several
possible allowed configurations (templates) of ad formats. This model captures richer ad formats, which
allow using the available screen real estate in various ways. We show that two natural generalizations
of the GSP auction rules to this domain are poorly behaved, resulting in not having a symmetric Nash
equilibrium or having one with poor welfare. We also provide positive results for restricted cases.
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1. INTRODUCTION

Studies of auctions tend to focus on one particular objective, with the goal of optimizing
it. For example, the VCG auction maximizes welfare, while Myerson [1981] studied the
design of auctions that maximize revenue in a single parameter setting. However, for
designers of practical auctions, such pure objectives are rarely the goal. Instead, the
auction designer, even if caring only about long-term revenue, must take into account
various aspects of the health of the marketplace.

A notable example is that of search advertising auctions, where the opportunity to
advertise alongside search results is auctioned off. There, the search engine wants to
maximize revenue, but faces competition from both other search engines and other ad-
vertising outlets. As a result, maximizing revenue requires striking a balance between
extracting revenue from current advertisers and keeping them or attracting more. A
classic result of Bulow and Klemperer [1996] shows that, in some cases, attracting
even a single additional bidder can be as valuable as perfectly optimizing revenue.
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Given this, the auctioneer should take at least some consideration of the welfare of
advertisers.

At the same time, a search engine is a two-sided platform where the good being sold
to advertisers is the attention of searchers. Decisions that maximize revenue could
result in a poor user experience if more or worse ads are shown. As searchers have
other options, the supply of goods to be sold depends on how satisfied they are. Thus,
the auctioneer should take their welfare into account as well.

While auction theory provides a rich set of tools for optimizing the welfare of a sin-
gle group, much less attention has been paid to optimizing tradeoffs among multiple
stakeholders. Better understanding this, in the particular context of sponsored search,
is the goal of this paper.

1.1. Our Contribution

We begin by analyzing the optimization of a linear combination of objectives relevant
to the search engine (revenue), advertisers (welfare), and users (clicks). We provide
an auction design that optimizes any objective that is linear in the click probability of
an advertiser, of which each of these three objectives (and any linear combination of
them) is a special case. Like current practice, this auction uses a rank score to order
ads and prices can be computed in a truthful or Generalized Second Price (GSP) fash-
ion. Importantly, this auction achieves trade-offs between revenue and other objectives
through the use of a per-click reserve.

Next, we approach the same problem through the lens of constrained optimization.
Rather than optimize a particular combination, we could constrain some of the objec-
tives to lie above some minimal value while optimizing the remaining ones. This may
be a more natural approach in practice, since it is not clear how the various objectives
should be weighted, but given a current state of the marketplace it is natural to ask
how to make the system one percent better for users while holding revenue neutral.
Perhaps unsurprisingly, we are able to show that this problem is equivalent to the
unconstrained problem via Lagrangean duality (the analysis is not trivial because the
object we seek is an optimal function).

Of course, these three objectives are not the only natural ones for an auction designer
to consider. For example, using the number of clicks (click yield) treats a deceptive
advertisement that tricks people into clicking on it as beneficially relevant for users.
An alternative that fits within our constrained optimization framework is to constrain
the number of ads shown (impression yield), so that only the “best” are shown to users.
We characterize the design of the optimal option with this constraint. Interestingly,
the optimal way to ensure this constraint is satisfied through a per-impression reserve,
which previous work has identified as a poor tool from a pure revenue maximization
standpoint [Roberts et al. 2013; Thompson and Leyton-Brown 2013].

To complement this theoretical exploration, we follow [Roberts et al. 2013] and ex-
amine the relative performance of the optimal mechanism to various designs that have
previously been considered through extensive experiments on both synthetic and real
data. The experiments on synthetic data confirm the theoretical results: a ranking al-
gorithm with a per-impression reserve usually outperforms the other evaluated rank-
ing algorithms in terms of revenue, welfare, and click yield. For the second part of
the experiments, we use historical data from Microsoft Bing for a keyword with over
500 bidders and for a keyword with fewer than 10 bidders. In the former case, all
the ranking algorithms perform similarly for high values of impression yield while for
low values of impression yield the algorithm with a per-impression reserve provides
a higher revenue. For the latter case, the algorithm with the per-impression reserve
provides an essentially constant revenue while controlling the number of ads shown.
This is higher for low numbers of ads and lower for high numbers of ads. Finally, on a



sample from a weeks worth of data across all keywords on Bing, we observe opposite
results when trading off between click and impression versus revenue and impression.

Finally, we consider the trade-offs created due to the existence of several different
types of ads. For example, instead of displaying several text ads the search engine
may at times wish to display one large image-based ad or a block of ads for different
products that can be purchased. This setting diverges from classical theory in two
ways. First, the set of advertisers in the two camps are not necessarily equivalent (e.g.
an advertiser may only desire a placement for image-based ads). Second, the search
engine’s available slots are no longer pre-set and can change based off the bids. We
will then show that the truthful auction in this setting is largely analogous to the
standard setting, but attempting to utilize GSP payment rules results in significant
complications. Our results here are quite negative, with GSP being poorly behaved
except in restricted cases. As both Google and Bing use GSP, identifying a solution to
this problem is an important direction for future work.

1.2. Related Work

Our work sits in a long line of papers that study generalized second price auctions for
sponsored search [Varian 2007; Edelman et al. 2007]. Ostrovsky and Schwarz [2011]
studied the effects of applying Myerson’s [1981] optimal per-click reserve on Yahoo!
(For practical reasons they actually implemented per-impression reserve.) Lahaie and
Pennock [2007] proposed the idea of a squashing parameter to improve revenue, and
Lahaie and McAfee [2011] showed that it can increase welfare as well. Thompson
and Leyton-Brown [2013] studied a variety of ways of increasing revenue, including
through a reserve of the optimal form.

In the study of trade-offs, Likhodedov and Sandholm [2003] showed how to opti-
mize a combination of revenue and welfare. Diakonikolas et al. [2012] explore the
trade-off revenue/welfare focusing the attention on computational complexity issues
for both exact and approximated deterministic mechanisms. The convex combination
of revenue and welfare has also been considered in a study about refinements in the
prediction of the relevance of ads done by Sundararajan and Talgam-Cohen [2013].
Liu and Chen [2006] and Liu et al. [2010] compared the designs of revenue-optimal
and welfare-optimal auctions in a simple setting. Edelman and Schwarz [2010] argued
that setting an optimal reserve price will lead to a significant revenue gain with min-
imal welfare loss. Athey and Ellison [2011] studied a model of consumer search and
showed that reserve prices can increase user welfare. Roberts et al. [2013] studied the
revenue optimal auction and showed that empirically it led to good trade-offs between
revenue and other objectives, but did not have a theoretical explanation for this. They
also showed that symmetric Nash equilibra continue to exist when per-impression re-
serves, per-click reserves of the optimal form, and other linear alterations to the rank-
ing are performed.

Our motivations for considering trade-offs are driven by issues of endogenous partic-
ipation. Jehiel and Lamy [2013] examine a general model of this problem in auctions,
and their application of their results to sponsored search settings yields a qualitatively
similar result to ours: reserves prices should be set, but not at as high a level as in a
setting where participation is exogenous.

2. PRELIMINARIES

We now describe the setting and notation we use throughout the paper. Our setting is a
standard sponsored search ad auction or a position auction, where there are n bidders
or advertisers; bidder i submits a bid b; for their ad to be displayed, and a displayed ad
that is clicked is charged a price p;.

We use the following notation:



— b= (b1, ba,...,by): the vector of bids.

—t; € [¢i,d;]: the type of bidder i (their true value of a click), which can take a value in
the compact set [¢;, d;].

— T': the set of valid bidder types/bids vectors (i.e. b, (t1,t2, ..., t,) € A).

— Types are independently distributed with density function f; for bidder i, giving den-
sity f(t) =], fi(t:).

—¢; : R>¢g — R, the associated virtual value function of the bidder i, assumed to be
regular. Le. ¢;(t;) =t; — (1 — F(t;))/f(t;) is non-decreasing.

— w;: the ad effect of bidder 1.

—x; : T — R"™: the allocation rule chosen. This represents the expected slot effect given
to bidder .

— t;w;x; the expected welfare of advertiser i, determined as his value for a click multi-
plied by his probability of a click (factored into an ad effect and a slot effect).

—p; : T — R™: the payment function of bidder i.

As we will be looking at linear objectives and constraints, we introduce:

— OBJ = arevenue+ 3 welfare++ click yield: the objective we will frequently maximize
in our auctions. We assume «, 5,7 > 0 and « + 8 > 0 (the case of @ = 8 = 0 is largely
trivial and due to its cumbersome edge-case nature will not be considered).

—;(z) = api(z) + Bz + v: here the «, 5,7 are equivalent to those used in OB.J.

To define an auction mechanism the designer must specify both an allocation rule
(or ranking algorithm) and a payment function. We use ranking algorithms based on
the parameters described above that are monotone, i.e., the expected valuation of each
advertiser does not decrease when their type increases, and payments that provide the
“right” incentives to advertisers to report bids that correspond to their types. We can
obtain such payments in two ways: a) since the ranking algorithm is monotone, we can
compute the payments as prescribed by Myerson [1981], yielding a truthful mecha-
nism; b) We can use GSP payments. In the latter case, we need a solution concept that
characterizes a single expected outcome, and apply the commonly used one: symmetric
or locally envy free Nash equilibrium (SNE) [Edelman et al. 2007; Varian 2007]. An
SNE is a refinement of a Nash equilibrium requiring that for every pair of advertisers
1 and j, the following constraint is satisfied:

50 (1= 2,0)) < )t - )

Intuitively, this says that i prefers their slot and payment to j’s slot and payment.
Previous work has shown that with GSP payments the “lowest” SNE corresponds to
the truthful outcome, in the sense that each bidder ends up with the same slot and
payment, for a broad class of allocation rules [Aggarwal et al. 2006; Edelman et al.
2007; Varian 2007; Roberts et al. 2013].

3. UNCONSTRAINED OPTIMIZATION

We first begin with auctions that solve an (essentially) unconstrained optimization
problem!. The natural problem of this form is to assign advertisers to slots to maxi-
mize some combination of objectives such as revenue, welfare, and click yield. A key ob-
servation, previously used in a different setting by Likhodedov and Sandholm [2003],
is that all of these objectives are linear in the allocation. Thus they can naturally be

1 Strictly speaking there is a constraint that the allocation rule be monotone, but for the cases we examine
the optimal solution has this property so we can ignore this constraint and perform unconstrained optimiza-
tion.



folded together to yield an optimal auction by using a “rank score” that takes the ap-
propriate combination of them. The following theorem captures this for our objective
function of the form OBJ = a revenue + 3 welfare + ~ click yield (where «, 3,v > 0).
This allows trading off measures of the utility of the search platform, the advertisers,
and the users. Of course, any other linear term could easily be included.

THEOREM 3.1. The auction that maximizes OBJ maximizes the equivalent objec-

tive
/Zwiwi(fi)wi(t)f(t)dt.
T

Thus, the truthful auction that maximizes for any instance of types/bids t, the expres-
sion > wii(ti)xi(t) is optimal.
PROOF. We first note that «, 3,~ are all non-negative and that each of the function

components are monotone, resulting in monotonicity.
Let us now consider each of the three terms separately.

(1) revenue: following Myerson [1981] we have that

/T;wzpz(f) sz (x,p,ci) /T;wi@(ti)xi(t)f(t)dt

where U; is the expected utility of bldder 1 when bidding ¢; in the auction described
by x and p as in [Myerson 1981].

(2) welfare:
/ > witiwi(t) £ (t)dt
T =1
(3) click yield:

/T Zwixi(t) f(t)dt

Combining the above, we get that:

OBJ = —aZwl x,p,ci) / sz agi(t;) + Bty + ) zi(t) f(t)dt.

i=1

Again following [Myerson 1981], the first term can be set to 0 by setting the payment p
accordingly, and as feasible direct revelation mechanisms must have that U;(p, z, ¢;) >
0, we have that this is optimal. Therefore, to optimize OB.J, we need only optimize the
second term. 0O

Note that similarly to the revenue-only case, Theorem 3.1 can clearly correspond to a
ranking based on w;1;(t;). In the case that the distributions across types are identical,
the ¢; are equivalent to some ¢, and in turn the ; are equivalent to some . A single
bidder-independent reserve price  can then be implemented where r = 1 ~1(0).

3.1. Implications for GSP

The analysis in Theorem 3.1 assumes that advertising is sold using a truthful auc-
tion. However, the major sponsored search platforms, such as Google and Bing’s ad
platforms, implement auctions that are not truthful. Instead of a truthful payment
rule, these platforms use the GSP payment rule (that is, a bidder pays the value of
the minimum bid required to retain the slot allocated to them). For many purposes



this distinction is not important, as there exists an equilibrium of the GSP auction
that implements the optimal truthful outcome, in the sense that the allocations and
payments for all advertisers are the same [Edelman et al. 2007; Varian 2007; Roberts
et al. 2013]. However, this analysis has been shown to work for rankings which are
linear in bids (see in particular [Roberts et al. 2013]). This is important because, even
in the regular case, the virtual valuation functions ¢; need not be linear, and it is not
clear that this good behavior extends to this setting. Nevertheless, Theorem 3.1 can at
the very least be applied to optimizing linear approximation of the ¢;. Thompson and
Leyton-Brown [2013] observed that ¢; is in fact linear for uniform value distributions.
In fact, many Beta distributions are also close to linear for much of their range.

4. CONSTRAINED OPTIMIZATION

Section 3 allowed linear trade-offs between the utility measures of the different inter-
ested parties, but did not allow an objective function that requires a minimal threshold
utility for them. We now consider objective functions that allow setting such a minimal
threshold. One example is designing a revenue optimal auction under the constraint
that the social welfare exceeds a minimal threshold value of 6. More generally, we
allow several constraints of the form oy, revenue + S, welfare + ~; click yield > 6.

Note that the equivalent objective function derived in Theorem 3.1 is a linear func-
tional on © = (z1, 2, ..., ¢, ), which we can write in succinct notation as

Glo) = [ - wits(t)ai(t)f )t
T =1
By analogy, it follows from Theorem 3.1 and its proof that each constraint can be ex-

pressed in the form ax(xz) > 0, where a; is a linear functional and hence we can rep-
resent a set of constraints in the succinct form A(z) + Z = 0, where 6 = (04,65, ...,0,.),

Z={z€ /R’ W< 0} is the non-positive cone in the case of inequality constraints
and Z = 0 for equality constraints. Here A is a vector of linear functionals.

Our optimizations over x are in function space, which we take to be the L' Banach
space w.r.t. Lebesgue measure. We write X for the feasible region for the unconstrained
problem (which requires = to be positive amongst other things). Hence the constrained
problem can be written as

Pz(o) .
Maximize OBJ = a revenue + [ welfare + v click yield
subject to Alz)+2z=10

rekX
overz € L',z € Z.

We now introduce some technical conditions, used to facilitate proofs: we assume
that the allocation function z : T — R" is a Lebesgue integrable function € L', and we
require the constraint feasibility region X for the allocation to be convex with respect to
the underlying function space. Note that “natural” requirements for sponsored search
auctions translate to convex regions if we allow for randomized allocations.

The Lagrangian for the constrained problem is

L(z,\) = G(z) = \T(0 — A(z) — 2)
and we demonstrate that the constrained problem is strong Lagrangian, meaning
strong duality applies, and hence

inf sup L(x,\) = L(z*,\*) = sup L(x,\") = sup G(z).
A zex reX r:x€X&A(x)+2z=0



The proof largely mirrors the standard proof for convex optimization over Euclidean
spaces, but applied to function space. There are two main parts of the proof: first,
we show that if 6 is in the relative interior of the constrained optimization then the
problem is strong Lagrangian. That is, defining I'(0) = sup,.,cxga(a)t-—0 G(2), We
show the following.

THEOREM 4.1. If 0 € relint (dom(T")), then the optimization problem is strong La-
grangian.

The second part is to give the equivalent version of Slater’s constraint qualification —
which gives sufficient conditions for the problem to be strong Lagrangian.

COROLLARY 4.2. When Z = {z € /R”(A) :< 0} is the non-positive cone, the problem
Py(0), is strong Lagrangian if there is some & € X such that A(Z) > 0. If Z = 0, the
problem P;(0) = P(0) is strong Lagrangian provided there is some % € relint (X') such
that A(z) = 0.

Appendix A goes through the proofs in detail.

The next theorem is then a direct consequence of the problem being strong La-
grangian, and shows that auctions which satisfy linear constraints are essentially
those which have the aforementioned linear objectives. We give the theorem for in-
equalities (the theorem for equalities is similarly proved).

THEOREM 4.3. Suppose x* maximizes o revenue+ (g welfare+-, click yield subject
to the following constraints:

a1 revenue + 31 welfare + 1 click yield > 6,
i revenue + 3o welfare + o click yield > 0

a, revenue + [3, welfare + ~,. click yield > 0,.

Then there exists some o*, *, and v* such that x* maximizes o* revenue + 3* welfare +
~* click yield.

PROOF. Since a solution z* exists, the feasible region is non-empty. If a feasible
solution exists with all the inequalities strict, then we know the problem is strong
Lagrangian, and hence there are Lagrange multipliers A* = [A},..., \’] such that the
Lagrangian L(z*, \*) solves the problem — and the latter can be written as OBJ with
af = ag+ Y, 0N, 85 = Bo+ >, BN, v = 1 + >, 7. Note that complementary
slackness ensures that \.(§ — A(z*)) = 0. If no feasible solution exists except on the
boundary of the constraint set, then essentially there is one solution, whose values
determine o*, 5*,7v*. O

Each of the stakeholders would like to dominate the objective function (by setting
their term in OBJ to 1 and the other terms to zero). We call an auction approximately
optimal with level ¢ for one of the stakeholders if it achieves at least a ¢ fraction of the
utility the optimal auction achieves for that stakeholder alone. One consequence of the
theorem above is that the Pareto optimal surface is concave, so that there always exists
a deterministic auction that achieves any convex combination of optimality levels for
all the stakeholders.

THEOREM 4.4. The Pareto surface is concave. That is, the surface of points (revenue,
welfare, click yield) that are feasible by some direct revelation auction such that there is



no other auction that simultaneously achieves weakly better revenue, welfare and click
yield, and also achieves strictly better of one of the tree, is concave.

PROOF. Fix some constraint ¢. Then we know that for every OBJ(«, 3,v) there is a
non-vertical supporting hyperplane (the Lagrangian) at the point 6 to the hypograph
['(#) which bounds the (constrained) objective function from above. Taking the point-
wise infimum of these affine hyperplanes as «a, 5, and v vary results in a concave
surface. O

COROLLARY 4.5. Let «, 3,y > 0 satisfy a + 3 + v = 1. Then there exists a determin-
istic auction that achieves at least an « fraction of the max revenue, a 3 fraction of the
max welfare, and a ~ fraction of the max click yield.

Another class of constrained auctions of interest are those where we limit the num-
ber of ads shown. That is, given .J search queries over various search terms we may
wish to show no more than £ ads in expectation. This is another natural way to capture
the utility of searchers, who presumably would generally prefer to see fewer, better-
targeted ads. We now investigate such ad-limited auctions, making the simplifying
assumption that all J auctions are single item auctions. In contrast to previous work
which has suggested that a per-impression reserve is a poor tool for increasing rev-
enue or trading-off between revenue and other objectives [Roberts et al. 2013; Thomp-
son and Leyton-Brown 2013], this analysis shows that the use of such a reserve is the
optimal way of controlling the number of ads shown.

THEOREM 4.6. Suppose we have J single slot search terms where search term j
appears with probability q; and has a slot effect of s; for its lone slot. Moreover, suppose
we wish to show no more than 0 < 1 ads per search (in expectation) and when auctioning
off search term j, we wish to maximize «; revenue + 3; welfare ++; click yield. Then the
optimal solution introduces a per-impression reserve price in all J auctions. Specifically,
for each search term j we will separately wish to solve the following:

n

maX/T <Z (wj,i%5,i(t5,6) —/\/sj):z:j_,i(tj)> F£(t;)dt;

P
J :
1=1

where quantities indexed by j refer to the jth search term’s auction (e.g. v;; is the v
function for search term j’s bidder i), \ is some common value to all search terms, and
aj, B, > 0 with o + B +v; > 0 for each j.

PRrROOF. We first note that the expression is monotone, as the sum of monotone com-
ponents. Now via a similar analysis to the theorem 3.1 it is not difficult to see that our
problem is equivalent to:

J nj
o max Z; 9 /T > wiithyi(ty.)esi(ty) f(t;)dt;

Jj= J =1
- o~ iilty)
S't'ij/ Zuf](t])dtj =40.
= 7= S
Using a Lagrange multiplier \ gives a dual problem for fixed A, L(\, z*)
J n;
max =~ Af+ >4 /T (Z (wj,i5i(t5.:) — A/s;) %ﬂ(%‘)) [i(t;)dt;.

L1,X25.005 x - -
j=1 =1



For a fixed value of A not only does the A0 in the above maximization become irrelevant,
but also the terms in the sum indexed by ;j are independent of each other. Thus, the
maximum of the sum can be separated into the sum of the maximums. The resulting
solution (for fixed )) is feasible; taking the minimum over A of L(\, z*) also produces
a solution which is feasible, and hence by Lagrangian sufficiency L(\*, 2*) solves the
constrained problem. (c.f. Lemma A.2). O

5. EXPERIMENTS

Roberts et al. [2013] empirically considered a number of ways of making trade-offs
between revenue and clicks / welfare and found that a form of per-click reserve they
proposed (independently proposed by Thompson and Leyton-Brown [2013]) lead to the
best results. In Theorem 3.1, we derived the optimal way of making such trade-offs,
by optimizing a weighted combination of virtual valuations, clicks, and welfare. The
proposed form can be thought of as a linear approximation to this, providing a theoret-
ical explanation for this observation. Another observation from this prior work is that,
despite their popularity, per-impression reserve prices tended to enable poor tradeoffs.
However, Theorem 4.6 suggests they are the right tool for controlling the number of
ads shown, as they correspond to the shadow price of a constraint on the number of
ads. In this section, we revisit the experiments from [Roberts et al. 2013] to validate
this empirically.

Our experiments look at four metrics: the number of ads shown (impression yield),
the revenue, the (advertiser) welfare, and the number of clicks generated (click yield).
In the short term, the auctioneer cares mostly about the revenue metric. Welfare re-
flects the total value created, and is a focus of the auctioneer in the long term, as it
determines the ability of the platform to attract participants (who may have alterna-
tive platforms available). Click yield can be thought as a proxy for the value created for
the users who are clicking on (presumably) useful ads. Impression yield can be thought
of as another proxy for the value created for users, who presumably do not wish to see
useless ads.

We consider several ranking algorithms in our analysis: the method Roberts et
al. [2013] and Thompson and Leyton-Brown [2013] used to approximate the revenue
optimal auction (denoted by (b; — r)w;, where r is a per-click reserve), the standard
ranking algorithm coupled with a per-click reserve r (denoted by b;w;/r) and with a
per-impression reserve p (denoted by b,w;/p), and a two parameter ranking algorithm
that combines the first and the third (denoted by (b; — r)w;/p). Since this ranking
algorithm is characterized by two parameters, the operating points form a region rep-
resented in the following figures by a shaded area.

We begin with a simple example characterized by eight advertisers bidding for three
slots. Advertisers have i.i.d. types (¢;,w;) where t; and w; are independent and uni-
formly distributed on [0, 1]. Figure 1 shows how each of the metrics changes with the
allowed number of ads shown, using different auction designs.

The figure illustrates Theorem 4.6: given an expected number of ads shown, the op-
timal solution is provided by a ranking algorithm with a reserve score. In particular,
the welfare and the click yield are always maximized by the standard ranking algo-
rithm with a reserve score. The revenue is always maximized by the two-parameter
algorithm.

We also evaluate the ranking algorithms in a more realistic setting considered by
Lahaie and Pennock [2007]), which they selected by fitting Yahoo! data from a partic-
ular query. In this setting, bidder valuations are correlated with relevance, and have
a lognormal distribution (which does not yield regular virtual valuations). The results
for this setting are shown in Figure 2, which indicates that the observations made for
the simpler setting hold in this case as well.
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The above results are based on the assumption that bidders are in equilibrium. In
reality, if parameters are changed, advertisers may take some time to reach equilib-
rium. Therefore, we want to investigate what happens in the short term, when the
ranking method is changed but advertisers do not react.

As we are not interested in the equilibrium in this case, we can simply examine the
performance of different ranking algorithms on historical data. This dataset has many
realistic features which were not captured by the previously analysis, such as changing
bidders, matching of bids to multiple queries, and stochastic quality scores.

The data we used for our simulations (used also in [Roberts et al. 2013]) is historical
data from Microsoft Bing for a keyword with over 500 bidders, which we selected as
representative of a "thick” market (Figure 3), and for a keyword with fewer than 10
bidders, as representative of a "thin” market (Figure 4). The data was normalized, but
the exact values are not relevant for our purpose. Both figures show the effect of the
number of ads displayed on the revenue when changing from the standard ranking al-
gorithm with a reserve price to the ranking algorithm proposed by Roberts et al. [2013]
and the standard ranking algorithm with a reserve score.

In the thick market, no ranking algorithm always outperforms all the others. How-
ever, though the three algorithms show a similar trend, the standard algorithm with
reserve score provides a higher revenue when only few ads are displayed. In the thin
market, the standard ranking algorithm with reserve score exhibits a different trend
than the other algorithms (which are similar to each other in their behavior). In par-
ticular, the revenue provided by the former algorithm remains constant for almost all
the number of ads shown. The non-smoothed trend all the ranking algorithms show



is explained by the advertisers’ bids. In the dataset we use, some bids are more fre-
quent than others (see [Roberts et al. 2013]) and this creates thresholds for the reserve
price/score: when the reserve increases and moves from below a threshold to above it,
the impression yield suddenly reduces. Interestingly, in both markets the standard
ranking algorithm with reserve score performs better than the others for the same
range of ads shown.
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Finally, on a sample from a week’s worth of data across all keywords on Bing, Fig-
ures 5 and 6 show exactly opposite results when trading off between clicks and im-
pressions versus revenue and impressions. For clicks, consistent with the theory, the
optimal parameter to use is a per-impression reserve p. For revenue, as raising the per-
click reserve always increased revenue for most of the range we explored, using that
as the sole parameter is optimal for most of the range. Only once increasing it further
begins to reduce revenue does it become optimal to add in a per-impression reserve.
Again, this is consistent with the theory, despite this data not reflecting equilibrium
behaviour.



6. GSP AUCTIONS WITH CLASSES AND TEMPLATES

We now turn to examine a more elaborate constrained optimization problem. Our mo-
tivation comes from changes in the world of sponsored search auctions, where recently
several platforms have allowed enriching ads with features such as larger formats, re-
views, maps, or phone numbers. A richer ad augmented with images or video is more
likely to be clicked, but uses up more screen space. As the same space on the screen
can be used in different ways or formats, the search engine faces the problem of deter-
mining which of many possible arrangements of advertising, or templates to use. Deng
et al. [2010] make an initial step to solve this problem by proposing and studying the
multi-slots pricing scenario.

As a guiding example for our work, consider the setting studied by Goel and
Khani [2014], where a search result page can either display one image ad or k text
ads. To analyse trade-offs in this type of setting, we require the following two exten-
sions to the classical framework.

— There may be several classes of ads/bidders that are disparate in nature: the bidders
of a class bid only for ads of their own class. Importantly, we assume throughout this
section that the sets of bidders of two classes are disjoint. In our example, one class
consists of the advertisers interested only in text ads, while the other class consists
of those interested only in image-rich ads.

— There may be several mutually-exclusive templates, each of which describe an entire
slot layout. For example, one template allows a single image-rich ad (and no text
ads) and another template allows k text ads (but no image-rich ads).

With these extensions to the classical framework we will require the following up-
dates to our notation and terminology.

—ux;; : A — R": the allocation function of bidder i on template j. Intuitively, this rep-
resents the slot effect given to bidder i if the search engine decides to use template
j. We therefore have the following constraint. Suppose template j has slot effects
$j1,5;4,2,---, Sjn (We can assume there is a slot for every player by setting s;; = 0 as
needed). For every ¢ € {1,2,...,n}, let Z; ;, : A — [0,1] be functions such that for
every b, we have > &, ; ((b),>, ;i j¢(b) < 1. Intuitively Z; ; , represents the prob-
ability that bidder ¢ receives slot ¢ (in template j). Then the z; ; are valid alloca-
tion functions only if there exists some ; ; , such that for every i, j, and b, we have
xi,5(b) = >, 50%4,5,0(b). If they satisfy this constraint and do not assign slots from one
class to a bidder of another, then the z; ; are valid.

—ux; : A — R™: the actual allocation rule chosen. For every set of bids b, there must
exist some template j such that for all i we have z; = z; ;. Note that the order of
quantifiers allows the chosen template to depend on the bids.

Our first observation is that, for a truthful auction, this complexity does not intro-
duce any significant issues. We are able to select the optimal template for our objec-
tives, and as the domain remains a single-parameter one we are able to charge appro-
priate payments to induce truthful bidding.

THEOREM 6.1. A truthful auction that maximizes OBJ is described by the alloca-
tion rule ; ;:

n

max max Z wi(b;)w; j(b).

xT
J i=1

PROOF. This allocation rule selects the template that has the highest value of OB.J
when allocated optimally (correctly optimizing revenue because we are still in a single



parameter domain), so it only remains to check monotonicity to verify truthfulness.
Suppose for purposes of contradiction it is not. Then there exists a bidder i such that
when he raises his bid from b; to b the slot-effect assigned to him is decreased in value.
Explicitly, we have that if s; is the allocated slot effect for j when i reports a bid of b;,
and s’ when b; is reported, then s < s;. Now as the s; are chosen optimally for b, we
have that:

ijdi(bj)sj > ijw(bj)s;
j=1 j=1
Zj:Lj;éi ij(bj)(s’,- )

w;i(s; — s5)

= (b)) >

Similarly, as the s; are chosen optimally for (b;,b_;), we have that:
wp(B])s; + > wi(by)sh = wib(B)si + Y wirh(by)s;

j=1,j#i j=1,j#i

Zj:l,j;éi wjl/’(bj)(sz‘ - 55)

w;(s; — s)

= (b)) <

Combining these two results, we find that ¢(b;) > ¥(}), and as ¢ is an increasing
function, this is a contradiction. O

6.1. Extensions of GSP

We have shown that our earlier results generalize for truthful auctions. Unfortunately,
as previously discussed, search engines such as Bing and Google use GSP instead.
Previously, this was not a significant issue (except possibly for exact revenue maxi-
mization) due to the equivalence results of Varian [2007], Edelman et al. [2007], and
more generally Roberts et al. [2013]. However, due to the combinatorial nature of the
image/text auction, and templates more broadly, the distinctions between truthful and
non-truthful auctions become critical. Indeed, it is not even clear what the “right” way
is to generalize GSP to our setting, and as we shall see, simple candidates have prob-
lems even when solely optimizing for advertiser welfare.

An underlying principle in standard GSP auctions is that “bidders pay the minimum
required to keep their slot”. We show that several natural extensions of GSP that
maintain this principle are provably not equivalent to the truthful mechanism and
have poor equilibrium properties.

Before we begin, an extension of the notion of the SNE is in order.

Definition 6.2. A symmetric Nash equilibrium is a set of bids b that satisfy the con-
ditions:

—for all s and b; we have: ZT; (b;, bfl)(tz — Ds (b;, bfl)) <ux; (b) (tl — Di (b))
—for all 7 and j where i and j are bidding on the same class of ads, we have:

2;0) (1 = Ep;(0)) < @ (B)(E: — pilb))

The first of the two conditions is what constitutes a Nash equilibrium and the second
defines the symmetric/envy-free nature of the equilibrium. Note that the second does
not encompass the first, unlike in the classical single-template scenario.

6.1.1. Template-Considerate GSP. We begin with perhaps the most straightforward ex-
tension to multi-template settings.



Definition 6.3. The template-considerate GSP payment rule is such that the pay-
ment is the value of the minimum bid to ensure the bidder keeps his current slot. That
is, the payment is the maximum of the minimum bid needed to be the next highest
bidder’s bid in the same class, and the minimum bid required to ensure the winning
template remains optimal.

Unfortunately, this payment rule suffers from a few critical issues. First, we show
that even in the very restricted image/text setting, an SNE may fail to select the same
outcome as the truthful mechanism. Thus, the auction fails to optimize the desired
objective.

THEOREM 6.4. Suppose we use the template-considerate GSP payment rule. Then
we may not implement the truthful outcome.

PROOF. Suppose we are maximizing welfare and we have the following setup with
all the w; = 1.

— Bidders:
— Four text ad bidders with true values 100, 50, 25, and 10.
— Two image ad bidders with true values 120 and 110.
— Templates:
— Template 1: three text ads with slot effects 1, 1 — ¢, and 1 — 2e.
— Template 2: a single image ad with slot effect 1.

In this given setup one problematic SNE is when the two image ad bidders bid their
true value, while the text ad bidders bid zero. On the other hand, the truthful outcome
clearly selects the first template. O

Note that this example relies on losing bidders whose class is not shown bidding 0. If
instead we add the requirement that such bidders bid their true value, it is possible to
construct examples where SNE do not exist.

Second, In more general settings, an SNE may not even exist (even without such
an added requirement). Essentially, the issue is that the constraints on bids imposed
by the requirement for a lack of envy on a given template may force the bids to be
inconsistent with that template being chosen. This example does rely on bidders be-
ing conservative [Paes Leme and Tardos 2009] and not bidding above their true value
(which is a dominated strategy).

THEOREM 6.5. Suppose we use the template-considerate GSP payment rule and
bidders do not bid higher than their true value. Then there may not exist any SNE.

PROOF. Suppose we are maximizing welfare and we have the following setup where
e ~ 0 with all the w; = 1.

— Classes A and B (that are entirely symmetrical).
— Bidders:
— Four class A bidders with true values 350, 300, 200, and 100.
— Four class B bidders with true values 350, 300, 200, and 100.
— Templates:
— Template 1: three class A slots of effects 1, 1 — ¢, and 1 — 2¢, and three class B slots
of effects ¢, €2, and €3
— Template 2: three class B slots of effects 1, 1 — ¢, and 1 — 2¢, and three class A slots
of effects ¢, €2, and €*

Suppose that the first template is the winning template in an SNE. We claim the
four class A bidders can bid at most (approximately) 350, 200, 200, and 100 respectively.



All but the second bidder are bidding their true value so only the second bidder re-
quires explanation. They cannot bid more than (approximately) 200 as otherwise the
first bidder will envy the second bidder’s slot for its price. This is due to the near
identical value of the slots. Thus, the objective value of the first template is at most
(approximately) 350 + 200 + 200 = 750. Alternatively, we claim that the four class B
bidders must bid at least (approximately) 300, 300, 200, and 100 respectively. The first
bidder must bid at least the second bidder’s bid and the last bidder must bid their true
value as they will not receive a slot. The second bidder must bid approximately their
true value as the first slot is vastly superior to the second and so they must bid near
their value to ensure that they are not envious of the first bidder. Similarly, due to the
vast superiority of the second slot to the third the third bidder must bid approximately
their true value. Thus, the objective value of the second template is at least (approxi-
mately) 300 + 300 + 200 = 800. As this is larger than the first template’s worth this is
a contradiction. The second template cannot be the winning template in an SNE via
similar analysis. O

While our example uses ties in valuations and slot effects for ease of exposition, the
values above can be slightly perturbed so that they are not tied and the analysis is not
fundamentally affected. Such issues are therefore not zero probability events.

Third, even if an SNE exists, the objective value may be arbitrarily worse in com-
parison to the truthful auction.

THEOREM 6.6. Suppose bidders do not bid higher than their true values. Then there
exists an SNE of an auction governed by the template-considerate GSP payment rule
that may be arbitrarily worse than the worst NE of the corresponding truthful auction.
That is, if OBJgsp is the worst OBJ value in an SNE for the template-considerate GSP
auction, and OB Jyyth s 1S the worst OBJ value in a NE for the corresponding truthful
auction, then OBJgsp/OBJruihu can be arbitrarily close to zero (with a sufficiently
large number of bidders and slots).

We defer the proof to Appendix B.

Aside from these crucial existence and optimality issues, we note that the payment
rule can be counter-intuitive to the bidders. For example, it is possible that by increas-
ing one’s bid, a bidder does not affect his own slot allocation, but decreases the payment
required of their competitors (who are being priced by the minimum bid they need to
make to maintain the template).

6.1.2. Template-Indifferent GSP. With the failure of the template-considerate GSP rule,
an alternate extension we can consider is to simply ignore the existence of other tem-
plates for pricing purposes.

Definition 6.7. The template-indifferent GSP payment rule is one where after the
template is selected, GSP is performed as if the winning template were the only one.

An immediately obvious issue with this payment rule is that the highest bidder of
every class has incentive to raise his bid arbitrarily high. This can be rectified by as-
suming for the purposes of template selection the highest bidder’s bid is equivalent to
the second highest bid, however this does undermine the optimality of the allocation.
Even with this fix, the three problems identified with template-considerate GSP re-
main. As essentially the same examples work, we omit them. We have also explored
other extensions to GSP, but have been unable to find one with desirable equilibrium
properties in the general case.



6.2. Positive Results For Restricted Cases

The lack of a natural generalization of GSP with desirable properties is dishearten-
ing. Fortunately, with restrictions on the set of templates we can get somewhat more
favourable results. The most trivial restriction is to a single template, where the clas-
sical results apply. Only slightly less trivial is the case where one class has the same
set of slots in every template. Then, at least for this class, we are effectively again in
the single-template setting.

More interestingly, we can return to our guiding example of the image/text setting
explored by Goel and Khani [2014]. In this setting, VCG is known to have the un-
desirable property that adding bidders can reduce revenue. They seek to rectify this
by designing a truthful revenue monotone mechanism which they call MITA, consist-
ing of a monotone allocation rule and the payments to make it truthful. Interestingly,
while MITA does not optimize OB.J, we are able to show that the MITA allocation with
template-considerate GSP payments does have an SNE that implements the truthful
MITA outcome.

Definition 6.8. Let v;(¢;) be the objective value of the text ad with the ith highest
value (using a linear approximation to ¢ if it is non-linear), ¢;(¢;) be the value of
the best image ad, and s;; and sp1...s7, be the slot effects. Define C = {1 < j <

k| i(t;) > sri > ¥r(tr)sr1}. The MITA allocation is the first max C' text ads if C is

nonempty and the image ad otherwise?.

THEOREM 6.9. The MITA allocation with template-considerate GSP payments has
an SNE that implements the truthful outcome.

PROOF. First, suppose the image ad is winning in the truthful outcome. We con-
struct the SNE by having all ads bid their true value. This clearly implements the
truthful MITA outcome because the payment rule and bids are exactly the same as
in truthful MITA. No text ad wishes to deviate, because their payment for a bid high
enough to be shown is the same as it would be in the truthful auction.

Now consider the case where the text ads win in the truthful outcome. Again, the
image ad bidders bid their true value. Let j* be the number of ads shown in the truthful
MITA outcome. The text ads make the bids they would make in the lowest SNE of the
auction where the text ad template is the only template but there is a per-impression

reserve of ¢y (tr)sr.1/ (Zle STJ-) (such an SNE exists by a result from [Roberts et al.

2013]). The truthful outcome of this single-template auction is the same as the truthful
MITA auction, so since the SNE implements the former it implements the latter. O

While this provides a setting where positive results are possible, we note that it is
somewhat special as one class has only a single slot. While limited generalisations ap-
pear possible when each class has multiple slots, they show a greatly reduced number
of ads (essentially only those that would qualify to be shown if they were the first slot).

Another special case where we can provide positive results is one where each class
corresponds to a block of ads, e.g. there could be a block of text ads somewhere on
the page, a block of image ads, and a block of product ads. The assumption we make
about these blocks is similar in spirit to the assumption in the traditional GSP model
that the probability of an ad being clicked can be factored into a slot effect and an
advertiser effect. We assume that the slot effect can be further factored into a term
that depends on the ordering within the block and a term that depends on where the

2Goel and Khani give their allocation rule for the special case where slots are identical, advertisers have
identical qualities, and the objective is to maximize welfare. We have generalized their allocation rule to our
setting.



block is shown. Equivalently, we can phrase this in terms of the ratio of slot effects in
different templates, as in the following definition.

Definition 6.10. A class selection set of templates is one where whenever a class
appears in multiple templates, the ratio of slot effects which are not zero are constant.
More formally, if a class appears in a template with slot effects si,s9,..., 54, and it
appears in another template with slot effects s/, 55, ..., s/, then s;/s/ is constant.

Consider any monotone allocation rule that ranks bidders using a rank score and
chooses the template based solely off the second highest ranked bidder of each class (a
second-highest allocation rule). Such rules could be relatively efficient in some settings,
but in general cannot provide any bounded approximation to OBJ because the value
of the first bidder is ignored and can be arbitrarily high. Nevertheless, we show that
this allocation rule has an SNE with GSP payments.

THEOREM 6.11. With a class selection template set with a second-highest allocation
rule and template-indifferent GSP payment rule, an SNE is guaranteed to exist.

PROOF. For every class take a template in which that class appears and then deter-
mine an SNE for that class in that template. Furthermore, alter the first bidder’s bid
to be equivalent (or slightly higher) than the second bidder’s bid. Note that (for this
class) this is not only still an SNE in the template, but by the nature of class selection
templates the bids are then in SNE for all templates. Now upon determining the bids
for all classes by doing this for every class, take the optimal template 7" via the second-
highest allocation rule. We claim that this is an SNE. This is because no single player
can unilaterally deviate to raise the second highest bid of their class and the bidders
are already in an SNE for the winning template 7. O

Unfortunately, this positive result appears to rely both on restricting the setting (to
class selection templates) as well as the allocation rule (to an inherently inefficient
one). The following theorem shows that with the standard allocation rule (optimizing
OBJ) there may not exist an SNE for conservative bidders. As the example is some-
what lengthy, we defer the proof to Appendix C.

THEOREM 6.12. Suppose we use the template-indifferent GSP payment rule with
the standard allocation rule and furthermore, do not allow bidders to bid higher than
their true value as before. Then there may not exist any SNE.

The example chosen in the proof is not carefully constructed. The sole essential ingre-
dient is that the winning class A bidders’ true values are extremely close in value. This
ensures that for every bidder, the range of bids allowed in an SNE is small. In fact, one
can show via a similar proof that any class selection set such that every class appears
in every template is enough to ensure there exists no SNE — if the types/valuations of
the bidders are chosen carefully.

7. DISCUSSION

Our analysis examined trade-offs among different stakeholders in ad auctions. We
have shown how to make these trade-offs optimally and how to handle constraints on
them. We have also used simulations and real-world auction data to show the effec-
tiveness of this approach, examining the impact of the allowed number of ads on the
welfare of the interested parties. In doing so, we demonstrated the efficacy of a per-
impression reserve for this purpose, a tool which had previously been shown to have
poor revenue-increasing properties.

We then examined a richer domain, where ads may be shown in several mutually
exclusive templates. Here our results are mostly negative, and we demonstrated the



shortcomings of various natural generalizations of GSP. While we were able to show
some positive results, they were for restricted settings and allocation rules that did
not achieve optimal trade-offs.

Our results on templates point to several directions for future research. First, are
our examples for template auctions under natural GSP generalizations, which show ar-
bitrarily bad or no equilibrium, representative of real world ad-auctions? In particular,
a few of our constructions rely on a large number of bidders and slots. Second, can good
equilibria be found in ad auctions with templates under less demanding assumptions
than we made to achieve our positive results? Finally, could a different generalization
or set of assumptions lead to the existence of (approximately) optimal equilibria?
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A. PROOFS OF SECTION 4
Recall that we are assuming:

— The type space of allowable types T is a closed compact set.

— The allocation function z : T — R” is a Lebesgue integrable function € L.

— The constraint feasibility region X for the allocation function x is convex w.r.t. the
underlying function space, namely the L' Banach space w.r.t. Lebesgue measure

In addition we shall assume that the linear system (w.r.t. the revenue, welfare, and
click yield) of constraints is non-degenerate.



En route to proving Theorem 4.1, we first show that two critical properties hold:
weak duality and Lagrangian sufficiency. We prove the results for equality constraints
A(xz) = 6 (the same results hold true for inequality constraints, A(x) > 6 with the
provision that A\ > 0, and can be similarly proved). The Lagrangian in this case is

L(z,\) = G(z) = \T(0 — A(x)).
The primal problem is

') = sup G(x)
zeX(0)

where X () = {z : € X and A(z) = 0} is the feasible set, and the dual is denoted
h(\) = sup L(x, \).
reX

LEMMA A.1 (WEAK DUALITY). For all )\, h(\) > T['(0) and in particular for the
optimal value of the dual, h* = inf, h()\) > T'(6).

PRrROOF.

h(N) = supgex L(x,A) 2 sup,cx(g) L(z,A) = sup,cx ) G(z) =T(0) O

LEMMA A.2 (LAGRANGIAN SUFFICIENCY). Ifthereisan x* and \* such that

L(z*,\") = sup L(z, \*)
TEX

and z* is feasible for the constrained optimization (i.e. x* € X (0)) then x* is optimal.
PROOF. For all » € X(6), we have G(z) = L(z,\) + AT (6 — A(x)). Since z* € X(0),

G(z") = L(z*,\") = sggL(x,)\*) > L(z,\") =G(z) forallze X(0)

and hence z* is optimal and G(2*) =T'(0). O
We now use the lemmas to prove Theorem 4.1, restated here.

THEOREM A.3. If 0 € relint (dom(T")), then the optimization problem is strong La-
grangian.

PROOF.

(1) G is concave (indeed, it is a linear functional), the constraint set X is convex, and
the constraints involve a vector of linear functionals, hence we can show directly
that T is concave.

Assuming dom(T") # @, take 01,602 € relint (dom(T")). Then there exists z!, 22 such
that G(z%) = I'(0°) for i € {1, 2}; these are feasible: z* € X (6%). Now for any arbitrary
A€ (0,1)let 6 = A0' + (1 — \)6? and similarly & = Az' + (1 — A\)z2. By convexity of

X and the linearity of constraints A(z) = 0, we then have & € X(0). Thus:

@)= sup G(z)
z€X(0)

> G(2)

=GAx' + (1 - N)z?)

= MG(xY) + (1= N)G(2?)

= AL(0Y) + (1 — N(6?)
and so I is concave.



(2) Since T is concave, for 6 € relint (dom(T")), there is a non-vertical supporting hyper-
plane (NVSH) to I" at § (which means that the hypograph of I" has a supporting
hyperplane), which is equivalent to the problem being strong Lagrangian. Note
that T : & — /R is defined on Euclidean space. That such a problem is strong La-
grangian for I'(b) if and only if there is a NVSH at b is a well known theorem, and
simple to prove directly. For the “if” direction: suppose there exists a NVSH at b,

then thereis a A € /R*Y such that
I(c) <T(B)+A-(c—b) forallce /RFY.
Hence
L) > sup [[(c) = A-(c—D)]
ce/RPA)
— s swp [G(2) — A (A(x) - b)
ce/RFA 2€X(c)
= sup L(z, \)
zeX
= h(\).
But from Weak Duality (Lemma A.1) I'(b) < h()), and thus I'(b) = h()\) and the
problem is strong Lagrangian. The “only if” is similarly proved by reversing the
argument.

O

When the problem is strong Lagrangian, then 4* = I'(#), and complementary slack-
ness applies.

We can now prove the equivalent of Slater’s constraint qualification to derive suffi-
cient conditions to have 6 € relint (dom(T")). This is Corollary A.4 which we restate and
prove.

COROLLARY A4. When Z ={z € /RP(A) :< 0} is the non-positive cone, the problem
Xz(0), is strong Lagrangian if there is some & € X such that A(z) > 0. If Z = 0, the
problem X ;(0) = X(0) is strong Lagrangian provided there is some % € relint (X') such
that A(z) = 6.

PROOF. When the conditions are satisfied, then clearly 6 € relint (dom(T")), and
hence the result. Note that we do require the condition when Z = 0 because we have
folded the constraints into X, which means that is possible that § € bdd ¢ because
z € bdd X'; when on the boundary, the separating hyperplane for I" at § may be vertical,
in which case problem is not strong Lagrangian. The condition when Z = 0 precludes
this from happening. O

B. PROOF OF THEOREM 6.6

PROOF. Suppose we have the following single-class setup where all the w; = 1 and
we are maximizing welfare.

— Bidders:
— 2m bidders with true values m/2 — e, m/2 — 2¢,...,m/2 — (2m)e.
— m? bidders with true values 1 —¢,1 — 2¢, ..., 1 — mZe.
— Templates:
— Template 1: 2m +m?2 — 1 slots of effect 1 — ¢, 1 — 2¢, ..., 1 — 2me, €, €2, ..., e™ L.
— Template 2: 2m + m? — 1 slots of effect * — e,z — 2¢, ...,z — (2m + m? — 1)e where
x = 2(2m — 1)/(2m + m?) which is equivalent to z ~ 4/m for large m.



We first show that the first template will always win in any NE of the truthful auction
for sufficiently large m and small €. Recall that in an NE of the truthful auction,
a bidder will always bid higher than the true value of the next highest bidder (as
otherwise the next highest bidder would outbid them). As we are also assuming bidders
cannot bid higher than their true value this implies that the first bidder (i.e. the bidder
with valuation m/2 — ¢) will have bid b; € [m/2 — ¢,m/2 — 2¢]. More generally, bidder
i < 2m +m? will bid b; € [t;_1,t;]. We therefore find that the calculated objective of the
first template subtracted by the second is (where calculations are in the limit for large
m and small e):

(bl + b+ ...+ bgm) — (bl + by + ...+ b2m+m271)$
= (b1 + bQ + ...+ mefl)(l — I) + me(l — I) — (b2m+1 + b2m+2 =+ ...+ b2m+m2—1)x
=(2m —1)(m/2)(1 = z) + bop (1 —2) — (Mm? — 1)z

> (2m —1)(m/2)(1 — 2) — (m* — 1)z
-0

As this is greater than zero, the first template will always win for sufficiently large m
and small e.

We now show that there exists a problematic SNE when we use the template-
considerate GSP payment rule where the second template wins. Suppose we have an
SNE on the second template, ignoring the first. Assuming ¢ < x, the slots in the sec-
ond template are nearly identical. Thus, if we ignore the first template, the bidders will
only bid enough to ensure they win a spot — that is, enough to outbid the last bidder
who has a true value of 1 — m2e ~ 1; with the caveat that the first bidder may bid up to
their true valuation. We now claim this is an SNE overall, i.e. when we consider this
in the context of both templates. A bidder who wishes to change to the first template
will raise their bid to at most their true value. Let us consider the objective values
of the two templates after this maximum unilateral deviation. The first template will
have an objective value of at most ~ 2(m/2) + (m/2 — 2) if we assume that one bidder
is already bidding their true value. For large m, this is approximately 3m/2. On the
other hand, the second template will have objective value of at least ~ (2m +m? — 1)z
if all but the last bidder bid approximately 1. For large m this is approximately 4m.
As 4m > 3m/2, we find that no unilateral deviation can switch the template and so we
have an SNE overall.

Now note that this SNE has a welfare of ~ ((2m)(m/2)+ (m?))x € §(m). On the other
hand, all NE of the truthful auction must use the first template, so their welfare is
~ (2m)(m/2) € 6(m?). Thus, this SNE is arbitrarily worse than any NE of the truthful
auction. O

C. PROOF OF THEOREM 6.12

PROOF. Suppose we are maximizing welfare, all bidders have ad-effect w; = 1 and
we have the following setup.

—Classes A and B.

— Bidders:
— Four class A bidders with true values 100, 100 — ¢, 100 — 2¢, and 20.
— Two class B bidders with true values 150 and 135.

3Specifically, we mean taking a large m and then taking a small e. For our purposes, it will suffice if ¢ <
1/m2.



— Templates (A € (0,1)):
— Template 1: three class A slots of effects 1, 1/2, and 1/4, and a class B slot effect
of A.
— Template 2: three class A slots of effects A, A/2, and A/4, and a class B slot effect
of 1.
Note that if A =~ 0 we have a situation similar to our guiding example that is the
image/text auction.

Let us consider the general properties of any SNE. Regarding class B bidders, it is
clear that the second bidder will always bid his true value of 135, and the first bidder
will outbid him. Now let us consider the far more complex class A bidders. Let b; denote
the bid of class A’s bidder i. Clearly b, = 20 as he will not win a slot and must therefore
bid his true value to ensure he is not envious. We further find that:

— As the third bidder must not envy the second bidder:
(100 — 2¢ — by) /4 > (100 — 2€ — b3)/2
= b3 > 60 — €.
— As the second bidder must not envy the third bidder:
(100 — € — bg)/2 > (100 — € — by) /4
= by < 60 — ¢/2.
— As the second bidder must not envy the first bidder:
(100 — € — bg)/2 > 100 — € — by
= by > 50 4 bs/2 — €/2.

— As the first bidder must not envy the second bidder:

100 — by > (100 — by) /2

= by < 50+b3/2
Together, these imply that:

bs € [60 — ¢,60 — €/2],
by € [50+ bs/2 — 6/2,50+ b3/2]
C [0+ (60 —€)/2 — €/2,50 + (60 — €/2)/2]
= [80 — €,80 — €/4].
We now claim that in any SNE the second template is selected via the standard selec-
tion rule. To see this, let us consider the objective value of the first template subtracted
by the second (when we assume b; = by).
(ba 4+ b2 /2 + b3 /4 + A135) — (A(ba + ba/2 + b3 /4) + 135)

(1 —A)(bg + ba/2 + b3 /4 — 135)
(1— A)(3(80 — €/4)/2 + (60 — €/2) /4 — 135)
—(1=A)(e/2)

<0

A

where the first inequality comes from choosing b3 and b, maximally. We next claim that
for ¢ sufficiently small the third bidder can raise his bid b3 so that it is beneficial to
him in any SNE by causing the first template to be selected — which would imply that
there exists no SNE. To see this, let us consider the objective value of the first template



subtracted by the second in an SNE when the third bidder unilaterally deviates and
raises his bid to 70.

(ba + ba/2 + T0/4 + A135) — (A(by + ba/2 + 70/4) + 135)

= (1 — A)(3by/2 4 70/4 — 135)

> (1 — A)(3by/2 4 70/4 — 135)

> (1 — A)(3(80 — €)/2 + 70/4 — 135)
> (1—A)(5/2 - 3¢/2)

>0

where the last inequality holds for sufficiently small €. As 70 < b, for sufficiently small
¢, the third bidder will remain in the third position and his payment will be unaffected.
Therefore, the third bidder will have incentive to raise his bid and so we cannot have
an SNE. O



