
18

Model-Driven Engineering of Self-Adaptive Software with EUREMA

THOMAS VOGEL and HOLGER GIESE, Hasso Plattner Institute, University of Potsdam

The development of self-adaptive software requires the engineering of an adaptation engine that controls
the underlying adaptable software by feedback loops. The engine often describes the adaptation by runtime
models representing the adaptable software and by activities such as analysis and planning that use these
models. To systematically address the interplay between runtime models and adaptation activities, runtime
megamodels have been proposed. A runtime megamodel is a specific model capturing runtime models and
adaptation activities. In this article, we go one step further and present an executable modeling language for
ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation engines by follow-
ing a model-driven engineering approach. We provide a domain-specific modeling language and a runtime
interpreter for adaptation engines, in particular feedback loops. Megamodels are kept alive at runtime and
by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically
adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops explicit
at a higher level of abstraction and it enables solutions where multiple feedback loops interact or operate on
top of each other and self-adaptation co-exists with off-line adaptation for evolution.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques; D.2.9
[Software Engineering]: Management; D.2.10 [Software Engineering]: Design

General Terms: Design, Languages

Additional Key Words and Phrases: Model-driven engineering, modeling language, models at runtime, model
interpreter, self-adaptive software, feedback loops, layered architecture, software evolution

ACM Reference Format:
Vogel, T. and Giese, H. 2014. Model-driven engineering of self-adaptive software with EUREMA. ACM Trans.
Auton. Adapt. Syst. 8, 4, Article 18 (January 2014), 33 pages.
DOI:http://dx.doi.org/10.1145/2555612

1. INTRODUCTION
Self-adaptation capabilities are required for many modern software systems that are
self-aware, context-aware, mission-critical, or ultra-large-scale to dynamically adapt
their configuration in response to changes in the system itself, the environment, or
the requirements [Cheng et al. 2009; de Lemos et al. 2013]. The development of self-
adaptive software following the external approach [Salehie and Tahvildari 2009] sepa-
rates the software into the adaptable software and the adaptation engine. In between
both, a feedback loop ensures that the adaptation engine dynamically adjusts the
adaptable software if needed. This separation decouples the engine from the adapt-
able software but it makes the feedback loop a crucial element of the overall software
architecture [Shaw 1995; Müller et al. 2008; Brun et al. 2009] and therefore essential
for engineering an adaptation engine in the external approach.

Authors’ addresses: T. Vogel (corresponding author) and H. Giese, Hasso Plattner Institute for Software
Systems Engineering, University of Potsdam, Germany; email: thomas.vogel@hpi.uni-potsdam.de

Copyright:
c© Authors/ACM, 2014. This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in ACM Trans. Auton. Adapt. Syst. 8, 4,
Article 18, (January 2014). DOI: http://doi.org/10.1145/2555612

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.

ar
X

iv
:1

80
5.

07
35

3v
1 

 [
cs

.S
E

] 
 1

7 
M

ay
 2

01
8

http://doi.org/10.1145/2555612


18:2 T. Vogel and H. Giese

In this article, we present a model-driven engineering (MDE) approach called
ExecUtable RuntimE MegAmodels (EUREMA) that enables the specification and exe-
cution of adaptation engines for self-adaptive software with multiple feedback loops.
The EUREMA language eases the development of adaptation engines by supporting
a domain-specific modeling solution and the EUREMA runtime interpreter supports
the execution of adaptation engines and feedback loops. Moreover, EUREMA explic-
itly maintains the runtime models used within an adaptation engine, the interplay
between these models, and the adaptation activities working on these models. Thus,
the maintenance and evolution of runtime models and adaptation activities continues
at runtime beyond the initial development of the software.

The EUREMA modeling language is specific for adaptation engines and it provides
two types of diagrams to specify them. A behavioral feedback loop diagram (FLD) is
used to model a feedback loop or individual adaptation activities and runtime models
of a loop. An FLD is considered as a megamodel module specification encapsulating
the details of a partial or complete feedback loop. A structural layer diagram (LD) de-
scribes how the megamodel modules and the adaptable software are related to each
other in an instance situation of the self-adaptive software. Thus, an LD provides
an architectural view that considers feedback loops encapsulated in modules as black
boxes while white-box views are provided by FLDs. Hence, EUREMA models specify
feedback loops and their structuring in adaptation engines. These models make the
feedback loops explicit in the architectural design of self-adaptive software and they
are kept alive at runtime and executed by an interpreter. This supports the seamless
design, development, execution, and even adaptation of feedback loops.

This article discusses EUREMA with its following contributions: (a) we thoroughly
discuss requirements for adaptation engines, (b) feedback loops and their coordinated
execution are explicitly modeled, (c) a feedback loop’s knowledge is explicitly cap-
tured by runtime models, (d) EUREMA models are kept alive at runtime and they
are directly executed by an interpreter, which leverages adaptive feedback loops in
layered architectures, (e) self-adaptation and off-line adaptation co-exist for evolv-
ing self-adaptive software, and (f) we evaluate EUREMA by modeling state-of-the-art
approaches to self-adaptive software from literature and by quantifying the runtime
efficiency of the interpreter.

This article is a revised and extended version of [Vogel and Giese 2012a] that in-
troduced the initial concepts of EUREMA and therefore only addressed the contribu-
tions (b), (c), and (d). In contrast, this article refines them by extending the language
with layer diagrams (LDs) including feedback loop triggers, and by proposing a sound
approach for layered architectures. Therefore, this article entirely presents the novel
contributions (a), (e), and (f).

The rest of the article is structured as follows. Foundations and requirements for
self-adaptive software are discussed in Section 2 and related work in Section 3. We
introduce the EUREMA concepts as proposed by [Vogel and Giese 2012a] in Section 4
and discuss the novel concepts in Section 5. We present technical details in Section 6,
discuss design decisions and the requirements coverage in Section 7, and evaluate
EUREMA in Section 8. Finally, we conclude the article and outline future work.

2. TERMINOLOGY, CONCEPTS, AND REQUIREMENTS
In this section, we clarify relevant terminology and concepts of self-adaptive software
and we discuss core requirements for engineering such software. As the external ap-
proach is typically adopted in self-adaptive software [Salehie and Tahvildari 2009], we
consider this approach as depicted in Figure 1. It assumes a basic architecture that
splits the self-adaptive software into the adaptation engine and the adaptable software
while the former one controls (sensing and effecting) the latter one. The adaptable

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:3

Adaptable Software
(Domain Logic)

Sensing Effecting

Adaptation Engine
(Adaptation Logic)

Self-Adaptive Software

Fig. 1. External approach

Monitor

Knowledge

Analyze Plan

Execute

Adaptable Software
Sensors Effectors

Adaptation Engine

Fig. 2. MAPE-K

Monitor

Reflection
Models

Analyze Plan

Execute

Evaluation Models Change Models

Monitoring Models Execution Models

Fig. 3. Runtime Models

software realizes the domain logic and the engine implements the adaptation logic as
a feedback loop, which constitutes self-adaptation.

Thus, the engineering of adaptation engines and feedback loops is essential for the
external approach. This requires a modeling language and techniques to design, im-
plement, run, and maintain such an engine with its feedback loops. In the following,
we discuss corresponding requirements (R) for self-adaptive software, particularly for
a modeling language.

Feedback Loops. Separating the adaptation engine from the adaptable software
makes the feedback loop between them a crucial element of the architecture, which
has to be made explicit in the design of self-adaptive software [Brun et al. 2009;
Müller et al. 2008; Shaw 1995]. Thus, feedback loops have to be explicitly modeled
(R1). A more detailed view of the feedback loop is provided by the MAPE-K cycle
(Monitor/Analyze/Plan/Execute-Knowledge) [Kephart and Chess 2003] depicted in
Figure 2. The feedback loop is refined to four adaptation activities sharing knowl-
edge. The adaptable software is monitored and analyzed, and if changes are required,
adaptation is planned and executed to this software.

As sketched in Figure 2, the modeling language should support the specification of
adaptation activities that form a feedback loop. This includes the intra-loop coordina-
tion [Vromant et al. 2011] (R2) by means of the control flow for these activities, which
makes the execution dependencies between individual activities explicit. Moreover,
the language should address when a feedback loop should be executed, for example, by
capturing triggering conditions (R3).

Additionally, multiple feedback loops have to be considered [Kephart and Chess
2003; Weyns et al. 2012] to handle different concerns such as failures and performance
[Kephart et al. 2007; Vogel and Giese 2010] or to decentralize control [Weyns et al.
2013]. The language should therefore support the modeling of multiple, interacting
feedback loops. This imposes the need for inter-loop coordination [Vromant et al. 2011]
(R4) and distribution (R5) of feedback loops. Moreover, besides specifying feedback
loops, the language should support the concurrent execution (R6) of the feedback loops
and activities based on the specifications.

Knowledge. In MAPE-K, the adaptation activities are the computations performing
self-adaptation and the knowledge refers to data used by these computations. This
motivates the explicit treatment of the knowledge that is refined in our case to a set
of runtime models. While Blair et al. [2009] consider only runtime models that reflect
the adaptable software, we take a broader perspective and consider all models that
are used by any adaptation activity. Thus, analysis rules and adaptation strategies
are examples for further runtime models. Based on a literature review, we proposed
a categorization of runtime models for feedback loops in [Vogel et al. 2011], which is
depicted in an extended version in Figure 3.

Reflection Models reflect the adaptable software and its environment, and they
are updated by monitoring the software and environment. Thereby, Monitoring Models

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:4 T. Vogel and H. Giese

map system-level observations to the abstraction level of reflection models. The reflec-
tion models are analyzed to identify adaptation needs by applying Evaluation Models
that, for example, define constraints on reflection models. If adaptation needs have
been identified, the planning activity devises a plan prescribing the adaptation on the
reflection models. Planning is specified by Change Models describing the adaptable
software’s variability space. Evaluation models such as utility preferences guide the
exploration of this space to find an appropriate adaptation. Finally, the execute ac-
tivity enacts the planned adaptation on the adaptable software based on Execution
Models that refine model-level adaptation to system-level adaptation.

Evaluation and change models do not have to be strictly separate models, which is
exemplified by event-condition-action rules that address the analyze (evaluating the
condition) and the plan (applying the actions) activities in one step. Thus, we combine
them to Adaptation Models [Vogel and Giese 2012b]. Monitoring and execution models
are concerned with the synchronization of the adaptable software and the reflection
models. This is known as the causal connection [Maes 1987] such that we consider
them as Causal Connection Models.

This categorization shows that different kinds of runtime models are simultaneously
used in a feedback loop, which should be captured by a modeling language for such
loops (R7).

Sensors and Effectors. The adaptation engine and the adaptable software are con-
nected by sensors and effectors (cf. Figure 2). Thus, the modeling language has to cover
when the monitor and execute activities that use the sensors and effectors are acti-
vated to maintain the causal connection between the reflection models and the adapt-
able software. Since sensors and effectors usually depend on the specific adaptable
software, we—and others like Garlan et al. [2004] and Morin et al. [2009b]—assume
that they are provided by the software and that most of their details are hidden in the
implementation of the monitor and execute activities. This assumption is motivated
by programming language and middleware platforms that have recognized the need
for runtime management by supporting the development of sensors and effectors or al-
ready providing them through application programming interfaces. Examples are the
Java Management Extensions (JMX) or the OSGi platform.

Depending on the available sensors and effectors, parameter or structural adapta-
tion, or a combination of both [McKinley et al. 2004] can be realized. Parameter adap-
tation changes variables and structural adaptation the architecture of the adaptable
software. Focusing on software architectures, we especially require support for struc-
tural adaptation (R8).

Layered Architecture. Feedback loops might have to operate on top of each other,
which results in layers of feedback loops, in order to realize adaptive [Isermann et al.
1992; Kokar et al. 1999] or hierarchical control schemes [Findeisen et al. 1980; Hester-
meyer et al. 2004], robot software [Gat 1997], or the reference architecture of Kramer
and Magee [2007].

In such layered architectures, a feedback loop at a higher layer can adapt the feed-
back loop at the layer below. Therefore, some form of reflection of the lower-layer feed-
back loop has to be provided at runtime enabling the adaptation of this loop [Andersson
et al. 2009].

Thus, the modeling language should leverage layered architectures by supporting
adaptable feedback loops and reflection models representing these loops for structural
adaptation (R9). In this context, declarative and procedural reflection [Maes 1987]
should be supported. In declarative reflection, a separate representation of the pro-
gram is maintained and used for meta-computations such as adaptation. Procedural
reflection maintains no separate representation and uses directly the program for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:5

meta-computations. Finally, the language should support feedback loops that adapt
lower-layer loops by operating on the reflection models.

Offline Adaptation. Though self-adaptation promises that the software adjusts it-
self by automating adaptation activities otherwise performed offline for evolution, we
cannot expect that software is able to cope with all needs for evolution and to fully
automate all kinds of offline activities. Thus, besides an adaptation engine realizing
(online) self-adaptation, the engine’s co-existence with offline adaptation is required
[Gacek et al. 2008; Andersson et al. 2013]. Similar to Andersson et al. [2013], we
consider an adaptation activity to be offline if it is performed externally to the self-
adaptive software as typically done today in development environments. If an activity
is performed internally to the software, we refer to online activities. Hence, the lan-
guage and its runtime environment should support the co-existence of online and
offline adaptation for evolving self-adaptive software (R10).

3. STATE OF THE ART IN ENGINEERING ADAPTATION ENGINES

In the following, we review state-of-the-art approaches for engineering adaptation en-
gines with respect to the requirements discussed in the previous section.

There exists a lot of work on feedback loops to control systems, like in autonomic
computing that applies control theory to parameter adaptation of software [Hellerstein
et al. 2004; Kokar et al. 1999]. However, self-adaptation oftentimes considers dynamic
software architectures [McKinley et al. 2004] (R8), which prevents a direct application
of control theory and requires new means for engineering. Popular means are frame-
works that use some form of models [Salehie and Tahvildari 2009]. Such frameworks
employ models to specify self-adaptation as mappings of assertions to adaptation ac-
tions [Schmidt et al. 2008] or as transitions between configurations of the adaptable
software [Bencomo and Blair 2009]. These models are used for generating partial adap-
tation engines to ease development. However, the resulting engines supporting single
feedback loops are structurally static and pre-defined by the frameworks. The models
do not make the feedback loop explicit (R1) and they are not kept alive at runtime (R7)
to execute (R6) or dynamically adjust (R9) the engine.

In contrast, frameworks such as Rainbow [Garlan et al. 2004], MADAM [Floch et al.
2006], MUSIC [Rouvoy et al. 2009], DiVA [Morin et al. 2009a; Morin et al. 2009b], or
GRAF [Amoui et al. 2012] maintain runtime models that specify the adaptation and
capture the feedback loop’s knowledge (R7). These models can be modified at runtime
by engineers, especially to replace adaptation strategies to adjust the adaptation logic.
However, support for dynamically adjusting a feedback loop (R9) is limited since these
frameworks support only single loops, whose structuring of adaptation activities can-
not be adjusted in contrast to specific models consumed by the activities. Additionally,
the runtime models do not explicitly specify feedback loops (R1) because these frame-
works prescribe single feedback loops and just offer customization points, like to inject
adaptation strategies. This is motivated by their focus to reduce efforts for developing
adaptation engines at the expense of limited flexibility. Thus, when developing a spe-
cific self-adaptive software, these frameworks do not support feedback loops that are
entirely and individually designed by engineers for the specific case.

All the approaches discussed so far do not support adaptation engines with multiple
feedback loops (R4). Kephart et al. [2007] consider interactions between two feedback
loops that manage competing concerns by a solution “established through trial and
error” [Kephart et al. 2007, p. 24] for one specific case. In contrast, a generic coordi-
nation protocol is presented by de Oliveira et al. [2012], which supports mutual exclu-
sive access to knowledge and the triggering among the loops. However, the protocol is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:6 T. Vogel and H. Giese

restricted as a loop may only trigger another loop from the execute but not from the
monitor, analyze, or plan activities. Thus, directly coordinating, for example, the in-
dividual analyses is not supported. In [Gueye et al. 2012], the coordination between
feedback loops is realized by a controller that decides which loop may exclusively oper-
ate. This decision is specified by coordination models and policies used for generating
the controller. However, these models do not specify the feedback loops and their co-
ordination at the architectural level of self-adaptive software (R1). Other approaches
addressing multiple loops are implementation frameworks that aim at reducing devel-
opment efforts without prescribing a specific coordination mechanism. Vromant et al.
[2011] provide reusable components for the distributed communication among feed-
back loops or adaptation activities. Cheng et al. [2004] provide an abstraction layer
between the adaptable software and the feedback loops, through which all loops have
consistent access and knowledge about the software. However, this layer does not
coordinate the feedback loops.

All of the approaches discussed so far provide specific and pre-defined solutions or
generic implementation support, which results in feedback loops whose structure can-
not be dynamically adapted. Such adaptation is addressed by layered architectures, in
which a higher-layer feedback loop adjusts the feedback loop at the layer below (R9).
In our previous work on Mechatronic UML, we extended UML to specify and generate
a hierarchical scheme that addresses control, reconfiguration, and planning by distinct
feedback loops at different layers [Hestermeyer et al. 2004]. However, the adaptation
is defined before deployment and cannot be dynamically changed, especially since the
models are not kept alive at runtime (R7). Heaven et al. [2009] propose a similar three-
layer architecture, in which plans generated by the highest layer are executed by the
middle layer to generate new configurations for the lowest layer. Thus, a layer adjusts
another layer by providing new plans or configurations. However, the solution focuses
on synthesizing initial plans before deployment but it does not support replanning at
runtime and thus the highest-layer feedback loop adapting the middle layer. In con-
trast, PLASMA [Tajalli et al. 2010] supports adapting the middle layer in a similar
architecture. However, the extent of this adaptation is not clear since the middle layer
architecture is predefined by engineers. The focus of PLASMA is to automate plan gen-
eration and enactment while the employed feedback loops, adaptation activities, and
knowledge are not explicitly modeled for all layers (R1). Finally, the numbers of layers
(three) and feedback loops for each layer (one) seem to be immutable. Thus, multiple
feedback loops for a layer, or (dynamically) changing the number of feedback loops and
layers are not supported.

Such extensive changes can be seen as an evolution of the self-adaptive software
performed through offline adaptation (R10). Gacek et al. [2008] discuss the idea of
having two intertwined feedback loops for self-adaptation and offline adaptation but
they present no working solution. As discussed previously, frameworks utilizing run-
time models often support changing those models, for example, to replace adaptation
strategies at runtime. Morin et al. [2009a] claim to support evolution as changes per-
formed manually on runtime models in the development environment. They propose
an initial solution in [Morin et al. 2009c], which, however, does not consider changes
in the structure or number of feedback loops or layers.

All approaches discussed so far do not make the feedback loops, their adaptation ac-
tivities, runtime models, and coordination explicit in the architectural design (R1). In
this context, only a few approaches exist. We [Hebig et al. 2010] proposed a UML profile
to make feedback loops and the interplay of multiple loops explicit in the design, how-
ever, without capturing the loops’ individual adaptation activities (R2) and runtime
models (R7). In contrast, Weyns et al. [2012] present a formal reference model that
captures feedback loops including the activities and models. The goal of the reference

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:7

model is to support engineering by studying early design alternatives. However, the
models created by both approaches are used for the architectural design but they are
not kept alive at runtime, for example, for execution (R6).

Summing up, state-of-the-art approaches for engineering self-adaptive software aim
at reducing development efforts by generating adaptation engines or providing frame-
works. The resulting engines often consist of single feedback loops whose structure is
rather static and predefined. This limits their adaptation during development, dynam-
ically in layered architectures, and offline by engineers. In general, there exist only pre-
liminary work on layered architectures (R9) and offline adaptation (R10). Moreover,
approaches providing runtime support for self-adaptation (R6) do not address the ex-
plicit modeling of feedback loops (R1). Thus, they do not consider runtime models such
as executable megamodels that describe feedback loops and leverage the adaptation of
feedback loops. In contrast, approaches tackling the explicit modeling (R1) are focused
on the design and they do not provide any runtime support based on these models (R6).
Thus, state-of-the-art approaches do not support all the requirements for engineering
adaptation engines discussed in Section 2.

In contrast, we propose a seamless approach whose modeling language supports
the explicit design (R1), execution (R6), and adaptation (R9, R10) of feedback loops.
Thereby, EUREMA improves the state of the art concerning frameworks because it
does not prescribe any structure of the adaptation activities or feedback loops and it
does not limit the number of feedback loops or layers. In contrast to existing modeling
languages, EUREMA provides improvements by keeping the models alive at runtime
for executing feedback loops and for adjusting feedback loops and layers either dynam-
ically or by offline adaptation.

4. FEEDBACK LOOP DIAGRAMS
This section discusses the EUREMA language for engineering adaptation engines as
introduced in [Vogel and Giese 2012a]. The language is based on the concept of mega-
models originating from the research field of model management in MDE. A mega-
model refers to a model that contains other models and relationships between these
models while the relationships constitute operations such as model transformations
[Barbero et al. 2007; Bézivin et al. 2003; Bézivin et al. 2004; Favre 2005]. EUREMA
adopts this generic concept for specifying and executing feedback loops by consider-
ing the feedback loop’s knowledge as runtime models and the individual adaptation
activities as model operations working these runtime models.

Therefore, EUREMA (mega)models explicitly specify feedback loops by capturing
the runtime models, the interplay and usage of these models, and the flow of model op-
erations. Moreover, EUREMA models are kept alive at runtime for executing feedback
loops. Thereby, megamodel concepts are leveraged at runtime to explicitly maintain
and evolve the runtime models and model operations beyond the initial development
of the feedback loops.

To discuss EUREMA and all of its modeling concepts, we keep the adaptable soft-
ware abstract to cover different variants of adaptation engines instead of a specific
engine for a specific software. We consider a component-based application as the adapt-
able software, which is adaptable at the architectural level. Tackling adaptation at the
architectural level is a popular approach [Garlan et al. 2004; Morin et al. 2009b] as
it provides promising abstractions for parameter and structural adaptation [McKinley
et al. 2004]. Nevertheless, most examples in this article are extended and generalized
scenarios of our earlier work [Vogel and Giese 2010; Vogel et al. 2010] that used an
online marketplace, recently extended to mRUBiS[Vogel 2013], as an application ex-
ample. However, EUREMA has not been used in our earlier work that just proposed
a code-based and static solution for structuring the adaptation activities and runtime

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:8 T. Vogel and H. Giese

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no 
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Fig. 4. FLD for Self-repair

t1Model
Operation t2

Model

[condition2]

[condition1]

Final state

Initial state

Destruction state

t1Complex Model
Operation t2

FLD Model

Operations Control flow

Models Model usage

Fig. 5. Concrete syntax for FLDs

models of the feedback loops. In contrast, EUREMA proposes a model-driven and flex-
ible approach to specify, execute, and adapt feedback loops.

4.1. Modeling an Individual Feedback Loop
To model a feedback loop with its adaptation activities and runtime models, the
EUREMA language provides a behavioral feedback loop diagram (FLD). Such a di-
agram specifies a feedback loop by means of operations, the control flow of operations,
runtime models, and the model usage by operations. For instance, a feedback loop
supporting self-repair capabilities by automatically recovering the adaptable software
from failures at runtime is specified by the FLD depicted in Figure 4. This FLD is
framed and labeled with its name Self-repair.

The concrete syntax of FLDs is shown in Figure 5. Initial and final states are special
operations that define the entry and exit points for executing a feedback loop instance.
A destruction state is a final state that destroys the instance when this state is reached.
Adaptation activities are specified as model operations represented by hexagon block
arrows labeled with their names. A model operation has at least one named exit
compartment, one for each return status of the operation. At runtime, the implemen-
tation of the operation determines the return status and therefore, which compart-
ment is activated to continue the control flow. Complex model operations abstract from
and invoke adaptation activities modeled in other FLDs, which will be discussed in
Section 4.2. The control flow between operations is specified by solid arrows and can
be exclusively branched by a decision node (diamond element) and conditions. The
language for these conditions refers to counter and timing information about the ex-
ecution of the feedback loop, which is discussed in detail in [Vogel and Giese 2013].
Thus, conditions use generic information about EUREMA concepts to branch the
control flow while the different exit compartments of operations may depend on in-
formation only known internally to user-defined runtime models and operation imple-
mentations. Model operations work on runtime models represented by rectangles and
the usage of models as input or output is depicted by dotted arrows. Finally, an FLD
model can be used as a runtime model within another FLD, which will be discussed in
Section 5.4.

To support the engineer’s perception of FLDs, the elements can be substantiated by
labels or stereotypes. Model operations are assigned to the typical steps of a feedback
loop: �Monitor�,�Analyze�,�Plan�, and �Execute�. Models are stereotyped based on
the purpose they serve in self-adaptive software, which resulted from the categoriza-
tion of runtime models discussed in Section 2: �MonitoringModel�, �ExecutionModel�,
�CausalConnectionModel�, �ReflectionModel�, �EvaluationModel�, �ChangeModel�, and
�AdaptationModel�. Finally, the usage of models by operations is substantiated to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:9

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[C_SINCE(no 
failures) > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[ELSE]

Start

Self-repair-A

Fig. 6. FLD for the self-repair analysis

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

w

Analyzed

Analyze OK Repair
<<Plan>>

repaired

Repair strategies
<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

Monitor

Failures

r
a

r
r

Self-repair

Start
<<Analyze>>

Complex model operation

<<CausalConnectionModel>>

Fig. 7. FLD invoking the Self-repair-A FLD

creating, destroying, writing, reading, and annotating models. While reading a model
does not have any side effects, writes modify the model in a way that potentially affects
the adaptable software, and annotations to a model enrich a model without affecting
the software.

With the FLD of Figure 4, we modeled the extended self-repair scenario from [Vogel
and Giese 2010]. The Update and Effect operations use triple graph grammar rules (TGG
Rules) that specify by means of model transformation rules how the Architectural Model
reflecting the adaptable software (mRUBiS) is synchronized with the software. Thus,
monitoring the software, the Update operation keeps the Architectural Model up-to-date.
The Check for failures operation performs analysis by applying Failure analysis rules on the
Architectural Model. These rules define checks to identify critical failures. If no failures
are found, the feedback loop terminates in the state Analyzed. Otherwise, adaptation is
required to repair them. At first, a decision is made whether further analysis is needed.
This is the case when the condition holds, which checks whether the last execution of
the Check for failures operation that has identified no failures happened more than five
consecutive executions in the past. Thus, the past five runs of the loop did not repair
the failures. The plan activity uses the analysis results annotated by the analyze oper-
ations to the Architectural Model to select suitable Repair strategies. The selected strategies
change the Architectural Model to prescribe a reconfiguration of the software. This recon-
figuration is executed by the Effect operation that synchronizes the Architectural Model
changes to the software, which terminates one run of the feedback loop.

This example illustrates how adaptation activities can be considered as abstract
model operations working on runtime models. Besides the control flow between the
operations, the interplay between operations and runtime models is made explicit as
the models are the basis for coordinating the activities. Thus, this interplay is similar
to dependencies among adaptation activities that are relevant for properly specifying
and executing a feedback loop.

4.2. Modularizing Feedback Loop Diagrams
Besides modeling a feedback loop in a single FLD, EUREMA supports modular spec-
ifications. Individual adaptation activities are specified in distinct FLDs that can be
composed to form a feedback loop. This provides further abstractions that ease the
modeling and perception of feedback loops by engineers. Parts of a loop can be ab-
stracted in dedicated FLDs and referenced by other FLDs. This additionally supports
reusability of such parts.

For instance, the analyze activity of the self-repair feedback loop (cf. Figure 4) can be
specified in an FLD called Self-repair-A (cf. Figure 6). This activity has one initial state
(Start) and two final states reflecting whether failures have been identified (Failures) or
not (OK). This FLD can be (re)used by other FLDs such as the Self-repair loop shown
in Figure 7. Therefore, we introduce the concept of a complex model operation. Such

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:10 T. Vogel and H. Giese

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

wr

Effect
<<Execute>>

done

Executed

r

r
Monitor

w

Analyze

r

w

r

Self-optimization

TGG Rules
<<CausalConnectionModel>>

Fig. 8. FLD for Self-optimization

an operation defines a signature to synchronously invoke an FLD by referring to the
initial and final states of the FLD. In the example, based on the initial and final states
of the Self-repair-A FLD, the complex model operation Analyze in Figure 7 has one entry
(Start) and two exit compartments (Failures and OK). Thus, initial and final states of
an FLD are mapped to entry and exit compartments, respectively. This ensures that
the feedback loop using a complex operation can properly invoke an FLD and prop-
erly resume execution after the invocation. If an FLD specifies exactly one initial or
final state, the entry or exit points for execution are uniquely defined and the entry or
exit compartments of the complex operation can be omitted. In the example, the entry
compartment of the complex model operation could have been omitted.

Moreover, the complex operation Analyze uses the Architectural Model (cf. Figure 7) that
can be considered as a parameter when invoking the Self-repair-A FLD while the other
runtime models used in the Self-repair-A FLD are encapsulated by this FLD. Consid-
ering self-adaptive software that evolves throughout its lifetime, EUREMA adopts a
dynamic typing approach in contrast to a static and explicit type system for FLDs and
operations. Finally, a complex operation is labeled with an icon to distinguish it from
basic model operations in FLDs and to reveal that it invokes another FLD. Thus, a
complex operation used in an FLD abstracts from another FLD and it synchronously
invokes the abstracted FLD when being executed.

Overall, the specifications of the self-repair feedback loop as the FLDs of Figure 4
or Figures 6 and 7 are equivalent considering functionality. The only difference is the
number of used FLDs, which is motivated by design decisions concerning abstraction
and modularity. Besides the analyze activity, each of the four MAPE activities can be
specified in distinct FLDs and a high-level FLD integrates them to a feedback loop. In
general, the depth of abstraction and invocation relationships is not restricted. This
leverages different abstraction levels for modeling and further assists engineers in
understanding feedback loops.

4.3. Modeling Multiple Feedback Loops and their Coordination
We discuss now how EUREMA supports multiple feedback loops in self-adaptive soft-
ware, particularly to handle multiple concerns such as self-repair or self-optimization.
Each concern is managed by an individual feedback loop since each concern requires
its specific runtime models and operations. Therefore, we extend our example of the
self-adaptive software employing a self-repair feedback loop (cf. Section 4.2) with a
self-optimization feedback loop as specified by the FLD in Figure 8. Similar to the self-
repair loop, the Update and Effect operations synchronize the Architectural Model with the
adaptable software. Besides the Architectural Model, the analyze and plan activities use a
Queueing Model to identify bottlenecks in the adaptable software and reasonable values
for parameters given by the Parameter variability model to adjust the configuration of the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:11

Analyzed
Repair

Self-
managed

Self-
manage

Executed

Architectural Model
<<ReflectionModel>>

w
r

w
r

TGG Rules

<<CausalConnection-
Model>>

r

r

Optimize
Analyzed

ExecutedMonitor

Analyze
Monitor

Self-management-1

Fig. 9. FLD for Self-management-1

software, which aims for resolving the bottlenecks. Finally, the self-optimization loop
has two initial states either initiating the loop with the monitor or the analyze activity.

In general, EUREMA supports the specification of multiple feedback loops by dis-
tinct FLDs. However, employing multiple loops raises questions of possible interfer-
ences. Concerns such as failures and performance are typical competing, like healing
a failure results in a system with decreased performance. Such interferences require
coordination. In EUREMA, the coordination of multiple feedback loops is explicitly
modeled with an FLD that synchronizes the execution of the feedback loops. In the
following, we discuss two basic design alternatives for coordinating the self-repair and
self-optimization feedback loops.

4.3.1. Sequencing Complete Feedback Loops. A simple way to coordinate two feedback
loops is to execute them sequentially. This is specified by the Self-management-1 FLD in
Figure 9 that uses complex model operations to synchronously invoke the individual
feedback loops. In this self-management example, a higher priority is assigned to re-
pairing failures than to optimizing performance since optimizing the performance of
a failing system is not reasonable. Therefore, the self-repair feedback loop is executed
before the self-optimization loop.

In the FLD, Repair invokes the self-repair loop (Figure 7) to start execution in the
state Monitor. Thus, the monitor and analyze activities are carried out to update and
check the Architectural Model for failures. If no failures are identified, the self-repair
loop does not plan and execute any adaptation and terminates in the state Analyzed.
In this case, the subsequent self-optimization loop may immediately start with the
analyze activity because the self-repair’s monitor has already updated the shared
Architectural Model. Thus, the complex operation Optimize invokes the self-optimization
loop (Figure 8) to begin execution in the state Analyze (cf. the control flow connecting
the Repair and Optimize operations). If no bottlenecks have been identified, the self-
optimization feedback loop terminates in the state Analyzed. Otherwise, it performs the
plan and execute activities, and terminates in the state Executed.

On the other hand, if the self-repair feedback loop identifies failures, it plans and
executes an adaptation to the adaptable software and terminates in the state Executed.
This requires that the subsequent self-optimization feedback loop (Figure 8) performs
monitoring to observe the effects of this adaptation. Therefore, Optimize invokes the
self-optimization loop to begin execution in the state Monitor (cf. the control flow con-
necting the Repair and Optimize operations). After carrying out the monitor and analyze
activities, the self-optimization feedback loop either terminates or, if required, plans
and executes an adaptation.

This coordination design synchronizes different feedback loops by sequentially ex-
ecuting them based on priorities and by using the adaptable software for synchro-
nization. Thus, an adaptation performed by one feedback loop is executed to the
software before another loop starts execution with the monitor activity to observe the
adaptation effects. However, if a feedback loop does not perform any adaptation of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:12 T. Vogel and H. Giese

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>

r

w

Effect
<<Execute>>

done

Self-
managed

r

r

Self-manage

RepairAP Planned

OptimizeAP

Analyzed

Planned

Analyzed[ELSE]

[C_SINCE(
RepairAP::Planned) = 0]

r w

r
w

Self-management-2

r

<<Analyze>>

<<Analyze>>
<<Plan>>

<<Plan>>

Analyzed

Fig. 10. FLD for Self-management-2

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r

a Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Planned

[ELSE]

Analyze

Self-repair-AP

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

PlannedAnalyze

w

r

w

Architectural Model
<<ReflectionModel>>

r wr

Self-optimization-AP

Fig. 11. Analyze and plan activities of the self-repair (left) and the self-optimization (right)

the reflection model and software, the subsequent loop may skip the monitoring and
start with the analyze activity since the previous loop already performed the monitor-
ing to update the shared reflection model.

4.3.2. Sequencing Adaptation Activities of Feedback Loops. The other design alternative for
coordinating multiple feedback loops synchronizes them in shared monitor and execute
activities and sequentially executes the individual analyze and plan activities. For the
example, this is specified by the Self-management-2 FLD in Figure 10. The Update and
Effect operations synchronize the Architectural Model with the adaptable software. This
model is shared by the individual, concern-specific analyze and plan activities of the
self-repair and self-optimization loops (cf. complex operations RepairAP and OptimizeAP)
that are specified in individual FLDs shown in Figure 11. Thus, analysis and plan-
ning for the self-repair are executed before the analysis and planning for the self-
optimization. The Architectural Model is only modified by the self-repair’s plan activity if
the related analyze activity has identified failures. These modifications are a planned
adaptation to repair the failures, i.e., they are applied in the model but not effected
to the adaptable software. If the model has not been modified, there are no conflicting
adaptations possible. Otherwise, the adaptations proposed for the self-repair must be
handled by the subsequent analyze and plan activities for the self-optimization, which
requires coordination.

While EUREMA coordinates the execution of the individual activities/operations, in
this case by strictly sequencing them for self-repair and self-optimization, the imple-
mentations of these operations are responsible for establishing a consensus on con-
flicting adaptations, in this case by considering the adaptation proposed for self-repair
as an invariant for the self-optimization. In general, a consensus can be reached, for
example, by mechanisms based on utility functions [Cheng et al. 2006] or concepts of
coordination and agreement in distributed systems such as voting [Coulouris et al.
2011]. Such mechanisms are handled by the implementations of the model operations
as they typically depend on internals of user-defined runtime models that are black

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:13

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
AAnalyze

r w

Fig. 12. LD for Self-repair

<trigger>

Megamodel
Module

<var>Software
Module

senses

uses

effects

Layers Modules Relationships

r

w/a

L
a
y
e
r

L
a
y
e
r

L
a
y
e
r

Fig. 13. Concrete syntax for LDs

boxes for EUREMA. Thus, the concrete mechanisms are transparent for EUREMA
that focuses on providing execution support for these operations.

Considering the FLD in Figure 10, when the self-optimization’s analyze and plan
activities terminate, the Effect operation is executed if adaptations are proposed in the
Architectural Model by the self-repair’s or the self-optimization’s plan activities. Thus, at
least one of the complex model operations RepairAP or OptimizationAP must terminate
in the state Planned. Otherwise, the Self-management-2 module terminates in the state
Analyzed because no critical failures and no bottlenecks have been identified, which
does not require any adaptation.

5. LAYER DIAGRAMS
While FLDs support the behavioral specification and coordinated execution of feed-
back loops, EUREMA so far does not structurally reflect all FLDs employed in a self-
adaptive software as well as their interrelationships and triggering. Therefore, we ex-
tend EUREMA in this article with layer diagrams (LDs) that provide an architectural
view. This view refers to an instance situation of the software and it captures the em-
ployed feedback loops, their relationships to each other and to the adaptable software,
and their triggering conditions.

This is exemplified for the self-repair example by the LD in Figure 12. It specifies
that an instance of the Self-repair feedback loop as specified by the corresponding FLD
(cf. Figure 7) is located at Layer-1 and directly senses and effects the running :mRUBiS
instance at Layer-0. As defined by the concrete syntax (cf. Figure 13), partitions in LDs
represent the layers of the self-adaptive software, which contain modules. An instance
of an FLD constitutes a megamodel module that encapsulates the details of a concrete
feedback loop or adaptation activities. Such a module is depicted as a package with a
white tab in an LD since EUREMA provides white-box views of megamodel modules by
means of the FLDs. In contrast, a package with a black tab represents software mod-
ules that are not specified by EUREMA, like an instance of the adaptable software.
Sense and effect relationships between modules are reflected by dotted arrows, either
labeled with r (for reading the sensed module) or w/a (for writing/annotating the ef-
fected module), respectively. A sense relationship is labeled with a triggering condition
for the sensing module, which will be discussed in Section 5.1.

Usage relationships between megamodel modules are modeled in LDs to make the
dependencies between FLDs explicit. The example LD (cf. Figure 12) explicitly shows
that the :Self-repair module defined by the FLD in Figure 7 uses the :Self-repair-A module
defined by the FLD in Figure 6. A use relationship is reflected by a solid arrow and it
is labeled with the name of the corresponding complex model operation (Analyze in this
example) to bind this operation of the invoking module (:Self-repair in this example) to
the concrete module (:Self-repair-A in this example) to be invoked. The same mechanism
is used to bind basic model operations to their implementations that are black boxes for
EUREMA and therefore modeled as software modules in LDs. An FLD specifies when a
basic model operation should be executed, which runtime models are used as input and
output, and the operation’s return states while the concrete implementations of such

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:14 T. Vogel and H. Giese

operations have to be provided by software modules. When executing a basic operation
as part of a megamodel module (FLD instance), EUREMA invokes the software module
to which the operation is bound by a use relationship in the LD and labeled with the
operation name. So far and in the following examples, we omit the modeling of software
modules implementing basic model operations in LDs since they are just required for
binding the operations to their implementations. This is relevant for the execution but
they provide no further information relevant for the design of feedback loops.

Finally, the LD shows by the labels M..PE and A that the :Self-repair module real-
izes the monitor, plan, and execute activities and the :Self-repair-A module the analyze
activity. Inspired by Weyns et al. [2013], we use such labels to indicate which adap-
tation activities are realized by a megamodel module as defined in an FLD. Thus,
an FLD instance encapsulates the behavioral specification of a feedback loop or indi-
vidual adaptation activities in a megamodel module. The LD considers such modules
as black boxes and describes in which layers they are located and the relationships
to other megamodel or software modules. Therefore, an LD provides an abstract and
structural view, which supports the architectural design of self-adaptive software and
complements the FLDs as behavioral views of feedback loops.

5.1. Triggering Conditions for Feedback Loops
Besides specifying a feedback loop with FLDs, a triggering condition is required to
determine when an instance of the feedback loop should be executed. In EUREMA, we
especially consider the occurrences of events as triggers. These events are emitted by
modules that are either adaptable software or feedback loop instances. A triggering
condition for a feedback loop instance may only refer to events emitted from those
modules that are sensed by this instance. This avoids that the feedback loop instance
is triggered by events related to modules that are of no interest to the instance. Thus,
we specify triggering conditions in LDs by annotating them to the corresponding sense
relationships that reveal the flow of events from one module to another module. This
is exemplified by the LD in Figure 12 that defines a triggering condition for the :Self-
repair feedback loop sensing the :mRUBiS system. The condition RtException; 10s; Monitor;
defines that the :Self-repair loop starts execution if the :mRUBiS system emits an event of
type RtException notifying about a runtime exception, and when ten seconds since the
last execution of this loop have expired. Finally, Monitor points to the initial state of the
feedback loop (cf. Figure 7), in which the execution starts.

EUREMA supports a simple language for triggering conditions consisting of three
parts: events; period; initialState;. The first part (events) refers to a list of events that have
to be modeled in EUREMA. Therefore, the EUREMA metamodel (cf. Section 6) pro-
vides the concepts of Event and EventType to model events in a hierarchy of event types.
At runtime, these events as part of triggering conditions are matched against events
actually emitted by modules. For instance, in our prototype we employ an infrastruc-
ture that makes software realized with Enterprise Java Beans 3 technology, such as
our mRUBiS system [Vogel 2013], observable and adaptable and that emits events
using the Java Messaging Service (JMS) to notify about changes in the running soft-
ware [Vogel and Giese 2010]. Such JMS events are then matched against the events
modeled in EUREMA and used in triggering conditions. If a match has been identified,
the trigger of the feedback loop instance is activated.

The second part (period) defines the minimal time period between two consecutive
runs of the feedback loop instance, which is measured as the time elapsed between
the termination of the previous run and the beginning of the next run. Thus, if the
required event that activates the trigger occurs before the specified time period has
elapsed, the next run will be delayed until the period eventually has elapsed. Delaying
the execution avoids thrashing effects due to the proliferation of events and it allows

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:15

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-repair-A2
A

r w

Fig. 14. LD with variability

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-optimization
MAPE

LoadIncrease
60s; Monitor;

r r ww

Fig. 15. LD for the independent execution

the adaptation being executed by the previous run to take effect in the adaptable soft-
ware. Likewise, selecting specific events in the first part of the triggering condition also
serves as a filter that avoids the execution of a loop instance for every event emitted
by the sensed module. Finally, the third part (initialState) just refers to the initial state,
in which the instance should start its execution.

The first two parts of a condition are optional, but one of them must be specified.
If no events are specified, the period must be defined, which results in a trigger that
periodically executes the feedback loop instance. If no period is defined, the events must
be specified and the trigger executes the instance when the corresponding events have
occurred and the current run of the instance has terminated. In EUREMA, a feedback
loop instance is not reentrant, and therefore, any events that occur while the instance
is running are queued. Thus, there are no concurrent executions of the same feedback
loop instance. While an event-driven trigger supports reactive adaptation, a periodical
trigger makes proactive adaptation possible by executing the loop instance before the
adaptable software emits any event.

5.2. Variability Modeling
Encapsulating feedback loops or individual adaptation activities defined by FLDs in
megamodel modules and explicitly modeling such modules and their relationships in
LDs reveals variation points in the adaptation engine. Such variability can be made
visible in LDs and exploited to switch between variants, either during the design or
dynamically at runtime.

For instance, having encapsulated the analyze activity of the self-repair feedback
loop in a dedicated module (cf. :Self-repair-A in the LD of Figure 12), we assume that
we have modeled an additional analyze activity (Self-repair-A2) in a distinct FLD, which
employs a different analysis technique than Self-repair-A. Both activities are then alter-
native analyses to be used by the self-repair feedback loop. This constitutes a variation
point in the architectural design reflected in the LD in Figure 14. If the FLDs of both
alternatives have the same signature (cf. Section 4.2), both of them can be used by the
same complex model operation. Then, to switch between these alternatives, it is suffi-
cient to change the binding between the complex model operation and the megamodel
module, for example, by re-routing the use relationship Analyze to point to :Self-repair-A2
instead of :Self-repair-A in the LD.

EUREMA applies the same idea to leverage variability for basic model operations.
LDs capture alternative software modules implementing a basic operation and the
binding of the operation to one alternative. Similar to changing a binding of a com-
plex operation to a megamodel module, the binding of a basic operation to a software
module can be changed.

In general, such variations points of modules reify architectural variability of feed-
back loops in LDs. This variability can be exploited to specify and evaluate alternative
feedback loop designs or to adjust feedback loops at runtime by switching between
variants.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:16 T. Vogel and H. Giese

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException, LoadIncrease;
35s; Self-manage;

:Self-repair-A
AAnalyze

:Self-optimization
MAPE

:Self-management-1

RepairOptimize

r w

Fig. 16. LD for Self-management-1

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair-AP
AP

:mRUBiS

RtException, LoadIncrease;
35s; Self-manage;

:Self-optimization-AP
AP

RepairAPOptimizeAP

:Self-management-2
M..E

r w

Fig. 17. LD for Self-management-2

5.3. Modeling Multiple Feedback Loops
Employing multiple feedback loops in an adaptation engine, the relationships between
these feedback loops should be captured, particularly concerning the execution. There-
fore, it should be visible at the architectural level if multiple feedback loop instances
are executed independently from each other or in a coordinated manner. Modeling the
coordinated execution with FLDs has been discussed in Section 4.3, however, with-
out considering the architectural level and the independent execution that cannot be
explicitly covered by FLDs.

5.3.1. Independent Execution of Multiple Feedback Loops. Based on the example of employ-
ing a self-repair and a self-optimization feedback loop (cf. Section 4.3), we assume that
there are no interferences between these loops such that they can be executed indepen-
dently. Thus, instances of both loops have individual triggers that might be activated
at the same time and the instances might even run concurrently. This is specified by
the LD in Figure 15 showing two independent feedback loop instances sensing and
effecting the mRUBiS system. While the triggering condition of the :Self-repair module
has been discussed in Section 5.1, the :Self-optimization module should be triggered in
its initial state Monitor when the load on the mRUBiS system increases, causing a Load-
Increase event, and with a period of 60s. Based on the different triggering conditions,
both modules run independently from each other and without any direct interactions
as these modules are not interrelated in the LD.

In general, an LD explicitly shows if multiple feedback loop instances are employed
and executed independently. This would not be visible solely using FLDs as they do
not reflect the triggering conditions and all of the modules employed in the adaptation
engine.

5.3.2. Coordinated Execution of Multiple Feedback Loops. Though the independent exe-
cution of multiple feedback loops is conceivable, there are sometimes interferences
between them that have to handled by coordination. This has been discussed and mod-
eled by FLDs in Section 4.3, which, however, do not make the employed feedback loop
instances and their coordinated execution visible at the architectural level. We have
discussed two basic mechanisms to coordinate two feedback loops, either by completely
sequencing them (cf. Section 4.3.1) or by sequencing the individual analyze and plan
activities (cf. Section 4.3.2). Both mechanisms are specified by FLDs (Self-management-1
and Self-management-2, respectively) that invoke the individual FLDs defining the feed-
back loops by complex model operations.

To make this coordination explicit at the architectural level, LDs as shown in
Figures 16 and 17 are used. They show the modules whose execution is coordinated
through invocations by the :Self-management-1 and :Self-management-2 modules. There-
fore, the use relationships in the LDs make the invocation relationships among the
modules explicit such as the Repair relationship showing that the :Self-management-1

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:17

module invokes the :Self-repair module. Moreover, the modules :Self-management-1 and
:Self-management-2 realizing the coordinated execution require triggering conditions as
shown in the LDs. These conditions combine the individual conditions of the self-repair
and self-optimization feedback loops discussed before.

Finally, the LD of Figure 16 highlights that the :Self-management-1 module does not
perform any adaptation activity since it has no label in contrast to the :Self-optimization
and :Self-repair modules with their labels MAPE and M..PE. But the other example (cf.
Figure 17) shows that the :Self-management-2 module performs the monitor and execute
activities (M..E) while the analyze and plan activities (AP) are performed by the other
modules. Thus, an LD reflects all employed feedback loop instances and the modules
coordinating the execution of these instances. This makes the coordinated execution
visible at the architectural level.

5.4. Modeling Layered Feedback Loops
As argued in Section 2, there are particular cases, in which feedback loops are layered.
A feedback loop at a higher layer adapts a feedback loop at the layer directly below.
This requires adaptable feedback loops and appropriate reflections of these feedback
loops.

Feedback loops specified by EUREMA are adaptable by construction because
EUREMA models as feedback loop specifications and visualized by FLDs are kept alive
at runtime and they are executed by an interpreter. The EUREMA interpreter is able
to cope with dynamic changes of EUREMA models at runtime and even while exe-
cuting these models. EUREMA supports dynamic adaptation of feedback loops with
respect to the FLD concepts. Thus, EUREMA supports dynamically adjusting runtime
models used within a feedback loop, for example, to replace the change models that de-
fine the planning. Model operations can be adjusted by adding, removing, or replacing
them. This typically requires adapting the usage of runtime models and the control
flow. Besides such structural adaptations, the control flow can be adjusted by parame-
ter adaptation of conditions used for decision nodes.

Such adaptations of feedback loops are conducted by other feedback loops operating
at higher layers. In EUREMA, the modeling of higher-layer loops is similar to modeling
any feedback loop as discussed in Section 4. However, a particular aspect is the reflec-
tion model that represents the lower-layer loop and that is needed by the higher-layer
loop for adaptation. Therefore, two variants corresponding to the idea of procedural
and declarative reflection [Maes 1987] are supported, which will be discussed for the
following example.

The self-adaptive software with its repair feedback loop as specified by the FLD
in Figure 7 and the LD in Figure 12 automatically heals failures in the adaptable
software by applying pre-defined repair strategies. However, these strategies need not
to be able to handle all failures since it is usually impossible to anticipate all kinds
of failures when developing and deploying these strategies given the uncertainty in
self-adaptive systems and their environments. Thus, the repair strategies defined in
a runtime model have to be maintained and adapted at runtime. This task can be
assigned to a higher-layer feedback loop that synthesizes new strategies on demand
and provides them to the self-repair feedback loop.

5.4.1. Procedural Reflection. Keeping EUREMA models alive at runtime, the models
specifying and executing the lower-layer feedback loop can be directly used as a reflec-
tion model by the higher-layer loop. Thus, the higher-layer loop does not maintain a
separate representation and one representation is used to specify, execute, and adapt
the lower-layer loop.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:18 T. Vogel and H. Giese

checkedCheck
success rate

<<Analyze>>

r
a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>

synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

wr

AdaptedAdapt

Self-repair-strategies

<<Monitor>>
<<Execute>>

feedbackLoopModel
<<ReflectionModel>>

Fig. 18. FLD for Self-repair-strategies

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-repair-strategies
MAPE

L
a
y
e
r-
2

After[Deep check
for failures]; Adapt;

feedbackLoopModel

r

r

w

w

Fig. 19. LD for Self-repair-strategies

For the example, the corresponding higher-layer loop is defined by the Self-repair-
strategies FLD in Figure 18. It contains the reflection model feedbackLoopModel, which
is labeled with an icon to highlight that this model is directly an EUREMA model as
visualized by an FLD, particularly, the FLD that specifies and executes the self-repair
loop (cf. Figure 7). This model is used to check the success rate of the repair strategies
and to synthesize new strategies that are directly provided to the self-repair loop by
changing the model. Applying procedural reflection, the causal connection is ensured
by construction and there is no need for explicit monitor and execute activities in the
Self-repair-strategies loop. These activities are implicitly realized by the analyze and plan
activities (cf. related stereotypes in Figure 18).

At runtime, the feedbackLoopModel reflecting the self-repair feedback loop has to be
bound to the specific FLD instance executing this loop. This is defined by the LD in
Figure 19 showing the :Self-repair-strategies module at Layer-2 that senses and effects the
:Self-repair module at Layer-1. The binding of the feedbackLoopModel to the specific FLD
instance of the :Self-repair module is defined by the use relationship having the name
as the reflection model. To adapt the self-repair loop, the :Self-repair-strategies module
operates on this FLD instance, whose specification is shown in Figure 7. Thereby, it
also operates on the instance of the Self-repair-A FLD shown in Figure 6 because this
FLD is used and therefore included by the Self-repair FLD. In general, to dynamically
adapt a lower-layer feedback loop, a higher-layer loop changes the FLD instance that
specifies and executes the lower-layer loop. Thus, all FLDs shown in this article are
initial specifications of feedback loops since they are kept alive at runtime and they
might be dynamically changed at runtime.

The triggering condition of the :Self-repair-strategies module (cf. Figure 19) is simi-
lar to the conditions discussed in Section 5.1. It refers to an event, namely After[Deep
check for failures], emitted by the sensed modules, particularly by the EUREMA inter-
preter when executing the :Self-repair and :Self-repair-A modules. In general, the inter-
preter synchronously emits two types of events when executing an FLD instance:
Before[opName] and After[opName] events are emitted before and respectively after any
model operation is executed while opName refers to the name of the operation. This
supports intercepting the execution of a (lower-layer) feedback loop to synchronously
execute another (higher-layer) feedback loop. In the example, the :Self-repair-strategies
module is triggered after executing the self-repair’s Deep check for failures operation.
This is the case if more than five consecutive runs of the self-repair loop were not able
to repair the failures, which indicates the need for new repair strategies.

The advantage of directly using EUREMA models as reflection models of feedback
loops is that the causal connection is ensured by construction. This avoids the de-
velopment of monitor and execute activities for higher-layer loops, which create and
maintain reflection models of lower-layer loops. However, by using the same model of a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:19

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair Model
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies-2

r

Fig. 20. FLD for Self-repair-strategies-2

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-repair-strategies-2
MAPE

L
a
y
e
r-
2

After[Deep check
for failures]; Adapt;

r

r w

w

Fig. 21. LD for Self-repair-strategies-2

loop for executing as well as adapting it, the adaptation cannot be decoupled from the
execution. Thus, any adaptation performed by the higher-layer loop is instantaneously
enacted to the lower-layer loop.

5.4.2. Declarative Reflection. In declarative reflection, a higher-layer feedback loop em-
ploys a user-defined reflection model of the lower-layer feedback loop. Thus, two repre-
sentations of the lower-layer loop are maintained, one for specifying and executing it,
and one for adapting it. To realize the example we used for discussing procedural re-
flection, the higher-layer loop is specified by the FLD in Figure 20. The monitor activity
observes the self-repair loop and maintains the Self-repair Model that reflects the self-
repair loop. Using this reflection model, the analyze activity checks the success rates of
the current repair strategies. The plan activity synthesizes new strategies that replace
the current ones in the reflection model. This replacement is enacted to the :Self-repair
module (instance of the FLD from Figure 7) by the execute activity that replaces the
Repair strategies runtime model in this module.

As defined by the LD in Figure 21, an instance of the Self-repair-strategies-2 feedback
loop at Layer-2 senses and effects the :Self-repair feedback loop including the :Self-repair-
A activity at Layer-1. A particular aspect of this layering is that the higher-layer loop
utilizes a user-defined reflection model (cf. Self-repair Model in Figure 20) such that no
binding of this model has to be specified in the LD. This model is user-defined because
its metamodel can be user-defined and it is maintained by user-defined model oper-
ations for the monitor and execute activities. Thus, the engineer may decide which
information about the lower-layer loop is covered by the reflection model as well as
the abstraction level of the model. However, she must ensure the causal connection
between the reflection model and the reflected feedback loop by defining and imple-
menting model operations for the monitor and execute activities.

Therefore, sensors and effectors provided by EUREMA can be used to observe and
adjust feedback loops by means of the EUREMA models. For sensing EUREMA mod-
els, they can be queried and events notifying about the execution and changes of these
models are emitted by the EUREMA interpreter and the MDE infrastructure, in par-
ticular the Eclipse Modeling Framework (EMF). For effecting EUREMA models, basic
means to change models are provided such as changing attribute values, or adding and
removing nodes and relationships.

The advantage of user-defined reflection models is that the higher-layer feedback
loop may run decoupled from the lower-layer loop since the reflection model is kept
separate from the EUREMA model specifying and executing the lower-layer loop. How-
ever, the disadvantage is that both representations have to be synchronized to each
other to ensure the causal connection. Nevertheless, this synchronization can be sim-
plified since both representations are models conforming to MDE principles, that is,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:20 T. Vogel and H. Giese

they have potentially different metamodels but the same meta-metamodel. Thus, one-
to-one copies of EUREMA models can be directly provided as reflection models or MDE
techniques such as model synchronization to keep both models consistent to each other
can be employed. The applicability of such techniques for runtime reflection models has
been shown in [Vogel et al. 2010; Vogel and Giese 2010].

Overall, LDs explicitly reflect the feedback loops at individual layers and whether
procedural or declarative reflection is employed among them. If a reflection model is
bound to a megamodel module (FLD instance) by a use relationship in the LD, pro-
cedural reflection is employed. If no such binding is defined, declarative reflection is
employed.

5.5. Off-line Adaptation
As motivated in Section 2, self-adaptive software must support the co-existence of on-
line and off-line adaptation to ensure its long-term evolution. On-line adaptation refers
to activities performed by the adaptation engine, and off-line adaptation to activities
performed by engineers to maintain the software. Evolving self-adaptive software con-
siders scenarios such as (1) adding or removing feedback loops from the running soft-
ware, and changing (2) running feedback loops, (3) legacy feedback loops, and (4) the
running adaptable software. The rationale of our approach to the co-existence is to in-
terpret such evolution steps as feedback loops split up into on-line monitor and execute
and off-line analyze and plan activities.

We support on-line monitoring by observing and exporting snapshots of EUREMA
models including the runtime models that are used within the feedback loops. Since
EUREMA models as visualized by FLDs and LDs are directly used for executing
adaptation engines, they innately reflect the running feedback loops and the run-
time architecture of the self-adaptive software. These snapshots are transferred to the
development environment and support the engineer in analyzing the software and
planning an adaptation offline. Planning includes modeling the enactment of the adap-
tation with EUREMA. The resulting models are loaded up to the EUREMA interpreter
that dynamically instantiates and executes these models. This executes the adaptation
on-line to the running software and accomplishes the evolution step. A particular issue
is to execute on-line such an adaptation while feedback loops are operating in the adap-
tation engine. This requires a coordinated execution, which is explicitly specified by
EUREMA models. In the following, we discuss EUREMA’s support for the co-existence
using the four evolution scenarios we just outlined above.

5.5.1. Adding and Removing Feedback Loops. Assuming the example self-adaptive soft-
ware that only employs the self-repair feedback loop, we have discussed the need for
a higher-layer feedback loop that maintains the repair strategies in Section 5.4. This
need should be addressed by an off-line adaptation that equips the software with the
higher-layer loop.

Observing and analyzing the running self-repair feedback loop by means of the
EUREMA models (LD in Figure 12 and instances of the FLDs from Figures 6 and 7),
their execution, and the contained runtime models, an engineer identifies the need to
maintain the repair strategies as failures are continuously identified. Having devel-
oped mechanisms to automatically synthesize repair strategies, the engineer may del-
egate the maintenance of the strategies to the adaptation engine by specifying offline
a corresponding feedback loop with EUREMA. This results in the FLD of Figure 18
that was discussed in Section 5.4.

The engineer loads up this FLD to the adaptation engine together with a rule defin-
ing how this FLD should be integrated as a megamodel module into the engine’s ar-
chitecture. The architecture is reflected by the LD in Figure 12 and the integration is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:21

++

++

++ ++

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:Self-repair-strategies
MAPE

L
a
y
e
r-
2

After[Deep check
for failures]; Adapt;

feedbackLoopModel

r w

Fig. 22. A rule integrating a module

defined by a graph transformation rule1 (cf. Figure 22) changing this LD. The rule’s
elements that are annotated with ++ are added to the LD if a match for its elements
having no annotation is found in the LD. Thus, the EUREMA interpreter instantiates
the uploaded FLD to the :Self-repair-strategies module and applies the rule. This identi-
fies a match for the :Self-repair module at Layer-1, adds the :Self-repair-strategies module
at Layer-2, establishes the sense and effect relationships between both modules, and
binds the feedbackLoopModel used in the :Self-repair-strategies module to the :Self-repair
module (cf. Section 5.4). Overall, this results in a three-layer architecture reflected by
the LD in Figure 19. While a module is integrated into the engine, the already existing
modules may operate without any impact except of delays. Such delays are caused by
supporting consistent architectural reconfiguration in a quiescent state. Then, the exe-
cution of a new module is coordinated with the other modules by a triggering condition
as defined in the integration rule (e.g., Figure 22). As discussed in Section 5.4, such a
trigger for a megamodel module that senses another megamodel module enables the
exclusive execution by intercepting the execution of the lower-layer module to run the
higher-layer module. This enables the exclusive and therefore synchronized execution
of the modules to coordinate the online execution of an offline adaptation with running
feedback loops.

In general, an LD is used at runtime as a procedural reflection model of the self-
adaptive software, which can be dynamically changed to adjust the adaptation engine.
This is accomplished in the context of off-line adaptation by applying an integration
rule (cf. Figure 22) while it is conceivable to employ another adaptation engine on top
of the engine reflected by the LD. The following dynamic changes of adaptation en-
gines are supported. Layers and megamodel modules (FLDs instances) can be added
and removed from the engine. An individual module can be adapted by changing the
bindings between its complex model operations and other megamodel modules, and
between its basic model operations and software modules implementing these oper-
ations. This has been discussed in Section 5.2 in the context of variability that can
now be exploited at runtime. These adaptations change the number and composition
of modules in flexible layers of the engine. Finally, LDs reflect the triggering conditions
of megamodel modules that can be dynamically changed.

5.5.2. Changing a Running Feedback Loop. This scenario addresses changes of an already
running feedback loop by an offline adaptation similar to a patch. Thus, in contrast to
the previous scenario, the uploaded FLD does not specify a feedback loop but a patch
process. For instance, an engineer has developed offline new repair strategies and
she specifies a patch process to just replace the strategies employed in the running

1EUREMA does not define or prescribe the language for such integration rules. Theoretically, any mecha-
nism can be used that specifies changes of a model. We apply a mechanism based on graph transformations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:22 T. Vogel and H. Giese

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>

c

Replace
component

<<Plan>>

replaced

Reconfiguration rules
<<ChangeModel>>

r

w
r

Effect

<<Execute>>
done

Updated

r

rUpdate r

Adaptable-software-update

createdCreate
model

<<Monitor>>

d

Fig. 23. Updating the adaptable software

self-repair feedback loop. The upload, integration, and execution of this FLD is identi-
cal to the previous scenario. The only difference is that the patch process is executed
only once and then removed from the adaptation engine. This is accomplished by spec-
ifying a destruction state in the FLD (cf. Section 4.1). This scenario exemplifies that by
dynamic layers, feedback loops running in a certain layer can be dynamically changed
by megamodel modules temporarily operating at the next higher layer to enact an
off-line adaptation. Due to the similarities with the previous scenario, we refer to the
technical report [Vogel and Giese 2013] for more details.

5.5.3. Support for Adapting Legacy Feedback Loops. EUREMA provides basic support for
adapting legacy software modules realizing feedback loops. EUREMA handles such
modules as black boxes since they are not specified by FLDs and it just addresses their
activation by reflecting them in LDs. If it is possible to trigger legacy modules similar
to EUREMA feedback loops, the EUREMA interpreter can control their activation.
Therefore, the interpreter can decommission legacy modules to migrate the adaptation
engine to megamodel modules specified by EUREMA. This migration can be realized
by off-line adaptation, especially to add and remove feedback loops (cf. Section 5.5.1).
For more details on triggering legacy modules we refer to the technical report [Vogel
and Giese 2013].

5.5.4. Changing the Adaptable Software. Besides the adaptation engine, off-line adapta-
tion may directly target the running adaptable software. For instance, a component of
the adaptable software should be replaced as an improved version has been developed
off-line due to maintenance requests. Since the employed self-repair feedback loop (cf.
Figure 12) is not able to replace a specific component, such an update has to be realized
by another module.

Therefore, the engineer models the update by the FLD shown Figure 23. By moni-
toring, the Create model operation creates the Architectural Model reflecting the adaptable
software. This model is used to reconfigure the architecture at the model level by ap-
plying rules defining the replacement of the specific component. The Effect operation
loads the new component, executes the reconfiguration prescribed in the model to the
adaptable software, and finally destroys the architectural model. Similar to the sce-
nario that patches a feedback loop (cf. Section 5.5.2), this FLD is loaded up, integrated,
and executed once in the adaptation engine. Moreover, the execution is synchronized
with the running self-repair feedback loop to avoid interferences while the adaptable
software is reconfigured by the new module that is removed from the engine after the
reconfiguration. As discussed for the different scenarios, by reflection, dynamic layers,
and dynamically (un)loading of FLD, EUREMA supports off-line adaptation to evolve
self-adaptive software, particularly in a way that has not been anticipated when ini-
tially deploying the software.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:23

6. METAMODEL AND INTERPRETER IMPLEMENTATION
While the EUREMA metamodel and its execution semantics are discussed in our tech-
nical report [Vogel and Giese 2013] due to space constraints, we briefly discuss the
implementation of the metamodel and interpreter in this section.

Both have been developed with the Java-based Eclipse Modeling Framework (EMF).
The stereotypes and labels of FLD and LD elements are not directly supported by
the metamodel since they do not influence the execution semantics and therefore the
EUREMA interpreter. However, they are introduced in EUREMA by a basic profile
mechanism to use them in the EUREMA editor when modeling FLDs and LDs. The
language for expressing conditions to exclusively branch the control flow in FLDs is
defined by a grammar, implemented with the Java Compiler Compiler (JavaCC), and
embedded in EUREMA.

Our interpreter implementation only relies on EMF and it may run standalone and
decoupled from the Eclipse workbench. Nevertheless, the interpreter provides full sup-
port for user-defined, EMF-based runtime models used within feedback loops. For ex-
ample, the interpreter manages the handling of runtime models as input or output of
model operation executions. Moreover, EUREMA models as well as user-defined run-
time models can be dynamically (un)loaded and exported as snapshots for off-line use.
Concerning EUREMA models, the interpreter currently provides full support for exe-
cuting FLDs and almost full support for the LD. So far, multiple and layered feedback
loops as defined in an LD can be executed but the LD is only implicitly maintained to
support off-line adaptation [Hanysz 2013]. Currently, we are addressing this aspect by
making the LD an explicit runtime model.

7. DISCUSSION OF DESIGN DECISION AND REQUIREMENTS COVERAGE
In this section, we discuss EUREMA by means of its fundamental design decisions
that lead to the presented language and its coverage of the requirements identified in
Section 2.

7.1. Design Decisions
The language design of EUREMA is motivated by the requirements for engineering
self-adaptive software (cf. Section 2). With the FLD, we aim for an explicit specifica-
tion of feedback loops (R1). According to the MAPE-K blueprint, a feedback loop con-
sists of adaptation activities sharing knowledge. This calls for language concepts that
describe these activities and the knowledge that we refined to a set of runtime mod-
els. This further requires concepts that make runtime models first class citizens of the
models that specify feedback loops. Therefore, we applied generic megamodel concepts
to the language design of FLDs. A megamodel refers to a model that contains other
models and relationships between these models. The relationships can be substanti-
ated to operations that manipulate these models [Barbero et al. 2007; Bézivin et al.
2003; Bézivin et al. 2004; Favre 2005]. Thus, models are first class elements of a mega-
model. Consequently, we consider an FLD as a megamodel describing the adaptation
activities as operations that work on runtime models (R7). Hence, operations and run-
time models are the main language concepts of FLDs. To make the FLDs executable
(R6) and to address the intra-loop coordination (R2), we extended these concepts with
the control flow among the activities and the usage of models by the activities. This
explicitly defines the workflow of activities and the data that is consumed or produced
by these activities. Using these concepts, an individual feedback loop can be specified
by FLDs. Moreover, these concepts are sufficient to specify multiple feedback loops and
their coordinated execution such that no further concepts are required for inter-loop
coordination (R4). Finally, we designed FLDs to be runtime models. Keeping feedback

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:24 T. Vogel and H. Giese

loop specifications alive at runtime and interpreting them leverage adaptable feed-
back loops in layered architectures (R9) and the provision of reflection models for such
loops. This promises flexible adaptation engines.

While the FLDs address the behavioral specification of feedback loops, they do not
provide a structural view of the self-adaptive software. For instance, our initial idea for
EUREMA’s approach to layered architectures as presented in [Vogel and Giese 2012a]
was only based on FLDs. Therefore, it had the following drawbacks. First, it only con-
sidered the triggering of a higher-layer feedback loop by an explicit invocation from
the lower-layer loop. This required the anticipation of the higher-layer loop in the
lower-layer loop. Second, it did not make the individual layers of the adaptation en-
gine explicit such that it was not visible which feedback loop is located at which layer
or which loop adapts which other loop. Third, it just considered procedural reflection
among feedback loops. To address these issues, we substantially modified EUREMA by
introducing LDs that complement the behavioral view provided by FLDs. The LD con-
cepts are motivated by layered architectures for self-adaptive software with multiple
feedback loops. Therefore, we introduced the layers that contain modules, particularly
instances of feedback loops as specified by FLDs. Furthermore, to be open for adap-
tation behavior specified by other languages, we extended the concepts of modules to
any software component such as legacy adaptation activities. Moreover, we introduced
operational relationships among modules to describe dependencies and to support the
execution. These are the use relationship to enable modular modules and their us-
age by each other, and the sense and effect relationships. The latter two make explicit
which modules control which other modules. Such relationships are needed to reason
about dependencies such as interferences between feedback loops. In this context, an
LD also constitutes a megamodel that primarily contains FLD instances and relation-
ships among them.

Besides specifying a layered architecture, we designed the LD to be a runtime model
that can be used as a procedural reflection model of the adaptation engine. Therefore,
the LD provides an instance view of the self-adaptive software that can be adjusted
at runtime. The goal of this decision was to facilitate off-line adaptation (R10). Finally,
the triggering conditions (R3) for feedback loops are defined in the LD because they
usually depend on other modules or require coordination with other modules. Thus,
we decided not to define the triggering conditions in the FLDs that typically consider
individual feedback loops.

The proposed EUREMA modeling language as used in FLDs and LDs is specific for
engineering feedback loops, which makes EUREMA a domain-specific modeling lan-
guage (DSML). We propose a DSML instead of using an existing general-purpose soft-
ware modeling language such as UML [Object Management Group 2011] to clearly
separate the adaptation logic (adaptation engine and feedback loops) from the do-
main logic (adaptable software). This avoids intertwining of the adaptation and do-
main logic and promotes separation of concerns as proposed by the external approach
(cf. Section 2), which promises more maintainable and reusable designs [Salehie and
Tahvildari 2009]. Nevertheless, FLDs share concepts with flowcharts and data flow
diagrams such as UML Activities. FLDs and UML Activities are similar with respect
to modeling flows of actions (in UML) or operations (in EUREMA). However, in con-
trast to EUREMA, UML does not provide megamodel concepts as first class entities,
like a model being itself an element in another model. Likewise, the LD borrows con-
cepts from UML, particularly UML Packages and UML Objects. However, LDs focus
on domain-specific concepts and elements such as layers, megamodel and software
modules, and operational use, sense, and effect relationships among modules, which
clearly separates the adaptation logic from the domain logic. Additionally, we propose
a lean metamodel for EUREMA (cf. [Vogel and Giese 2013]) resulting in a light-weight

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:25

and efficient interpreter that probably cannot be easily achieved for the complex UML
metamodel.

With EUREMA we adopt an MDE approach to leverage benefits of MDE to the
runtime environment as generally discussed by France and Rumpe [2007]. On the
one hand, EUREMA exploits MDE principles by means of its executable modeling
language and interpreter. On the other hand, EUREMA makes the feedback loop’s
knowledge explicit by runtime models. This additionally leverages MDE techniques at
runtime to perform individual adaptation activities of a feedback loop. As EUREMA
is designed to target a reasonable abstraction level similar to the level of software
architectures, adaptation activities are considered as abstract model operations. This
enables the integration and reuse of existing MDE techniques and implementations
for realizing and performing such activities.

For example, we employed an existing model synchronization engine for the monitor
and execute activities to maintain an architectural runtime model of the adaptable
software, and an Object Constraint Language (OCL) engine for the analyze activity to
check architectural constraints on this model [Vogel et al. 2010; Vogel and Giese 2010].
Such engines can be considered as reusable implementations for adaptation activities.
This exemplifies that the development efforts for adaptation activities can be reduced
by integrating and reusing existing engines from MDE. Moreover, since such engines
are generic and they completely externalize the user-defined inputs in models such as
OCL expressions, these models become runtime models. EUREMA makes such run-
time models explicit in FLDs and amenable for adaptation. For example, the OCL ex-
pressions can be dynamically adapted without having to change the OCL engine. This
potentially simplifies the development of adaptable feedback loops. Thus, EUREMA di-
rectly exploits MDE principles for specifying, executing, and adapting feedback loops
while it enables engineers to exploit MDE principles for implementing individual adap-
tation activities that are modeled as operations in FLDs.

We designed EUREMA to be reusable such that it abstracts from sensor and effector
details of the adaptable software. This avoids its coupling to the technology, platform,
or type of a specific software. In contrast, EUREMA proposes the explicit modeling
of monitor and execute activities, whose implementations have to cope with these de-
tails. Sensors details are only revealed by sensor events that are used in triggering
conditions of feedback loops. Thus, we require that appropriate sensors, effectors, and
activity implementations are available to realize parameter or structural adaptation
(R8). EUREMA then supports the modeling and coordinated execution of the activities
in a feedback loop.

7.2. Requirements Coverage
As just discussed, the design of EUREMA is motivated by the requirements for engi-
neering self-adaptive software identified in Section 2. These requirements reflect the
state-of-the-art issues that are discussed for self-adaptive software in research and
EUREMA provides concepts for almost all of them. FLDs cover the explicit modeling of
individual or multiple feedback loops (R1), their intra-loop (R2) and inter-loop coordi-
nation (R4), and their, however, non-concurrent execution (R6) (cf. Section 4). Thereby,
FLDs can capture arbitrary runtime models and their usage in feedback loops without
restricting the kinds of models by means of their metamodels and purpose (R7). An
LD covers the layered architecture of an instance of the self-adaptive software, which
consists of all employed FLD instances, their triggering (R3), and their relationships
to each other and to the adaptable software (cf. Section 5). Besides FLDs, this fur-
ther makes the feedback loops visible in the design of self-adaptive software (R1) and
shifts the abstraction level of feedback loops and their coordinated execution to the
architectural level. Moreover, by LDs and keeping executable FLD instances alive at

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:26 T. Vogel and H. Giese

L
a
y
e
r-
0

L
a
y
e
r-
1

:Adaptation
MAPE

:Application

:Planning
MAPE

L
a
y
e
r-
2

r

r w

w

Fig. 24. LD for PLASMA

Adaptation

Collector-1

<<Monitor>>
collected Adaptation

Analyzer

<<Analzye>>
<<Plan>>

actions
derived

<<Execute>>

Admin-1

actions
exe-
cuted

<<ReflectionModel>>

Application Architecture Model

<<ReflectionModel>>

Target Application
Architecture Model

<<ChangeModel>>

Adaptation Plan <<ExecutionModel>>

Actions-1

Monitor

r r

r

w r

c

r

Executed

r

d

Fig. 25. FLD for the Adaptation layer in PLASMA

runtime, adaptive or hierarchical control schemes in layered architectures are enabled
(R9) (cf. Section 5.4). Additionally, keeping the LD alive at runtime enables dynamic
layered architectures, which supports off-line adaptation for the long-term evolution of
self-adaptive software (R10) (cf. Section 5.5). Finally, EUREMA addresses parameter
and structural adaptation (R8) if corresponding sensors, effectors, and implementa-
tions of adaptation activities are available. Then, EUREMA supports the modeling
and coordinated execution of these activities.

Overall, EUREMA covers all of the requirements except of distribution (R5) and the
entirely concurrent execution (R6). Thus, adaptation engines cannot be distributed
and interdependent feedback loops and their adaptation activities cannot be executed
concurrently. Nevertheless, EUREMA provides concepts for almost all issues as re-
flected by the requirements and currently discussed in the research literature on self-
adaptive software such that it addresses a wide range of state-of-the-art problems for
self-adaptive software.

8. EVALUATION
Besides experimenting with mRUBiS [Vogel 2013] as an application example, we
evaluate EUREMA by applying its language to state-of-the-art approaches to self-
adaptive software and by investigating the runtime characteristics of its interpreter.
This demonstrates the expressiveness of the language and the runtime efficiency of
the interpreter, respectively.

8.1. Application of the EUREMA Language
In this section, we investigate the expressiveness of the EUREMA language by exam-
ples. Therefore, we applied it to state-of-the-art approaches from literature, namely,
Rainbow [Garlan et al. 2004], DiVA [Morin et al. 2009a], and PLASMA [Tajalli et al.
2010]. In this article, we will discuss the application to PLASMA that proposes a three-
layer architecture for plan-based adaptation. This resulted in the following EUREMA
diagrams. The LD in Figure 24 defines the layered architecture with the adaptable
application at the lowest layer. The feedback loop in the middle layer adapts the ap-
plication and the highest-layer feedback loop (re)generates plans to be executed by the
two lower layers.

The middle-layer loop is defined by the FLD in Figure 25. The Collector-1 operation
monitors the application and maintains the Application Architecture Model reflecting the
application. This model is used by the Adaptation Analyzer to execute the Adaptation Plan
provided by the higher-layer loop. This plan specifies the adaptation to move the cur-
rent application architecture to the target architecture defined in the Target Application
Architecture Model. Additionally, the Adaptation Analyzer analyzes any deviations in the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:27

Planning

Collector-2

<<Monitor>>
collected

Analyzer

<<Analzye>>
<<Plan>> actions

derived

<<Execute>>

Admin-2

actions
exe-
cuted

Application
Planner

<<Plan>>
planned Adaptation

Planner

<<Plan>>
planned

<<ChangeModel>>

Application Pro-
blem Description

<<ReflectionModel>>

Application Domain
Description

<<ReflectionModel>>

Application Architecture Model

<<ReflectionModel>>

Target Application
Architecture Model

<<ReflectionModel>>

Adaptation Domain
Description

<<ReflectionModel>>

Target Adaptation
Architecture Model

<<ExecutionModel>>

Adaptation Plan
<<ExecutionModel>>

Application Plan

<<ExecutionModel>>

Actions-2

Plan

rr

c c r

r

c

r <<ReflectionModel>>

Adaptation
Architecture Model

r
w

r

r

r

c r

Planned
r

r

w

Fig. 26. FLD for the Planning layer in PLASMA

current application architecture and resolves them to align it with the target architec-
ture. Therefore, reconfiguration commands (Actions-1) are created and executed by the
Admin-1 operation on the application.

The higher-layer feedback loop defined by the FLD in Figure 26 is executed when
plans are generated initially or when replanning is required. The Application Planner
uses a domain model of the application (Application Domain Description) and the initial
and goal states of the application (Application Problem Description), which are all provided
by the architect. The planner creates an Application Plan to be executed by the applica-
tion at the lowest layer and the Target Application Architecture Model prescribing the appli-
cation architecture that is able to execute the application plan. Moreover, the architect
provides the Target Adaptation Architecture Model defining the target architecture of the
middle-layer feedback loop, which is also reflected in the Adaptation Domain Description
used by the Adaptation Planner. This planner additionally uses the Application Architecture
Model maintained by the middle-layer feedback loop and the newly created Target Appli-
cation Architecture Model to derive an Adaptation Plan defining how to move the current ar-
chitecture of the application to the target architecture. Then, the following operations
adapt the middle-layer loop to enable the execution of the generated adaptation plan.
The Collector-2 operation updates the Adaptation Architecture Model reflecting the middle-
layer feedback loop by monitoring. The Analyzer adds the Adaptation Plan and the Target
Application Architecture Model to this model in order to provide them to the middle-layer
loop. Moreover, based on the current and target architectures of the middle-layer loop,
reconfiguration commands (Action-2) are generated to adapt this loop, for example, to
replace the Adaptation Analyzer (cf. Figure 25) with a version that is able to execute the
new adaptation plan. Finally, the Admin-2 operation adapts the middle-layer loop by
executing the reconfiguration commands and synchronizing the Adaptation Architecture
Model.

Overall, the EUREMA language is able to capture PLASMA’s architecture and feed-
back loops. However, the proper modeling of PLASMA is hard to assess since PLASMA
only implicitly maintains the runtime models in a middleware and it does not make
their usage by the loops and the triggers of the loops explicit. Thus, we derived as far as
possible the runtime models and their usage from [Tajalli et al. 2010] but we omitted
the triggers.

Besides PLASMA, we applied the EUREMA language to Rainbow and DiVA, which
is discussed in our technical report [Vogel and Giese 2013]. The results of modeling
these three examples demonstrate that the EUREMA language is expressive enough
to capture these state-of-the-art approaches and different variants of feedback loops.
These variants especially concern the techniques that drive the feedback loops (archi-
tecture description languages in PLASMA and Rainbow, and MDE in DiVA) and the
number of feedback loops (two layered feedback loops in PLASMA, and single feedback
loops in Rainbow and DiVA). Though these examples provide only limited evidence for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:28 T. Vogel and H. Giese

the expressiveness of the EUREMA language, we have already shown at the concep-
tual level that EUREMA is expressive enough to addresses a wide range of state-of-
the-art problems for self-adaptive software (cf. Section 7.2).

8.2. Runtime Characteristics of the EUREMA Interpreter
Finally, we evaluate the EUREMA interpreter by discussing its runtime characteris-
tics. We conducted experiments to quantify the load and overhead of the interpreter
compared to a code-based solution to execute the self-repair feedback loop defined by
the FLDs in Figures 6 and 7. For the experiments, we considered the case, in which
each run of the feedback loop instance always identifies failures. Moreover, a warm-up
phase taking place before the actual measurements executes the instance more than
five times, such that the condition branching the control flow in the FLD depicted in
Figure 6 is always fulfilled. Thus, for the measurements, all of the five basic model
operations of the self-repair feedback loop are executed in each run of the instance. As
implementations for these model operations, we provided software modules as mocks
that have runtime models as input as it is defined in the FLDs. Moreover, all runtime
models that are the output of any model operation are already used as input of the
same operation. Thus, no new models are produced by the mocks. In contrast, all run-
time models are pre-defined and they are not changed at all by the mocks. Each mock
can be assigned a duration, for which it generates load to simulate computations of the
model operations.

To evaluate the runtime characteristics of the EUREMA interpreter, we imple-
mented a code-based solution in Java that executes the self-repair feedback loop. This
solution does not use any EUREMA model but it hard-codes the execution by sequen-
tially invoking the five mocks, one for each model operation of the self-repair feedback
loop. Moreover, this code-based solution provides the runtime models required as input
for invoking the mocks.

The experiments are configured by two parameters. First, the duration assigned to
the mocks defines the internal computation time of the model operations. The same
duration is assigned to all mocks for one experiment and they vary for the different
experiments. This results in four groups of experiments, either assigning a duration
of 0ms, 5ms, 10ms, or 20ms to each mock. Since the self-repair feedback loop has five
basic model operations, this constitutes a total computation time of either 0ms, 25ms,
50ms, or 100ms for one run of the feedback loop instance. The second parameter is the
frequency of consecutive runs of the instance, which determines the execution rate.
The frequency is defined by its reciprocal, that is, the period of time between two con-
secutive activations of the instance. For each of the four groups of experiments, we
varied the period starting from 15ms and doubling it until 960ms. For example, a pe-
riod of 15ms means that the feedback loop instance is executed every 15ms, which is
only feasible if the total computation time of the feedback loop plus the overhead of the
code-based solution or the EUREMA interpreter is below 15ms.

For each feasible combination of these two parameters, we measured the load of
the Java virtual machine for the code-based solution and the EUREMA interpreter
while executing the self-repair feedback loop for a total time of ten minutes. The re-
sults of the experiments2 are depicted in Figures 27 and 28. Figure 27 visualizes the
average CPU load of the code-based solution (solid gray lines) and the EUREMA in-
terpreter (dashed black lines) for the different frequencies of executing the feedback

2 The experiments were conducted on the following platform: quad-core CPU (Intel Core i5-2400, 3.10GHz),
8GB RAM, Ubuntu 12.04 (Kernel 3.2.0-33), Java SE Runtime Environment 1.6.0 31, and Eclipse Modeling
Framework (EMF) Runtime and Tools 2.7.2. The CPU load has been measured by the monitoring capabilities
of Java VisualVM provided with the Java Development Kit 6 (1.6.0 31).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:29

15 30 60 120 240 480 960
0

5

10

15

20

25
Code/0ms
Code/25ms
Code/50ms
Code/100ms
Interpreter/0ms
Interpreter/25ms
Interpreter/50ms
Interpreter/100ms

Period [ms]

A
v

e
ra

g
e

 C
P

U
 L

o
a

d
 [

%
]

Fig. 27. Average CPU Load of the code-based solu-
tion (Code) and EUREMA (Interpreter)

60 120 240 480 960
-0.05

0

0.05

0.1

0.15

0.2
0ms
25ms
50ms
100ms
Prediction

Period [ms]

D
if

fe
re

n
c

e
s

 in
 a

v
e

ra
g

e
 C

P
U

 lo
a

d
s

 
[p

e
rc

e
n

ta
g

e
 p

o
in

t]

Fig. 28. Interpreter overhead by means of the dif-
ferences in average CPU loads

loop instance. Moreover, each graph refers to a specific total computation time of the
feedback loop instance (see legend). Based on this figure, we may generally observe
that the average load decreases for both solutions and all computation times of the
feedback loop instance if the period between consecutive runs of the feedback loop
instance increases. This observation is not surprising since running a feedback loop
less frequently is supposed to cause less load. Moreover, we may observe that the
EUREMA interpreter causes slightly more load than the code-based solution when
the computation time of the feedback loop is 0ms. However, for the other cases of the
computation time, there are no apparent differences between the loads of the code-
based solution and the interpreter, and the corresponding graphs overlap. Thus, the
overhead of the interpreter is noticeable for the hypothetical case that the feedback
loop does not perform any computations and therefore, the computations do not cause
any load.

To further investigate the overhead, we calculated the overhead as the difference
between the average loads of the interpreter and the average loads of the code-based
solution for each case of the total computation time (cf. Figure 28). We may observe that
for all cases the overhead of the EUREMA interpreter with respect to the code-based
solution is always below 0.2 percentage points and tends to decrease with increasing
frequency periods. This assumptions is supported by the overhead we predicted (cf.
Prediction graph), which is the average overhead based on all measurements for all
frequencies and computation times, and normalized for the frequencies.

Summing up, the experiments show that the overhead of interpreting EUREMA
models is negligible. In particular, the hypothetical case when the feedback loop’s op-
erations do not perform any internal computations revealed the pure load caused by
the EUREMA interpreter. The average of this pure load was for all experiments below
1% (cf. Interpreter/0ms graph in Figure 27). Thus, in absolute terms, the EUREMA
interpreter works efficiently for the considered case of executing the EUREMA models
specifying the self-repair feedback loop. Moreover, employing the EUREMA interpreter
and accepting its overhead provides the flexibility to dynamically adapt feedback loops
as discussed in Sections 5.4 and 5.5.

The validity of the experiments is threatened since we implemented the alternative,
code-based solution, such that the comparison of this solution with the EUREMA inter-
preter needs further investigations. Nevertheless, we have shown that the interpreter
works efficiently in absolute terms by causing a negligible average load (cf. previous
paragraph). Another threat of validity is the specific self-repair feedback loop we used.
However, we think that this feedback loop is a typical one since it follows the MAPE-K
principle like the state-of-the-art approaches (Rainbow, DiVA, and PLASMA) [Vogel

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:30 T. Vogel and H. Giese

and Giese 2013]. Moreover, the complexity of the specific feedback loop by means of
the numbers of model operations and runtime models can be questioned and how the
interpreter behaves for larger EUREMA models. Thus, the scalability of the inter-
preter, which is determined by the specific EUREMA models and not by the EUREMA
language, needs to be further investigated though state-of-the-art approaches (cf. Vo-
gel and Giese [2013]) do not employ significantly more complex feedback loops with
respect to the size of the FLDs.

9. CONCLUSION AND FUTURE WORK
In this article, we presented EUREMA, a model-driven approach for engineering adap-
tation engines for self-adaptive software. EUREMA provides a domain-specific model-
ing language to specify and an interpreter to execute feedback loops. In contrast to
existing work on self-adaptive software, EUREMA is a seamless approach that covers
the specification and the execution of adaptation engines. Related approaches on mod-
eling languages provide no runtime support for their models while related work on
frameworks does not support the explicit modeling of feedback loops. Moreover, frame-
works do not provide the flexibility for their users in structuring user-defined adap-
tation activities to form arbitrary feedback loops in an arbitrary number of layers. In
this context, EUREMA does not impose any restriction.

The EUREMA language supports the explicit modeling of feedback loops and their
coordinated execution. Thereby, the runtime models as the feedback loop’s knowledge
are explicitly captured. Moreover, EUREMA models are kept alive at runtime, which
leverages layers of feedback loops for dynamically adjusting the adaptation engine as
well as evolving the self-adaptive software by offline adaptation. Therefore, this article
has discussed EUREMA with respect to the requirements reflecting state-of-the-art
problems for self-adaptive software and EUREMA provides concepts for almost all of
them. This demonstrates that EUREMA is expressive enough to cover a wide range of
problems for self-adaptive software at the conceptual level. To complete the evaluation,
we further investigated the expressiveness by examples. Therefore, we modeled three
state-of-the-art approaches from the literature. Finally, we evaluated the EUREMA
interpreter by quantifying its runtime characteristics, which shows evidence that the
interpreter works efficiently and is applicable at runtime.

As future work, we plan to further elaborate EUREMA by considering the require-
ments for self-adaptive software we are currently not addressing. Thus, we want to
investigate the concurrent execution of interdependent feedback loops and the distri-
bution of adaptation engines in the context of a multi-robot system. Furthermore, we
want to investigate the integration of model-based techniques to analyze and simulate
modular feedback loop specifications. Finally, we want to further evaluate EUREMA
by conducting empirical studies.

REFERENCES
AMOUI, M., DERAKHSHANMANESH, M., EBERT, J., AND TAHVILDARI, L. 2012. Achieving dynamic adapta-

tion via management and interpretation of runtime models. J. Syst. Softw. 85, 12, 2720–2737.
ANDERSSON, J., BARESI, L., BENCOMO, N., DE LEMOS, R., GORLA, A., INVERARDI, P., AND VOGEL, T.

2013. Software Engineering Processes for Self-Adaptive Systems. In Software Engineering for Self-
Adaptive Systems II. Lecture Notes in Computer Science, vol. 7475. Springer, 51–75.

ANDERSSON, J., DE LEMOS, R., MALEK, S., AND WEYNS, D. 2009. Reflecting on self-adaptive software sys-
tems. In Proceedings of the Workshop on Software Engineering for Adaptive and Self-Managing Systems.
IEEE, 38–47.

BARBERO, M., FABRO, M. D., AND BÉZIVIN, J. 2007. Traceability and Provenance Issues in Global Model
Management. In Proceedings of the 3rd Workshop on Traceability. 47–55.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:31

BENCOMO, N. AND BLAIR, G. 2009. Using Architecture Models to Support the Generation and Operation of
Component-Based Adaptive Systems. In Software Engineering for Self-Adaptive Systems. Lecture Notes
in Computer Science, vol. 5525. Springer, 183–200.

BÉZIVIN, J., GERARD, S., MULLER, P.-A., AND RIOUX, L. 2003. MDA components: Challenges and Oppor-
tunities. In Proceedings of the 1st International Workshop on Metamodelling for MDA. 23–41.

BÉZIVIN, J., JOUAULT, F., AND VALDURIEZ, P. 2004. On the Need for Megamodels. In Proceedings of the
Workshop on Best Practices for Model-Driven Software Development.

BLAIR, G., BENCOMO, N., AND FRANCE, R. B. 2009. Models@run.time. Computer 42, 10, 22–27.
BRUN, Y., SERUGENDO, G. D. M., GACEK, C., GIESE, H., KIENLE, H., LITOIU, M., MÜLLER, H. A., PEZZÈ,

M., AND SHAW, M. 2009. Engineering Self-Adaptive Systems through Feedback Loops. In Software
Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, vol. 5525. Springer, 48–70.

CHENG, B. H., DE LEMOS, R., GIESE, H., INVERARDI, P., MAGEE, J., ANDERSSON, J., BECKER, B., BEN-
COMO, N., BRUN, Y., CUKIC, B., SERUGENDO, G. D. M., DUSTDAR, S., FINKELSTEIN, A., GACEK, C.,
GEIHS, K., GRASSI, V., KARSAI, G., KIENLE, H. M., KRAMER, J., LITOIU, M., MALEK, S., MIRAN-
DOLA, R., MÜLLER, H. A., PARK, S., SHAW, M., TICHY, M., TIVOLI, M., WEYNS, D., AND WHITTLE, J.
2009. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In Software Engineering
for Self-Adaptive Systems. Lecture Notes in Computer Science, vol. 5525. Springer, 1–26.

CHENG, S.-W., GARLAN, D., AND SCHMERL, B. 2006. Architecture-based Self-adaptation in the Presence
of Multiple Objectives. In Proceedings of the Workshop on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2–8.

CHENG, S.-W., HUANG, A.-C., GARLAN, D., SCHMERL, B., AND STEENKISTE, P. 2004. An Architecture
for Coordinating Multiple Self-Management Systems. In Proceedings of the 4th Working Conference on
Software Architecture. IEEE, 243–252.

COULOURIS, G., DOLLIMORE, J., KINDBERG, T., AND BLAIR, G. 2011. Distributed Systems: Concepts and
Design 5th Ed. Addison-Wesley.

DE LEMOS, R., GIESE, H., MÜLLER, H. A., SHAW, M., ANDERSSON, J., LITOIU, M., SCHMERL, B.,
TAMURA, G., VILLEGAS, N. M., VOGEL, T., WEYNS, D., BARESI, L., BECKER, B., BENCOMO, N., BRUN,
Y., CUKIC, B., DESMARAIS, R., DUSTDAR, S., ENGELS, G., GEIHS, K., GOESCHKA, K., GORLA, A.,
GRASSI, V., INVERARDI, P., KARSAI, G., KRAMER, J., LOPES, A., MAGEE, J., MALEK, S., MANKOVSKII,
S., MIRANDOLA, R., MYLOPOULOS, J., NIERSTRASZ, O., PEZZÈ, M., PREHOFER, C., SCHÄFER, W.,
SCHLICHTING, R., SMITH, D. B., SOUSA, J. P., TAHVILDARI, L., WONG, K., AND WUTTKE, J. 2013.
Software Engineering for Self-Adaptive Systems: A second Research Roadmap. In Software Engineering
for Self-Adaptive Systems II. Lecture Notes in Computer Science, vol. 7475. Springer, 1–32.

DE OLIVEIRA, F. A., SHARROCK, R., AND LEDOUX, T. 2012. Synchronization of Multiple Autonomic Control
Loops: Application to Cloud Computing. In COORDINATION. Lecture Notes in Computer Science, vol.
7274. Springer, 29–43.

FAVRE, J.-M. 2005. Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories of
The Fidus Papyrus and of The Solarus. In Language Engineering for Model-Driven Software Develop-
ment. Number 04101 in Dagstuhl Seminar Proceedings. IBFI.

FINDEISEN, W., BAILEY, F., BRDYS, M., MALINOWSKI, K., TATJEWSKI, P., AND WOZNIAK, A. 1980. Control
and Coordination in Hierarchical Systems. J. Wiley.

FLOCH, J., HALLSTEINSEN, S., STAV, E., ELIASSEN, F., LUND, K., AND GJORVEN, E. 2006. Using Archi-
tecture Models for Runtime Adaptability. IEEE Softw. 23, 2, 62–70.

FRANCE, R. AND RUMPE, B. 2007. Model-driven Development of Complex Software: A Research Roadmap.
In Proceedings of the Workshop on the Future of Software Engineering. IEEE, 37–54.

GACEK, C., GIESE, H., AND HADAR, E. 2008. Friends or Foes? – A Conceptual Analysis of Self-Adaptation
and IT Change Management. In Proceedings of the Workshop on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 121–128.

GARLAN, D., CHENG, S.-W., HUANG, A.-C., SCHMERL, B., AND STEENKISTE, P. 2004. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer 37, 10, 46–54.

GAT, E. 1997. On Three-Layer Architectures. MIT/AAAI Press.
GUEYE, S. M. K., DE PALMA, N., AND RUTTEN, E. 2012. Coordinating Energy-aware Administration

Loops Using Discrete Control. In Proceedings of the 8th International Conference on Autonomic and
Autonomous Systems. IARIA, 99–106.

HANYSZ, M. 2013. Integrating Offline and Online Adaptations of Self-Adaptive Software Systems. M.S.
thesis, Hasso Plattner Institute, University of Potsdam, Germany.

HEAVEN, W., SYKES, D., MAGEE, J., AND KRAMER, J. 2009. A Case Study in Goal-Driven Architectural
Adaptation. In Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science,
vol. 5525. Springer, 109–127.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.



18:32 T. Vogel and H. Giese

HEBIG, R., GIESE, H., AND BECKER, B. 2010. Making Control Loops Explicit When Architecting Self-
Adaptive Systems. In Proceedings of the 2nd International Workshop on Self-Organizing Architectures.
ACM, 21–28.

HELLERSTEIN, J. L., DIAO, Y., PAREKH, S., AND TILBURY, D. M. 2004. Feedback Control of Computing
Systems. John Wiley & Sons.

HESTERMEYER, T., OBERSCHELP, O., AND GIESE, H. 2004. Structured Information Processing For Self-
optimizing Mechatronic Systems. In Proceedings of the 1st International Conference on Informatics in
Control, Automation and Robotics. INSTICC Press, 230–237.

ISERMANN, R., LACHMANN, K.-H., AND MATKO, D. 1992. Adaptive control systems. Prentice Hall Interna-
tional series in systems and control engineering. Prentice Hall, New York.

KEPHART, J. O., CHAN, H., DAS, R., LEVINE, D. W., TESAURO, G., RAWSON, F., AND LEFURGY, C. 2007.
Coordinating Multiple Autonomic Managers to Achieve Specified Power-Performance Tradeoffs. In Pro-
ceedings of the 4th International Conference on Autonomic Computing. IEEE, 24–33.

KEPHART, J. O. AND CHESS, D. 2003. The Vision of Autonomic Computing. Computer 36, 1, 41–50.
KOKAR, M. M., BACLAWSKI, K., AND ERACAR, Y. A. 1999. Control Theory-Based Foundations of Self-

Controlling Software. Intell. Syst. Appl. 14, 3, 37–45.
KRAMER, J. AND MAGEE, J. 2007. Self-Managed Systems: an Architectural Challenge. In Proceedings of

the Workshop on the Future of Software Engineering. IEEE, 259–268.
MAES, P. 1987. Concepts and experiments in computational reflection. In Proceedings of the Conference on

Object-oriented Programming Systems, Languages and Applications. ACM, 147–155.
MCKINLEY, P., SADJADI, S. M., KASTEN, E. P., AND CHENG, B. H. 2004. Composing Adaptive Software.

IEEE Computer 37, 7, 56–64.
MORIN, B., BARAIS, O., JÉZÉQUEL, J.-M., FLEUREY, F., AND SOLBERG, A. 2009a. Models@ Run.time to

Support Dynamic Adaptation. Computer 42, 10, 44–51.
MORIN, B., BARAIS, O., NAIN, G., AND JÉZÉQUEL, J.-M. 2009b. Taming Dynamically Adaptive Systems

using models and aspects. In Proceedings of the 31st International Conference on Software Engineering.
IEEE, 122–132.

MORIN, B., LEDOUX, T., HASSINE, M. B., CHAUVEL, F., BARAIS, O., AND JÉZÉQUEL, J.-M. 2009c. Unify-
ing Runtime Adaptation and Design Evolution. In Proceedings of the 9th International Conference on
Computer and Information Technology. IEEE, 104–109.

MÜLLER, H. A., PEZZÈ, M., AND SHAW, M. 2008. Visibility of control in adaptive systems. In Proceedings
of the 2nd International Workshop on Ultra-large-scale Software-intensive Systems. ACM, 23–26.

OBJECT MANAGEMENT GROUP. 2011. OMG Unified Modeling Language (OMG UML), Superstructure, Ver-
sion 2.4.1.

ROUVOY, R., BARONE, P., DING, Y., ELIASSEN, F., HALLSTEINSEN, S., LORENZO, J., MAMELLI, A., AND
SCHOLZ, U. 2009. MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented
Environments. In Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science,
vol. 5525. Springer, 164–182.

SALEHIE, M. AND TAHVILDARI, L. 2009. Self-adaptive software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. 4, 2, 1–42.

SCHMIDT, D., WHITE, J., AND GOKHALE, A. 2008. Simplifying autonomic enterprise Java Bean applications
via model-driven engineering and simulation. Softw. Syst. Model. 7, 1, 3–23.

SHAW, M. 1995. Beyond objects: A software design paradigm based on process control. ACM SIGSOFT
Softw. Engin. Notes 20, 1, 27–38.

TAJALLI, H., GARCIA, J., EDWARDS, G., AND MEDVIDOVIC, N. 2010. PLASMA: a plan-based layered archi-
tecture for software model-driven adaptation. In Proceedings of the International Conference on Auto-
mated Software Engineering. ACM, 467–476.

VOGEL, T. 2013. Modular Rice University Bidding System (mRUBiS). http://www.mdelab.de (Last accessed
12/13).

VOGEL, T. AND GIESE, H. 2010. Adaptation and Abstract Runtime Models. In Proceedings of the Workshop
on Software Engineering for Adaptive and Self-Managing Systems. ACM, 39–48.

VOGEL, T. AND GIESE, H. 2012a. A Language for Feedback Loops in Self-Adaptive Systems: Executable
Runtime Megamodels. In Proceedings of the 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE, 129–138.

VOGEL, T. AND GIESE, H. 2012b. Requirements and Assessment of Languages and Frameworks for Adapta-
tion Models. In Models in Software Engineering. Lecture Notes in Computer Science, vol. 7167. Springer,
167–182.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.

http://www.mdelab.de


Model-Driven Engineering of Self-Adaptive Software with EUREMA 18:33

VOGEL, T. AND GIESE, H. 2013. Model-Driven Engineering of Adaptation Engines for Self-Adaptive Soft-
ware: Executable Runtime Megamodels. Tech. rep. 66, Hasso Plattner Institute at the University of
Potsdam, Germany.

VOGEL, T., NEUMANN, S., HILDEBRANDT, S., GIESE, H., AND BECKER, B. 2010. Incremental Model Syn-
chronization for Efficient Run-Time Monitoring. In Models in Software Engineering. Lecture Notes in
Computer Science, vol. 6002. Springer, 124–139.

VOGEL, T., SEIBEL, A., AND GIESE, H. 2011. The Role of Models and Megamodels at Runtime. In Models
in Software Engineering. Lecture Notes in Computer Science, vol. 6627. Springer, 224–238.

VROMANT, P., WEYNS, D., MALEK, S., AND ANDERSSON, J. 2011. On interacting control loops in self-
adaptive systems. In Proceedings of the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. ACM, 202–207.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2012. FORMS: Unifying reference model for formal specifica-
tion of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7, 1, 8:1–8:61.

WEYNS, D., SCHMERL, B., GRASSI, V., MALEK, S., MIRANDOLA, R., PREHOFER, C., WUTTKE, J., ANDER-
SSON, J., GIESE, H., AND GOESCHKA, K. 2013. On Patterns for Decentralized Control in Self-Adaptive
Systems. In Software Engineering for Self-Adaptive Systems II. Lecture Notes in Computer Science, vol.
7475. Springer, 76–107.

Received November 2012; revised January 2013, July 2013, November 2013; accepted November 2013

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 18, Publication date: January 2014.


	1 Introduction
	2 Terminology, Concepts, and Requirements
	3 State of the Art in Engineering Adaptation Engines
	4 Feedback Loop Diagrams
	4.1 Modeling an Individual Feedback Loop
	4.2 Modularizing Feedback Loop Diagrams
	4.3 Modeling Multiple Feedback Loops and their Coordination
	4.3.1 Sequencing Complete Feedback Loops
	4.3.2 Sequencing Adaptation Activities of Feedback Loops


	5 Layer Diagrams
	5.1 Triggering Conditions for Feedback Loops
	5.2 Variability Modeling
	5.3 Modeling Multiple Feedback Loops
	5.3.1 Independent Execution of Multiple Feedback Loops
	5.3.2 Coordinated Execution of Multiple Feedback Loops

	5.4 Modeling Layered Feedback Loops
	5.4.1 Procedural Reflection
	5.4.2 Declarative Reflection

	5.5 Off-line Adaptation
	5.5.1 Adding and Removing Feedback Loops
	5.5.2 Changing a Running Feedback Loop
	5.5.3 Support for Adapting Legacy Feedback Loops
	5.5.4 Changing the Adaptable Software


	6 Metamodel and Interpreter Implementation
	7 Discussion of Design Decision and Requirements Coverage
	7.1 Design Decisions
	7.2 Requirements Coverage

	8 Evaluation
	8.1 Application of the EUREMA Language
	8.2 Runtime Characteristics of the EUREMA Interpreter

	9 Conclusion and Future Work

