
ar
X

iv
:0

70
7.

05
46

v1
 [

cs
.D

S]
 4

 J
ul

 2
00

7

Weighted Popular Matchings ∗

Julián Mestre

Department of Computer Science

University of Maryland, College Park, MD 20742

jmestre@cs.umd.edu

Abstract

We study the problem of assigning jobs to applicants. Each applicant has a weight and
provides a preference list, which may contain ties, ranking a subset of the jobs. An applicant x
may prefer one matching over the other (or be indifferent between them, in case of a tie) based
on the jobs x gets in the two matchings and x’s personal preference. A matching M is popular
if there is no other matching M ′ such that the weight of the applicants who prefer M ′ over M
exceeds the weight of those who prefer M over M ′.

We present algorithms to find a popular matching, or if none exists, to establish so. For
instances with strict preference lists we give an O(n +m) time algorithm. For preference lists
with ties we give a more involved algorithm that solves the problem in O(min(k

√
n, n)m) time,

where k is the number of distinct weights the applicants are given.

1 Introduction

Consider the problem of assigning jobs to applicants where every applicant provides a preference
list, which may contain ties, ranking a subset of the jobs. More formally, an instance consists of
a bipartite graph H = (A, J,E) with n vertices and m edges between a set of applicants A and a
set of jobs J . The edge (x, p) belongs to E if job p is on x’s preference list. Moreover, every edge
(x, p) is assigned a rank rx(p) ∈ Z+ encoding the fact that p is x’s rx(p)th choice. An applicant x
is said to prefer job p over q if the edge (x, p) is ranked higher than (x, q), i.e., rx(p) < rx(q). If
rx(p) = rx(q) we have a tie, and we say x is indifferent between p and q. Likewise, we say x prefers
one matching over the other or is indifferent between them based on the jobs x is assigned by the
two matchings. Our ultimate goal is to produce a “good” matching in H.

Despite its simplicity, this framework captures many real-world problems such as the assignment
of government-subsidized houses to families [15], the assignment of graduates to training position
[8], and rental markets such as NetFlix [2] where DVDs must be assigned to subscribers. The
issue of what constitutes a fair or good assignment has been studied in the Economics literature
[1, 15, 16]. The least restrictive definition of optimality is that of a Pareto optimal matching [3, 1].
A matching M is Pareto optimal if there is no matching M ′ such that at least one person prefers M ′

over M and nobody prefers M over M ′. In this paper we study a stronger definition of optimality,
that of popular matchings. We say M1 is more popular than M2 if the applicants who prefer M1

over M2 outnumber those who prefer M2 over M1. A matching M is popular if there is no matching
more popular than M .

∗Research supported by NSF Awards CCR 0113192 and CCF 0430650

1

http://arxiv.org/abs/0707.0546v1

Popular matchings were first considered by Gardenfors [6] who showed that not every instance
allows a popular matching. Abraham et al. [4] gave the first polynomial time algorithms to
determine if a popular matching exists and if so, to produce one: An O(n + m) time algorithm
for the special case of strict preference lists, and an O(

√
nm) time algorithm for the general case

where ties are allowed. They noted that maximum cardinality matching can be reduced to finding
a popular matching in an instance with ties (by letting every edge be of rank 1) thus a linear time
algorithm for the general case seems unlikely.

Notice that this definition of popular matching does not make any distinction between the
individuals—the opinion of every applicant is valued equally. But what if we had some preferred
set of applicants that we would like to give priority over the rest? This option becomes particularly
interesting when jobs are scarce or there is a lot of contention for a few good jobs.

To answer this question we propose a new definition for the more popular than relation under
which every applicant x is given a positive weight w(x). The satisfaction of M1 with respect to M2

is defined as the weight of the applicants that prefer M1 over M2 minus the weight of those who
preferM2 over M1. ThenM1 is more popular thanM2 if the satisfaction of M1 w.r.t. M2 is positive.
We believe that this is an interesting generalization of popular matchings that addresses the natural
need to assign priorities (weights) to the applicants while retaining the one-sided preferences of the
original setup.

In this paper we develop algorithms to determine if a given instance allows a weighted popular
matching, and if so, to produce one. For the case of strict preference lists we give an O(n + m)
time algorithm. When ties are allowed the problem becomes more involved; a second algorithm
solves the general case in O(min(k

√
n, n)m) time, where k is the number of distinct weights that

the applicants are given.
Our approach is based on deriving a more algorithmic-friendly characterization of popular

matchings. Following the line of attack of Abraham et al. [4] for unweighted instances, we de-
fine the notion of well-formed matchings and show that every popular matching is well-formed. For
unweighted instances one can show [4] that every well-formed matching is popular. For weighted
instances, however, there may be well-formed matchings that are not popular. Our main contribu-
tion is to show that these non-popular well-formed matchings can be weeded out by pruning certain
bad edges that cannot be part of any popular matching. In other words, we show that the instance
can be pruned so that a matching is popular if and only if it is well-formed and is contained in the
pruned instance.

1.1 Related work

Following the publication of the work of Abraham et al. [4], the topic of unweighted popular
matchings has been further explored in many interesting directions. Suppose we want to go from
an arbitrary matching to some popular matching by a sequence of matchings each more popular than
the previous; Abraham and Kavitha [5] showed that there is always a sequence of length at most
two and gave a linear time algorithm to find it. One of the main drawbacks of popular matchings
is that they may not always exist; Mahdian [11] nicely addressed this issue by showing that the

probability that a random instance admits a popular matching depends on the ratio α = |J |
|A| , and

exhibits a phase transition around α∗ ≈ 1.42. Motivated by a house allocation application, Manlove
and Sng [12] gave fast algorithms for popular assignments with capacities on the jobs.

A closely related, but not equivalent, problem is that of computing a rank-maximal matching.
Here we want to maximize the number of rank 1 edges, and subject to this, maximize the number
of rank 2 edges, and so on. Irving et al. [9] showed how to solve this problem in O(min(C

√
n), n)m)

time where C is the rank of the lowest ranked edge in a rank-maximal matching, while Kavitha

2

and Shah [10] gave a faster algorithm for dense instances that runs in O(Cnω), where ω < 2.376 is
the exponent for matrix multiplication.

2 Strict preference lists

This section focuses on instances where the preference lists provided by the applicants are strict
but need not be complete. In order to ease the analysis we first modify the given instance: For
each applicant x create a last resort job l(x) and place it at the end of x’s preference list. This
modification does not affect whether the instance has a popular matching or not, but it does force
every popular matching to be applicant complete.

Before proceeding we need a few definitions. Let us partition A into categories C1, C2, . . . , Ck,
such that the weight of applicants in category Ci is wi and w1 > w2 > . . . > wk > 0. Given a
matching M we say a node u is matched in M if there exits v such that (u, v) ∈M , otherwise u is
free. We denote the mate of a matched node u by M(u).

The plan is to develop an alternative characterization for popular matchings that will allow us
to efficiently test if a given instance admits a popular matching, and if so to produce one.

Definition 1. For every applicant x ∈ C1 let f(x) be the first job on x’s preference list, we say
this is an f1-job. For x ∈ Ci>1 define f(x) as the first non-fj<i-job on x’s list, this is an fi-job.

Definition 2. For every x ∈ Ci let s(x) be the first non-fj≤i-job on x’s list.

Notice that s(x) is ill defined when f(x) = l(x). This is not a problem since, as we will see
shortly, the job s(x) is assigned to x only when there is contention for f(x), which by definition
never happens when f(x) = l(x). The following properties about first and second jobs are easy to
check:

Observation 1. The set of fi-jobs is disjoint from the set of fj-jobs for i 6= j.

Observation 2. The set of fi-jobs is disjoint from the set of sj-jobs for i ≤ j, but may not be for
i > j.

Our alternative characterization for popular matching is based on the notion of well-formed
matchings.

Definition 3. A matching is well-formed if it has the following two properties: every fi-job p is
matched to x ∈ Ci where f(x) = p, and every applicant x is matched either to f(x) or s(x).

For the unweighted case (k = 1) our definition of well-formed matching coincides with the
characterization developed by Abraham et al. [4]. For k = 1 they showed that a matching is popular
if and only if is well-formed. Unfortunately, when k > 1 not every well-formed matching is popular.
For example, consider the instance in Figure 1. There are only two well-formed matchings: M1 =
{(x1, A), (x2, C), (x3,D), (x4, E)} and M2 = {(x1, A), (x2, C), (x3, E), (x4,D)}. The matching M1

is not popular because {(x2, A), (x3, C), (x4,D)} is more popular than M1. On the other hand M2

is popular.
Nevertheless, we can still prove that being well-formed is a necessary condition for begin popular.

Theorem 1. Let M be a popular matching, then M is well-formed.

3

w(x1) = 7 x1 A B C

w(x2) = 4 x2 A C D

w(x3) = 2 x3 C A D E

w(x4) = 2 x4 A D E

A

x1 B

x2 C

x3 D

x4 E

a) Weights and preference lists. b) Solid lines show first jobs;
dashed lines, second jobs.

A

x1 B

x2 C

x3 D

x4 E

A

x1 B

x2 C

x3 D

x4 E

c) Well-formed, but not popular. d) Well-formed and popular.

Figure 1: An instance showing that not every well-formed matching is popular.

One could be tempted to discard the current definition of well-formed matching and seek a
stronger one that will let us replace the if then of Theorem 1 with an if and only if. As we will see,
in proving the theorem we only use the fact that wi > wi+1. Armed with this sole fact Theorem 1
is the best we can hope for because if the weights are sufficiently spread apart, one can show that
every well-formed matching is in fact popular; see Observation 3.

The proof of Theorem 1 is broken down into Lemmas 1 and 2.

Lemma 1. Let M be a popular matching, then every fi-job p is matched to an applicant x ∈ Ci

such that f(x) = p

Proof. By induction on i. For the base case let x ∈ C1 and f(x) = p. For
z f(y)

y f(x) = p

x

the sake of contradiction assume that p is matched to y and f(y) 6= p. If
y ∈ Cs>1, then promote x to p and demote y to l(y). The swap improves
the satisfaction by w1 − ws > 0, but this cannot be since M is popular.
If y ∈ C1 then promote x to p and y to f(y), and demote applicant
z = M(f(y)) as depicted on the right. Thus, the satisfaction improves by
w1 + w1 − w(z) > 0.

For the inductive case let x ∈ Ci and f(x) = p. Assume like before that M(p) = y and f(y) 6= p.
If y ∈ Cs>i, then promote x and demote y to get a change in satisfaction of wi−ws > 0. If y ∈ Cs<i

then by induction f(y) is matched to z ∈ Cs, promoting x to p and y to f(y) while demoting z
changes the satisfaction by wi + ws − ws > 0. Finally, suppose y ∈ Ci. Let z = M(f(y)). If
z ∈ C≥i then the usual promotions change the satisfaction by at least wi. Note that if z ∈ Cs<i

then f(z) 6= f(y) by definition of f(y). Letting y play the role of x in the above argument handles
this case. In every case we have reached the contradiction that M is not popular, therefore the
lemma follows.

4

Lemma 2. Let M be a popular matching, then every x ∈ A is matched either to f(x) or s(x).

Proof. As a corollary of Lemma 1 no x ∈ A can be matched to a job which
z f(y)

y s(x) = p

x

is strictly better than f(x) or in between f(x) and s(x). Hence we just
need to show that x cannot be matched to a job which is strictly worse
than s(x). For the sake of contradiction let us assume this is the case.

Let x ∈ Ci and p = s(x). Note that p must be matched to some ap-
plicant y, otherwise we get an immediate improvement by promoting x
to p. If y ∈ Cs>i then promoting x and demoting y gives us a more popular matching because
wi−ws > 0. Otherwise y belongs to Cs≤i in which case f(y) 6= p. By Lemma 1 there exists z ∈ Cs

matched to f(y). Promoting x to s(x) and y to f(y) while demoting z improves the satisfaction
by wi + ws − ws > 0. A contradiction.

Let G be a subgraph of H having only those edges between applicants and their first and
second jobs. See the graph in Figure 1.b. Theorem 1 tells us that every popular matching must be
contained in G. Ideally we would like every well-formed matching in G to be popular; unfortunately,
this is not always the case. To remedy this situation, we will prune some edges from G that cannot
be part of any popular matching. Then we will argue that every well-formed matching in the
pruned graph is popular. In order to understand the intuition behind the pruning algorithm we
need the notion of promotion path.

Definition 4. A promotion path w.r.t. a well-formed matching M is a sequence p0, x0, . . . , ps, xs,
such that pi = f(xi), (xi, pi) ∈M , and for all i < s, applicant xi prefers pi+1 over pi.

Such a path can be used to free p0 by promoting xi to pi+1, for all i < s, and demoting xs. We
say the cost (in terms of satisfaction) of the path is w(xs)−w(x0)− . . .−w(xs−1), as everyone gets
a better job except xs. To illustrate this consider the instance in Figure 1, and the well-formed
matching {(x1, A), (x2, C), (x3,D), (x4, E)}. The sequence D,x3, C, x2, A, x1 is a promotion path
with cost w(x1)− w(x2)− w(x3) = 1 that can be used to free D.

To see how promotion paths come into play, let M be a well-formed matching and M ′ be any
other matching. Suppose y prefers M ′ over M , we will construct a promotion path starting at
p0 = M ′(y). Note that p0 is an f -job and must be matched in M to x0 such that f(x0) = p0. Thus,
our path starts with p0, x0. To extend the path from xi, check if xi prefers M

′ over M , if that is
the case, pi+1 = M ′(xi) and xi+1 = M(pi+1), otherwise the path ends at xi. Notice that if xi ∈ Cs

then xi+1 ∈ C<s, which means the path must be simple. Coming back to y, the applicant who
induced the path, note that if w(y) is greater than the cost of the path, then M cannot be popular
because using the promotion path and promoting y to p0 gives us a more popular matching. On
the other hand, it is easy to see that if for every applicant y, the cost of the path induced by y is at
least w(y), then M ′ cannot be more popular than M . For example, if the weights are sufficiently
spread apart then any promotion path out of an fi-job will have cost at least wi, and as a result,
any well-formed matching would be popular.

Observation 3. If wi ≥ 2wi+1 for all i < k then every well-formed matching is popular.

The pruning procedure keeps a label λ(p) for every fi-job p. Based on these labels we will
decide which edges to prune. The following invariant states the meaning these labels carry.

Invariant 1. Let p be an fi-job and M be any well-formed matching contained in the pruned graph.
A minimum cost promotion path out of p w.r.t. M has cost exactly λ(p).

5

prune-strict(G)
1 All f1-jobs get a label of w1.
2 for i = 2 to k
3 for x ∈ Ci

4 if λmin(x, f(x)) < wi

5 then return “no popular matching exists”
6 for p ∈ fi-job
7 S ← {x ∈ A | f(x) = p}
8 if S = {x}
9 then λ(p)← min(wi, λmin(x, f(x))− wi)

10 else λ(p)← wi

11 for x ∈ S such that λmin(x, p) < 2wi

12 prune the edge (x, p)
13 for x ∈ A such that λmin(x, s(x)) < w(x)
14 prune the edge (x, s(x))

Figure 2: Pruning the graph with strict preference lists.

We now describe the procedure pruned-strict whose pseudo-code is given in Figure 2. The
algorithm works in iterations. The ith iteration consists of two steps. First, we prune some edges
incident to Ci, making sure that these edges do not belong to any popular matching. Second, we
label all the fi-jobs so that Invariant 1 holds for them. Note that later pruning cannot break the
invariant for fi-jobs as promotion paths out of these jobs only use edges incident to applicants in
C≤i.

In the first iteration we do not prune any edges. Notice that a promotion path out of an f1-job
must end in its C1 mate, therefore line 1 sets the label of all f1-jobs to w1.

At the beginning of the ith iteration we know that the invariant holds for all f<i-jobs. Consider
an applicant x ∈ Ci. Let q be a job x prefers over f(x). Note that q must be an f<i-job, therefore,
in any well-formed matching included in the pruned graph the minimum cost promotion out q has
cost λ(q). We can use the path to free q and then promote x to it, the total change in satisfaction
is wi − λ(q). Therefore, if λ(q) < wi then no popular matching exists. Lines 3–5 check for this.
The expression λmin(x, r) is a shorthand notation for minq λ(q) where q is a job x prefers over r; if
there is no such job, we define minq λ(q) =∞.

Let p be an fi-job and S be the set of applicants in Ci whose first job is p, also let M be a
well-formed matching contained in the pruned graph. Suppose S consists of just one applicant
x, then (x, p) must belong to M . A promotion path out of p either ends at x or continues with
another job which x prefers over p. Therefore λ(p) = min(wi, λmin(x, f(x)) − wi), which must be
non-negative. On the other hand, if |S| > 1 then only one of these applicants will be matched to
p while the rest must get their second job. Suppose M(p) = x ∈ S. Invariant 1 tells us that there
exists a promotion path w.r.t. M out of p with cost λmin(x, p)−wi that can be used to free p, which
in turn allows us promote one of the other applicants in S − x to p. Therefore if λmin(x, p) < 2wi,
M is not popular, which means the edge (x, p) cannot belong to any popular matching and can
safely be pruned. We set λ(p) = wi because in the pruned graph p can only be matched to x ∈ S
such that λmin(x, p) ≥ 2wi. Lines 6–12 capture exactly this.

Finally, Lines 13–14 prune edges (x, s(x)) that cannot be part of any popular matching because

6

of promotion paths out of jobs between f(x) and s(x) on x’s list, with cost λmin(x, s(x)) < wi.
To exemplify how prune-strict works let us run the algorithm on the instance in Figure 1.

The jobs are labeled λ(A) = 7, λ(C) = 3, and λ(D) = 2. The only edge pruned is (x3,D) because
both x3 and x4 have D as their first job and λmin(x3,D) = 3 < 4 = 2w(x3). Hence, the only well-
formed matching included in the pruned graph is M2 = {(x1, A), (x2, B), (x3, E), (x4,D)}. The
next theorem states that M2 must be popular.

Theorem 2. Let G′ be the resulting pruned graph after running prune-strict. Then a matching
is popular if and only if it is a well-formed matching in G′.

We have argued that no pruned edge can be present in any popular matching, let us now show
that every well-formed matching M in the pruned graph is indeed popular. Let M ′ be any other
matching, our goal is to show that M ′ is not more popular than M . Suppose x prefers M ′ over M ,
this induces a promotion path at M ′(x) with respect to M . If x gets f(x) in M then the cost of
such a path is at least λmin(x, f(x)) ≥ wi by Lines 4-5. Otherwise, M(x) = s(x) and Lines 13-14
make sure the cost at the promotion path is at least wi. Since this holds for every applicant x, M ′

cannot be more popular than M .
It is entirely possible that the pruned graph does not contain any well-formed matching. In this

case we know that no popular matching exists.

2.1 Implementation

Let G be the graph with edge set {(x, f(x)), (x, s(x)) |x ∈ A}. Assuming the applicants are already
partitioned into categories Ci, we can compute G in O(n +m) time. The pruning procedure also
takes linear time, since the ith iteration takes O

(
∑

x∈Ci
degH(x)

)

time. Let G′ be the pruned
graph. Finding a popular matching reduces to finding a well-formed matching in G′.

Abraham et al. [4] showed how to build a well-formed matching for unweighted instances
(k = 1), if one exists, in linear time. The unweighted setting is slightly simpler than ours. More
specifically, the set of second jobs is disjoint from the set first jobs and every applicant in G′ has
degree exactly 2. These two issues can be easily handled: First, for every edge (x, s(x)) in G if
s(x) happens to be someone else’s first job then prune the edge (x, s(x)). Second, iteratively find
an applicant x with degree 1, let p be x’s unique neighbor, add (x, p) to the matching, and remove
x and p from G′. All these modifications can be carried out in O(n+m) time. If at the end some
applicant has degree 0 there is no well-formed matching, and consequently no popular matching.
Otherwise every applicant has degree 2 and the set of f -jobs is disjoint from the set of s-jobs, thus
we can apply directly the linear time algorithm of Abraham et al. [4].

Theorem 3. In the case of strict preferences lists, we can find a weighted popular matching, or
determine that none exists, in O(n+m) time.

Recall that at the beginning we modified the instance by adding dummy jobs at the end of
every applicant’s list. A natural objective would be to find a popular matching that minimizes the
number of applicants getting a dummy job. The cited work also shows how to do this in O(n+m)
time; thus, it carries over to our problem.

3 Preference lists with ties

Needless to say, if ties are allowed in the preference lists, the solution from the previous section
does not work anymore. We will work out an alternative definition for first and second jobs which

7

will lead to a new definition of well-formed matchings. Like in the case without ties if a matching
is popular then it must be well-formed, but the converse does not always hold. We will show how
to prune some edges that cannot be part of any popular matching to arrive at the goal that every
well-formed matching in this pruned graph is popular.

Let us start by revising the notion of first job. For x ∈ C1, let f(x) be the set of jobs on x’s
list with the highest rank. Let G1 be the graph with edges between applicants in C1 and their first
jobs. We say a job/applicant is critical in Gi if it is matched in every maximum matching of Gi,
otherwise we say it is non-critical. For x ∈ Ci, define f(x) as the highest ranked jobs on x’s list
which are non-critical in all G<i. The graph Gi includes Gi−1 and edges between applicants in Ci

and their first jobs. We note that a critical node in Gi may be non-critical in some G>i.
If x ∈ Ci is non-critical in Gi we define s(x) as the highest ranked set of jobs on x’s list which

are non-critical in all G≤i. If x is critical in Gi then s(x) is the empty set.

Observation 4. For every applicant x ∈ A we have f(x) ∩ s(x) = ∅.

Essentially, when x ∈ Ci is non-critical in Gi we can show that all the jobs in f(x) are critical,
therefore f(x) and s(x) are always disjoint.

Definition 5. A matching M is well-formed if, for all 1 ≤ i ≤ k, the matching Mi = M ∩ E[Gi]
is maximum in Gi, and every applicant x is matched within f(x) ∪ s(x).

Notice that when there are no ties all these definitions are identical to the ones given in the
previous section. Before proceeding to prove Theorem 1 in the context of ties we review some basic
notions of matching theory.

The following definitions are all with respect to a given matching M . An alternating path is a
simple path that alternates between matched and free edges. An augmenting path is an alternating
path that starts and ends with a free vertex. An exchange path is an alternating path that start
with a matched edge and ends with a free vertex. We can update M along an augmenting or
exchange path P to get the matching M ⊕ P , the symmetric difference of M and P .

In our proofs we will make use of the following property of non-critical nodes, which is a part
of the Gallai-Edmonds decomposition [14].

Lemma 3. Let G be a bipartite graph and let v be a non-critical vertex. Then, in every maximum
matching M of G there exists an alternating path starting at v and ending with a free vertex.

Proof. If v is free in M , the lemma is trivially true, so assume that v is matched in M . Since v
is non-critical there is a maximum matching O in which v if free. In O ⊕M there must be an
alternating path w.r.t. M of even length that starts at v and ends with a vertex free in M .

The next two lemmas prove Theorem 1 under the new definition of well-formed.

Lemma 4. Let M be a popular matching. Then, for all i, Mi = M ∩ E[Gi] is maximum in Gi.

Proof. By induction on i. For the base case, suppose that M1 is not maximum, then there must
be an augmenting path in G1 w.r.t. M1 starting at x ∈ C1 and ending at p. If p is free in M
or p = M(x) then we can update M along the path1 to improve the satisfaction by w1, so let
us assume that there exists y = M(p) 6= x. If y ∈ Cs>1 then updating M along P gives us an

1While P is augmenting w.r.t. Mi, it may not be augmenting w.r.t. M since x could be matched in M . This can
be easily fixed by removing (x,M(x)) from M before doing the update. For the sake of succinctness, from now on
we assume that such implicit fix always occurs when updating along a path that ends with a free edge leading to a
matched node.

8

improvement in satisfaction of w1 − ws > 0. Suppose then that y ∈ C1, and let q be a job in f(y).
Since (y, p) /∈ M1, applicant y must prefer q over p. If the q belongs to P then we can create an
alternating cycle by replacing the section of P before q with the edge (y, q). Updating the matching
along the cycle improves the satisfaction by w(y). If q does not belong to P then appending (y, q)
to P and updating along the resulting path changes the satisfaction by w1 + w1 − w(M(q)) > 0.
In every case we reach the contraction that M is not popular, thus M1 must be maximum in G1.

For the inductive step, if Mi is not maximum we can find like before an augmenting path P
starting at x ∈ Ci and ending at a job p. If p is free in M or M(p) ∈ C>i updating along P
improves the satisfaction, so assume that p is matched in M to y ∈ Cs≤i − x. Let q be a job in
f(y), if q belongs to P then we can construct an alternating cycle to improve the satisfaction, so
assume that q /∈ P . Since (y, p) /∈ Mi, we know that p /∈ f(y); by inductive hypothesis p must be
strictly worse than q. We update M along P to get M ′; note that y is free in M ′. By inductive
hypothesis Ms is maximum in all Gs<i, therefore M ′

s is maximum in Gs as well. There are three
cases to consider. First, if y ∈ C1 then we can promote y to q and demote whoever is matched to
q, the total change in satisfaction is wi+w1−w(M ′(q)) > 0. Second, consider the case y ∈ C1<s<i.
Note that q cannot be free in M ′

s, as this would contradict the maximality of M ′
s. If M ′(q) ∈ Cs

we are done since promoting y to q gives a total change in satisfaction of wi + ws − ws > 0 w.r.t.
M , so assume M ′(q) ∈ C<s. By definition of f(y), q is non-critical in Gs−1. Thus we can find an
exchange path Q w.r.t. M ′

s−1 starting at q and ending at a job r free in M ′
s−1. Note that r cannot

be free in M ′
s, otherwise M ′

s would not be maximum in Gs, thus M(r) ∈ Cs. Updating M ′ along
Q to free p and promoting y to p gives us a new matching M ′′. The satisfaction of M ′′ w.r.t. M is
wi + ws − ws > 0, thus M cannot be popular.

Finally, we need to consider the most involved case, namely, y ∈ Ci. Note that we cannot use
the argument given above because M ′

i need not be maximum in Gi. In order to fix this let us
forget about M ′ and consider a matching O maximum in Gi; furthermore, assume O minimizes
|Mi ⊕ O|. The set Mi ⊕ O is made up of paths P1, P2, . . . , Pa, each of which is augmenting w.r.t.
Mi. By inductive hypothesis M is maximum in G<i so each Pj starts at xj ∈ Ci and end at some
pj, both free in Mi. Let yj be M(pj) and qj be a job in f(yj). Assume yj ∈ Ci − {x1, . . . , xa}
and qj /∈ Pj , otherwise we fall in one of the cases we have already covered. Now suppose that q1
belongs to some path Ph for h 6= 1; then we can replace the portion of the path of Ph before q1
with the edge (y1, q1) update M along the resulting path and then update along P1 to improve the
satisfaction by wi + wi − wi > 0. Thus we can assume that q1 /∈ Ph for all h. At this point we
can safely update M along all paths P1, . . . , Pa to get a matching M ′, which is maximum in G≤i.
Finally, we can use the argument above on y1. Namely, find an exchange path Q w.r.t. Mi−1 from
q1 to r; if r 6= M ′(xi) for all i then the same argument applies. On the other hand, if r = M ′(xi)
for some i then give xi its original job M(xi), update the matching along Q and promote y1 to q,
which improves the satisfaction by wi. Notice that in the last exchange we assumed M(xi) was
free in M ′, or equivalently, that M(xi) 6= pj for all j and i. Indeed, if M(xi) = pj for some j and i
then we can join together Pj and Pi using the edge (xi, pj) and update M along the resulting path
to improve the satisfaction by wi + wi + wi − wi > 0.

In every case we have reached a contradiction, thus the lemma follows.

Lemma 5. Let M be a popular matching, then every applicant x is matched within f(x) ∪ s(x).

Proof. Recall that s(x) is undefined only if every job in x’s preference list is critical in some G≤i.
But l(x), x’s the last resort job, is critical in Gi if and only if f(x) = {l(x)}, in which case
M(x) = l(x) by Lemma 4. Let us assume then that s(x) is well defined.

For the sake of contradiction assume that the lemma does not hold for x ∈ Ci. Note that all

9

jobs which x prefers over s(x) are critical in Gi, among these, only f(x) have an edge to x in Gi.
Thus if Lemma 4 is to hold, M(x) must be strictly worse than any job p ∈ s(x).

Consider the applicant y = M(p). If y ∈ Cs>i then y can be demoted and x promoted to p
to improve the satisfaction by wi − ws > 0. If y ∈ C1<s≤i, the job p is strictly worse than any
job q ∈ f(y). Using the fact that q is non-critical in Gs−1 we find an alternating path in Ms−1

to a free (in Ms−1) job r which must be matched in Ms to z ∈ Cs. Updating along the path and
promoting x to p improves the satisfaction by wi +ws −ws > 0. The case where y ∈ C1 is simpler
as we can promote y to q and demote whoever was matched to q; the change in satisfaction is
wi + w1 − w(M(q)) > 0.

This finishes the proof of Theorem 1 under the new definition of well-formed matching. Thus
every popular matching is contained in G, the graph consisting of those edges between applicants
and their first and second jobs. Because the new definition of well-formed matching generalizes the
one for strict preferences, we again encounter the problem that not every well-formed matching is
popular. We proceed as before, pruning certain edges which are not part of any popular matching.
Finally, we show that every well-formed matching in the pruned graph is popular.

It is time to revise the definition of promotion path. Let M be a well-formed matching. Our
promotion path starts at p0, a job critical in Gi0 , but non-critical in all G<i0 . We find an alternating
path in Gi0 w.r.t. Mi0 from p0 to x0 which starts and ends with a matched edge; we augment along
the path to get M ′. Let p1 be a job which according to x0 is better than f(x0) (or as good, but
not in f(x0)), moreover let p1 be critical in Gi1 , but non-critical in all G<i1 . Since x0 ∈ C>i1 , the
matching M ′

j is still maximum in G≤i1 . Find a similar alternating path in Gi1 w.r.t. M ′
i1

from p1
to x1, update M ′, and so on. Finally, every applicant xi is assigned to pi+1, except xs, the last
applicant in the path, who is demoted. The cost of the path is defined as the satisfaction of M
with respect to M ′, or equivalently, w(xs) minus the weight of those applicants xi<s who find pi+1

strictly better than f(xi) (recall that pi+1 may be as good as, but not in f(xi)). This is the price
to pay, in terms of satisfaction, to free p0 using the path.

To see why this is the right definition, let M be a well-formed matching and M ′ be any other
matching. Suppose y prefersM ′ over M , we will construct a promotion path starting at p0 = M ′(y).
Since M is well-formed, p0 must be critical; let i0 be the smallest i such that p0 is critical in Gi.
Taking Mi0⊕M ′

i0
we can find an alternating path that starts with (p0,M(p0)) and ends at x0 which

is free in M ′
i0
—the path cannot end in a job that is free in Mi0 because p0 is critical. Either x0

gets a worse job under M ′, in which case the promotion path ends, or gets a job p1 which is better
than f(x0), or just as good but does not belong to f(x0). We continue growing the path until we
run into an applicant xs who prefers M over M ′, notice that since ij > ij+1 we are bound to find
such an applicant. Now, if the cost of the path is less than w(y) then we know the well-formed
matching M is not popular. On the other hand, if the cost of the path induced by y is at least
w(y), for all such y, we can claim that M ′ is not more popular than M .

We are ready to discuss the algorithm prune-ties for pruning the graph in the presence of ties,
which is given in Figure 3. In the ith iteration we prune some edges incident to applicants in Ci

making sure these edges do not belong to any popular matching, and label those jobs that became
critical in Gi such that Invariant 2 holds.

Invariant 2. Let p be a critical job in Gi, and let M be any matching in the pruned graph and
maximum in all Gj≤i, i.e., Mj = M ∩ E[Gj] is maximum in Gj for all j ≤ i. A minimum cost
promotion path out of p w.r.t. M has cost exactly λ(p).

In the first iteration we do not prune any edges from G1. Let p be a critical job in G1, and
M be a maximum matching in G1. Every alternating path w.r.t. M out of p must end in some

10

prune-ties(G)
1 All critical jobs in G1 get a label of w1.
2 for i = 2 to k
3 for x ∈ Ci

4 if λmin(x, f(x)) < wi

5 then return “no popular matching exists”
6 for x ∈ Cj≤i non-critical in Gi

7 if λmin(x, f(x)) < wj + wi or λequiv(x) < wi

8 then prune the edges between x and f(x)
9 for p critical in Gi, but non-critical in G<i

10 let S ← {x | ∃ alternating path from x to p}
11 λ(p)← minx∈S

{

wi, λmin(x, f(x)) −w(x), λequiv(x)
}

12 for x ∈ A such that λmin(x, s(x)) < w(x)
13 prune the edges between x and s(x)

Figure 3: Pruning the graph with ties.

applicant in C1, therefore, Line 1 sets λ(p) = w1.
Recall that λmin(x, p) = minq λ(q) where q ranges over jobs strictly better than p in x’s preference

list. In addition, let us define λequiv(x) = minq λ(x) where q ranges over jobs not in f(x) that have
the same rank as other jobs in f(x).

For the ith iteration we assume Invariant 2 holds for those jobs critical in some G<i. Suppose
there exists an applicant x ∈ Ci such that λmin(x, f(x)) < wi. Then in every well-formed matching
in the pruned graph we can find a promotion path to free a job p that x prefers over f(x), and then
promote x to p. This improves the satisfaction by wi − λmin(x, f(x)) > 0. Therefore, no popular
matching exists. Lines 3–5 check for this.

Consider a vertex x ∈ Cj≤i non-critical in Gi. We claim that if λmin(x, f(x)) < wj + wi or
λequiv(x) < wi then the edges (x, f(x)) cannot be part of any popular matching and can thus be
pruned. Indeed, let O be a matching maximum in all G≤i and included in the pruned graph such
that O(x) ∈ f(x); we will show that O cannot be a subset of any popular matching. Because x is
non-critical in Gi we know there is an exchange path w.r.t. O from x to some applicant y ∈ Cs

such that j ≤ s ≤ i, for otherwise Os would not be maximum in Gs. Augment along the path to
get O′. While the matching O′ may not be maximum in Gj (in case j < s), it is still maximum in
all G<j . Invariant 2 tells us we can find a promotion path to free a job p that x can be promoted
to; note that because y ∈ Cs≥j the changes needed to free p do not affect y. This improve the
satisfaction of the matching, therefore O cannot be included in any popular matching. Since the
edges (x, f(x)) cannot be part of any popular matching they can safely be pruned. Lines 6–8 check
this.

Finally, we must compute λ(p) for jobs p that are critical in Gi, but non-critical in all G<i. A
promotion path out of p must begin with an alternating path starting and ending with a matched
edge, going from p to some applicant x. Since p is non-critical in Gi−1 there must be alternating
path in Gi to some applicant in Ci, thus λ(p) ≤ wi. Note that if x ∈ Cj is non-critical then
λmin(x, f(x)) ≥ wj +wi and λequiv(x) ≥ wi, otherwise the edges (x, f(x)) would have been pruned
earlier. We shall explore alternating paths out of p into x that start and end with a matched edge
in some arbitrary matching Mi maximum in Gi. In fact we only care about reaching applicants x

11

critical in Gi. Since Mi is an arbitrary matching, we must argue that a similar path can always
be found in any matching O included in the pruned graph, maximum in all G≤i. To show this,
augment along the path to get M ′

i , the resulting matching is not maximum in Gi any more. Take
M ′

i⊕O, and consider the alternating path out of p. This path must end at an applicant y, matched
in Oi, but free in M ′

i—otherwise, if it ends in a job free in Oi then p is non-critical. For the sake
of contradiction suppose that y 6= x. Since x is critical, there must be a path in M ′

i ⊕Oi from x to
z, such that z is free in Oi; which contradicts the fact that x is critical in Gi. Thus we set λ(p) to
the minimum of wi, λmin(x, f(x))−w(x) and λequiv(x), for those applicants x that can be reached
from p with an alternating path starting and ending with a matched edge. Lines 9–11 do this.

The last thing to consider are non-critical applicants x who may get their second job. We can
promote them to a job p strictly better than s(x) and start a promotion path from there. If such
exchange improves the satisfaction then the edges (x, s(x)) must be pruned. This is done in Lines
12–13.

Theorem 4. Let G′ the resulting graph after running prune-ties. Then a matching M is popular
if and only if M is well-formed and M ⊆ G′.

We have shown that if there exists a popular matching it must be well-formed and be contained
in G′. The proof that every well-formed matching M in the pruned graph is popular is similar to
that for strict preferences. Let M ′ be any other matching, we argue that M ′ is not more popular
than M . Suppose x prefers M ′ over M , this induces a promotion path out of M ′(x) with respect
to M . If x gets f(x) in M then the cost of such a path is at least wi. Otherwise, M(x) = s(x) and
Lines 12-13 make sure the cost of such promotion path is at least wi. Since this holds for every
applicant x, M ′ cannot be more popular than M .

So far we have been concerned with showing the correctness of the algorithm, in the next section
we show how to implement these ideas efficiently.

3.1 Implementation

First we need to compute f(x) and s(x) for every applicant x ∈ A; we do so in iterations. For
x ∈ C1 computing f(x) is trivial. Now build G1 and find a maximum matching M1 in G1. Using
the algorithm of Hopcroft and Karp [7] this can be done in O(min(

√
n, |M1|)m) time. The set of

critical jobs in G1 can be computed in O(m) time by growing a Hungarian tree [13] from those jobs
that are free in M1: By Lemma 3 those jobs that are reachable from a free job by an alternating
path must be non-critical and those jobs that are not reachable from any free job must be critical.
Using this information compute s(x) for all x ∈ C1 and f(y) for all y ∈ C2. Now construct G2,
augment M1 to get a maximum matching M2 in G2, and so on. Using Hopcroft-Karp to compute
Mi+1 from Mi takes O(min(

√
n, |Mi+1|−|Mi|)m) time. Adding up over all categories we get overall

O(min(k
√
n, n)m) time.

The next lemma argues that prune-ties can be implemented to run in O(km+ n log n) time.
The procedure makes use of the matchings M1, . . . ,Mk found while computing f(x) and s(x) and
the list of critical jobs in each Gi.

Lemma 6. Given a matching Mi maximum in Gi, the ith iteration of prune-ties can be carried
out in O(m+ |Ci| log n) time.

Proof. At the beginning of the ith iteration we have available λ(p) for all jobs that are critical in
some G<i. Using this information it is easy to compute λmin(x, f(x)) and λequiv(x) in O(degH(x))
time for each x ∈ Ci. With this information, Lines 3–8 can be done in O(m) time.

12

Note that for each p critical in Gi, but non-critical in all G<i, Lines 10-11 can be implemented
in linear time: Grow a Hungarian tree w.r.t. Mi out of p, keep track of the applicants x that can
be reached from p, and find the one minimizing min{wi, λmin(x, f(x)), λequiv(x)}. But we would
like to carry out this computation for all such jobs within the same time bounds. This can be done
provided the applicants x are sorted in non-decreasing value of min{wi, λmin(x, f(x)), λequiv(x)}:
Instead of growing Hungarian trees from the jobs we grow Hungarian trees from the matched
applicants in sorted order. When growing a tree out of applicant x we mark the nodes we visit and
do not explore edges that lead to nodes that have already been marked. Suppose that job p critical
in Gi was marked by applicant x then clearly λ(p) = min{wi, λmin(x, f(x)), λequiv(x)}. Because a
node is never explored after it has been marked, the overall work is O(m). If we have a sorted list
of applicants in C<i adding the applicants Ci takes O(|Ci| log n) time if we maintain the list using
a balanced search tree.

Finally, after G′ is computed and pruned we must find a well-formed matching in it. This prob-
lem can be reduced to finding a rank-maximal matching which can be done in timeO(min(k

√
n, n)m)

[9]. Edges between x ∈ Ci and f(x) get a rank of i, and edges from applicants to their second job
get a rank of k+1. If the resulting rank-maximal matching is well-formed, i.e., applicant complete
and maximum in all Gi graphs, then we have a popular matching, otherwise no popular matching
exists.

Theorem 5. In the presence of ties we can find a weighted popular matching or determine that
none exists in O(min(k

√
n, n)m) time.

Finding a popular matching of maximum cardinality, i.e., one that minimizes the assignment of
dummy last-resort jobs, can the done within the same time bounds. Note that f(x) = {l(x)} then
the pair (x, l(x)) will be in every well-formed matching so there is no point in minimizing these
edges. If s(x) = {l(x)} we can give the edge (x, l(x)) a rank of k + 2. Finding a rank-maximal
matching in the new instance gives us a popular matching with maximum cardinality.

4 Conclusion

We have developed efficient algorithms for finding weighted popular matchings, a natural general-
ization of popular matchings. It would be interesting to study other definitions of the more popular
than relation. For example, define the satisfaction of M over R to be the sum (or any linear com-
bination) of the differences of the ranks of the jobs each applicant gets in M and R. Finding a
popular matching under this new definition can be reduced to maximum weight matching, and vice
versa. Defining the satisfaction to be a positive linear combination of the sign of the differences
we get weighted popular matchings. We leave as an open problem to study other definitions that
use a function “in between” these two extremes. Ideally, we would like to have efficient algorithms
that can handle any odd step function.

Acknowledgment: Thanks to David Manlove and Elena Zotenko for useful comments. Special
thanks to Samir Khuller for suggesting the notion of weighted popular matchings and providing
comments on earlier drafts.

References

[1] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from random
endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.

13

[2] D. Abraham, N. Chen, V. Kumar, and V. S. Mirrokni. Assignment problems in rental markets.
In Proceedings of the 2th International Workshop on Internet and Network Economics (WINE),
pages 198–213, 2006.

[3] D. J. Abraham, K. Cechlarova, D. F. Manlove, and K. Mehlhorn. Pareto optimality in house
allocation problems. In Proceedings of the 15th International Symposium on Algorithms and
Computation (ISAAC), pages 3–15, 2004.

[4] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 424–432,
2005. To appear in SIAM Journal of Computing.

[5] D. J. Abraham and T. Kavitha. Dynamic matching markets and voting paths. In Proceedings
of the 10th Scandinavian Workshop on Algorithm Theory (SWAT), pages 65–76, 2006.

[6] P. Gardenfors. Match making: assignments based on bilateral preferences. Behavioural Sci-
ences, 20:166–173, 1975.

[7] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matching in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

[8] A. Hylland and R. Zeeckhauser. The efficient allocation of individuals to positions. Journal
of Political Economy, 87(2):293–314, 1979.

[9] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal matchings.
ACM Transactions on Algorithms, 2(4):602–610, 2006.

[10] T. Kavitha and C. D. Shah. Efficient algorithms for weighted rank-maximal matchings and
related problems. In Proceedings of the 17th International Symposium on Algorithms and
Computation (ISAAC), pages 153–162, 2006.

[11] M. Mahdian. Random popular matchings. In Proceedings of the 7th ACM Conference on
Electronic Commerce (EC), pages 238–242, 2006.

[12] D. Manlove and C. Sng. Popular matchings in the capacitated house allocation problem. In
Proceedings of the 14th Annual European Symposium on Algorithms (ESA), pages 492–503,
2006.

[13] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Publications, Inc.,
1998.

[14] A. Schrijver. Combinatorial Optimization. Springer-Verlag, 2003.

[15] Y. Yuan. Residence exchange wanted: a stable residence exchange problem. European Journal
of Operational Research, 90:536–546, 1996.

[16] L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of Economic
Theory, 52(1):123–135, 1990.

14

	Introduction
	Related work

	Strict preference lists
	Implementation

	Preference lists with ties
	Implementation

	Conclusion

