Edinburgh Research Explorer

Efficient Code Generation in a Region-based Dynamic Binary
Translator

Citation for published version:

Spink, T, Wagstaff, H, Franke, B & Topham, N 2014, Efficient Code Generation in a Region-based Dynamic
Binary Translator. in Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems. ACM, New York, NY, USA, pp. 3-12.
https://doi.org/10.1145/2597809.2597810

Digital Object Identifier (DOI):
10.1145/2597809.2597810

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 27. Sept. 2024

https://doi.org/10.1145/2597809.2597810
https://doi.org/10.1145/2597809.2597810
https://www.research.ed.ac.uk/en/publications/57f5170a-5106-4ae6-9546-ed06ef074d3d

Efficient Code Generation in a Region-
Based Dynamic Binary Translator

Tom Spink ~ Harry Wagstaff

Bjorn Franke ~ Nigel Topham

Institute for Computing Systems Architecture, School of Informatics, University of Edinburgh
t.spink@sms.ed.ac.uk, h.wagstaff@sms.ed.ac.uk, bfranke@inf.ed.ac.uk, npt@inf.ed.ac.uk

Abstract

Region-based JIT compilation operates on translation units com-
prising multiple basic blocks and, possibly cyclic or conditional,
control flow between these. It promises to reconcile aggressive
code optimisation and low compilation latency in performance-
critical dynamic binary translators. Whilst various region selec-
tion schemes and isolated code optimisation techniques have been
investigated it remains unclear how to best exploit such regions
for efficient code generation. Complex interactions with indirect
branch tables and translation caches can have adverse effects on
performance if not considered carefully. In this paper we present
a complete code generation strategy for a region-based dynamic
binary translator, which exploits branch type and control flow pro-
filing information to improve code quality for the common case.
We demonstrate that using our code generation strategy a com-
petitive region-based dynamic compiler can be built on top of the
LLvM JIT compilation framework. For the ARM V5T target ISA
and SPEC CPU 2006 benchmarks we achieve execution rates of,
on average, 867 MIPS and up to 1323 MIPS on a standard X86 host
machine, outperforming state-of-the-art QEMU-ARM by delivering
a speedup of 264%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental Compilers

General Terms
mance

Design, experimentation, measurement, perfor-

Keywords Dynamic binary translation; region-based just-in-time
compilation; alias analysis

1. Introduction

Dynamic binary translation (DBT) is a widely used technology
that makes it possible to run code compiled for a target plat-
form on a host platform with a different instruction set architec-
ture (ISA). With DBT, machine instructions of a program for the
target platform are translated to machine instructions for the host
platform during the execution of the program. Among the main
uses of DBT are cross-platform virtualisation for the migration
of legacy applications to different hardware platforms (e.g. APPLE
ROSETTA and IBM POWERVM LXx86 (Stahl and Anand|2010) both
based on TRANSITIVE’s QUICKTRANSIT, or HP ARIES (Zheng
and Thompson||2000)) and the provision of virtual platforms for
convenient software development for embedded systems (e.g. VIR-
TUAL PROTOTYPE by SYNOPSYS).

[Copyright notice will appear here once *preprint’ option is removed.]

Efficient DBT heavily relies on Just-in-Time (JIT) compilation
for the translation of target machine instructions to host machine in-
structions. Although JIT compiled code generally runs much faster
than interpreted code, JIT compilation incurs an additional over-
head. For this reason, only the most frequently executed code frag-
ments are translated to native code whereas less frequently ex-
ecuted code is still interpreted. Of central concern are the size
and shape of these translation units presented to the JIT compiler:
While smaller code fragments such as individual instructions or ba-
sic blocks take less time for JIT compilation, larger fragments such
as linear traces or regions comprising control flow offer more scope
for aggressive code optimisation (Aycock|[2003). For this reason,
many modern DBT systems rely on regions as translation units for
JIT compilation and several different region selection schemes have
been proposed in the literature (Bruening and Duesterwald|2000;
Hiniker et al.[2005; Hiser et al.[2006b; |[Hsu et al.[2013). However,
it remains an open question as how to efficiently exploit such re-
gions for JIT code generation resulting in improved performance.

Our main contribution is a complete, region-based JIT code gen-
eration strategy considering optimal handling of branch type in-
formation and region exits, registration of JIT compiled code in
translation caches, continuous profiling and recompilation, region
chaining, and host code generation including custom alias anal-
ysis. The key ideas can be summarised as follows: We collect
branch type information during code discovery and profiling and
only expose region entries and indirect branch targets, whereas di-
rect branch targets are neither accessible from outside the region
nor through the indirect branch target table. This directly improves
code quality as unnecessarily exposed branch targets defeat con-
trol and data flow analysis. Only identified region entries are reg-
istered in the translation cache, we do not allow arbitrary entry to
a region. Again, this optimisation aids control and data flow anal-
ysis and, thus, ultimately improves performance. In addition, we
provide shortcuts for region exits and implement region chaining,
improving the transition from one region to another. We continu-
ously profile execution, grow and recompile regions using up-to-
date profiling information to include newly discovered blocks and
transitions. Finally, we apply a custom alias analysis for host code
generation, exploiting knowledge about the structure of the code,
which is difficult to uncover using standard alias analysis. Whilst
some of these techniques have been investigated before in isolation,
we combine them, for the first time, to a complete region-based JIT
compilation strategy inside a DBT system.

We have implemented our novel code generation strategy in
our multi-threaded DBT system targeting the ARM V5T ISA on
a standard 12-core x86—64 host machine. We demonstrate its ef-
fectiveness across the SPEC CPU2006 integer benchmarks, where
our system achieves an average execution rate of 867 MIPS, and up
to 1323 MIps. This is about 2.64 times faster than state-of-the-art
QEMU-ARM.

1.1 Motivating Example

Most DBT systems will use some form of CPU state structure that
contains the active state of the register file and any CPU flags —
along with other control information. A DBT that works on an
instruction-by-instruction basis will usually access this structure for

2016/2/29

R T SRR S

Listing 1. Example ARM assembly

BEGIN:
LOOP :

mov r2,
cmp rO,

#1
0

beqg END

mul r2,
sub rO,
b LOOP

END: mov rO0,

r2,
r0,

r2

r0
#1

1: mov
cmp

r2,
r0,

#1
0

3: beqg END

F
Y
4: mul r2, r2, r0 D
: sub r0, r0, #1
6: b LOOP F

7: mov r0, r2] D

Figure 1. Blocks discovered by the profiler for the example code in
Listing [T} An edge labelled F denotes a fall-through from a predicated
branch, and an edge labelled D denotes a direct branch target.

every target instruction being executed, as most instructions will in-
volve a read or write to one or more registers. However, a DBT that
translates on a block-by-block basis (such as (Bellard|[2005)) will
typically assume that executing a basic block is an atomic opera-
tion, and can introduce optimisations that only update the CPU state
structure once the entire basic block has been executed. This is be-
cause intermediate values from the results of target instructions can
be kept in host registers, and re-used throughout the block until the
last moment. This important optimisation significantly reduces the
amount of reads and writes to memory, and can therefore greatly
increase performance.

Traditional region-based DBTs work on a block-by-block basis,
and will allow entry to the region via any block that is part of
the region, however the consequence of this is that the address of
each basic block must be taken, and doing so prevents any kind
of inter-block optimisation. Whilst intra-block optimisations can
still be applied, more aggressive inter-block optimisations cannot,
as guarantees about CPU state must be maintained on entry to
each block. In contrast, trace-based DBTs generate inherently linear
control-flow graphs, which are only ever entered from the top (the
trace head) and are usually only exited from the bottom. This
enables optimisations to be applied across the entire trace but due
to the lack of interesting control-flow, they miss out on certain loop
optimisations.

The benefit of a region-based DBT is that non-linear control-
flow is allowed within the region, which can lead to optimisations
that would not be possible with linear control-flow (e.g. loop op-
timisations), but this benefit is restricted if addresses of individual
blocks within the region are taken and, e.g. inserted to an indirect
branch target table. This limits the ability of the optimiser to keep
intermediate values (such as loop induction variables) in host reg-
isters, and to defer updating the CPU state structure until an exit
point is reached.

The code given in Listing [I] (and the subsequent control flow
graph (CFG) given in Figure ﬁ]}, shows a simple ARM function that
calculates the factorial of a number, supplied in r0. If native code
was to be generated for this sequence, and we allowed entry to
the sequence via any block, then each basic block would need to
load the values of the registers in use from the register file, and
cannot re-use values from a predecessor. Furthermore, at the end of
a basic block, the register file must be updated with any changes in
register values. This particular problem can pollute native code with
unnecessary loads and stores when certain blocks are not actually

Listing 2. Native code with

Listing 3. Native code with-

block addresses taken out block addresses taken
BLOCK_A: 1| BLOCK_A:
movl $1, 8 (%edi) 2 movl $1, %ecx
movl 0 (%edi), %eax 3 movl 0 (%edi), %eax
test %eax, %eax 4 test %eax, %eax
jz BLOCK_D s| jz END
BLOCK_B: 6| LOOP:
movl 8 (%edi), %ecx 7 mul %eax, %ecx
movl O (%edi), %eax 8 subl $1, %eax
imul %eax, %ecx 9 jnz LOOP
movl %ecx, 8 (%edi) 10| END:
subl $1, %eax 11 movl %ecx, 0 (%edi)
movl %eax, 0 (%edi) 12 movl %$ecx, 8 (%edi)
BLOCK_C: 13
movl 0 (%edi), %eax 14
test %eax, %eax 15
jnz BLOCK_B 16
BLOCK_D: 17
movl 8 (%edi), %eax 18
movl %eax, 0 (%edi) 19

Figure 2. Host machine code generated using a naive scheme and using
our integrated, region-based code generation methodology.

region entries, and with careful profiling and capturing of CFG edge
infqrmation, it can be determined which blocks are internal to the
region.

In the example CFG, block A is a region entry, and blocks B,
C and D are only branched to by control-flow from other blocks.

Two branch fall-through edges exist as AB and @, and two direct

branches exist as BC and CD. It is important to note that there
are two basic blocks (A and C) discovered with overlapping code.
This is because (given the input ry > 1) the profiler will discover

the fall-through edge AB first, and then discover the direct edge

BC that branches inside A, and hence creates a new basic block C
containing the latter half of A.

If entry was allowed via any block, target register values would
need to be loaded from the CPU state structure in each block
— ensuring that the correct register values are used. This would
be detrimental in performance, especially in the case of the loop
between B and C, as the value of the induction variable in r0 would
need to be read from memory in C and written to memory in B,
rather than keeping r0 in a host register.

However, if we change the constraints to only allow entry via
block A, and keep B, C and D as region local blocks, then we can
produce an optimised form that loads initial register values into a
host CPU register, which is reused throughout the loop, until we
exit the code sequence and require that the updated register values
are written back in to the CPU state structure.

This difference is clearly demonstrated in Listing [2]and Listing
%where Listing[2]shows an example of x86 assembly generated for
the code sequence described in Listing[I] When every block has its
address taken, the block must access memory to request the value
of the target machine register from the state structure. In Listing
[l we can see that an optimised form can be generated where host
registers are used to track the state of the target machine register,
until the very end where the values are written back to memory.
This removes all memory accesses from the loop between block B
and C, and can exploit host ISA features to generate an extremely
efficient loop.

In general, our guiding principle is speculation and optimisation
for the common case, i.e. we use profiling information on branch
types, region entries, and indirect branch targets immediately for
code optimisation even if there is the possibility of later updates of
this information, possibly initiating re-compilation.

1.2 Contributions

This paper is not concerned with developing new ways of region
selection, but its focus is on a strategy for efficient code genera-
tion and optimisation for regions once these have been formed us-
ing any of the techniques presented in the literature (Bruening and

2016/2/29

Fetch next
instruction

:

Look up in Found Execute JITed
translation cache region
Not Found
Lc;?:ﬂg;tti’;?k Found Update translation cache
lobal j I
in metadata and global jump table
Not Found
Decode and Add block to Dls_patch hot
Execute Toraltem (e regions to JIT
Basic Block 9 compiler

Compiler Work Queue

I
JIT Compiler Worker e treads JIT Compiler Worker

Figure 3. Main execution loop of our retargetable DBT system with
decoupled, concurrent JIT compilation threads.

Duesterwald|2000; Hiniker et al.[2005; Hiser et al.[2006bt [Hsu et al.
2013). Neither do we propose another technique for resolving indi-
rect branches, but we show how branch type and control flow infor-
mation can be exploited on top of any of the existing mechanisms
for resolving indirect branches (Hiser et al.||2007} |Dhanasekaran
and Hazelwood| 2011} Koju et al.||2012; |Yin et al.|2012} Jia et al.
2013). Overall, we make the following contributions in this paper:

'

1. We introduce a complete, region-based JIT code generation
strategy suitable for integration in high-speed DBT systems,

\S}

. we demonstrate how to exploit branch type profiling infor-
mation to enable improved back-end code generation including
loop optimisation,

w

. we introduce light-weight region chaining, borrowing con-
cepts from trace chaining, and

A~

. we develop a new custom alias analysis that allows us to
more accurately separate independent memory accesses, again
enabling improved back-end code generation.

1.3 Overview

The remainder of this paper is structured as follows. In Section [2]
we provide the background to our DBT system and, in particular,
the region selection scheme used throughout this paper. This is
followed by the presentation of our novel code generation strateg
in Sectionﬁl We present our empirical evaluation in Section
before we discuss related work in Section[5] Finally, we summarise
and conclude in Section[6]

2. Background
2.1 DBT System Overview

Figure[3|shows the main execution loop of our DBT, which employs
an interpretive component and farm of concurrent JIT compiler
threads to achieve maximum speed. We initially begin by running
the target program through the interpreter and collect profiling
information about the basic blocks by building a region-oriented
control flow graph (CFG). Once a region has been determined to
exceed a certain threshold it will be dispatched to a JIT compiler
worker, which will translate the region to native code. This process
is asynchronous, and the target program will continue executing in
the interpreter. Once the native code has been compiled, it will be
made available by registering region entry points in block metadata
and when the interpreter encounters a registered block, it will
update the translation cache and begin executing the native code.

éRegion Boundary

Region Boundary

Figure 4. (A) Example of a whole-program control flow graph. (B) Parts
of the control flow graph from (A) dynamically discovered after some
time of execution, including forced region limits at page boundaries. (C)
Additional control flow has been dynamically discovered after some more
time executing the program.

Once inside native code, execution will remain there as long as
blocks are available to execute. If a block is encountered that
has not yet been compiled, control will return to the interpreter
and profiling information updated accordingly. Gathering further
profiling information about a region may lead to a region becoming
eligible for recompilation, which gives rise to progressively optimal
code, much like tiered or staged compilation (Joshi et al.|[2004).

2.2 Region Selection

In a DBT system, region selection is concerned with forming the
shape of translation units, where a region is typically a collection
of basic blocks connected by control flow edges. This stage follows
code discovery and profiling and it determines the boundaries of
a fragment of recently discovered target code, and prepares it for
translation into native host code. A number of region selection
schemes for use in JIT compilers and DBT systems have been
developed, e.g. (Bruening and Duesterwald [2000; Hiniker et al.
2005} Hiser et al.|2006b; |Hsu et al.l2013)). The focus of these papers
has been on policies for region selection, i.e. decisions on how far
and for how long to grow a region, but they do not explore code
generation strategies for regions. Often regions are distinguished
from traces, whilst technically traces are degenerate regions they
are often treated separately due to their linear shape, i.e. the absence
of multiple control flow successors and, in particular, loops.

JIT compilers present in e.g. JAVA VMs would have meta-
information about the structure of the program being executed, and
could use this information for method-based region selection tech-
niques. But, the presence of meta-information is not guaranteed and
cannot be relied upon, and indeed is not present in a raw instruc-
tion stream, so the DBT must rely on dynamic profiling information
to effectively perform region selection (Whaley|2001). In this paper
we use a page based region selection scheme similar to the one pre-
sented in (Bohm et al.2011)). Such a scheme enables efficient MMU
emulation and detection of self-modifying code through page pro-
tection mechanisms provided by the OS. As shown in Figure [4(B)
we start building a dynamic CFG and insert basic blocks and con-
trol flow edges between wherever we encounter dynamic control
flow. After a certain interval (in terms of blocks executed in the

2016/2/29

interpreter) we scan the CFG and form regions, depending on the
temperature and whether this is above a certain, adaptive threshold.
In our scheme page boundaries are also compulsory region bound-
aries. Regions are then passed to the JIT compiler for code gen-
eration, and profiling execution continues, possibly extending the
dynamically discovered CFG further (see Figure [d{C)).

3. Methodology
3.1 Overview

Our DBT begins executing a target program by means of an inter-
preter, which collects profiling information about execution flow as
it executes. The interpreter executes basic blocks of instructions
at a time, and edge information is collected about these blocks.
Metadata structures, which describe regions, are used to track the
“temperature” of a region, and when a “hot” region is detected, a
translation work unit is dispatched to a compiler work queue. An
idle JIT compiler worker thread picks up this work unit, and be-
gins compilation. A work unit consists of a list of basic blocks to
compile (which represents blocks within one region), the associ-
ated control-flow graph connecting those basic blocks together and
a list of the blocks which are region entries. The compiler then
translates each block in turn (on an instruction-by-instruction ba-
sis) into LLVM IR. Finally, when each block has been compiled, a
local jump table (sometimes also referred to as indirect branch tar-
get buffer) is generated, which contains the addresses of each block
that is a region entry block and each block that is the target of an
indirect jump.

The region prologue is a small piece of set-up code common to
each region function, which loads values that are reused through-
out the native code (such as pointers to the various CPU state struc-
tures). Following this setup, an indirect branch via the previously
generated local jump table is performed to begin execution at the
desired basic block. A region function therefore, contains the trans-
lated native code for every block discovered (and marked as hot) in
the region, and invoking this function will branch to the block that
is to be executed, by accessing the program counter from the CPU
state structure.

It is important to note that not all basic blocks that have been
compiled have their addresses taken and corresponding entries reg-
istered in the local jump table. This constraint means that non-
region-entry basic blocks cannot be entered from outside the re-
gion. The consequence, and indeed benefit, of not taking addresses
of certain basic blocks allows LLVM to be more aggressive during
the optimisation, phase — potentially merging basic blocks together
and performing inter-block optimisations.

In Figure é’ the control-flow graph labelled A describes the
actual control-flow of the target program, where B and C show the
discovered control-flow, along with region boundaries. The shaded
portion of B is magnified in Figure [5] which shows how blocks
within a region are compiled to a region function, and how the
function chains to other region functions by means of the global
Jjump table.

3.2 Translation Lookup Cache

The translation lookup cache is a structure that lives in the execu-
tion engine component of the DBT and is used to resolve addresses
of basic blocks to native code. In fact, it is a mapping of block ad-
dresses to the region function that contains the native translation of
a particular block. Only region entry blocks are entered in to the
translation cache, as it is only possible to branch to region entry
blocks from the local jump table.

3.3 Region Chaining

Chaining is becoming a common feature in trace based JIT compi-
lation systems, such as in the DALVIK VM and TRACEMONKEY.
This technique typically involves profiling execution flow between
compiled traces, and updating the translated code for hot edge
source nodes of inter-trace jumps, to jump directly to the destina-
tion translation unit. We extend trace chaining to region chaining,
which deals with hot control flow between regions. This can be the
result of hot inter-region edges emerging only after some warmup

time, where region selection has already partitioned code into re-
gions, or due to unavoidable region limits such as page boundaries
introduced by the region selection scheme (see also Section .

To simplify code generation we implement a weak form of re-
gion chaining, where we keep a global jump table of translated re-
gions. It is important to distinguish this from the translation cache
— the global jump table is only a jump table at region/page granu-
larity and is not used when transitioning from the interpreter into
native code. Conversely, the translation cache contains translation
information at basic block granularity and is only used when tran-
sitioning from interpreter to native code.

The global jump table contains one entry (initially empty) for
each possible region. Each entry consists of a single function
pointer. In our case, we have at most one region per page, so the
jump table contains 4GB/8KB = 524,288 entries. These entries
are updated when a miss occurs in the translation cache described
above. Since, when we retranslate a region, we invalidate the trans-
lation cache entry for that region, this ensures that the global jump
table always points to the most up to date translation for each re-
gion.

The global jump table is used when it is determined that a
translated branch might have another region as its destination. This
determination is made differently depending on the circumstances:

1. For a direct branch: if the target is outside the current region,
then the global jump table is used if the branch is taken.

2. For an indirect branch if no targets within the current region
have been encountered so far: the global jump table is used
immediately.

3. For an indirect branch, if one or more targets within the current
region have been encountered: if the branch resolves to an
address within the current region, then the local jump table is
used, otherwise the global jump table is used.

Since the global jump table is initialised with ‘empty’ entries, the
requested entry must be checked before it is used (essentially a
null-pointer check). If the requested entry is empty, execution flow
leaves translated code.

3.4 Branching

A basic block is defined as a single-entry, single-exit linear code se-
quence, and as such the terminating instruction is always a branch
to one or more basic blocks. There are two types of branches that
can be made out of a basic block:

¢ Direct: A branch whose destination is known at JIT compila-
tion time, i.e. the destination is a PC-relative or absolute ad-
dress.

e Indirect: A branch whose destination is not known at JIT com-
pilation time, i.e. a branch that uses a register value to calculate
the destination.

These two cases can further be classified in to predicated and non-
predicated, which impose additional constraints on the control-flow
out of a basic block. When a branch is predicated, the fall-through
block for the branch not taken case can be treated as a direct branch.

In Figure[5] each node in the CFG (except for E) has been dis-
covered by the profiler, and as such the CFG has been compiled to
LLVM IR on a block-by-block basis. Node £ and the corresponding

edge CE have not yet been discovered by the profiler, i.e. they have
not yet executed, or have not exceeded the compilation threshold.

Nodes A and F are region entries, and H and [are the targets of
indirect branches. As such, these nodes have their block addresses
taken, and a corresponding entry added to the local jump table. The
other nodes are never accessed by an indirect jump (as far as the
current profiling information is concerned) so their block addresses
are not taken, and no entry is registered in the local jump table.

This leads to the case where native code may be available for a
basic block, i.e. it has been compiled, but it is not reachable from
outside the region.

2016/2/29

Main Execution Loop

From Native Code
or Interpreter

r3 Region Function

Native Code

[r1 Region Function
r3 Region Function ta

rl |Region Function

o

(empty)

(empty)

F

To Native Code

(empty)

(empty)

Determine block (empty)

address from PC r3 Region Function

(empty)

:

(empty)

Hiz|e|(m|mlo|alw|s

Look up block (empty)

Found Invoke

address in

. region function
translation cache 9

z
=3
o
o
<
5
a

Look for block
translation
in metadata

Update translation cache
and global jump table

Not Found

Translation Lookup Cache
Maps Block Address to
Region Function Pointer

To Inte}preter

[Region Prologue] 2| (empty)
Local Jump Table r3 |Region Function
r4 | (empty)
rn | (empty) N

Global Jump Table
Maps Region Index to
Region Function Pointer

Translated Region

Figure 5. Interaction between regions via the global jump table and the internal interactions between basic blocks, either directly or via the local jump table.

The control flow graph represents the region in the shaded area in Figure [

3.4.1 Direct Branches

Where we have a direct branch from basic block A to B, (and B has
no indirect branch predecessors), we do not have to add the address
of B to the local jump table and instead we can emit LLVM IR to
perform a direct branch to B.

There are two approaches that we take when generating the
proper control-transfer sequence, and they depend on whether or
not the terminating branch is predicated or non-predicated.

For a non-predicated branch, given we know at compile time
the jump target, if the target lies outside the region boundary, we
generate code to transfer control via the global jump table — as
shown by node H. This means we chain directly to the region
containing the destination block (if available). If the target lies
within the region, as shown by node A, then we can check to see if
we are compiling that particular block in this work unit, and if so,
we can emit LLVM IR that directly branches to it. If the destination
block is not in the work unit, then we must return immediately to
the interpreter, as a native translation is not available in this round
of compilation.

For a predicated branch, the same sequence applies as before,
except we first determine whether or not the branch is to be taken.
If the branch is not taken, then the fall-through block is directly
branched to (if present in the work unit).

3.4.2 Indirect Branches

As we cannot know at JIT compile time what the destination of an
indirect branch might be, we have to rely on profiling information
to assist in making decisions about how to transfer control from a
basic block to a successor. An important point to note is that we
can treat a predicated indirect branch instruction as having a single
direct edge to the fall-through block, and treat this as in the direct
branch case (Section [3.4.1))

If the edge information we receive at compile time contains no
edges, then we must transfer control via the global jump table. This
is demonstrated in Figure E] as node /, and is because we know
that the local jump table cannot satisfy our jump (since an entry
would only be available if we have encountered that particular
edge). Exiting via the global jump table is required because the
indirect branch may be to a different region. If it turns out that this
speculation is incorrect (or if the destination region does not contain
a translation for the target block) we return to the interpreter.

If the edge information contains exactly one edge, then we can
emit a simple comparison instruction to determine whether or not
that edge should be taken. If the edge is correct, we branch directly

to that basic block and otherwise fall back to the global jump table.
Node C (before discovery of E) is an example of this, where we

have a single indirect edge CD, but have not yet discovered C? .

Finally, for a block with multiple indirect successors (such as
node G), we emit code to check that the target block lies within the
same region, and if so we perform an indirect branch via the local
jump table. If the target block lies outside the current region, we
branch via the global jump table.

Other implementations of local jump tables are possible, e.g.
some of the techniques presented in (Hiser et al.[2007; |[Koju et al.
2012;Jia et al.2013;|Yin et al.|2012; Dhanasekaran and Hazelwood
2011) could act as drop-in replacements, however, we have found
our implementation to provide sufficiently low lookup times and
high hit rates.

3.5 Region Registration in Translation Caches

Every basic block that is encountered by our DBT has metadata
held about it, which describes certain properties about the block,
and contains a pointer to the region function containing its imple-
mentation, if it has been identified as a region entry. When the
execution engine begins executing a block, it looks up the block
metadata and checks to see if a native translation exists — if so, the
translation cache is updated and native code is entered. Addition-
ally, the global jump table is updated with a pointer to the function
for the region containing the block. If a region is recompiled, the
block metadata will be updated to reflect the new function pointer
and the change would propagate through to the translation cache.

3.6 Continuous Profiling and Recompilation

The mixing of instructions and data, and the presence of indirect
branching make it impossible to fully and accurately determine
the precise control flow of a program from machine code only.
Although techniques exist which attempt to extract control flow
information from programs statically (Kinder et al.|[2009) these
often must be extremely conservative and thus DBT systems using
them suffer from poor performance.

On the other hand, techniques for extracting control flow infor-
mation at run time are becoming increasingly effective (Joshi et al.
2004). These techniques often do not capture all possible control
flow paths through a program in their first pass — thus, it is neces-
sary to profile continuously.

We may therefore discover new control flow within regions
which we have already translated and compiled. If we do not
retranslate the relevant regions when we encounter such control

2016/2/29

flow at run time we can only evaluate it sub-optimally. For example,
we may discover that a block which we previously excluded from
the region local jump table is in fact a region entry. In this case, we
must return to the interpreter to execute this block, since we do not
have a translation entry for it.

Our technique does not require any special treatment for the
retranslation of regions. Instead, the profiling system does not dis-
tinguish between already translated and non-translated regions. If
previously-untranslated code or control flow is encountered in a
translated region, it is executed using the interpreter and profiled.
If it is frequently executed and becomes hot, the full region will be
retranslated in order to include the new code and control flow.

3.7 Host Machine Code Generation

A translation work unit is the unit provided to a JIT compiler
worker thread and consists of a list of basic block descriptors, along
with basic block edge information, representing a particular region.
The basic block descriptors contain a list of decoded instructions.
Each instruction in a block is translated to LLVM IR one-by-one,
using a technique similar to (Wagstaff et al|[2013) and once the
instructions have been translated, a block epilogue 1s emitted. This
epilogue is generated based on the type of control-flow associated
with the block, and essentially contains the IR that transfers control
to the next block.

Finally, after all the blocks in the translation work unit have
been compiled, and the region prologue has been generated, a sin-
gle LLVM function remains that represents the region just com-
piled. This function is then passed through the LLVM optimiser,
as described in Section 37,11

After the optimisation passes have completed, the LLVM IR is
compiled to native machine code using the LLVM JIT compiler
interface and when the native code is available, each basic block
that is marked as a region entry has a pointer to the newly compiled
function stored in its metadata.

3.7.1 LLvVM Optimisation Passes

During the translation phase, an LLVM module is built containing
the function that represents the region being translated. The module
also contains helper functions, which are highly amenable to inlin-
ing. All the helper functions are marked as internalisable, and an
inlining pass is applied. Typically, the helper functions will provide
a very small function (such as reading the PC register, or writing to
target machine memory), and are easily inlined.

After inlining, the resulting module is subjected to a number
of LLVM passes, based on the standard CLANG —03 optimisation
level. The main difference is that instead of using an LLVM pro-
vided alias analysis implementation, we use ours as described in
Section

Since we allowed some basic blocks not to be region entry
points, this has opened up more scope for aggressive loop opti-
misation, which yields the full benefit of a region-based JIT. With
a trace-based JIT, loop optimisations rarely happen, as traces are
inherently linear. However, with our region-based approach, we
can perform a significant amount of loop optimisations across the
control-flow within a region, which would also not be possible if
we allowed entry to the region from any basic block.

3.7.2 Alias Analysis

Alias analysis of pointers is an important phase that enables further
program optimisations to reason better about data flow. For exam-
ple, a dead store elimination pass uses pointer aliasing information
to determine whether or not a redundant store to a memory loca-
tion can be eliminated, based on any memory accesses that happen
between those stores.

Listing 4] shows how incomplete pointer aliasing information
can lead to the optimiser being unable to remove dead stores. The
stores on lines 1 and 5 are killed by the store on line 7, but because
the optimiser cannot detect that the operations on pointers in lines
2-4 do not alias, it cannot remove the stores. This directly translates
to machine code as shown in Listing[5] which is safe (and correct),
but in our case not at all optimal.

O T B SRR

Goe W N e

Listing 4. 1.LvM IR after dead store elimination
store i32 36076, i32x %4
%42 = load i64+ inttoptr (i64 61931224 to i64+)
%43 = add i64 %42, 6
store 164 %43, i64x inttoptr
store i32 36076, i32x %4

(164 61931224 to i64x)

store i32 36092, i32x %4

Listing 5. X86 machine code after target lowering

movl $37076, 60(%rl2)
addq $6, 61931224
movl $37076, 60(%rl2)

movl $36092, 60(3rl2)

Figure 6. Remaining dead-stores in LLVM IR after optimisation, and
resulting X86 machine code due to incomplete alias analysis.

DELL " POWEREDGE " R610

2x6

2x Intel©Xeon " X5660
2.80/1.33 GHz

Vendor & Model

Number cores

Processor Type
Clock/FsB Frequency

L1-Cache 2 x 6x 32K Instruction/Data
L2-Cache 2 x6x 256K
L3-Cache 2x 12 MB
Memory 36 GB across 6 channels

Operating System Linux version 2.6.32 (x86-64)

Table 1. DBT Host Configuration.

In the example shown in Figure [6| the problem stems from
the alias analysis implementation (quite correctly) being unable
to determine whether or not the pointer held in %4 aliases with
the constant pointer value 61931224. Assuming that $4 and
61931224 alias is a safe assumption and as such generates safe
code. But, armed with the knowledge about the working of our
DBT, we know that $4 contains a pointer to a CPU state register,
and that the constant pointer is an address that does not intersect
with the CPU state structure, hence we can say that they do not
alias. Providing this guarantee to LLVM’s dead store elimination
optimisation pass enables the pass to remove the redundant stores,
and generate better code. The particular example described above is
important for region-based compilation, as redundant updates to the
CPU state are eliminated, hence reducing the number of memory
operations occurring in a particular sequence.

When a loop is involved, keeping target machine register values
in host registers instead of constantly reading and writing to the
CPU state structure improves performance significantly — but this
kind of loop optimisation can only work to its full potential when
combined with the jump table optimisation technique described in

Section[3.4]

4. Experimental Evaluation
4.1 Experimental Methodology

We have evaluated our DBT code generation approach using the
SPEC CPU2006 integer benchmark. It is widely used and consid-
ered to be representative of a broad spectrum of application do-
mains. We used it together with its reference data sets. The bench-
marks have been compiled using the GcC 4.6.0 C/C++ cross-
compilers, targeting the ARM V5T architecture (without hardware
floating-point support) and with —~O2 optimisation settings.

We have measured the elapsed real time between invocation and
termination of each benchmark in our DBT system using the UNIX
time command on the host machine described in Table [I] with
our DBT system configured as in Table [2} We used the average
elapsed wall clock time across 10 runs for each benchmark and
configuration in order to calculate execution rates (using MIPS in
terms of target instructions) and speedups. For summary figures
we report harmonic means weighted by dynamic target instruction

2016/2/29

Absolute Performance SPEC CPU2006

1200

1000

800

600

400

Absolute Performance (in MIPS)

200

Figure 7. Absolute performance figures (in MIPS) for the long-running SPEC CPU2006 integer benchmarks for both QEMU-ARM and our DBT, indicating
that the quality of the generated code by our system is superior to the code generated by QEMU-ARM.

local code. Aggressive loop optimisations are performed within

DBT Parameter Setting
Target architecture ARM V5T
Host architecture X86-64

Translation/Execution Model
Tracing Scheme

Tracing Interval 30000 blocks

Translation Cache 8192 Entries
JIT compiler LLvMm 3.4
No. of JIT Compilation Threads 10

JIT Optimisation

Initial JIT Threshold
Dynamic JIT Threshold
System Calls

Floating Point

Emulation

Table 2. DBT System Configuration.

count. For the comparison to the state-of-the-art we use the ARM
port of QEMU 1.4.2 as a baseline.

Additionally, we have also evaluated our DBT using the EEMBC-
1.1 benchmark suite. These benchmarks are typically shorter run-
ning and serve to evaluate the performance of the JIT compiler
portion of our DBT. In order to normalise performance to partic-
ular duration, we adjusted the iteration count of each benchmark
so that it ran for about ten seconds in QEMU, then we invoked the
benchmark with the same iteration count in our DBT and measured
performance in the same manner as for SPEC.

4.2 Experimental Results for SPEC CPU2006

Figure[7] gives an overview of the absolute performance of QEMU
vs. our DBT. In every case, we improve on QEMU, and on average
achieve a 2.64x improvement in absolute performance.

The biggest improvement is achieved for 473.astar, which can
be attributed to the benchmark responding well to our ability to
apply loop optimisations within a region. The relative performance
improvement of 473.astar when region chaining is enabled is neg-
ligible, and so indicates that the majority of time is spent in region

Asynch. Mixed-Mode
Region-based (Bohm et al.[2011)

thisregion (where the bulk of the algorithm lies). This explains
the excellent performance improvement over QEMU, which per-
forms no such optimisations. This explanation can also be applied
to 464.h264ref, which benefits greatly from our ability to optimise
loops better than QEMU.

The smallest improvement is for 462.libquantum, which may
be due to the benchmark itself being heavy in arithmetic instruc-
tions, but not so much in looping constructs. This particular char-

~03 & Part. Eval. (Wagstaff et al 20feristic explains the excellent performance of QEMU, and hence
Adaptive (Bohm et al.2011)

why we only see a 1.2x improvement in this case. QEMU’s block-
based optimisations work well here, due to the linear nature of the

Software Emulation (‘soft’) arithmetic instructions and larger basic block sizes.

Interestingly, the relative performance improvements as optimi-
sations are enabled (shown in Figure [8) of 462.libquantum are
similar to that of 473.astar, and the absolute performance of both
the benchmarks are within the same area - but 462.libquantum is
already fast in QEMU.

4.3 Impact of Optimisations

Figure|[8|shows how combinations of the optimisations described in
Section [3| affect the relative performance of the DBT. The baseline
is using standard LLVM —0O3 optimisation and partial evaluation,
but without any of our optimisations described in the paper applied.

Overall, the addition of our custom alias analysis improves
every benchmark, except for 429.mcf. On average this gives a
1.32x performance improvement, but it is the combination of all our
strategies that yield the best result. Jump table optimisation on its
own does not give rise to a significant performance improvement,
but responds well when combined with alias analysis. This may
be due to the fact that the most interesting optimisation to apply
across basic blocks is to remove dead stores and to keep host
registers live with frequently used values (potentially from the
CPU state structure). Without the precise aliasing information this
kind of optimisation is not possible to do effectively, and so the
combination of both jump table optimisation and custom alias
analysis give rise to the best performance improvements.

2016/2/29

Impact of Optimisations

15

Performance Improvement over Baseline

RC 3
RC & JTO =3
RC & AA D
RC & JTO & AA mmmm

Figure 8. Breakdown of performance impact of different optimisations. Baseline is standard LLVM -O3 and partial evaluation (Wagstaff et al.|2013) at JIT
compilation time. Additional region chaining (RC), jump table optimisation (JTO) and alias analysis (AA) complement each other.

473.astar remains at baseline performance when the region
chaining optimisation is applied, and this may be due to the major-
ity of execution being spent in region-local code. It has an absolute
performance figure of > 1000 M1PS, which indicates fast running
code, but the benefits of region chaining are minimal, due to the
lack of inter-region control-flow.

4083.gcc is a particularly control-flow heavy benchmark, and
responds well to the combination of all the optimisations together.
Also of interest is the 429.mcf benchmark, which does not consis-
tently improve in performance like the majority of the other bench-
marks. Despite this, 429.mcf is more than 1.5 times faster in our
DBT system than in QEMU.

4.4 Jit Compilation Performance

The execution time of the SPEC CPU2006 benchmarks with their
reference data sets is dominated by the time spent executing
native code, whereas the fraction accounted for JIT compilation
time is small. For such long-running benchmarks code quality is
paramount and this where our region based code optimisations
outperform simpler basic block or trace based schemes. However,
JIT compilation time is still important for shorter-running applica-
tions, or programs that exhibit phased behaviour and, hence, ex-
ercise the JIT compiler more heavily. To evaluate JIT compilation
performance of our DBT system we have run additional, smaller
benchmarks, where time for JIT compilation constitutes a larger
portion of the overall time (see Figure E) In every case, we beat
QEMU in absolute execution performance, but as in the SPEC re-
sults, our relative performance improvements vary greatly. As can
be seen, the most significant result here is that we execute fft00 at
a rate of 6138 MIPS compared to QEMU’s 3897.95. However, this
only shows a modest relative performance gain of 1.5x, where as
idctrn01 outperforms QEMU by 2.85x. We can attribute these vari-
ances again to the characteristics of individual benchmarks in the
suite, where we can say that in the benchmarks which are amenable
to loop optimisations, i.e. contain more intra-region loops, we show
a greater relative performance improvement. Overall, these results
demonstrate that even for shorter-running applications where JIT
compilation latency plays a greater role than absolute code quality

our system is highly competitive despite its use of larger translation
units and aggressive code optimisations.

5. Related Work
5.1 Region based DBT Systems

Region based JIT compilation has been used for some time in
JAVA virtual machines, e.g. (Suganuma et al.|[2003] |2006), but has
only been considered more recently for DBT systems (Jones and
Topham|2009;|Bohm et al.[201 1} |Kaufmann and Spalleki2013)). The
reason for this late adoption of region based policies has been pre-
sumably the increased latency for compilation and optimisation of
larger regions, which has only been addressed recently with the in-
troduction of decoupled, latency-hiding JIT task farms (Bohm et al.
2011). The bulk of the work in this field has focused on region se-
lection, though, and less on code generation and optimisation for
dynamically discovered regions. In (Jones and Topham|2009) large
translations units, i.e. regions, are introduced for dynamic binary
translation and region selection policies based on strongly con-
nected components, control flow graph fragments and OS pages
are compared. A refined page based region selection scheme is de-
veloped in (Bohm et al|[2011) and combined with a parallel JIT
compilation task farm. Specific optimisations for a DBT system,
which compiles target- to host code via JVM bytecode, are consid-
ered in (Kaufmann and Spallek/[2013)).

5.2 Code Generation and Optimisation in DBT Systems

Most DBT systems appear to have adopted a code generation strat-
egy operating on individual basic blocks or linear traces of basic
blocks. For example, QEMU uses such an approach using its own
tiny code generator (TCG) and additional block chaining, trans-
lation caching and lazy condition evaluation (Bellard|2005). Dy-
NAMO (Bala et al.|2000) is a dynamic optimisation system, 1.e. the
input is an executing native instruction stream. DYNAMO uses an
interpreter for initial execution until a “hot” instruction sequence
is identified. At that point, DYNAMO generates an optimised ver-
sion of the trace into a software code cache. DYNAMO treats back-
ward branches as trace delimiters, i.e. traces are by definition lin-
ear. After translation it emits an optimised single-entry, multi-exit,

2016/2/29

Absolute Performance EEMBC

GOOD +-rvoverseeoesoee
B e
[%2]

o

=

=

e L L '
Q

=

©

£

o

€ 3000

o

i

5

e

2 2000

<

1000

Figure 9. Absolute performance figures (in MIPS) for the shorter-running EEMBC benchmarks for both QEMU-ARM and our DBT, indicating that JIT startup
time and compilation performance of our DBT is more than competitive with QEMU-ARM despite aggressive code optimisations applied by our system.

contiguous sequence of instructions for each trace. Trace optimi-
sation in DYNAMO considers branch types, but is generally less
aggressive than our scheme, which utilises additional loop opti-
misations. DYNAMORIO (Bruening et al.|[2003) is a successor of
DyYNAMO. DYNAMORIO operates on two kinds of code sequences:
basic blocks and traces. Both have linear control flow, with a single
entrance and potentially multiple exits, but no internal join points.
Optimisations are restricted to the linear control flow present in
traces. The single-entry multiple-exit format simplifies analysis al-
gorithms, but limits the scope of optimisations that can be applied.
STRATA (Hiser et al.|[2006a) is a retargetable DBT system offering
additional uses for dynamic instrumentation and optimisation. Dif-
ferent fragment selection policies (Hiser et al.|2006b) have been
evaluated for STRATA, however, all of these have in common that
they are linear traces, possibly spanning branch or function call
boundaries. STRATA uses chaining of traces to avoid overheads as-
sociated with returning to the main execution loop after every na-
tive trace. An ARM port of STRATA considers architecture-specific
optimisations, e.g. relating to the exposed PC (Moore et al.|2009)).
The optimisations performed by UQDBT — a machine-adaptable dy-
namic binary translator — are discussed in (Cifuentes and Emmerik
2000; (Ung and Cifuentes|[2001). This tool uses an algorithm for
finding hot paths using edge weight profiles, and optimises code in
a machine-independent way, based on hot path information. Whilst
units of translation in UQDBT are basic blocks, for its hot path
(re)optimisation it groups hot basic blocks and their connecting
control flow edges into regions. The paper focuses primarily on
newly discovered hot paths and locality transformations, but does
not provide a complete code generation strategy. A particular aspect
of code generation in DBT systems, namely recovery of jump ta-
ble case statements, is discussed in (Cifuentes and Emmerik|1999).
Alias analysis for DBT systems is considered in (Guo et al.[2006),
but unlike our approach this requires runtime checks.

5.3 DBT Systems Using LLVM for JIT Compilation

A parallel and concurrent JIT compilation task farm for use in DBT
systems is presented in (Bohm et al.2011). The JIT compiler is
based on the LLVM framework, which is used for translation of
paged regions of target instructions to host instructions. The paper

discusses a particular region selection scheme and parallel JIT com-
pilation, but provides no details of the actual code generation ap-
proach used. LNQ (Hsu et al|2011) extends QEMU with an LLVM
based JIT compiler, but does not consider code regions for trans-
lation. It uses linear traces instead. HQEMU (Hong et al.[|2012) is
a multi-threaded dynamic binary translator, which extends QEMU
with multiple instances of the LLVM compiler for JIT compilation.
Similar to our system HQEMU builds on top of LLVM, but it only
operates on linear traces and does not support region-based com-
pilation. Unfortunately, direct performance comparisons are ham-
pered as the paper only reports relative improvements over an un-
usual baseline, which we were unable to verify or repeat.

6. Summary & Conclusions

In this paper we have developed a novel, integrated approach to
JIT code generation within region-based DBT systems. We exploit
branch type information, introduce region chaining, develop selec-
tive region registration in translation caches, add on continuous pro-
filing and recompilation, and finally include custom alias analysis
to enable aggressive code optimisations, which would not be pos-
sible in a JIT scheme based on linear traces. We demonstrate the
efficiency of our region-based JIT code generation approach us-
ing the SPEC CPu2006 benchmarks compiled for the ARM V5T
ISA, which our DBT system translates on-the-fly to the host ma-
chine’s X86 ISA. In comparison to state-of-the-art QEMU-ARM we
achieve an average speedup of 2.64, and up to 4.25 for individual
benchmarks. We show that each of the techniques developed in this
paper on their own contributes to increased code quality, but it is
the particular combination of code generation steps that results in
performance improvements greater than the sum of its parts.

References

J. Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97—
113, June 2003. ISSN 0360-0300. doi: 10.1145/857076.857077. URL
http://doi.acm.org/10.1145/857076.857077.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In Proceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Implementation, PLDI
’00, pages 1-12, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-

2016/2/29

http://doi.acm.org/10.1145/857076.857077

2. doi: 10.1145/349299.349303. URL http://doi.acm.org/10.
1145/349299.349303.

F. Bellard. QEMU, a fast and portable dynamic translator. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Confer-
ence, ATEC ’05, pages 41-41, Berkeley, CA, USA, 2005. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=
1247360.1247401

I. Bohm, T. J. Edler von Koch, S. C. Kyle, B. Franke, and N. Topham.
Generalized just-in-time trace compilation using a parallel task farm in
a dynamic binary translator. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 74-85, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0663-8. doi: 10.1145/1993498.1993508. URL http:
//doi.acm.orqg/10.1145/1993498.1993508.

D. Bruening and E. Duesterwald. Exploring optimal compilation unit
shapes for an embedded just-in-time compiler. In In Proceedings of the
2000 ACM Workshop on Feedback-Directed and Dynamic Optimization
FDDO-3, pages 13-20, 2000.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In Proceedings of the international symposium
on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, CGO *03, pages 265-275, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1913-X. URL http://dl.
acm.org/citation.cfm?1d=776261.776290.

C. Cifuentes and M. V. Emmerik. Recovery of jump table case statements
from binary code. In Proceedings of the 7th International Workshop
on Program Comprehension, INPC 99, pages 192—, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0179-6. URL
http://dl.acm.org/citation.cfm?id=520033.858247,

C. Cifuentes and M. V. Emmerik. UQBT: Adaptive binary translation at
low cost. IEEE Computer, 33(3):60-66, 2000.

B. Dhanasekaran and K. Hazelwood. Improving indirect branch translation
in dynamic binary translators. In Proceedings of the ASPLOS Workshop
on Runtime Environments, Systems, Layering, and Virtualized Environ-
ments, RESOLVE’11, pages 11-18, 2011.

B. Guo, Y. Wu, C. Wang, M. J. Bridges, G. Ottoni, N. Vachharajani,
J. Chang, and D. I. August. Selective runtime memory disambiguation
in a dynamic binary translator. In Proceedings of the 15th International
Conference on Compiler Construction, CC’06, pages 65-79, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 3-540-33050-X, 978-3-540-
33050-9. doi: 10.1007/11688839_6. URL http://dx.doi.org/
10.1007/11688839_6.

D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region selection
in dynamic optimization systems. In Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 38,
pages 141-154, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2440-0. doi: 10.1109/MICRO.2005.22. URL http:
//dx.doi.org/10.1109/MICRO.2005.22|

J. D. Hiser, N. Kumar, M. Zhao, S. Zhou, B. R. Childers, J. W. Davidson,
and M. L. Soffa. Techniques and tools for dynamic optimization. In
Proceedings of the 20th International Conference on Parallel and Dis-
tributed Processing, IPDPS’06, pages 279-279, Washington, DC, USA,
2006a. IEEE Computer Society. ISBN 1-4244-0054-6. URL http:
//dl.acm.org/citation.cfm?1d=1898699.1898797.

. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. R. Childers.
Evaluating fragment construction policies for SDT systems. In Pro-
ceedings of the 2nd International Conference on Virtual Execution En-
vironments, VEE °06, pages 122-132, New York, NY, USA, 2006b.
ACM. ISBN 1-59593-332-8. doi: 10.1145/1134760.1134778. URL
http://doi.acm.org/10.1145/1134760.1134778}

J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R. Childers.
Evaluating indirect branch handling mechanisms in software dynamic
translation systems. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO *07, pages 61-73, Wash-
ington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2764-
7. doi: 10.1109/CG0O.2007.10. URL http://dx.doi.org/10.
1109/CG0O.2007.10.

D.-Y. Hong, C.-C. Hsu, P-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M.
Wang, and Y.-C. Chung. HQEMU: a multi-threaded and retargetable
dynamic binary translator on multicores. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO
’12, pages 104113, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1206-6. doi: 10.1145/2259016.2259030. URL http://doi.
acm.org/10.1145/2259016.2259030.

C.-C. Hsu, P. Liu, C.-M. Wang, J.-J. Wu, D.-Y. Hong, P.-C. Yew, and W.-C.
Hsu. LnQ: Building high performance dynamic binary translators with
existing compiler backends. In Proceedings of the 2011 International
Conference on Parallel Processing, ICPP *11, pages 226-234, Wash-
ington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-
4510-3. doi: 10.1109/ICPP.2011.57. URL http://dx.doi.org/

—

10.1109/ICPP.2011.57.

C.-C. Hsu, P. Liu, J.-J. Wu, P.-C. Yew, D.-Y. Hong, W.-C. Hsu, and C.-
M. Wang. Improving dynamic binary optimization through early-exit
guided code region formation. In Proceedings of the 9th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE "13, pages 23-32, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1266-0. doi: 10.1145/2451512.2451519. URL http:
//doi.acm.org/10.1145/2451512.2451519,

N. Jia, C. Yang, J. Wang, D. Tong, and K. Wang. SPIRE: improving
dynamic binary translation through SPC-indexed indirect branch redi-
recting. In Proceedings of the 9th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE *13, pages
1-12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1266-0.
doi: 10.1145/2451512.2451516. URL http://doi.acm.org/10.
1145/2451512.2451516.

D. Jones and N. Topham. High speed CPU simulation using LTU dynamic
binary translation. In Proceedings of the 4th International Conference
on High Performance Embedded Architectures and Compilers, HIPEAC
’09, pages 50-64, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-540-92989-5. doi: 10.1007/978-3-540-92990-1_6. URL http:
//dx.doi.org/10.1007/978-3-540-92990-1_6.

R. Joshi, M. D. Bond, and C. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In
Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, CGO 04,
pages 239—, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2102-9. URL http://dl.acm.org/citation.
cfm?1d=977395.977660.

M. Kaufmann and R. G. Spallek. Superblock compilation and other op-
timization techniques for a Java-based DBT machine emulator. In
Proceedings of the 9th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’13, pages 33-40, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1266-0. doi: 10.
1145/2451512.2451521. URL http://doi.acm.orqg/10.1145/
2451512.2451521)

J. Kinder, F. Zuleger, and H. Veith. An abstract interpretation-based frame-
work for control flow reconstruction from binaries. In Proceedings
of the 10th International Conference on Verification, Model Check-
ing, and Abstract Interpretation, VMCAI 09, pages 214-228, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-540-93899-6. doi:
10.1007/978-3-540-93900-9_19. URL http://dx.doi.org/10.
1007/978-3-540-93900-9_109.

T. Koju, X. Tong, A. I. Sheikh, M. Ohara, and T. Nakatani. Optimiz-
ing indirect branches in a system-level dynamic binary translator. In
Proceedings of the 5th Annual International Systems and Storage Con-
ference, SYSTOR 12, pages 5:1-5:12, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1448-0. doi: 10.1145/2367589.2367599. URL
http://doi.acm.org/10.1145/2367589.2367599,

R. W. Moore, J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D.
Hiser. Addressing the challenges of DBT for the ARM architecture.
In Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, LCTES °09,
pages 147-156, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
356-3. doi: 10.1145/1542452.1542472. URL http://doi.acm.
org/10.1145/1542452.1542472|

E. Stahl and M. Anand. A comparison of PowerVM and x86-based vir-
tualization performance. Technical Report WP101574, IBM Techdocs
White Papers, 2010.

T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation
technique for a Java just-in-time compiler. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI *03, pages 312-323, New York, NY, USA, 2003.
ACM. ISBN 1-58113-662-5. doi: 10.1145/781131.781166. URL
http://doi.acm.org/10.1145/781131.781166,

T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation tech-
nique for dynamic compilers. ACM Trans. Program. Lang. Syst., 28(1):
134-174, Jan. 2006. ISSN 0164-0925. doi: 10.1145/1111596.1111600.
URLhttp://doi.acm.org/10.1145/1111596.1111600}

D. Ung and C. Cifuentes. Optimising hot paths in a dynamic binary
translator. SIGARCH Comput. Archit. News, 29(1):55-65, Mar. 2001.
ISSN 0163-5964. doi: 10.1145/373574.373590. URL http://doi.
acm.org/10.1145/373574.373590.

H. Wagstatf, M. Gould, B. Franke, and N. Topham. Early partial eval-
uation in a JIT-compiled, retargetable instruction set simulator gen-
erated from a high-level architecture description. In Proceedings of
the Annual Design Automation Conference, DAC ’13, pages 21:1-
21:6, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2071-9.
doi: 10.1145/2463209.2488760. URL http://doi.acm.org/10.
1145/2463209.2488760.

2016/2/29

http://doi.acm.org/10.1145/349299.349303
http://doi.acm.org/10.1145/349299.349303
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1993498.1993508
http://doi.acm.org/10.1145/1993498.1993508
http://dl.acm.org/citation.cfm?id=776261.776290
http://dl.acm.org/citation.cfm?id=776261.776290
http://dl.acm.org/citation.cfm?id=520033.858247
http://dx.doi.org/10.1007/11688839_6
http://dx.doi.org/10.1007/11688839_6
http://dx.doi.org/10.1109/MICRO.2005.22
http://dx.doi.org/10.1109/MICRO.2005.22
http://dl.acm.org/citation.cfm?id=1898699.1898797
http://dl.acm.org/citation.cfm?id=1898699.1898797
http://doi.acm.org/10.1145/1134760.1134778
http://dx.doi.org/10.1109/CGO.2007.10
http://dx.doi.org/10.1109/CGO.2007.10
http://doi.acm.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/2259016.2259030
http://dx.doi.org/10.1109/ICPP.2011.57
http://dx.doi.org/10.1109/ICPP.2011.57
http://doi.acm.org/10.1145/2451512.2451519
http://doi.acm.org/10.1145/2451512.2451519
http://doi.acm.org/10.1145/2451512.2451516
http://doi.acm.org/10.1145/2451512.2451516
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://dl.acm.org/citation.cfm?id=977395.977660
http://dl.acm.org/citation.cfm?id=977395.977660
http://doi.acm.org/10.1145/2451512.2451521
http://doi.acm.org/10.1145/2451512.2451521
http://dx.doi.org/10.1007/978-3-540-93900-9_19
http://dx.doi.org/10.1007/978-3-540-93900-9_19
http://doi.acm.org/10.1145/2367589.2367599
http://doi.acm.org/10.1145/1542452.1542472
http://doi.acm.org/10.1145/1542452.1542472
http://doi.acm.org/10.1145/781131.781166
http://doi.acm.org/10.1145/1111596.1111600
http://doi.acm.org/10.1145/373574.373590
http://doi.acm.org/10.1145/373574.373590
http://doi.acm.org/10.1145/2463209.2488760
http://doi.acm.org/10.1145/2463209.2488760

J. Whaley. Partial method compilation using dynamic profile informa-
tion. In Proceedings of the 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 01, pages 166-179, New York, NY, USA, 2001. ACM. ISBN
1-58113-335-9. doi: 10.1145/504282.504295. URL http://doi.
acm.org/10.1145/504282.504295,

L. Yin, J. Haitao, S. Guangzhong, J. Guojie, and C. Guoliang. Im-
prove indirect branch prediction with private cache in dynamic binary
translation. In International Conference on High Performance Com-
puting and Communication and International Conference on Embed-
ded Software and Systems (HPCC-ICESS), pages 280-286, 2012. doi:
10.1109/HPCC.2012.45.

C. Zheng and C. Thompson. PA-RISC to IA-64: transparent execution, no
recompilation. Computer, 33(3):47 =52, Mar. 2000.

11 2016/2/29

http://doi.acm.org/10.1145/504282.504295
http://doi.acm.org/10.1145/504282.504295

	Introduction
	Motivating Example
	Contributions
	Overview

	Background
	Dbt System Overview
	Region Selection

	Methodology
	Overview
	Translation Lookup Cache
	Region Chaining
	Branching
	Direct Branches
	Indirect Branches

	Region Registration in Translation Caches
	Continuous Profiling and Recompilation
	Host Machine Code Generation
	Llvm Optimisation Passes
	Alias Analysis

	Experimental Evaluation
	Experimental Methodology
	Experimental Results for Spec Cpu2006
	Impact of Optimisations
	Jit Compilation Performance

	Related Work
	Region based Dbt Systems
	Code Generation and Optimisation in Dbt Systems
	Dbt Systems Using Llvm for Jit Compilation

	Summary & Conclusions

