
HAL Id: hal-00924273
https://inria.hal.science/hal-00924273v2

Submitted on 19 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Smooth Surface Contours with Accurate
Topology

Pierre Bénard, Aaron Hertzmann, Michael Kass

To cite this version:
Pierre Bénard, Aaron Hertzmann, Michael Kass. Computing Smooth Surface Contours with Accurate
Topology. ACM Transactions on Graphics, 2014, 33 (2), �10.1145/2558307�. �hal-00924273v2�

https://inria.hal.science/hal-00924273v2
https://hal.archives-ouvertes.fr

Computing Smooth Surface Contours with Accurate Topology

PIERRE BÉNARD

University of Toronto, Université de Bordeaux, LaBRI, CNRS, and Inria

AARON HERTZMANN

Adobe Research, University of Toronto, and Pixar Animation Studios

and

MICHAEL KASS

Pixar Animation Studios

This paper introduces a method for accurately computing the visible con-

tours of a smooth 3D surface for stylization. This is a surprisingly difficult

problem, and previous methods are prone to topological errors, such as gaps

in the outline. Our approach is to generate, for each viewpoint, a new trian-

gle mesh with contours that are topologically-equivalent and geometrically

close to those of the original smooth surface. The contours of the mesh can

then be rendered with exact visibility. The core of the approach is Contour-

Consistency, a way to prove topological equivalence between the contours

of two surfaces. Producing a surface tessellation that satisfies this property

is itself challenging; to this end, we introduce a type of triangle that ensures

consistency at the contour. We then introduce an iterative mesh generation

procedure, based on these ideas. This procedure does not fully guarantee

consistency, but errors are not noticeable in our experiments. Our algorithm

can operate on any smooth input surface representation; we use Catmull-

Clark subdivision surfaces in our implementation. We demonstrate results

computing contours of complex 3D objects, on which our method elimi-

nates the contour artifacts of other methods.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-

ture/Image Generation—Line and curve generation; I.3.7 [Computer

Graphics]: Three-Dimensional Graphics and Realism—Animation

General Terms: Algorithms

Additional Key Words and Phrases: Non-photorealistic rendering, line

drawing, silhouettes, visibility, geometry processing

ACM Reference Format:

Pierre Bénard, Aaron Hertzmann, Michael Kass. 2014. Computing Smooth

Surface Contours with Accurate Topology. ACM Trans. Graph. 33, 2, Arti-

cle 19 (March 2014), 21 pages.

DOI: http://dx.doi.org/10.1145/2558307

This work was supported in part by NSERC and CIFAR.

Authors’ addresses: P. Bénard, University of Toronto, Canada, Universite

de Bordeaux, LaBRI, CNRS, and Inria, France pierre.benard@laposte.net;

A. Hertzmann, Adobe Research, CA, University of Toronto, Canada, and

Pixar Animation Studios, CA; M. Kass, Pixar Animation Studios, CA.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

show this notice on the first page or initial screen of a display along with the

full citation. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy oth-

erwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2014 ACM 0730-0301/2014/14-ART19 $15.00

DOI: http://dx.doi.org/10.1145/2558307

1. INTRODUCTION

Computing the occluding contours1 of 3D surfaces is one of the
oldest problems in computer graphics. Contours were first used
for hidden-line rendering, and then for non-photorealistic render-
ing. Stylizing contours is fundamental to 3D non-photorealistic
rendering, because contours mimic many hand-drawn curves. De-
spite this long history, computing and rendering the contour for
smooth surfaces with correct visibility remains an unsolved prob-
lem. The problem is surprisingly difficult to solve perfectly, and
existing methods are prone to pathological visibility artifacts. For
example, during an animation, outline curves may incorrectly ap-
pear and disappear, seemingly at random, and strokes may be arbi-
trarily broken into multiple segments. For high-quality animation,
the artifacts are extremely objectionable; the animation of a car-
toon character would be ruined by a stylized outline curve that ran-
domly breaks into pieces. Likewise, in an industrial design render-
ing, small gaps in curves would distort the perceived object shape.
Previous research has focused on applications that can tolerate im-
perfection, such as rendering very simple surfaces, curves without
stylization, sketchy real-time rendering, and static imagery. Even
for sketchy rendering, we argue that sketchiness should be control-
lable, instead of arising from unpredictable errors.

This paper introduces a new method for computing
topologically-accurate contours of smooth surfaces. Given a
smooth surface and a camera viewpoint, the algorithm produces
a triangle mesh, such that the contour generator of the mesh is
topologically-equivalent and geometrically close to the smooth
surface’s contours. The visible contours of the mesh are mesh
edges, and can be accurately computed by standard methods.
The core of the approach is the notion of Contour Consistency,
a way to prove topological equivalence between the contours
of a smooth surface and a triangle mesh. In order to produce
a Contour Consistent mesh, we define Radial Triangles, which
ensure consistency near the contour. We introduce a tessellation
algorithm that produces these triangles through a sequence of local
mesh transformations. Our algorithm is not strictly guaranteed to
produce a topologically-consistent mesh, as it can yield isolated
inconsistencies in the mesh. However, these inconsistencies are
identified, and our method can bypass them to produce correct
curves. Numerical sampling is used to detect contours, so contours
could hypothetically be missed, though this does not appear to be
an issue in practice.

The method works for orientable surfaces in general position,
with the assumption that only front-facing surface points are visi-

1In this paper, we use the term contour to refer to the occluding contours of

a surface. They are also sometimes referred to as silhouettes.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

2 • P. Bénard, A. Hertzmann and M. Kass

(a) 3D model (b) Conventional mesh contours (c) Interpolated contours (d) Our method

Fig. 1. Contour extraction from a smooth 3D surface. (a) The object is modeled as a collection of Catmull-Clark surfaces. We extract contours (red), bound-

aries (blue), and surface-surface intersection curves (green). (b) Contours of a conventional surface tessellation exhibit overly-complex topology. (c) Smooth

interpolated contours [Hertzmann and Zorin 2000] have simpler topology. However, because they are not true contours of the tessellation, there are visibility

errors, such as the gap in the left hand, and broken outline curves. (d) Our method generates a mesh tessellation such that the mesh contours have accurate

topology for the underlying surface. Colors: Front-faces are drawn in yellow, and back-faces in blue. All strokes are rendered with tapering and random colors,

in order to visualize the extracted topology. Red © Disney/Pixar

ble. We apply the algorithm to Catmull-Clark subdivision surfaces.
In principle, the approach can be applied to any piecewise-smooth
piecewise-parametric surface representation.

An unexpected observation from our work is that the true con-
tours of smooth surfaces can exhibit tiny kinks, loops, and other un-
desirable topological complexity. These details create undesirable
breaks and overlaps in the stylized curves. These effects are sur-
prising, because they can appear well below the apparent scale of
the surface. We show examples of this undesirable complexity, and
introduce a procedure for topological simplification of contours.

For animation production, surface intersection curves play an
important role. Our paper describes why these curves are impor-
tant and discusses methods for handling them, for the first time.

The renderings we produce are correct almost everywhere, ac-
cording to a surface that is slightly perturbed from the input surface.
The precise statement of our method’s guarantees is as follows.
First, the 3D contour generator is guaranteed to be topologically-
equivalent (ambient isotopic) to those of the input surface, exclud-
ing small, sub-triangle loops. If desired, one may control the maxi-
mum size of these loops, e.g., by splitting all triangles larger than a
given image-space area. Second, the geometric positions of the con-
tour generator are accurate up to tiny perturbations. Third, visibility
is computed correctly with respect to some surface that is slightly
perturbed from the input surface, except in a few places where the
algorithm is unable to obtain a Consistent surface. However, these
locations are small and isolated, and local propagation usually pro-

duces correct visibility. The resulting renderings will have plausible
topology, e.g., impossible gaps in the object silhouette are elimi-
nated.

Contour extraction is just the first step in the hypothetical
pipeline for exact computation and stylization of animated strokes.
Several other substantial exact components will also be neces-
sary, including complete topological simplification, spacetime cor-
respondence between the extracted curves [Buchholz et al. 2011;
Kalnins et al. 2003], and effective spacetime stylization. Each of
these steps is an open problem in its own right, and we rely on
previous approximate methods to generate stylized results. As il-
lustrated in Figure 2, contour extraction is a critical part of this
process, since minor errors at this step (e.g., gaps or breaks) get am-
plified into much bigger artifacts after stylization (temporal ones in
particular).

2. PREVIOUS APPROACHES

This section surveys previous approaches to computing the visi-
ble contours for smooth surfaces. At first, the problem might ap-
pear to be quite straightforward, with many previously-published
approaches to choose from. Previous methods work well for very
simple, smooth surfaces, and for real-time rendering styles in which
some errors are tolerable. However, each of the existing methods
exhibit unexpected errors that are subtle, but pernicious for high-
quality rendering. Here we analyze these problems and their un-

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 3

(a) Interpolated contours

(b) Our method

Fig. 2. Contours stylized with tapered strokes. (a) Interpolated contours

exhibit many breaks and gaps (red arrows) which lead to objectionable tem-

poral artifacts after stylization. (b) Our method avoids those issues, produc-

ing more coherent animated strokes. Red © Disney/Pixar

derlying causes. Our approach builds on many ideas from previous
work, but is designed to avoid these problems.

The contour generator for any piecewise-smooth surface (e.g.,
subdivision surface or triangle mesh) is defined as the boundary
between the front- and back-facing regions of the surface. The con-
tour is the visible subset of the contour generator (Figure 3). For-
mally, the contour is the 2D projection, but, for brevity, we use the
term to refer to both the 3D and 2D portions of the curve.

The fundamental difficulty in computing smooth contours is in
computing visibility: for contours, visibility queries involve testing
intersection between implicitly-defined quantities. For example, to
determine if a point on the contour generator is visible, one may
test if a camera ray through the point intersects the surface. Un-
fortunately, neither the contour generator nor the visible subset of
a surface have closed-form expressions. Moreover, by definition,
local surface visibility is unstable near the contour generator, in
the sense that tiny perturbations in a ray test can change the result.
These factors make direct visibility computation unreliable. An al-
ternative approach is to modify the surface before determining the
contours and visibility. Most commonly, this is done by tesselating
the surface into a triangle mesh, but this produces messy, inaccu-
rate contours. Many methods instead tessellate the contour and the
surface separately, causing errors because the tessellated contour
is no longer the contour of the tessellated surface. Trying to clean
up these mismatches between representations leads to seemingly-
endless headaches.

A popular approach to stroke rendering is to use image buffers
and graphics hardware (e.g., [Cole and Finkelstein 2009; Hertz-

Fig. 3. Contours. The contour generator is the boundary between the

front-facing and back-facing parts of a surface, as seen from a camera cen-

ter c. Left: For a smooth surface, these points have a surface normal n

perpendicular to the view vector v = c − p. Right: For a triangle mesh,

the contour generator comprises the mesh edges between front-faces and

back-faces.

Fig. 4. Subdividing a surface does not fix all topological problems.

Left: The mesh contour of a subdivided surface exhibits jaggy edges.

Right: The interpolated contour computed from this mesh improves over

Figure 1(b), but still exhibits many errors. Red © Disney/Pixar

mann 1999; Saito and Takahashi 1990]) to directly identify con-
tours. These methods can be very efficient, but cannot guarantee
topological accuracy.

2.1 Mesh Contours

The simplest way to compute contours of a smooth surface is to
generate an approximate triangle mesh, and then render the con-
tours of the triangle mesh. (In some situations, one begins with a
triangle mesh without ever computing an explicit smooth represen-
tation). As noted by many previous authors, the contours of the ap-
proximating mesh exhibit much more complex topology than those
of the smooth surface (Figure 1(b)). Subdividing the surface to a
finer tessellation does not solve the problem (Figure 4).

Several methods topologically simplify the mesh contour using
heuristics [Eisemann et al. 2008; Isenberg et al. 2002; Kirsanov
et al. 2003; Northrup and Markosian 2000]. These heuristics of-
ten obtain appealing results, but cannot guarantee correct topology
with respect to the original smooth surface. Depending on user-
defined thresholds, they may merge unrelated curves, or leave the
topology overly-complex. We apply similar topological simplifica-
tion operators, but only once the correct topology is known.

2.2 Ray-Tracing Smooth Contours

A second approach is to perform computations directly on a smooth
surface representation. Elber and Cohen [1990] detect contours on
NURBS patches, using a root-finding method, and adaptively sub-
divide surface patches to refine the contour to a desired accuracy.
Curves are split into curve segments whenever they are overlapped
by a contour or boundary curve. Ray-tracing is used to determine
which isoparametric curve segment is visible, and visibility is prop-
agated to contours along these visible curves. More recent methods

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

4 • P. Bénard, A. Hertzmann and M. Kass

(a)

(b)

Fig. 5. Difficulty of computing visibility with interpolated contours.

(a) The interpolated contour (red) does not correspond to the mesh contour,

but instead crosses between front-faces and back-faces. Naive ray-tracing

would mark the back-facing segments as invisible. (b) 2D cross-section of a

surface, illustrating some of the difficulties in visibility for interpolated con-

tours. Here, both p and q are points on a back-facing interpolated contour,

each near a mesh contour (red). One approach is to ignore the occlusion of

p by p′, because p′ is “near” p on the surface. However, there is no generic

way to define “nearby” that will always work.

skip adaptive subdivision and iterative root-finding. Gooch [1998]
uses linear interpolation to find contour generator points on B-
spline patches, but does not compute visibility. Hertzmann and
Zorin [2000] apply the same approach to arbitrary triangle meshes
without any explicit underlying smooth surface, and compute visi-
bility by image-space intersections and ray tests.

The fundamental difficulty in these methods is in robustly deter-
mining the visible portions of the smooth contour generator.

Contour ray test problems. An obvious approach is to perform
contour ray tests directly against the smooth surface. These tests
must be performed numerically, because both the smooth contour
and the ray-surface intersection are defined implicitly. As noted by
Elber and Cohen [1990], such tests are numerically unstable, since
the true contour lies exactly on the boundary between visible and
invisible. To our knowledge, this approach has not been attempted
in the literature.

One may instead use a piecewise-linear approximation to the
contour generator, and perform ray tests with respect to an approx-
imate triangle mesh [Hertzmann and Zorin 2000]. Unfortunately,
the approximate contour generator is not the contour generator of
the mesh (Figure 1(c)). Roughly half of the approximate contour
generator will lie on back-faces, and thus be occluded by some
nearby triangles of the mesh. There are several heuristics one may
use to combat this effect, such as voting with multiple ray-tests
[Hertzmann and Zorin 2000], and ignoring occlusions from trian-
gles adjacent to the contour’s face [Grabli et al. 2010], but these
heuristics are not robust (Figure 5(b)). Subdividing the surface to a
higher resolution does not solve these problems, since, under fairly
general assumptions, each face containing contour generator has
50% probability of being backfacing, and increasing the surface
resolution does not change this.

The mismatch between the contour and the surface representa-
tions causes other problems. Surface curves that lie near the con-

(a)

(b)

Fig. 6. Haloing problem of interpolated contours. (a) As pointed out by

Eisemann et al. [2008], in image space, the interpolated contours lie inside

the mesh contour, which affects planar map stylization. However, it also af-

fects visibility, as there is a “halo region” between the two contours in which

the mesh occludes any curves behind it, but the interpolated contour does

not connect to the visible part. (b) An image-space illustration of highly-

foreshortened curves in which the nearer curves will cause visibility errors

for more distant curves. Here, the near curve’s halo hides the far curve. Sit-

uations like this often arise for surfaces with noisy, nearly-flat regions, such

as the Stanford bunny.

tour will have unreliable visibility (Figure 5). Curves may also be
occluded by the surface but lie outside the contour, creating a tiny
halo of invisibility around the surface (Figure 6). As pointed out by
Eisemann et al. [2008], the mismatch also interferes with styliza-
tion of the interiors of objects (Section 2.3). As illustrated in Figure
1(c), these issues cause errors in the results.

Visibility propagation problems. Instead of performing ray tests
at the contour, one may perform them elsewhere on the surface, and
then propagate visibility based on image-space relationships be-
tween curves. Elber and Cohen [1990] perform ray tests on isopara-
metric curves, and assume that every visible contour is connected
to some visible isoparametric curve, which is not true for com-
plex models. More generally, one might propagate Quantitative
Invisibility (QI) [Appel 1967; Markosian et al. 1997] along arbi-
trary curves to determine visibility. The QI of a point is defined
as the number of surfaces that occlude the point; a point is vis-
ible if and only if it has a QI of zero. However, QI propagation
depends on computing image-space intersections between curves.
Robustly computing image-space intersections between smooth
contours would be very difficult, and we are not aware of published
methods for doing so. A single missed or spurious intersection can
ruin many visibility computations.

2.3 Planar Map Methods

Another approach is to compute the contours of a Planar Map for
the scene, thereby ensuring closed contours. The Planar Map is a
data structure that represents the mapping from every point in the
image to points in the scene. Since it often also represents the topol-
ogy of the projections of scene objects, it generalizes the graph of
visible contours. Winkenbach and Salesin [1996] compute the Pla-

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 5

nar Map of a polyhedral surface approximation. Because they nu-
merically refine the contours, their contours might not match the
edges of the Planar Map. They discretize all points to an image-
space lattice, which may mitigate some of the mismatch. Karsch
and Hart [2011] perform mesh segmentation using a snake evolu-
tion strategy, though using a number of heuristics for snake initial-
ization, evolution, and handling of smooth contours. Both methods
demonstrate good results for static renderings of simple surfaces.
However, the Planar Map computed using any piecewise-constant
contour approximation will result in many small tiny regions in the
vicinity of the contour. These regions can be pruned by heuristics,
but these heuristics will be problematic on more complex surfaces
that exhibit many small, nearby contours.

3. OVERVIEW

Given a smooth surface S viewed from a camera position c, our
goal is to render the contours of the surface in a manner that is
both topologically and geometrically accurate. Our approach is to
generate a new mesh M by tessellating S , such that the contour
generators of M are topologically equivalent to those of S . The
mesh contour can then be rendered precisely. For example, given
the smooth surface in Figure 7(a), we generate the mesh in Figure
7(e), with the contours in Figure 7(f). A new mesh is computed for
each camera view.

Topological equivalence is a global property, which makes it dif-
ficult to enforce directly. The core of our approach is Contour-
Consistency, a way to assess topological correctness based on lo-
cal correspondences (Section 4). Contour Consistency requires that
every triangle orientation (front- or back-facing) match the orienta-
tion of the corresponding region of the smooth surface. This corre-
spondence can only be exactly defined up to the triangle sampling
resolution, which, we show, causes the omission only of tiny con-
tour loops.

Obtaining a consistent mesh M is not trivial. For example, we
show that one can sample a surface to arbitrarily-fine resolution
and still have inconsistency (Section 5). Based on this analysis, we
define a Radial Triangle, a type of triangle at the contour that is
guaranteed to be consistent. We find that consistency is most diffi-
cult to attain near the contour, and thus we focus most of our effort
in this region.

Given a smooth surface S , we describe an algorithm that at-
tempts to compute a Contour-Consistent mesh M (Section 6). The
method begins with a triangle mesh that approximates the smooth
surface. Mesh edges are introduced that approximate the contour of
the smooth surface. Radial triangles are then introduced along the
contour, and heuristics are used to remove any remaining incon-
sistency. Each of these steps is implemented by incremental, local
operators that are much simpler to implement and understand than
global remeshing procedures. The resulting mesh does not always
achieve perfect consistency, but the inconsistent regions are very
small, and tagged as such.

Given the mesh M, the visible contours are then computed (Sec-
tion 8), and we describe modifications to existing methods in order
to handle intersections between surfaces, and numerical errors that
can arise in contour visibility. We find that undesirable tiny loops
and junctions often occur in the true contours, and describe topo-
logical simplification operators for the contour (Section 9). Results
of our method are described in Section 10. The main steps of the
process are illustrated in Figure 7.

Input surface representations. In this paper, we apply our ap-
proach to smooth surfaces. We use Catmull-Clark subdivision sur-

Fig. 8. Surface intersection curves (green) are common in 3D anima-

tion. This character’s earmuff passes through his head; the earmuff inter-

sects the strap; the arms intersect the hoodie; the skates intersect the feet;

the lips intersect each other (Figure 1). Correctly handling surface inter-

sections is crucial for accurate rendering of production geometry. Red ©

Disney/Pixar

faces [1978] as our smooth surface representation, but the approach
is applicable to any piecewise-smooth surface.

We assume that the input smooth surfaces are oriented so that
back-faces are never visible from the given viewpoint, a property
that is typically true of 3D models used in animated film produc-
tion. For example, closed surfaces satisfy this condition. Most sur-
faces we use are not closed, and the camera is never positioned to
see the gaps. We also assume that all inputs are in general position.
(If necessary, tiny random perturbations can be used to put any sur-
face into general position, though this was not done for any of the
models in this paper.)

The smooth surfaces we handle are typical of high-quality
smooth geometry used in animated film production. These surfaces
often exhibit significant 3D intersections between different parts of
the surface. We find that surface intersections are common in pro-
duction models. Unless special care is taken, they occur just about
any time that one object is attached to another. For example, Figure
8 shows some of the intersections that occur in a professionally-
modeled character: the earmuff intersects the hood and the strap.
In many cases, these curves must be connected to visible contours,
e.g., for this model, the visible outline of the earmuff consists of
both contour and surface intersection curves. Additionally, objects
often intersect each other simply as a by-product of animation, e.g.,
the arm intersects the hood in this example. Consequently, handling
surface intersections is crucial to the goal of handling production
animation.

4. A THEORY OF CONTOUR CONSISTENCY

This section describes the theoretical core of our approach: a way to
assess topological correctness of the orientation of a mesh M that
is in correspondence with an input surface S . This section does not
consider geometric accuracy (i.e., that the position of the computed
contour should be close to the true contour), which is evaluated
separately from topology, as described in Section 6.

Let S be a surface viewed with camera center c. Let p be a sur-
face point with normal n, and view vector v = c − p. A point is
front-facing if n · v > 0, and back-facing if n · v < 0. We assume
that the surface S has outward-facing normals, so that back-facing
points are never visible (Figure 3).

Our goal is to accurately compute the contour of the surface: the
set of curves that separate visible regions on the surface from invis-
ible regions. More precisely, the contour generator is the set of 3D
points that separates front-facing regions from back-facing regions,

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

6 • P. Bénard, A. Hertzmann and M. Kass

(a) Input smooth surface with control mesh,

viewed from input camera position

(b) Initial tessellation (seen from below) (c) Contour insertion

(d) Radialization (e) Optimization (f) Output curves

Fig. 7. Steps of our algorithm, for a subdivision surface. Top: An initial tessellation is created. All faces that cross the contour are inconsistent. Edges

are inserted along the contour. Some of the resulting faces are inconsistent (outlined in magenta). Bottom: Strips of radial triangles (yellow/dark blue) are

created on each side of the contour. Finally, optimization is applied to eliminate inconsistency, and the contour can then be directly rendered. We also apply

topological simplification to the contour, but it is not needed in this case.

and the contour is the visible subset of the contour generator. For
a smooth surface, the contour generator comprises the points with
n ·v = 0, and, for a triangle mesh, the contour generator comprises
the edges separating back-faces from front-faces.

We use the labels F, B, and C to denote points that are front-
facing, back-facing, or contour, respectively. A triangle may be F or
B. (Because we have assumed general position, there are no faces
parallel to their view direction.)

Let P be the base mesh of the surface. The base mesh provides
a piecewise-parameterization of the smooth surface: for any given
base mesh point u ∈ P , there is a corresponding point f(u) on
the smooth (limit) surface, and a corresponding limit normal n(u)
(Figure 9). The point u is called the preimage of f(u). We define
the orientation function as

g(u) = (c− f(u)) · n(u) (1)

The zero set of g(u) is the preimage of the contour generator of
S . (Due to limitations of our Catmull-Clark library, computation
of the orientation function in the neighbourhood of extraordinary
vertices required special treatment, as detailed in Appendix A.)

We define the orientation RS(u) of a point u as F, B, or C de-
pending on whether g(u) > 0, g(u) < 0, or g(u) = 0, respec-
tively. Hence, the contour generator may also be written as the set
{f(u) : RS(u) = C}.

When generating a new mesh M, each new vertex i will be as-
signed to some point ui on the base mesh. Linear interpolation of
these assignments defines a mapping from M to P , and we require
that the mapping be continuous and bijective.

Hence, every point on the output triangle mesh has a preimage
u, and thus corresponds to a point f(u) of the smooth surface, with
orientation RS(u) ∈ {F,B,C}. Likewise, we can compute the ori-
entation RM(u) of the point on the triangle mesh: {F,B} for points

inside or adjacent to front- or back-facing triangles, respectively,
and C for points on contour edges.

The idea of our approach is to ensure that these two orientations
“agree” as much as possible: that is, we would like to choose the
mesh M so that the orientations match (RM(u) = RS(u)) every-
where. For general smooth surfaces, the contour generator is not
piecewise-linear, and so we measure this equivalence only to tri-
angle sampling resolution. We decompose the analysis to consider
individual triangles. Each triangle on M corresponds to a patch
on S . For example, if all three vertices correspond to front-facing
points on the smooth surface, then we would want the triangle to
be front-facing as well. As a short-hand, the triangle orientations
are written as FFF in this case. Conversely, a triangle edge where
both vertices correspond to contour points (CC) should be adjacent
to one front-face and one back-face.

These ideas are formalized as follows. We first define the Vertex-
Based Orientation of a triangle in M, which indicates the orienta-
tion of the corresponding patch of the surface S , up to sampling
resolution.

DEFINITION 1. The Vertex-Based Orientation (VBO) of a tri-
angle is:

— F if the face’s vertices correspond to points on the smooth sur-
face oriented as FFF, CFF, CCF, or a permutation of one of these
(e.g., CFC);

— B if the face’s vertices are BBB, CBB, CCB, or a permutation
of one of these, and

— undefined if the face’s vertices are CCC, CFB, FBB, FFB, or a
permutation of one of these.

Then, we can evaluate whether the orientation of the face matches
the corresponding patch on the smooth surface.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 7

(a)

Base Mesh

Smooth Surface Triangle Mesh (b)
Smooth Surface Triangle Mesh

Fig. 9. Surface parameterization, for a subdivision surface. (a) Each preimage point u on the base mesh P maps to a point f(u) on the smooth surface S ,

with normal n(u). Each vertex on our output triangle mesh M also corresponds to a point on the base mesh. (b) Each point on the smooth surface is labeled

according to facing direction: front-facing (F), back-facing (B), or contour (C). Each vertex on the triangle mesh inherits its label from the corresponding

smooth surface point. The triangle shown here cannot be consistent, because its edges cross the smooth contours. Hence, its VBO is undefined.

Base Mesh (P) Triangle Mesh (M)

Fig. 10. Consistent Tessellation. Left: Base Mesh, with colors indicating

the orientation function RS(u) of the smooth surface. Right: A Triangle

Mesh tessellation of this surface, in which all triangles are consistent. Col-

ors indicate per-face orientations (RM(u)).

DEFINITION 2. A face j in M is Contour-Consistent if and
only if its VBO is defined, and equal to the face’s orientation.

That is, a face is consistent if the face is front-facing and the VBO
is F, or the face is back-facing and the VBO is B.

The idea is illustrated in Figure 10: front-facing regions in the
input surface correspond to front-facing triangles, and the C points
lie on the contours of both the input surface and the triangle mesh.
Moreover, no spurious contours can occur on the mesh. We call a
triangle inconsistent if is not contour-consistent.

Contour-Consistency does not ensure topological correctness,
because there may be zero-crossings on the surface that are missing
from the mesh. We address this by adding stronger constraints. We
first introduce the notion of degeneracy for mesh edges:

DEFINITION 3. An edge in M is degenerate if and only if it has
two contour vertices (CC), and the edge is shared by two triangles
with the same VBO.

In other words, a CC edge is degenerate if it is shared by two
CCF triangles or two CCB triangles (Figure 11). It is not possible
for a mesh to be both consistent and to exhibit a mesh contour at a
degenerate edge. (In particular, for a degenerate edge, the two trian-
gles adjacent to the edge have the same VBO, and, thus, by consis-
tency, they must have the same orientation, either both front-facing
or both back-facing. Hence, the edge cannot be a mesh contour.)

DEFINITION 4. A face in M is Strongly Contour-Consistent
if (a) it is contour-consistent, and (b) within every edge that is inci-
dent on an F or B vertex, there are no zero-crossings of g.

(a) (b) (c)

Fig. 11. Degenerate edges. Three examples of degenerate edges: each

edge has two contour vertices CC, but the opposite vertices of the two adja-

cent triangles have the same orientation (in this case, B).

(a) (b)

Fig. 12. Strong Consistency. (a) Simplification removes regions that do

not intersect mesh edges. (b) For Strong Consistency, the true contour does

not necessarily coincide with the CC edge, but cannot intersect the FC or

BC edges. Figure 19 shows a case where it does.

In order to establish the significance of Strong Contour-
Consistency, we first define the Simplified Orientation R′

S(u). The
Simplified Orientation removes all contour regions that do not in-
tersect some mesh edge, as illustrated in Figure 12(a). The contour
set R′

S(u) = C (Simplified Contour) is a subset of the original
contour set R(u) = C, with tiny loops eliminated.

Then, we can show that Strong Contour Consistency ensures
topological equivalence (ambient isotopy) between the contours of
M and those of the Simplified Orientations of the original surface:

THEOREM 1. Let S be a smooth surface, viewed from view-
point c, and let M be a mesh in which every triangle is Strongly
Contour-Consistent with respect to S , and no edges are degenerate.
The orientations of the mesh faces form a partition of the surface
into front-facing and back-facing regions that is ambient isotopic
to the Simplified Orientation R′

S(u) of S .

PROOF. To prove topological equivalence, it is sufficient to
show that we can smoothly deform the orientations of M to those
of S , specifically, using a smooth bijection u′ = µ(u), so that

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

8 • P. Bénard, A. Hertzmann and M. Kass

R′
S(µ(u)) = RM(u). First, we fix the map to be the identity

(u = µ(u)) at all mesh vertices and over all triangles that are not
adjacent to mesh contours (FFF,FFC,BBB,BBC). Strong Consis-
tency implies that R′

S(µ(u)) = RM(u), because the orientations
must match at the vertices, and zero-crossings cannot occur within
the edges; zero-crossings cannot occur within these triangles in the
Simplified Orientations.

Finally, consider a pair of triangles sharing a CC edge, illustrated
in Figure 12(b). The smooth contour R′

S(u) = C must pass through
the two C vertices, and cannot exit the triangle through any other
edges. Non-degeneracy implies that one of the faces is front-facing,
and the other is back-facing, and consistency implies that these ori-
entations match those of the smooth surface. Under the generic
position assumption, the smooth contour must be a simple curve.
Hence, the topology of the front/back regions of the two surfaces
are equivalent, and one can define µ in these faces as an arbitrary
smooth mapping that maps from contour to contour, and reduces
to the identity at the non-contour edges. Hence, we have defined µ
over the entire surface to satisfy R′

S(µ(u)) = RM(u).

The power of contour-consistency is that it takes a global, topo-
logical goal and converts it to a local, per-triangle property. Fur-
thermore, while the algorithms we describe later in the paper do
not ensure consistency everywhere, consistency tells us which tri-
angles are reliable, and so we can normally achieve topologically-
correct results even when the mesh approximation is not perfectly
consistent.

5. RADIAL TRIANGLES

So far, we have described conditions for consistency, but not how to
obtain a consistent surface. It might seem that sampling a smooth
surface densely and then inserting contour edges should ensure
consistent triangles. Unfortunately, this is not the case.

To understand how triangles can become inconsistent for smooth
surfaces, consider the contour of an elliptical surface region. We
place two mesh vertices p and q on the contour, and a third, r, on
the front-facing part of the surface. Figure 13 shows two possible
placements for r, one of which is consistent, and one is not. In
this example, if r is placed anywhere on the left-hand side of the
line pq in image-space, the face is inconsistent. Naively refining
the surface to a finer scale does not fix this problem: for a triangle
where p and q are closer together (while still on the contour), r
may still be to the left of these points. Subdivision could refine
for arbitrarily-many steps without resolving the inconsistency. One
can also attempt a range of heuristics for improving consistency at
the contour, but we were unable to find a robust set of heuristics,
particularly near cusps and other regions of low radial curvature.

On the other hand, triangles far from the contour are unlikely to
be inconsistent, as the surface becomes more fronto-parallel. This
intuition is borne out by our experiments. Hence, we rely more on
simple search procedures for these cases.

Based on this observation, we propose a strategy for ensuring
consistent triangles along the contour. Intuitively, if we can place r
along an image-space ray that is perpendicular to the image-space
tangent to the contour at p, then it is very unlikely that r will project
between the smooth contour and the line pq. We can identify this
point in 3D as follows (Figure 14). Let the view vector at p be
v = (c− p), and let np be the surface normal at p. Let the radial
plane [DeCarlo et al. 2003] at p be the plane through p with normal
np×v. Then, we want r to lie on the radial plane. Equivalently, we
want to place r on the radial curve, which is the intersection of the
radial plane with the surface. The third vertex q can be anywhere
nearby, except on the radial plane of p.

Camera View Side View

Camera View Side View

Fig. 13. Understanding how faces become inconsistent. Consider a

small portion of the contour (red) at an elliptical region, viewed from a

camera position c. Here, only a visible portion of the surface is shown. A

triangle pqr is placed so that p and q lie on the contour. The triangle must

be front-facing in order to be consistent. For a given p and q, the placement

of r determines whether the face is front-facing or back-facing: specifically,

which side of the line pq the point r projects to in image space.

DEFINITION 5. A Radial Triangle is a triangle with one vertex
p on the contour, and another vertex r on the radial plane of p.
The edge pr is called a Radial Edge.

The key observation is that, as long as a radial triangle does not
cross contours or folds in the surface, it is guaranteed to be consis-
tent.

THEOREM 2. Let p,q, r be distinct points on an orientable
smooth surface, viewed from a camera position c, such that p is
on the contour, and r is on the radial plane of p (Figure 14). As-
sume the following.

—The triangle has a well-defined Vertex-Based Orientation (VBO).

—The triangle vertices are enumerated clockwise in the base do-
main (e.g., base mesh).

—There is no contour on the radial curve between p and r.

—The surface can be represented as a graph (Monge patch) around
the radial curve, and on some curve from p to q.

—The points r and p are on the same side of the camera center,
when projected onto the tangent plane at p.

—The three points are all on the same side of the image plane.

Then, the triangle pqr is consistent with respect to the smooth sur-
face.

PROOF. There are multiple cases to consider. For clarity, we will
prove the theorem for the following case first: r is front-facing, r is
nearer to the camera than p, and the triangle pqr is clockwise in
the domain. The other cases will be handled afterward.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 9

(a) Camera View (b) Monge patch in side view

(c) Radial curve

Fig. 14. Radial Triangles. (a) In image space, the radial direction is per-

pendicular to the contour. Placing the point r in the radial direction from p

makes consistency very likely. (b) Visualization of a radial triangle on the

Monge patch (see text for details). (c) Radial curve for proof by contradic-

tion that rw < 0 in Theorem 2.

Given the clockwise orientation, the face normal is nF = (r −
p)× (q− p). Since we assume the orientation of r is front-facing
(F), the triangle must be front-facing to be consistent.

We describe the surface S locally in a (u, v,w) coordinate sys-
tem. The origin of the coordinate system is at p, the u-axis is
aligned to the view direction, and the w-axis is aligned to the sur-
face normal. In these coordinates, we have p = (0, 0, 0), c =
(cu, 0, 0), with cu > 0. The radial plane is given by v = 0, and
so r = (ru, 0, rw), with ru > 0. The triangle orientation and
the Monge patch assumptions imply that q = (qu, qv, qw) with
qv > 0.

We can then write the orientation of pqr as:

nF · (c− p) = det(r− p, q− p, c− p)

= −rwqvcu (2)

Since qv, cu > 0, it remains to determine the sign of rw, which
corresponds to whether r is above or below the tangent plane at
p. We will use proof by contradiction to show that rw < 0: if
r is above the tangent plane, then there must be a contour point
on the radial curve segment between p and r, which violates the
assumptions.

Consider the radial curve, as illustrated in Figure 14(c). We will
first relate the tangent of the radial curve to surface orientation.
Since the surface is locally a graph about the radial plane (v = 0),
a surface point can be written x(u, v) = (u, v,w(u, v)). We first
show that, for any point s on the ray w = 0, v = 0, the ori-
entation of the point is given by dw

du

∣

∣

s
, independent of the other

tangent direction. The surface normal is given by dx

du
× dx

dv

∣

∣

s
=

(1, 0, dw

du

∣

∣

s
)× (0, 1, dw

dv

∣

∣

s
) = (− dw

du

∣

∣

s
, − dw

dv

∣

∣

s
, 1), and the view

vector is v = (cu − su, 0, 0). Hence, the surface orientation at s is
n · v = −(cu − su)

dw

du
. Since the points are on the same side of

the camera, cu > su. Hence, s is back-facing iff dw

du

∣

∣

s
> 0, front-

facing iff dw

du

∣

∣

s
< 0, and contour otherwise. (Effectively, the graph

assumption makes dw

dv

∣

∣

s
redundant for determining the orientation,

given the derivative along the ray direction.)
Since we have assumed that r is front-facing, and there is no

contour between p and r, the entire curve segment is front-facing.
Since r is nearer to the camera than p, the surface must bend to
face the camera at p; at a non-cusp, this corresponds to the fact that
radial curvature is negative [Koenderink 1984]. Hence, w(u, 0) <
0 infinitesimally close to p in the view direction.

Finally, we show that rw < 0, using proof by contradiction. Sup-
pose it were the case that rw ≥ 0. Continuity of the surface implies
that there must be a point s on the radial curve segment such that
sw = 0 and dw

du

∣

∣

s
> 0, and, thus this point is back-facing. This

contradicts the assumption that there is no contour on the segment.
Hence, rw < 0.

Hence, by Equation 2, the triangle is front-facing, and thus con-
sistent.

We can now consider the other cases: r might be a front- or back-
facing point (g(r) > 0 or g(r) < 0), and it might be in front of or
behind p (ru > 0 or ru < 0). The triangle might be clockwise
as pqr or as prq, and we define a = 1 for the former case and
a = −1 for the latter. The normal of the triangle is then nF =
a(r−p)×(q−p). If we have ru < 0 and the triangle is pqr, then
qv < 0. More generally, we can write: sgn(qv) = sgn(aru). The
value of rw is also affected by these cases. By applying the same
radial curve reasoning for rw as above, we find that r is above the
tangent plane when ru > 0 and g(r) < 0 or ru < 0 and g(r) > 0.
This can be written more concisely as: sgn(rw) = − sgn(rug(r)).
Then, using Equation 2:

sgn(nF · v) = − sgn(arwqv) = sgn(a2r2
u
g(r)) = sgn(g(r))

(3)
Thus, the triangle is front-facing iff the point r is front-facing, and
thus the triangle is consistent.

The assumption that the faces are clockwise in the base domain
arises from the assumption that the surface is orientable, and all
triangles should have an orientation consistent with the surface. The
same proof steps could also be applied for a surface oriented with
all triangles counter-clockwise.

It should be possible to generalize the proof to the case where p
is not a contour point, by aligning the u-axis to the view direction,
and keeping the w-axis within the radial plane but normal to the
view vector. However, the more fronto-parallel the surface is, the
less likely the graph assumption is to hold in this new coordinate
system, for any real sampling of points.

There are other assumptions one can make to achieve consis-
tency. The most basic requirements are that r lies on the correct
side of p’s tangent plane, and q lies on the correct side of the radial
plane. These two conditions could also be checked in implementa-
tion to determine which edge to subdivide in an inconsistent radial
triangle. (We do not use this in our algorithm, since we have never
observed it to produce inconsistent radial triangles.)

It is straightforward to see that some consistent radial triangle
may always be constructed around any contour point p, provided
that one chooses r and q close enough to p. For example, given
a candidate triangle at p that violates the assumptions, one could
move r toward p on the surface until it lies on the correct side of
the tangent plane, and then move q toward p until it lies on the
correct side of the radial plane while also staying on the correctly-
oriented region of the surface. More formally, one can show that,
for a given point p, there exists a finite distance d such that moving
q and r to within this distance guarantees that the triangle is radial.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

10 • P. Bénard, A. Hertzmann and M. Kass

6. MESH GENERATION ALGORITHM

We now describe an algorithm that takes a smooth surface S
and a viewpoint c, and generates a triangle mesh M tessellation
of the surface. This tessellation includes edges corresponding to
the smooth contour, and radial triangles adjacent to these con-
tour edges. The algorithm is designed to produce Strongly-Contour
Consistent meshes almost everywhere. We found it not necessary
to strictly enforce it, and we discuss these decisions further in Sec-
tion 7.

The algorithm operates in sequence of processing phases, illus-
trated in Figures 7 and 15:

(1) Initialization: An initial triangle mesh is created, in corre-
spondence with the smooth surface.

(2) Contour Insertion: Contour edges and cusp vertices are in-
serted into the mesh. After this phase, all triangles have well-
defined VBOs, and each cusp lies on a vertex with a particular
topology (described below).

(3) Radialization: The triangles along the contour are converted
into radial triangles.

(4) Optimization: Additional perturbations are applied to the
mesh to improve consistency.

Each of these steps is implemented as sequences of subphases,
each of which iterates over the mesh, applying local transforma-
tions to a few triangles at a time, such as Edge Splits (inserting a
vertex into a mesh edge), and Vertex Shifts (adjusting the preimage
coordinates u of a vertex, along with its 3D position).

We initially devised this algorithm as global remeshing algo-
rithm that traced a new grid with two edges aligned to the radial
direction at each vertex. However, this strategy led to an explosion
of devilish special cases that were very difficult to reason about or
to implement. In contrast, the strategy we present here decomposes
the problem into much more manageable subproblems.

6.1 Initialization

The mesh M is initialized by once subdividing the base mesh of the
Catmull-Clark surface, in order to eliminate non-quad faces, split-
ting all quads into triangles (Figure 15(b)), and moving all vertices
to their limit positions. Each vertex i of the mesh M has a corre-
sponding preimage ui. (Initially, all preimages are vertices of the
base mesh P .) Consequently, each vertex may be labeled as either
F or B, depending on whether the corresponding smooth surface
point is front- or back-facing. The 3D location of each mesh ver-
tex i is the limit position f(ui), this is true as well for new vertices
created by subsequent steps. Catmull-Clark limit positions and nor-
mals are computed by Halstead et al.’s method [1993].

Next, the algorithm searches the mesh for FF and BB edges with
sign-crossings of n · v. In particular, RS(u) is sampled densely
along each edge; we use 10 sample points per edge. (Recall that the
correspondence between surfaces is defined by linear interpolation:
the preimages along a mesh edge with vertex preimages u0 and u1

are given by u01 = (1− t)u0+ tu1, according to the interpolation
procedure in Appendix B.) If RS(u01) ever differs from the values
at the two endpoints, the edge is split into two FB edges by inserting
a new vertex at its limit position f(u01) (Figure 15(c) and 16(a)).

6.2 Contour Insertion

The Contour Insertion phase inserts contour (C) vertices in all FB
edges. Following this step, all triangles have defined VBOs, and
the CC edges form a piecewise-linear approximation to the smooth
surface contour.

This phase also ensures that each contour cusp has a correspond-
ing C vertex with valence 4, in the configuration shown in Figure
18(d). This post-condition is a necessary precondition for the fol-
lowing radialization stages, so that radialization produces cusps in
the configuration of Figure 18(e). Directly inserting cusp vertices
before other contour insertion steps would lead ultimately to the
configuration in Figure 18(f), which would be very difficult to fix
in a general way.

Cusp detection (Figure 15(d)). The algorithm first detects cusps
on the smooth surface’s contour. When a cusp is detected, a mesh
edge will be split or shifted, so that the cusp’s preimage ucusp lies
exactly on a mesh edge. However, the cusp vertex is not inserted
yet (Figure 18(b)).

The algorithm checks each mesh triangle for cusps by a bisec-
tion search, as follows. A cusp occurs at any point ucusp for which
g(u) = 0 and κ(u) = 0, where κ(u) is the radial curvature at a
point (Figure 18(a)). The values of g and κ are evaluated at each
mesh vertex. If both functions exhibit sign changes, then the trian-
gle is bisected along the edge that is longest in parameter space. The
procedure then recurses into the two new triangles. When the recur-
sion detects a very small triangle (area below a threshold, 10−20 in
our implementation in quad-precision) that exhibits sign crossings
in both functions, the centroid ucusp of that triangle is returned as
a cusp preimage location. (Note that the above bisections do not
modify the actual mesh; they are only for searching).

Next, the mesh is modified so that each cusp lies on an FB edge.
The face containing the cusp must have exactly one FF or BB edge.
This edge is normally split by a vertex insertion, such that the new
edge contains the cusp (Figure 16(b)). It is straightforward to deter-
mine this split by a line intersection in parameter space. However,
if the cusp lies very close to a triangle edge, the insertion would
create a triangle with bad aspect ratio. In this case, we can shift one
of the triangle vertices so that the mesh lies on the edge. There are
a number of additional conditions on when vertices can be shifted,
discussed in Appendix C. If the vertex is not shiftable, the original
split is used.

Contour Insertion (Figures 15(e-f)). This step inserts contour
vertices into the mesh, so that each face has a well-defined VBO.
For each zero-crossing edge (FB) in the mesh, the contour point C
is identified by finding the point location uroot that solves g(u) = 0
along the edge. The root is found by bisection search between the
endpoints and inserted as a vertex with position f(uroot) into the
mesh, splitting the two adjacent faces (Figure 16(c)). The inserted
vertex is tagged as C. This process repeats until there are no zero-
crossing edges remaining. Edges containing cusps are saved for
last, in order to ensure that they will have valence four (Figures
18(c-d)).

In some cases, the root may be very close to one of the vertices
of the edge. In these cases, instead of inserting a new vertex, the
existing vertex position is shifted to the contour, i.e., its source u,
position, and normal are set to those of the contour point, and the
orientation tagged as C, provided it is shiftable (Appendix C).

6.3 Radialization

Some inconsistent triangles usually remain after contour edge in-
sertion (Figure 7(c)). The next step is to convert the triangles along
the contour into radial triangles (Section 5), in order to ensure that
the region near the contour is consistent.

Radial Edge Insertion (Figure 15(g)). The algorithm first inserts
radial edges into the mesh. The algorithm iterates over each face,

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 11

(a) Base mesh S (b) Initial triangle mesh M (c) Splitting FF and BB edges with

sign-crossings

(1) Initialization (§6.1)

(2) Contour Insertion (§6.2)

(d) Cusp detection (e) Contour insertion (f) Cusp insertion

(j) Other local optimizations(i) Radial edge extension

(4) Optimization (§6.4)

(g) Radial edge insertion (h) Edge flipping

(3) Radialization (§6.3)

Fig. 15. Overview of the mesh generation algorithm. (a) Starting from the base mesh of S , (b) the mesh M is initialized by splitting all quads into triangles

and (c) every FF and BB edges with sign-crossings. Contours are then inserted in the mesh by 3 subphases: (d) cusps detection, (e) contour edges insertion

and (f) cusp insertion. The radialization step first (g) inserts radial edges in the mesh, before (h) flipping edges to convert every face touching the contour into

a radial triangle. Consistency of the mesh is finally improved by (i) extending radial edges and (j) local perturbations.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

12 • P. Bénard, A. Hertzmann and M. Kass

(a) Splitting FF and BB edges with sign-crossings (b) Cusp detection

(c) Contour insertion (d) Radial edge insertion

(e) Radial edge flipping (f) Radial edge extension

Fig. 16. Mesh generation algorithm. The algorithm is decomposed into a set of local transformations (Edge Split, Vertex Shift, Insert and Delete) applied

on a few triangles at a time. They are combined into six operations designed to produce Strongly-Contour Consistent meshes. (See text for details.)

and checks if the face has exactly one contour (C) vertex p0 such
that the radial plane from that vertex intersects the surface through
the opposite edge of the face. If so, a new vertex is inserted at a
point on the radial curve near the centroid of the face; the new ver-
tex splits the face into three (Figure 16(d), left).

In more detail: the radial plane at p is defined as hp(q) =
(np×(c−p))·(q−p) = 0, where np is the limit normal at p. The
opposite edge is parameterized as u12(t) = (1−t)u1+tu2, where
u1 and u2 are the preimages of the two opposite vertices. The radial
plane intersects the opposite edge surface if sgn(hp(f(u1))) 6=
sgn(hp(f(u2))). To determine an insertion point, we select the
midpoints ua and ub along the triangle edges incident on p, and
perform root-finding of hp(f(uab(t))) on the curve between them.

In the case where there are two contour vertices p1 and p2, such
that both have radial planes in the face, and there exists a surface
point in the face that intersects both radial planes, then a new vertex
is inserted at this point (Figure 16(d), right). As with cusp detection,
this point is found by bisection search to find a point u in the trian-
gle that is simultaneously a zero of hp2

(f(u)) and hp1
(f(u)). In

all other cases (e.g., the intersection point does not exist), the radial
edges of the two C vertices are inserted in turn using the one-vertex
technique described above.

In either case, splitting the face can create a fold in the mesh,
producing an inconsistent triangle which is difficult to fix later. A
potential fold is detected by projecting the new insertion point to
the plane of the original face (Figure 17); a fold occurs when the
projection lies outside the face. When possible, the fold is elimi-
nated by flipping the adjacent edge of the folding triangle. If the
flip is not possible (e.g., the face is opposite a surface boundary),
then the radial edge insertion is skipped.

Figure 18 shows how cusps are treated by this process, and how
radial triangles are ensured on the “outside” of a cusp, i.e., the por-

Fig. 17. Prevention of folds. Because vertices are inserted at their limit

positions, inserting a vertex (gray) can create a fold in the surface. A fold

occurs when the projection of the new vertex to the plane of the original

triangle lies outside the face. Folds are fixed by flipping an edge of the

adjacent face (in pink).

tion of the surface where two radial edges emerge from the cusp
(in the Figure, the front-facing region). We do not attempt to cre-
ate radial triangles in the “inside” region, as it is more difficult to
create radial triangles in a way that always works for these regions.
In general, because these inside regions are much closer to being
fronto-parallel, triangles in these inside regions are usually consis-
tent, or easy to make consistent with heuristics, and so radialization
is not necessary.

Edge Flipping (Figure 15(h)). Following the previous phase, ev-
ery contour vertex has two radial edges. Every triangle with a con-
tour vertex (C) and a radial edge is already a radial triangle. How-
ever, there are still non-radial triangles that touch the contour, and
the goal of the Edge Flipping step is to convert these to radial trian-
gles. For this step, we define a Standard Radial Triangle as one that
either includes a contour (CC) edge, or else includes a second ver-
tex on another radial edge. All Radial Triangles touching non-cusp
contours will be Standard Radial Triangles. The algorithm iterates
over all non-radial edges incident on contour vertices, i.e., all non-
radial FC and BC edges. For each edge, the algorithm tests the ef-

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 13

(a) Smooth cusp (b) Cusp detection

(c) Contour insertion (d) Cusp insertion

(e) Radial edges insertion (f) Cusp inserted first

Fig. 18. Cusp lifetime. (a) Cusps occurs at the intersection of the two

functions g(u) = 0 and κ(u) = 0. (b) The detected cusp is not inserted

immediately because it can lead to undesirable radial triangles configura-

tions such as (f). Instead, a mesh edge is split (or shift) so that the pre-image

of the cusp lies on this edge. (c) Contours are then inserted by splitting FB

edges, but the previously created cusp edge is ignored. (d) The cusp is in-

serted last, ensuring valence 4 at this vertex. (e) The radial triangles pro-

duced at the radial edges insertion step are surrounding the cusp. (f) If we

were to insert the cusp vertices before contour insertion, then this difficult

configuration would arise. Here, there are non-radial triangles touching the

cusp vertex, and no simple way to fix the neighborhood that will work in

general.

fect of flipping the edge (Figure 16(e), left). If the flip increases the
number of Standard Radial Triangles, without introducing folds,
the flip is applied to the mesh. The iteration repeats until no more
flips can be performed.

Flipping an edge can sometimes produce a fold. In such a case,
the algorithm tries to flip all the edges incident on p until the vertex
can be deleted from the mesh and the two adjacent faces merged
(Figure 16(e), right). More specifically, the algorithm considers in
order every face in the triangle fan delimited by the edges pq and
pr, with q and r the radial edge extremities adjacent to p. For each
face, the edge incident on p is flipped as long as it does not produce
folds. If it would, the algorithm starts iterating for the other side of
the fan. Once p is only connected to q, r and the contour, this vertex
is deleted creating the edge qr and a Standard Radial Triangle.

6.4 Optimization

Following the above steps, the triangles along the contour will gen-
erally be consistent. Triangles away from the contour will occa-
sionally be inconsistent, but they are usually isolated, and amenable
to improvement through local perturbations. Each of the following
phases iterates over the entire mesh in turn, making local improve-
ments to the mesh.

Radial Edge Extension (Figure 15(i)). Most triangles touching
the contour (i.e., with one or two C vertices) are now radial and,
consequently, Contour-Consistent. Yet, some faces directly beyond
the radial triangles are inconsistent, in the configuration illustrated
in Figure 16(f). During this step, these radial edges are extended
by shifting their non-contour endpoint and flipping their opposite
edge.

The algorithm iterates over every radial edge pq whose non-
contour endpoint q touches an inconsistent face. It tests whether the
radial plane hp of the endpoint p intersects the surface through the
opposite edge of the inconsistent face. If so, it samples the inconsis-
tent triangle and its opposite adjacent face to find the shifted loca-
tion that maximizes the number of consistent faces while avoiding
folds. The process is repeated as long as the number of inconsistent
triangles decreases.

Edge Flipping. The algorithm tests whether flipping any of the
three edges of inconsistent faces would improve consistency. It se-
lects (if any) the flip that both produces the best improvement and
creates triangles with the best aspect ratio (using the shape quality
metric of Bank and Smith [1997]). Flips that would generate tiny
triangles or folds are discarded.

Vertex Wiggling in Parameter Space. The algorithm iterates over
the vertices of inconsistant triangles. Each face in the vertex one-
ring is regularly sampled at 100 locations in parameter space. The
vertex is shifted to the new position that minimizes the number of
inconsistencies and maximizes the minimum aspect ratio of the tri-
angles in the one-ring. Folds are avoided following the previously-
described approach. The process repeats iterating over all vertices
until no further improvements can be made.

Edge Splitting. Wiggling large triangles cannot always resolve
inconsistencies. Splitting them can give the wiggling step more op-
portunities to find consistent positions. Edges of inconsistent trian-
gles are sampled at 10 locations and the best one (using previous
criteria) is selected.

Vertex Wiggling in the Normal Direction. During this final step,
mesh vertices are allowed to deviate from the limit surface to im-
prove consistency. For each vertex, the algorithm searches over its
normal line (ℓ(α) = p+αnp) to find the new position pi that min-
imizes the number of inconsistent faces adjacent to the triangle. In
particular, the algorithm samples 100 offsets α around the point,
with maximum displacement equal to the average distance to the
vertices in the one-ring. If multiple offsets give the same number of
inconsistent triangles, the result is chosen that minimizes |α|.

7. MESH GENERATION ALGORITHM

PROPERTIES

In this section, we discuss the properties that are partially or fully
guaranteed by our method, and what additional steps would be nec-
essary to complete the guarantees. In trying different approaches to
this problem, we found that many heuristics that “ought to work”
failed in difficult special cases. Consequently, our strategy was to

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

14 • P. Bénard, A. Hertzmann and M. Kass

Fig. 19. Missing zero-crossing on a

CB edge. A zero-crossing is missed by

our algorithm; the CBB and CCB trian-

gles are not Strongly Contour-Consistent.

Yet, the mesh coutour (CC edge) is still

topologically equivalent to the smooth

contour segment (dashed curve).

develop a theory and approach that guarantee correct results, but to
only implement enough to achieve good results.

The main goal of the method is topological equivalence to the
true contours (Theorem 1), which requires consistency on all faces,
zero-crossings on non-contour edges, and no degenerate edges.

Contour-Consistency. Because contour vertices are always
inserted in FB edges and all FB edges are split (Section 6.2), the
contour insertion step always creates triangles with valid VBOs
(i.e., not “undefined”). It is straightforward to see that none of the
subsequent steps introduce triangles with undefined VBOs (note
that the shiftability rules in Appendix C explicitly prevent creation
of CCC triangles).

Theorem 2 requires that the surface be C2 along the radial curve.
Catmull-Clark surfaces are guaranteed to be C2 except at extraor-
dinary points. Fortunately, extraordinary points do not pose a prob-
lem. Since the points p, q, and r are all generated by the algorithm,
under the assumption of generic position neither these points nor
any point on the radial curve will coincide with an extraordinary
point. Thus Catmull-Clark surfaces meet the necessary continuity
conditions of the theorem.

Theorem 2 assumes that the surface is locally a graph. In prin-
ciple, our method could produce inconsistent radial triangles by
violating these assumptions, though we do not observe this in prac-
tice. The algorithm could be modified to make this guarantee by
repeatedly subdividing whichever edge exhibits a fold in the tan-
gent plane.

Triangles away from the contour have no consistency guarantees,
but one would expect that they are unlikely to be inconsistent. We
find this empirically to be the case. Since only a small fraction of
triangles effectively affect the final rendering, and most of those are
near the contours, errors due to these inconsistencies are marginal.
It might be possible to generalize our theory to non-contour trian-
gles, which we leave for future work.

Zero-crossings. Strong Contour-Consistency (Definition 4) re-
quires there to be no zero-crossings on non-contour-generator
edges. It is possible for the initial sampling step to miss zero-
crossings. Empirically, we do seem to be finding all zero cross-
ings on the initial FF and BB edges. One could implement interval
analysis [Elber and Cohen 1990; Plantinga and Vegter 2006] to find
all zero crossings, since, with non-normalized n and v, the func-
tion n · v is a piecewise polynomial for subdivision surfaces. This
would give an algorithm theoretically guaranteed to find all con-
tours, although the convergence rate of the interval analysis may or
may not be fast enough to be practical. Additionally, one could add
zero-crossing checks after every modification to an edge.

The method never checks for zero-crossings on CF and CB

edges, though these zero-crossing checks could easily be added.
However, these checks are generally not necessary. A typical case is
illustrated in Figure 19: although a zero-crossing is missed, the con-
tours are still topologically correct. It is possible to devise config-
urations where these missed zero-crossings lead to topologically-
incorrect contours, but these configurations are extremely intricate
and unlikely. (For example, one can devise a configuration in which

Fig. 20. A curtain-fold cusp in the con-

tour. Edge pb is an exterior contour.

Edge pq is an interior contour, indicating

that it is occluded by a nearby face. Vertex

p is thus a curtain-Fold cusp [Markosian

et al. 1997]. (A cusp of the mesh boundary

curve occurs in the same configuration, but

with triangle pqb removed.)

every edge is incident on some C vertex, but the contours are not
topologically correct.) Hypothetically, we might also miss tiny con-
tour loops that run adjacent to the detected contours; such loops are
unlikely to be desired, since they would hew very closely to known
contours.

Non-degeneracy. The algorithm cannot introduce degenerate
edges (Definition 3), since each C vertex is introduced between an
F and a B vertex.

Summary. Our implementation does not guarantee Contour-
Consistency, but achieves it almost everywhere. We do not guar-
antee finding all zero crossings, but empirically we appear to be
finding all zero crossings that are necessary for topological correct-
ness. We guarantee non-degeneracy. Consequently, we normally
have high confidence in the correctness of the extracted contour
generators.

8. VISIBLE CURVE COMPUTATION

Given the computed triangle mesh M, we can then compute
its contour generator and contour using standard methods (e.g.,
[Grabli et al. 2010]). We modify these algorithms in order to be
robust to numerical error and to inconsistent faces, though inconsis-
tent faces are rare. From this point on, the original smooth surface
S is no longer used.

The algorithm first detects all contour, boundary, and surface in-
tersection line segments; other types of curves could easily be han-
dled as well. Each of these curves is represented as a 3D polyline
on the surface. Contour and boundary segments lie on mesh edges,
and Surface Intersections lie in the interiors of faces. Visibility is
computed for individual line segments through a combination of
ray tests and local occlusion tests. A view graph data structure is
constructed that represents the network of curves, and their connec-
tions at cusps and intersections. Since visibility can be unreliable
in local tests, visibility is propagated through this data structure.

The contour generator comprises the edges that connect a trian-
gle with front-facing VBO to a triangle with back-facing VBO. For
consistent triangles, this is just the contour generator of the mesh
M. Surface Intersection edges are detected by computing intersec-
tions between all pairs of triangles, using the method of Guigue and
Devillers [2003], accelerated with a 3D grid data structure.

8.1 Cusps

Cusps are detected in boundary and contour curves. There are two
kinds of cusps: bifurcations and curtain folds2. Bifurcations occur
where three or more contour generator edges meet at a vertex. Note

2The terminology around cusps is inconsistent in the previous literature.

Here we haven chosen the terms we believe are clearest. The term “curtain

fold” is taken from Blinn [1978], and “bifurcation” is our name for case 2

of Definition 3 of Markosian et al. [1997].

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 15

Fig. 21. View graph (visible chains only). Line segments (contour gener-

ators, boundaries and surface intersections) are combined into chains that

terminate at cusp and image-space intersection. This network of chains is

called the view graph. Angela © Chris Landreth

that, unlike generic mesh contours, our mesh contours cannot ex-
hibit bifurcations, because they are topologically-equivalent to the
smooth contours, which cannot have bifurcations in generic posi-
tion. Thus bifurcations need not be handled.

A curtain fold is a cusp in which a single curve becomes locally
self-occluded. In particular, a curtain fold occurs at a mesh vertex
with two outgoing curve edges on the mesh, such that exactly one
of the edges is obscured by a face in the vertex’s one-ring (Fig-
ure 20). For mesh contour vertices, we use a modified version of
Markosian’s [1997] test. Specifically, an exterior contour edge is
defined as one in which the near face has front-facing VBO, and
an interior contour edge has a near face with back-facing VBO.
A cusp then occurs at any vertex that connects an interior edge to
an exterior edge. We detect boundary curtain-fold cusps by a pro-
cedure that tests the image-space overlap of the boundary curve by
any non-adjacent triangle.3

One can interpret this formulation as computing a discrete ana-
logue to the sign of radial curvature [Koenderink 1984]. On the
smooth surface, the sign of κ indicates whether a contour is inte-
rior or exterior, and curtain fold cusps occur at the zero-crossings
(κ = 0).

This procedure can sometimes give spurious cusps or miss cusps
in inconsistent regions. However, it is guaranteed to produce at least
one cusp nearby along the curve, because this procedure detects the
transition from interior to exterior (analogous to a zero-crossing of
κ). Hence, numerical error can shift a cusp slightly along a curve,
but not eliminate it.

3We determine the near face as follows. Let a and b be the vertices of the

edge, let p1 be the third vertex of adjacent face 1, and p2 be the third vertex

of adjacent face 2. Let the unit view vector v be the vector to the camera

center from the edge’s midpoint, normalized. The view vector is projected

to each face and normalized, yielding two in-face vectors w1 and w2. Each

in-face vector is flipped if necessary to point from the midpoint to the face’s

opposite vertex. Face 1 is the near face if w1 · v > w2 · v. However, if

|v · (w1 −w2)| < 1, we consider the test to be unreliable.

(a) Spurious cusps (b) Ambiguity between two junc-

tions

(c) Ambiguity on boundary

Fig. 22. Resolution of visibility ambiguities. Three heursitics are used to

resolved visibility of ambiguous chains. (a) An ambiguous chain connecting

two visible cusps is considered visible. (b) An ambiguous chain connecting

two image-space intersections whose mates are both visible is also visible.

(c) An ambigous boundary chain connected to a visible chain not at an

image-space intersection is marked visible.

8.2 Image-space Intersections

All image-space intersections between pairs of curve segments are
detected using the sweep-line algorithm. However, detecting inter-
sections between curves that intersect on mesh edges is not robust
if done naively, and we separately handle edges that intersect on the
surface. In particular, Surface Intersection curves intersect Contour
edges at their endpoints, thus image-space detection is unreliable
for these cases.

8.3 Chaining and View Graph

Next, visibility is computed on all the line segments. These line
segments can be combined into chains that terminate at cusps, and
image-space intersections. The chains form a view graph [Grabli
et al. 2010], with graph vertices at cusps and image-space intersec-
tions between curves (Figure 21).

8.4 Visibility

After image-space splitting, all line segments and all chains must be
entirely visible or invisible. The algorithm then performs visibility
tests for each line segment in each curve.

Per-Segment Visibility. All Surface Intersection curves that lie
within back-faces are marked invisible. All interior contour edges
(Section 8.1) are also marked invisible (except when adjacent to
cusps, because the near-face test can be unreliable on rare occasions
in these cases).

Then, for each segment on which visibility remains unknown,
a ray test is performed to determine if the segment is occluded by
some other object in the scene. There are several situations in which
ray tests are unreliable: testing segments that lie on or adjacent to an
inconsistent face; testing segments adjacent to a cusp; ray tests that
intersect an inconsistent face. For these cases, the segment visibility
is initially marked as ambiguous.

Chain Visibility. A chain is marked as visible if the majority plus
one of its segments is visible. If the visibility of all its segments is
ambiguous (e.g., because all ray tests were unreliable), the visibility
of the chain is considered ambiguous.

Ambiguity Resolution. The visibility of any remaining ambigu-
ous chains is resolved by propagating visibility between chains. In
particular, any ambiguous chain that directly connects cusps whose

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

16 • P. Bénard, A. Hertzmann and M. Kass

(a) Expected configuration near two isolated cusps

(b) Inconsistent configuration: one

incorrect image-space intersection

(c) Inconsistent configuration: two

incorrect image-space intersections

Fig. 23. Cusps visibility consistency. (a) For an isolated pair of cusps, a

specific configuration is expected. Yet this configuration is highly sensitive

to the precision of the detection of image-space intersections. Two simple

cases (b) and (c) are detected, and chain visibility is modified to match the

expected result.

(a)

(b)

(c) Loop

(d) Overlaps

Fig. 24. Topological simplification. Four cases are considered for simpli-

fication (candidate chain depicted in grey): (a) junction to dead-end connec-

tion; (b) dead-end to dead-end connection; (c) small closed loop; (d) small

overlaping pieces of curve between two junctions.

outgoing chains are both visible is marked visible (Figure 22(a)),
since at least one cusp is spurious (i.e., produced by numerical er-
ror) in this configuration. Any ambiguous chain joining two image-
space intersections whose arc length is below a small threshold and
whose mates (where two chains that connect at an image-space in-
tersection are “mates” if they are both the near chains or are both
the far chains of the intersection) are both visible is also consid-
ered visible (Figure 22(b)). Finally, any ambiguous chain on the
boundary connected to a visible chain not at an image-space inter-
section (e.g. bifurcation) is marked visible (Figure 22(c)). The pro-
cess repeats until no more propagation is possible. Any remaining
ambiguous chains are marked as invisible.

Cusp Visibility Consistency. Correct 2D contour connectivity
near cusps is especially difficult to ensure, since a single inaccurate
image-space intersection can break the curve. Yet, the most sim-
ple and common configuration near an isolated pair of cusps has
known visibility (Figure 23(a)). The algorithm tests whether the
detected image-space intersections and previously computed visi-
bility are consistent with the expected model, and try to fix incon-
sistent configurations. In particular, if the image-space intersection
is detected between the two cusps (Figure 23(b)), the edge con-
necting the image-space intersection to the visible cusp is marked
visible. More complex configurations such as Figure 23(c) are fixed
similarly.

(a)

(b)

Fig. 25. Result of topological simplification on the Stanford Bunny.

(a) The original contour is highly complex due to the bumpiness of the

Bunny surface. (b) Topological simplification turn this small pieces of con-

tours into two long curves. In both cases the contours are extracted from

the optimized mesh generated by our algorithm (Section 6). For clarity, ra-

dial triangles are not color-coded separately. Bunny © Stanford Computer

Graphics Laboratory

9. TOPOLOGICAL SIMPLIFICATION

The computed set of curves and their visibility can be rendered and
stylized with standard techniques. However, we find that the true
contours often exhibit small, unappealing topological details. For
example, a cusp can introduce an unexpected break in a contour
curve, and tiny loops on the surface can introduce tiny curves, as
illustrated in Figure 26. We emphasize that these are undesirable
properties of the true contour of the smooth surface, and not arti-
facts of our tessellation. (We have verified that the cusps occur on
the true contour by plotting the radial curvature of the smooth sur-
face S). Furthermore, inconsistency can sometimes introduce spu-
rious extra curves in the graph.

We perform topological simplification to improve the computed
curves. Topological simplification is a stylistic control, one that de-
pends on the scale of the objects as well as the rendering style;
for example, one would generally want to simplify a distant object
more than a near one. Our simplification is similar to previous ap-
proaches [Isenberg et al. 2002; Northrup and Markosian 2000], but
these methods were used to estimate topology from noisy curves,
and thus mix topological estimation and stylization. In contrast, we
begin with the true curve topology and use simplification only for
stylization.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 17

(a) (b)

Fig. 26. Result of topological simplification on Red. Closeup on Red’s shoulder and armpit, with genuine cusps, (a) before and (b) after topological

simplification. In both cases the contours are extracted from the optimized mesh generated by our algorithm (Section 6), even though radial triangles are not

color-coded in dark blue/yellow for the sake of readability. Red © Disney/Pixar

Table I. Statistics of the mesh generation algorithm

Sequence
Input Output Inconsistent

Time
faces faces faces

Stanford Bunny∗ 42,928 51,314 11 7 min

Angela’s face 38,568 50,150 10 7 min

Walking man 123,264 141,627 4 9 min

Red (Figure 1) 85,336 115,997 53 26 min†

Each result listed is for a single, typical frame of each input sequence. Timing is only

for mesh generation; times for chaining, visibility, and rendering are not included.

The number of input faces is the number of triangles in the initial tessellation (i.e.,

after one round of subdivision). ∗Base quad mesh obtained from the the original tri-

angle mesh using Ray et al.’s [2006] method. †The first three timings were computed

on a 2.7GHz i7 GHz MacBook Pro, whereas the fourth timing is from an older 2GHz

i7 MacBook Pro. However, the slower time reflects the much more high-curvature

geometry.

We categorize view graph vertices by the number of visible
curves they connect: a dead-end vertex is adjacent to a single vis-
ible curve (e.g., a visible curtain fold); a connector vertex is ad-
jacent to two visible curves, and a junction vertex is adjacent to
more than two vertices, i.e., bifurcations and image-space intersec-
tion vertices.

We define a candidate chain as any connected sequence of visi-
ble curves that do not contain any junctions, but with image-space
arc length less than a user-specified threshold (between 10 and 20
pixels in our experiments). The algorithm marks as invisible any
candidate chain that (a) connects a junction to a dead-end, (b) con-
nects a dead-end to a dead-end, (c) connects a vertex to itself, or (d)
is overlapped in 2D by another chain. These cases are illustrated in
Figure 24. This process is iterated until there are no more changes
to be made.

This procedure is sufficient for Catmull-Clark surfaces at the
scales shown here. Thanks to the accurate visibility provided by
our approach, even contours with many cusps and junctions, such
as the silhouettes of the Stanford Bunny, are effectively simplified
(Figure 25).

10. RESULTS

We have applied our method to a number of challenging cases, in-
cluding a detailed 3D character modeled with Catmull-Clark sur-
faces (Figure 1). Timing information for the mesh generation pro-
cess is given in Table I. Mesh generation typically takes a few min-
utes for large meshes, and yields just a few inconsistent triangles.

(a) (b)

Fig. 27. Visibility of Surface Intersections. Defining visibility for curves

near interpolated contours is difficult, such as the Surface Intersection

curves (green). (a) Heuristics can be used to get reasonable interpolated

contour visibility in simple cases, but the Surface Intersection curves still

give errors (red arrow). (b) Our method allows to compute accurate visibil-

ity for all curves, preventing gaps in the chains.

Given this mesh, chaining, visibility, and rendering are performed
by a heavily-modified version of the Freestyle software [Grabli
et al. 2010]; this process takes typically takes a few more minutes.
The implementations are not at all fine-tuned, and there is consid-
erable room for speed-up by more careful implementation.

One shortcoming of using interpolated contours [Hertzmann and
Zorin 2000] is that gaps sometimes appear in the object silhouettes.
While these errors only occur in a few frames, even a few such er-
rors would cause major problems for stylization and temporal co-
herence. In the accompanying video, we compare our algorithm to
interpolated contours, using a plain rendering style that highlights
these gaps. Our method does not exhibit gaps in the silhouette, as il-
lustrated by Figures 27, 28 and 30. Also note that applying topolog-
ical simplification heuristic to mesh or interpolated contours does
not solve visibility errors (Figure 29).

We use the parameterization scheme of Kalnins et al. [2003] to
generate stylized results such as the temporally coherent tapered
curves of Figures 30 and 32 and the textured strokes of Figure 31.
(Also see the supplementary video.) Our results still exhibit flick-
ering due to the stylization procedures. Most of the flickering re-

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

18 • P. Bénard, A. Hertzmann and M. Kass

(a) Interpolated contours (b) Our method

Fig. 28. Bunny contours, rendered in black-and-white without topologi-

cal simplification, to better-visualize gaps in the silhouette. The interpolated

contour (a) introduces a gap in the silhouette and does not detect one piece

of contour (red circles), whereas our method (b) produces a solid silhouette.

Bunny © Stanford Computer Graphics Laboratory

(a) Mesh contours (b) Interpolated contours

Fig. 29. Applying topological simplification to existing methods does not

eliminate problems. (Compare to Figure 1). Red © Disney/Pixar

sults from topological simplification, since the algorithm operates
on each frame independently, and thus does not know which curves
will grow or shrink in adjacent frames. A few artifacts also appear
due to suboptimal decisions in coherent stroke stylization. These
issues indicate a need for more research on these subproblems.

11. DISCUSSION AND FUTURE WORK

This paper presents the first theory of consistent mesh tessellation
for contours, and algorithm for obtaining consistent meshes. The
algorithm produces results that are consistent almost everywhere,
sufficient to produce stylization without the artifacts of previous
methods. Our framework should guide the way to developing algo-
rithms that fully guarantee consistency. Conversely, an approximate
GPU-based tessellation based on our theory could produce accurate
contours in real-time.

Our work provides several different types of guarantees. A mesh
that is Strongly Contour-Consistent is guaranteed to have a 3D con-
tour generator that is topologically equivalent to those of the in-
put smooth surface, with small, subtriangle loops omitted. Radial
triangles are guaranteed to be consistent, provided they are small
enough that the surface is locally approximately second-order. Our
algorithm produces surfaces that are Contour-Consistent almost ev-
erywhere. Regions of inconsistency are identified as such, so that

(a) Interpolated contours

(b) Our method

Fig. 30. Stylization results on Angela’s face. Temporally coherent taper-

ing based on Kalnins et al. [2003]. (a) Interpolated contours are incomplete

and exhibit many breaks. (b) Our method produces long temporally smooth

silhouettes. (Also see the supplementary video.) Angela © Chris Landreth

visibility computations can be modified accordingly. We do not
strictly ensure Strong Consistency, because we use dense sampling,
though interval analysis could be used instead.

The problem of computing 3D visible contours is surprisingly
difficult, and has plagued non-photorealistic rendering for many
years. We began this research with an approach based on using in-
terpolated contours to redefine visibility, but this method failed near
complex, subtriangle curves. We then tried a method that modified
the surface to have exact silhouettes at the interpolated contours, us-
ing CSG-like operations, but this method failed when the implied
topology became too complex. Based on observations from this ex-
perience, we developed the notion of Contour Consistency, which
we attempted to optimize by resampling the mesh, by gradient-
based numerical optimization, and by combinations of these ap-
proaches. These methods never achieved satisfactory results at the
contour, particularly near cusps and other regions of low radial cur-
vature. We developed Radial Triangles, but attempted to creat them
with a front-propagation approach that became too difficult to im-
plement. Finally, we developed the iterative algorithms introduced
here, which achieve consistency nearly everywhere.

Based on this experience, we can say with some confidence that
the problem is fundamentally difficult. The main reason is that visi-
bility entails making long-range topological decisions (e.g., the vis-
ibility or connectivity of a large stroke) based on unstable numer-
ical predicates. We often developed heuristic methods that seemed
like they should be “good enough,” but Murphy’s Law always
applied, and obscure-seeming failure cases inevitably arose. The
method described in this paper is far more robust than any of our
previous attempts, particularly in the contour regions where the Ra-
dial Triangle guarantees apply.

Building a complete pipeline for high-quality animation of con-
tours will require addressing several open problems, most of which
are only touched upon by previous research. First, robust visibility
for meshes with very small triangles remains a problem. As dis-
cussed in Section 8, our implementation of curve visibility suffered
from some numerical issues. We devised effective heuristics that
resolved most ambiguities for our test sequences. Second, our ex-
perience shows that topological simplification will be a necessary
step for any non-trivial geometry. Topological simplification is a

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

Computing Smooth Surface Contours with Accurate Topology • 19

Fig. 31. Stylization results on the walking man. Colors propagation and

temporally coherent parameterization based on Kalnins et al. [2003]. (Also

see the supplementary video.) Hank © Ryan Dale

stylization step, one that must take into account topology, image-
space density [Grabli et al. 2010], temporal coherence, and other
stylistic factors. Third, space-time curve correspondence and pa-
rameterization [Bénard et al. 2012; Buchholz et al. 2011; Kalnins
et al. 2003] is necessary for temporal stylization. Finally, it is also
necessary to combine contours with other types of curves, such as
suggestive contours [DeCarlo et al. 2003], which must meet the
contours at cusps in each frame. Contour Consistency provides the
necessary foundation upon which principled solutions to each of
the above problems can be built.

Though we focus on contour computation, our approach can also
be used to compute consistent Planar Maps, which are also impor-
tant for stylization [Eisemann et al. 2008; Karsch and Hart 2011;
Winkenbach and Salesin 1996]. Generalizing the above pipeline
for computing and stylizing space-time Planar Maps is a more gen-
eral open research problem, that could provide a very powerful tool
for high-quality and general stylization.

Even when our contours have correct visibility, we do not guar-
antee topological correctness of the 2D line drawing, because in-
finitesimal perturbations in contour positions can, in principle,
change the projected topology and visibility. It may be possible
to develop an approach that does provide this guarantee, by creat-
ing an image-space analogue to consistency. However, this would
likely require a procedure for exact ray-tests on smooth surfaces,
which might not be robust. For non-photorealistic animation, we
do not believe that perfect topological accuracy in image-space is
necessary, but it maybe useful in other domains.

ACKNOWLEDGMENTS

The animated character “Red” was created by Andrew Schmidt,
Brian Tindall, Bernhard Haux and Paul Aichele, based on the origi-
nal design of Teddy Newton. Thanks to Chris Landreth for permis-
sion to use his “Angela” character. Thanks to Kurt Fleischer and
John Hancock for technical assistance, to Bardia Sadri and Vladlen
Koltun for discussions. Thanks to the reviewers for their extremely
diligent comments that significantly improved this paper.

REFERENCES

APPEL, A. 1967. The notion of quantitative invisibility and the machine

rendering of solids. In Proc. ACM. 387–393.

BANK, R. E. AND SMITH, R. K. 1997. Mesh smoothing using a posteriori

error estimates. SIAM J. Numer. Anal. 34, 3, 979–997.

BÉNARD, P., LU, J., COLE, F., FINKELSTEIN, A., AND THOLLOT, J.

2012. Active Strokes: Coherent Line Stylization for Animated 3D Mod-

els. In Proc. NPAR. 37–46.

BLINN, J. F. 1978. A scan line algorithm for displaying parametrically

defined surfaces. Proc. SIGGRAPH 12, SI, 1–7.

BUCHHOLZ, B., FARAJ, N., PARIS, S., EISEMANN, E., AND

BOUBEKEUR, T. 2011. Spatio-Temporal Analysis for Parameterizing

Animated Lines. In Proc. NPAR. 85–92.

CATMULL, E. AND CLARK, J. 1978. Recursively generated B-spline sur-

faces on arbitrary topological meshes. Computer-Aided Design 10, 6.

COLE, F. AND FINKELSTEIN, A. 2009. Two Fast Methods for High-

Quality Line Visibility. IEEE TVCG 8, 1.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,

A. 2003. Suggestive Contours for Conveying Shape. ACM Trans.

Graph. 22, 3, 848–855.

EISEMANN, E., WINNEMÖLLER, H., HART, J. C., AND SALESIN, D.

2008. Stylized Vector Art from 3D Models with Region Support. In

Proc. EGSR.

ELBER, G. AND COHEN, E. 1990. Hidden Curve Removal for Free Form

Surfaces. In Proc. SIGGRAPH. Vol. 24. 95–104.

GOOCH, A. 1998. Interactive non-photorealistic technical illustration. M.S.

thesis, University of Utah.

GRABLI, S., TURQUIN, E., DURAND, F., AND SILLION, F. X. 2010.

Programmable Rendering of Line Drawing from 3D Scenes. ACM

Trans. Graphics 29, 2. Article 18.

GUIGUE, P. AND DEVILLERS, O. 2003. Fast and Robust Triangle-Triangle

Overlap Test using Orientation Predicates. J. Graphics Tools 8, 1, 25–42.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair inter-

polation using Catmull-Clark surfaces. In Proc. SIGGRAPH. 35–44.

HERTZMANN, A. 1999. Introduction to 3D Non-Photorealistic Rendering:

Silhouettes and Outlines. In SIGGRAPH Course on NPR, S. Green, Ed.

HERTZMANN, A. AND ZORIN, D. 2000. Illustrating Smooth Surfaces. In

Proc. SIGGRAPH. 517–526.

ISENBERG, T., HALPER, N., AND STROTHOTTE, T. 2002. Stylizing

Silhouettes at Interactive Rates: From Silhouette Edges to Silhouette

Strokes. In Proc. EG.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKEL-

STEIN, A. 2003. Coherent Stylized Silhouettes. ACM Trans. Graphics.

KARSCH, K. AND HART, J. C. 2011. Snaxels on a Plane. In Proc. NPAR.

KIRSANOV, D., SANDER, P., AND GORTLER, S. 2003. Simple Silhouettes

for Complex Surfaces. In Proc. SGP.

KOENDERINK, J. J. 1984. What does the occluding contour tell us about

solid shape? Perception 13, 3, 321–330.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,

GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-Time Nonphotoreal-

istic Rendering. In Proc. SIGGRAPH. 415–420.

NORTHRUP, J. D. AND MARKOSIAN, L. 2000. Artistic Silhouettes: A

Hybrid Approach. In Proc. NPAR. 31–38.

PLANTINGA, S. AND VEGTER, G. 2006. Computing Contour Generators

of Evolving Implicit Surfaces. ACM Trans. Graph. 25, 4, 1243–1280.

RAY, N., LI, W. C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P. 2006. Pe-

riodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485.

SAITO, T. AND TAKAHASHI, T. 1990. Comprehensible Rendering of 3-D

Shapes. In Proc. SIGGRAPH. Vol. 24. 197–206.

STAM, J. 1998. Exact evaluation of catmull-clark subdivision surfaces at

arbitrary parameter values. In Proc. SIGGRAPH. 395–404.

WINKENBACH, G. AND SALESIN, D. H. 1996. Rendering Parametric Sur-

faces in Pen and Ink. In Proc. SIGGRAPH. 469–476.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

20 • P. Bénard, A. Hertzmann and M. Kass

(a) Interpolated contours

(b) Our method

Fig. 32. Tapered strokes composited with toon shading. Red © Disney/Pixar

APPENDIX

A. EXTRAORDINARY VERTICES

Our Catmull-Clark library does not support exact evaluation in a
small, fixed-size neighborhood of any extraordinary point (vertex
of the base mesh having a valence not equal to four). Instead, we
use the following approximation at these points. To evaluate, a tes-
sellation of the neighborhood around the extraordinary vertex is
computed, bounded by locations that can be exactly evaluated. The
tessellation is star-shaped, with the extraordinary point at the cen-
ter. The level function g(u) are computed exactly at the vertices,
and then linearly interpolated within the neighborhood to produce
a new level function gI(u) for the neighborhood. Similarly, radial
curvature κ(u) is linearly interpolated within this neighborhood.
The evaluation procedure of Stam [1998] would avoid this special
treatment of extraordinary points.

B. INTERPOLATION DETAILS

Various procedures in mesh generation (Section 6) require the abil-
ity to interpolate in parameter space, that is, to compute u(t) =
(1− t)u0 + tu1, for two preimage points u0 and u1. Because our
initial mesh is obtained from the base mesh, u0 and u1 usually
share a face on the base mesh, e.g., they are vertices on a mesh
edge or lie inside the face. Hence, interpolation usually reduces to
simple interpolation of the original points.

However, the vertex shifting operation (Section 6.2) can create
situations in which we later wish to interpolate u coordinates on
nearby base mesh faces. There are many ways this could be im-
plemented, and any reasonable interpolation is sufficient for our
purposes: the principal constraint is that it not lead to folds in the
surface, e.g., a series of convex interpolations of the vertices of a
triangle should not yield a point outside that triangle. A generic ap-
proach would be to interpolate along mesh geodesics, but we take
a simpler approach here.

Our approach is based on constructing local charts. A vertex of
the base mesh is defined as regular if it has four adjacent faces and

no adjacent boundary. Because our input surfaces are user-defined
and then subdivided once, almost all base mesh vertices are regu-
lar. A chart is a bijective mapping between the one-ring of a regular
vertex to the 2D Euclidean plane, and is easy to construct by map-
ping the four base mesh quadrilaterals to the four quadrants around
the origin of the 2D plane. We interpolate two points u0 and u1 by
finding a vertex for which both points are within the one-ring, and
then by interpolating the chart coordinates. If no such vertex can be
found (e.g., if both vertices have been shifted to adjacent triangles),
then the interpolation fails and the attempted insertion is cancelled.

C. CONDITIONS OF SHIFTABILITY

Several steps in mesh generation (Section 6) shift vertices to new
positions. Shifting a vertex entails changing its preimage to new co-
ordinates u, and updating the vertex’s 3D position f(u) and normal
n(u) for the new location.

There are a number of conditions that must be satisfied for a
point to be shiftable. First, the shift must not create a fold in the
mesh. Second, the shift must not create any CCC triangles. Third,
the shift must not create an “X” shape in the contour, which would
happen if the vertex’s one-ring has more than two zero-crossings (C
vertices and FB edges) in its outer boundary. Finally, the shift must
not prevent interpolation along the edges, as described in Appendix
B. Shifting is performed whenever the distance from the root to the
nearest vertex is less than 20% of the length of the edge, and the
above conditions are met. Shifting vertices also affects how base
mesh vertices are interpolated (Appendix B).

ACM Transactions on Graphics, Vol. 33, No. 2, Article 19, Publication date: March 2014.

