
Crowdsourcing User Interface Adaptations for
Minimizing the Bloat in Enterprise Applications

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu

Computing Department, The Open University

Walton Hall, Milton Keynes, United Kingdom

{pierre.akiki, a.k.bandara, y.yu}@open.ac.uk

Figure 1. Our Process for Crowdsourcing Enterprise Application User Interface Adaptations

ABSTRACT

Bloated software systems encompass a large number of

features resulting in an increase in visual complexity.

Enterprise applications are a common example of such

types of systems. Since many users only use a distinct

subset of the available features, providing a mechanism to

tailor user interfaces according to each user’s needs helps in

decreasing the bloat thereby reducing the visual complexity.

Crowdsourcing can be a means for speeding up the

adaptation process by engaging and leveraging the

enterprise application communities. This paper presents a

tool supported model-driven mechanism for crowdsourcing

user interface adaptations. We evaluate our proposed

mechanism and tool through a basic preliminary user study.

Author Keywords

Crowdsourcing; Adaptable user interfaces; Bloated UI;

Enterprise applications; Model-driven engineering

ACM Classification Keywords

[Software Engineering]: D.2.11 Software Architectures -

Domain-specific architectures; D.2.2 Design Tools and

Techniques - User interfaces; [Information Interfaces and

Presentation]: H.5.2 User Interfaces – User-centered design

General Terms

Design; Human Factors

INTRODUCTION

The term “Bloat” [14] is used when referring to an excess

of features in software applications leading to a diminished

user experience [15]. Although enterprise applications (e.g.,

enterprise resource planning (ERP) systems, online retail

stores, etc.) present the users with a large set of features,

each user tends to use a different subset of them. This

variation in user needs makes the concept of “Bloat” highly

applicable to enterprise applications. Adapting a user

interface’s feature-set to the needs of individual users could

greatly decrease its visual complexity [13].

The concept of crowdsourcing UI adaptations has been used

by the gaming community to allow gamers to customize the

user interface of a game level and share it with the rest of

the community [9]. Leveraging this concept for enterprise

applications could be beneficial when considering the large

communities and commercial interests in these applications.

We differentiate between the following two types of

crowdsourcing for adapting enterprise application UIs:

 Enterprise Crowdsourcing: Allows internal enterprise

staff members to adapt user interfaces

 Community Crowdsourcing: Leverages the external

communities that use the same enterprise system

A combination of both types could be used for gaining the

widest possible benefit from the crowd. An overview of our

proposed process is illustrated in Figure 1 and will be

further explained in the paper.

The model-driven approach to UI development [7] provides

an interesting foundation for dealing with bloated UIs. We

previously presented a mechanism called Role-Based User

Authors’ Version

EICS’13, London, United Kingdom, Forthcoming

Interface Simplification (RBUIS) [2] that provides the

ability to minimize a UI’s feature-set by assigning roles to

tasks in task models hence achieving a multi-layer user

interface design [19]. In RBUIS, roles are usually assigned

by enterprise administrators using the Cedar Studio IDE

and the end-users are given the ability to provide their

feedback on the adaptations presented by the system.

RBUIS is based on the CEDAR architecture [1], which

promotes the use of interpreted runtime models for

developing adaptive enterprise application user interfaces.

In this paper, we extend RBUIS by allowing end-users to

perform the adaptation through a web-based feature-set

editing tool, which can be made available online for

enterprise community members. We should note that the

technique presented in this paper complements RBUIS

from the following perspectives: (1) End-users can adapt

the feature-set using a simple tool without attaching the

adaptations to user roles, afterwards administrators could

attach the UI adapted by the crowd to one or more

enterprise roles. This helps administrators in delegating

some of the adaptation effort to the crowd. (2) The

proposed technique is potentially helpful with non-role-

based enterprise tools (e.g., word processors, spreadsheet

managers, etc.) where the user could apply one of the

crowd-adapted user interfaces based on a given context.

We consider the following criteria to be important in any

approach targeting crowdsourcing enterprise application

user interface adaptations:

 An web-based visual tool that allows various enterprise

stakeholders (e.g., end-users, experts, etc.) to easily adapt

the feature-set of user interfaces

 The ability to check whether the selected user interface

features are consistent with the unselected ones according

to the inherent dependencies

 A means for end-users to evaluate the usability of the

crowd-adapted user interfaces

 Catering for enterprise privacy concerns by allowing

administrators to control the UIs that are made available

to the internal users and the ones that are shared with

external communities

This paper makes the following contributions:

 A tool supported technique for crowdsourcing the

adaptation of enterprise application UIs addressing the

previously listed criteria

 An evaluation of the tool and technique through a basic

online user study (with some limitations) that provided

encouraging results in terms of the perceived usability

and measured efficiency and effectiveness

RELATED WORK

This section briefly discusses existing works that target the

minimization of the UI feature-set to fit various needs and

the crowdsourcing of UI adaptations for engaging online

software communities in the adaptation process.

Several research works target the adaptation of the UI

feature-set such as: “multi-layered UI” [19], “training

wheels UI” [8], “two-interface design” [13], “MANTRA”

[5], etc. Yet, although crowdsourcing has been targeted by

researchers for various purposes (e.g., performing expert

work [10], human centered tasks such as image selection

[4], etc.) few research works target crowdsourcing as a

means for UI adaptation that engages and leverages the user

communities behind software applications.

A primary advantage of our technique over existing works

targeting the crowdsourcing of UI adaptations is the use of

a model-driven approach that allows automatic model-

checking to determine whether removing a feature affects

other remaining features. This dependency is determined

through the temporal operators in ConcurTaskTrees (CTT)

[18] that are used to represent a UI’s task model. Other

researchers [3] have used a similar approach for checking

CTTs for task dependency but our technique can be

demonstrated by an algorithm (Appendix).

Adaptable Gimp [12] is presented as a socially adaptable

alternative of the GNU image manipulation program Gimp.

Adaptable Gimp allows the community to customize its UI

by creating task-sets in a wiki. The work stresses on the

importance of user feedback but no mechanism is provided

for the users to evaluate the crowd-adapted UIs. Also, even

though Gimp has a WIMP style UI, the adaptation focuses

on a list of actions in the toolbar. Other research on UI

adaption similarly focuses on drop-down menus [13]. Our

aim is to be able to adapt any parts of the UI. Also, privacy

concerns in terms of managing the adopted and shared UIs

are not an issue in non-enterprise tools such as Gimp but

our approach addresses these concerns by allowing

administrators to control parts of the process.

Another approach [17] allows HTML based UIs to be

adapted by users through a toolkit with a predefined set of

adaptation operations. The changes are stored in a central

repository as Cascading Style Sheets (CSS), which could be

applied for other users with similar needs. This approach

has several downsides: (1) It is technology dependent since

the toolkit only works with HTML based web-pages

whereas a model-driven approach provides technology

independence. (2) Storing the customizations as CSS files

makes operations such as model checking difficult.

One approach [16] attempts to involve the application’s

user community in the initial user interface design process

by crowdsourcing the engineering of UIs. Although this

approach has its advantages it does not tackle multi-context

UI adaptation, which occurs at a post development stage.

The following section explains the steps, illustrated in

Figure 1, of our process for crowdsourcing UI adaptations.

Figure 2. User Interface Task Model (Left) and Concrete UI Model (Right) created using Cedar Studio (Excerpt)

PROCESS OF CROWDSOURCING UI ADAPTATIONS

User interfaces can be represented in Cedar Studio on the

levels of abstraction given by the CAMELEON reference

framework [7]. The excerpt in Figure 2 shows two of these

levels namely the task model (left) and the concrete UI

(CUI) model (right) representing an “Item Maintenance” UI

that is common in ERP systems. Cedar Studio stores the UI

models in a relational database, which could serve as a

repository for sharing these UIs among various enterprise

stakeholders who can adapt the feature-set. The following

subsections explain our process for crowdsourcing the

adaptation of enterprise application UIs (Figure 1).

Step 1: Enterprise Stakeholders Adapt and Verify the UI

The adaptation process starts with enterprise stakeholders

adapting a UI and executing an automatic verification to

check whether the adaptation creates any conflicts. The

stakeholders could be internal employees primarily wishing

to adapt the UI for their personal use or external experts

willing to contribute their experience to the community.

Any stakeholder can adapt UIs by using our web-based

visual feature-set editing tool shown in Figure 3. Internal

employees could connect the tool to their local enterprise

database, whereas external experts could connect it to an

online repository setup by the community for collaboration.

The tool loads the task model as a tree structure (Figure 3 –

Left), and dynamically renders the CUI using HTML

(Figure 3 – Right). Stakeholders wishing to adapt the UI’s

feature-set could simply check/uncheck the selected task in

the tree or click on the check/delete buttons next to each

CUI element. Upon removing a parent task, the tool will

automatically remove all of its subtasks. A description is

given to the adapted UI to indicate the purpose of the

adaptation (e.g., task, user’s computer literacy, device, etc.).

The dependency between features could create conflicts

when removing some while keeping others. For example, a

conflict could happen if “Field A” was removed but “Field

B” depends on it to calculate its value. The solution for

such conflicts would be either removing or keeping both

features. Upon completing the adaptation, it is possible to

automatically verify the outcome. This verification relies on

Algorithm 1 (Appendix) for checking if the removed tasks

affect any other remaining tasks. Errors similar to the one

shown in Figure 3 would be displayed with the option of

reversing the action by re-enabling the disabled feature or

fixing it by disabling any dependent features.

If the stakeholder adapting the UI is an internal employee,

he or she will gain direct access to the adapted UI through

the enterprise application. On the other hand UIs adapted by

external experts remain in the online repository to be

accessed by administrators from different enterprises. As

the next subsections explain, due to business related

usability and privacy matters, administrators are able to

control the internally/externally adapted UIs that are made

available to the enterprise employees and the internally

adapted UIs that are shared with external communities.

Step 2: Administrator Checks, Integrates, and Publishes
the Crowd-Adapted User Interface

The administrator of an enterprise application checks if the

adapted UI matches the description given in the previous

step. In case the UI had been adapted by one of the internal

employees then the administrator would have access to it

through Cedar Studio from the local database. Yet, if the UI

was adapted by an external expert the administrator could

download it using Cedar Studio from the online repository

in XML format and import it to the local database.

Afterwards, the administrator associates the crowd-adapted

UI with one or more enterprise roles (e.g., accountant,

novice user, etc.). Cedar Studio automatically performs the

role allocation to integrate the UI with our Role-Based User

Interface Simplification mechanism (RBUIS).

Finally, the administrator publishes the crowd-adapted UI

internally for the enterprise employees to use.

Figure 3. Our Web-Based Visual Feature-Set Editing Tool for Supporting Crowdsourcing User Interface Adaptations

Step 3: Enterprise Users Use and Rate the Adapted UI

After the administrator checks, integrates, and publishes the

crowd-adapted UI, enterprise users with the appropriate

roles will gain access to it. Although the crowd-adapted UI

is ideally intended to provide a better user experience, the

quality of the adaptation is always a concern. Hence, an

end-user evaluation mechanism is needed to determine the

adaptations that truly enhance usability for a given context.

After using the crowd-adapted user interface the users will

be prompted to rate their user experience. One possible

option to consider is the System Usability Scale (SUS) [6],

which provides ten Likert-scale questions that could be

converted into one numeric score.

Step 4: Administrators Share Internally-Adapted UIs and
Internal Ratings

Due to privacy matters, some enterprises might decide not

to share all the internally-adapted UIs and ratings. Hence,

administrators are given control over which internally-

adapted UIs and internally given ratings to share with the

external communities.

In case the administrator decides to share an internally

adapted UI, Cedar Studio could be used to upload the UI to

an online repository alongside a description indicating the

purpose of the adaptation. We should note that internally

created enterprise roles are not shared with external

communities due to their highly specific enterprise nature.

Hence, the description fits as a substitution for these roles.

Furthermore, ratings for internally or externally adapted UIs

could be uploaded and aggregated with the rating data in

the online repository to allow the external communities to

benefit from this quality metric when searching for an

adapted user interface that fits a particular context.

PRIVACY CONCERNS AND BUILDING COMMUNITIES
AROUND ENTERPRISE APPLICATIONS

As we previously mentioned some enterprises might have

privacy concerns regarding sharing some UIs, which have

been internally adapted, with possible business competitors.

Yet, this does not neglect the benefits of crowdsourcing UI

adaptations. External experts could still contribute adapted

UIs to online repositories for enterprises to benefit from.

Experts in commercial (e.g., SAP, Dynamics, etc.) as well

as open-source (e.g., Compiere, A1, etc.) enterprise systems

already contribute both knowledge and functionality to the

enterprise communities. These experts contribute their

knowledge to forums and gain a higher status (e.g.,

Microsoft MVP) in particular enterprise communities. Also,

they contribute functionality by extending open-source

applications and creating add-ons for commercial ones.

Enterprise applications already have numerous community

networks (e.g., SAP Community Network [20]) where

experts contribute their experience by helping other

community members in solving enterprise application

problems. Therefore, similar networks could be created for

crowdsourcing the adaptation of enterprise application UIs.

These networks could provide access to the feature-set

editing tool (Figure 3), which could store the adapted user

interface in the network’s database thereby making the

adaptations accessible online to any registered member.

Enterprises could also have an incentive for selling some

proprietary adapted UIs on one of the enterprise application

stores (e.g., Microsoft Dynamics Marketplace [21]). Some

enterprises could even specialize in adapting and selling

UIs for widely adopted enterprise systems. We should note

that UIs developed with Cedar Studio could be easily

shared in XML format due to their relational data nature.

Figure 4. Results of the Study Conducted for Evaluating the Web-Based Visual Feature-Set Editing Tool

EVALUATION STUDY

In order to evaluate the approach that we are proposing in

this paper, we made our feature-set editing tool available

online and asked participants to adapt the feature-set of an

“Item Maintenance” user interface as illustrated in Figure 3.

We used Amazon Mechanical Turk for crowdsourcing the

adaptation task to 33 participants who were selected based

on their Mechanical Turk experience and performance

(>5000 hits and >95% accuracy). We diversified the sample

by classifying participants into groups based on computer

literacy. The participants were asked to rate their computer

literacy through a series of questions based on an existing

test [11]. The answers allowed us to classify participants as

intermediate (13) and expert (20) computer users.

The participants were asked to minimize the feature-set

based on given textual requirements describing the fields to

be removed. After performing the adaptation, participants

were asked to answer the System Usability Scale (SUS)

questions to evaluate the usability of the tool. The task

model resulting from the adaptation was stored alongside

the time it took each participant to perform the adaptation.

The stored information helps in assessing the efficiency and

effectiveness of the participants when using the tool.

The results of the study are illustrated in Figure 4. Based on

the given SUS scores (Figure 4 – a), with a mean score of

68.78, we can say that the participants perceived the system

to be usable. Also, the participants were able to accomplish

the given task successfully and efficiently with a mean time

of 79.33 seconds (Figure 4 – b).

This basic preliminary study provides encouraging results

in terms of the overall perceived usability and efficiency by

participants with various computer skills. Yet, we should

indicate that the study has some limitations in terms of the

simplicity of the considered example and the selected

participants. When the participants were asked if they

would use such a tool in practice the majority agreed,

nevertheless we are aware that Mechanical Turk participant

could create some bias in terms of providing the researchers

with the answers that they want to hear. Therefore, we are

merely considering this study as a basic initial indicator and

a pilot for future lab-based studies. In future studies we will

consider more sophisticated examples from a specific

enterprise application and we will recruit participants from

the selected application’s end-user community to test the

tool. Based on the results of future studies we will be able

say whether extending the tool can be worthwhile and

possibly identify the new features that it should include.

CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for crowdsourcing

UI adaptations by targeting the minimization of a UI's

feature-set to reduce the “bloat” in enterprise applications.

Our approach relies on model-driven UI construction and

making UIs available for the crowd to adapt through a web-

based editing tool. To cater for privacy and quality concerns

of enterprises, administrators are given a role in the

adaptation process for controlling the externally adapted

UIs that are published to the enterprise and the internally

adapted ones that are shared with external communities. We

argue that such concerns should not prevent online

communities from forming around the proposed approach.

Our tool was evaluated through a preliminary online user-

study that provided encouraging results in terms of

perceived usability, and measured efficiency and

effectiveness. Yet, we indicated the limitations in this study

and our aim to overcome them in future lab-based studies.

In the future we could extend our web-based feature-set

editing tool to support the adaptation of concrete UI widget

properties (e.g., size, location, etc.). Also, we will test our

tool with a real-life application by crowdsourcing UI

adaptations to the application’s relevant online community.

ACKNOWLEDGMENT

This work is partially funded by ERC Advanced Grant

291652.

REFERENCES

1. Akiki, P.A., Bandara, A.K., and Yu, Y. Using

Interpreted Runtime Models for Devising Adaptive User

Interfaces of Enterprise Applications. ICEIS'12,

SciTePress (2012), 72-77.

2. Akiki, P.A., Bandara, A.K., and Yu, Y. RBUIS:

Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior.

EICS'13, ACM (2013), Forthcoming

3. Bergh, J., Sahni, D., and Coninx, K. Task Models for

Safe Software Evolution and Adaptation.

TAMODIA'09, Springer (2010), 72-77.

4. Bernstein, M.S., Brandt, J., Miller, R.C., and Karger,

D.R. Crowds in Two Seconds: Enabling Realtime

CrowdPowered Interfaces.UIST'11, ACM (2011), 33-42.

5. Botterweck, G. Multi Front-End Engineering. Model-

Driven Development of Advanced User Interfaces.

Springer (2011), 27-42.

6. Brooke, J. SUS: A Quick and Dirty Usability Scale.

Usability Evaluation in Industry, Taylor and Francis

(1996), 189-194.

7. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting

with Computers, 15, 3, Elsevier (2003), 289-308.

8. Carroll, J.M. and Carrithers, C. Training Wheels in a

User Interface. Communications of the ACM 27, 8,

ACM (1984), 800-806.

9. Gajos, K. Automatically Generating Personalized

Adaptive User Interfaces. Stanford University (2008).

http://www.youtube.com/watch?v=ODrE7SodLPs.

10. Heimerl, K., Gawalt, B., Chen, K., Parikh, T.S., and

Hartmann, B. CommunitySourcing: Engaging Local

Crowds to Perform Expert Work via Physical Kiosks.

CHI'12, ACM (2012), 1539-1548.

11. Kay, R.H. A Practical Research Tool for Assessing

Ability to Use Computers: The Computer Ability

Survey (CAS). JRCE 26, 1, IACE (1993), 16-27.

12. Lafreniere, B., Bunt, A., Lount, M., Krynicki, F., and

Terry, M.A. AdaptableGIMP: Designing a Socially-

Adaptable Interface. UIST'11, ACM (2011), 89-90.

13. McGrenere, J., Baecker, R.M., and Booth, K.S. An

Evaluation of a Multiple Interface Design Solution for

Bloated Software. CHI'02, ACM (2002), 164-170.

14. McGrenere, J. and Moore, G. Are We All In the Same

“Bloat”? Graphics Interface, A.K. Peters (2000), 187-196.

15. McGrenere, J. “Bloat”: The Objective and Subject

Dimensions. CHI'00, ACM (2000), 337-338.

16. Nebeling, M., Leone, S., and Norrie, M. Crowdsourced

Web Engineering and Design. Web Engineering.

Springer (2012), 31-45.

17. Nebeling, M., Leone, S., and Norrie, M. Crowdsourced Web

Engineering and Design. ICWE'12, Springer (2012), 31-45.

18. Paternò, F., Mancini, C., and Meniconi, S. Concur

TaskTrees: A Diagrammatic Notation for Specifying Task

Models. INTERACT'97, Chapman & Hall (1997), 362-369.

19. Shneiderman, B. Promoting Universal Usability with

Multilayer Interface Design. CUU'03, ACM (2003), 1-8.

20. SAP Community Network. http://scn.sap.com/welcome.

21. Microsoft Dynamics Marketplace.

http://dynamics.pinpoint.microsoft.com/en-GB/home.

APPENDIX

Algorithm 1. Conflict Checking for Feature-Set Minimization Based on CTT Temporal Constraints
// m = number of unselected tasks, n = number of conflicting tasks

// CON = Constant, POL = Polynomial, c1 … c9 = cost1 … cost9

 [] CheckForConflicts(TaskModel TM) // Running Time = 𝑂 (𝑚)
 {//Get the unselected tasks and their relevant relationships

CON c1 O(1) UnselectedTasks[] ← Select * From TM.Tasks Where Selected = = false

CON c2 O(1) UnselTaskRelationships[] ← Select * From TM.Relationships as R

. c2 O(1) Where (Select TaskID From UnselectedTasks).Contains(R.SourceTaskID)

. c2 O(1) || (Select TaskID From UnselectedTasks).Contains(R.TargetTaskID)

. . . //CTT Rel. types that indicate dependency between tasks (TA & TB)

CON c3 O(1) RemoveTAIfTBIsRemoved[] ← { Concurrency with Info. Exchange }

. c3 O(1) RemoveTBIfTAIsRemoved[] ← { Concurrency with Info. Exchange,

. c3 O(1) Enabling, Enabling with Info. Exchange }

CON c4 O(1) ConflictingTasks ← [];

POL c5 O(m) foreach uTask in UnselectedTasks

. . . //Get the conflicts created by unselecting the task

CON c6 O(1) ConflictingTasks ← Select * From TM.Tasks as T Where

. c6 O(1) (Select SourceTaskID From UnselTaskRelationships

. c6 O(1) Where TargetTaskID = = uTask.TaskID

. c6 O(1) && RemoveTAIfTBIsRemoved.Contains(RelType)).Contains(T.TaskID)

. c6 O(1) ||(Select TargetTaskID From UnselTaskRelationships

. c6 O(1) Where SourceTaskID = = uTask.TaskID

. c6 O(1) && RemoveTBIfTAIsRemoved.Contains(RelType)).Contains(T.TaskID)

CON c7 O(1) return ConflictingTasks

