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Abstract

In this paper we show that payment computation essentialgs chot present any obstacle in de-
signing truthful mechanisms, even for multi-parameter dors, and even when we can only call the
allocation rule once. We present a general reduction thastany allocation rule which satisfies “cyclic
monotonicity” (a known necessary and sufficient conditiontfuthfulness) and converts it to a truthful
mechanism using a single call to the allocation rule, withitearily small loss to the expected social
welfare.

A prominent example for a multi-parameter setting in whichatlocation rule can only be called
once arises in sponsored search auctions. These are mdtinpter domains when each advertiser has
multiple possible ads he may display, each with a differeiies per click. Moreover, the mechanism
typically does not have complete knowledge of the clickization or the click-through rates (CTRS);
it can only call the allocation rule a single time and obséheeclick information for ads that were pre-
sented. On the negative side, we show that an allocatiorighiatthful for any realization essentially
cannot depend on the bids, and hence cannot do better thdomaselection for one agent. We then
consider a relaxed requirement of truthfulness, only ireexgtion over the CTRs. Even for that relaxed
version, making any progress is challenging as standakhigaes for construction of truthful mecha-
nisms (as using VCG or an MIDR allocation rule) cannot be uséhis setting. We design an allocation
rule with non-trivial performance and directly prove it igctic-monotone, and thus it can be used to
create a truthful mechanism using our general reduction.
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1 Introduction

In this paper we show that payment computation essentia@lgs ahot present any obstacle in designing
truthful mechanisms, even for multi-parameter domaind,eren when we can only call the allocation rule
once. This extends the result of [Babaioff et al., 2010] flogke parameter domains to multi-parameter
domains. We present a general reduction that takes anyatioaule which satisfies “cyclic monotonicity”

(a known necessary and sufficient condition for truthfusesd convert it to a truthful mechanism using a
single call to the allocation rule, with arbitrarily smadiss to the expected social welfare. The mechanism
does not compute the payments explicitly but rather chaiayeom payments having the right expectation.

Such areduction is particularly attractive as it can hanuléi-parameter settings where it is impossible
to decouple the computation of the allocation from the d@xecution of the allocation. In such situations,
the entire mechanism — including the payment computationar-anly execute a single call to the allo-
cation rule. We call this the “no-simulation” constrairit,can arise when a mechanism interacts with the
environment, and the information revealed by the enviramtrdepends on the choices made by the alloca-
tion rule. The no-simulation constraint is a significantdierbecause the existing approaches to payment
computation require multiple calls to the allocation rwléth different vectors of bids.

Sponsored search auctions supply a prominent example dtigpatameter setting with the no-simulation
constraint. In this setting each advertiser has multipksjtide ads he is interested in displaying, each with
a different value per click, and the mechanism does not hawglete knowledge of the click-realization or
the click-through rates (CTRs). Instead, it can only alleced impressions and observe the click informa-
tion for ads that were presented. The no-simulation coinstadso arises in other contexts, such as packet
routing [Shnayder et al., 2012].

We note that our reduction — the multi-parameter transfdiona— has other uses beyond settings
with the no-simulation constraint. For example, it can &lsaused to speed up the computation of payments
in most multi-parameter mechanisms. Indeed, it has alrdmdy used for this purpose by two recent
paperle_e%bll] used it to speed up the paymentuaiign for a mechanism that allocates batch

jobs in a cloud systenh. Huang and Karnan |2012] used it to cbenpayments for their privacy-preserving
procurement auction for spanning trees, which is basedeowdi-known “exponential privacy mechanism”

from prior work |Mc§herry and Talwalr, ZQ|07].

Sponsored search mechanismswith unknown CTRs. In the remainder of the paper we focus on the prob-
lem of designing truthful mechanisms for an archetypicaltirmarameter setting with the no-simulation
constraint: sponsored search auctions with unknown thiottigh rates (CTRS). The difficulty in designing
such allocation rules stems from the fact that the welfare gif’en allocation depends on clicks of the allo-
cated ads, which are unknown to the bidders and to the mesrhardihis prevents us from using the VCG
mechanism since it depend on choosing a welfare-maximelingation. Yet, it is possible that welfare can
at least be approximated.

We focus on a simple single-shot ad auction in which the atloa rule unfolds over time (and the CTRs
are not known). As such, we contribute to a growing literatoin ad auctions that unfold over time, as they
do in practice. The non-strategic version of our model is Bruraderstood variant of theaulti-armed bandit
problem.

Mechanisms that are truthful for every realization of thekd would be most attractive, as the strategic
behavior in such mechanisms would not depend on the agestiesfdabout the process generating the clicks
— for example, the belief that clicks for each ad are i.i.dnira fixed distribution. Such mechanisms were
constructed ibML&iQﬂj.thLLdeQ...Zﬂ)lO] for the singlegmeter version of the problem. Unfortunately,
the multi-parameter setting is much harder. In the settirgponsored search with multiple ads per bidder




and unknown CTRs, we show that if the mechanism is requirdsktouthful for every realization of the
clicks, then it must be a trivial mechanism that outputs adfiabocation (or distribution over allocations)
with no dependence on the bids.

In light of this negative result we consider a weaker notiérirathfulness. Assume that clicks are
stochastic (meaning that each ad has a CTR, and clicks a@pendent Bernoulli trials with the specified
click probabilities) but the CTRs are not known. The mechiamis required to be truthful for every vector
of CTRs; we call mechanisms with this propestipchastically truthful The VCG mechanism still cannot
be used as we cannot maximize the expected welfare withawtikg the CTRs. An alternative is to use
a maximal-in-distributional-rangeM{DR) allocation rule combined with VCG-based payment rule,voat
show that for a natural family afIDR allocation rules (in which the set of distributions the raf@imizes
over is independent of the CTRs) the performance of sucls igleo better than randomly selecting an ad
to present.

There are a few examples in the literature of non-VCG-bagetftl multi-parameter mechanisms in
which bidders freely choose an option from a hand-craftedund allocations and prices, e.@t al.,
12003, Dobzinski et all, 2006, Dobzinski and Nisan, 2011}, this technique similarly fails in our setting
because the bidders do not have a dominant strategy foricigoosm such a menu when they do not know
their own CTRs.

Given all these negative results we turn to our multi-patamteansformation which reduces the problem
of designing truthful randomized mechanisms to the (segipisimpler) problem of designing cyclically
monotone ¢MON) allocation rules. In contrast to the negative result fathtfulness for every realization,
we directly craft an allocation rule that satisfies stodlaa®t0N; to our knowledge, the only previous paper
to successful apply this approach lis [Lavi and Sﬂalmy, 20073ing the transformation we construct a
stochastically truthful mechanism that outperforms thigeneandom allocation for a single agent, when the
difference in value-per-impression of his ads is suffidietarge. While this is clearly just a small step, it
proves to be rather challenging, and relies heavily on thié4parameter transformation described above.

Related work. Our earlier papeﬂ_LB_atLaiQﬁ_elJaJL_Zle] considers thetiaicase of single parameter do-
mains. It introduced the technique of designing black-lraxgformations that perform implicit payment
computation while evaluating a given monotone allocatiamction only once. The same paper introduced
monotone allocation rules with strong welfare guarantesssponsored search auctions with unknown
CTRs, by modifying multi-armed bandit algorithms to acleiehe requisite monotonicity property. As
all the results in our earlier paper are limited to singleap@eter settings, they only apply to sponsored
search when each advertiser has amigad to display. In the present paper, we show that the blagk-bo
transformation extends readily from single-parameter tdtirpparameter settings, whereas extending the
results on sponsored search to multi-parameter settingsich more delicate, and in some cases (i.e. for
the strongest notion of truthfulness) outright impossible

Wilkens and Sivanl [2012] extended the results|of [Babaibéfle|2010] to multi-parameter domains
under some limitations. Their work provides a black-boxsfarmation that allows implicit payment com-
putation when the allocation function is maximal-in-diztitional-range IDR). While theMIDR property
is the most widely used method for achieving truthfulnessuiti-parameter settings, it is not a necessary
condition for truthfulness. In fact several papers (ingtgdthis one) depend on multi-parameter mecha-
nisms that are natIDR. By presenting an implicit payment computation procedt tvorkswhenever
there exists a truthful mechanism utilizing the given alban function, we believe that we have posed the
multi-parameter transformation at the appropriate le¥glemerality for future applications.

The literature contains surprisingly few examples of tfuitimulti-parameter mechanisms that are not

based orMIDR allocation rules. Mechanisms designed | by Bartal et al. 320Dobzinski et al. [[2006],




IDobzinski and Nisan [2011] for various combinatorial aoetdomains make use of what might be termed
the pricing technique each agent is allowed to choose freely from a menu of altess each specifying

an allocation and price. The menu presented to a given agaytdepend on the others’ bids, but it must
be carefully constructed so that self-interested agents eaoosing from their own menu will never jointly
select an infeasible allocation. The taxation prmublﬂ;(ﬁled L.I:Iammddsi._lbm] implies tevagry
dominant-strategy truthful mechanism can actually beasgmted this way, provided that agents are able
to evaluate their own utilities for different allocationsfbre the allocation is actually executed. In settings
with the no-simulation constraint, the taxation principlees not apply because agents can only evaluate
their utility ex post In the sponsored search setting, for example, agents lmd®minant strategy for
choosing from a menu listing bundles of ad impressions, Usravithout knowing CTRs they can't pre-
cisely determine the value of an impression; on the othed h#éwe mechanism is powerless to offer a menu
listing bundles of clicks, because there is no way to guarattiat a bidder who chooses a certain bundle
will receive the specified number of clicks.

Apart from mechanisms witMIDR allocation rules and those based on the pricing techniqeeane
aware of only one other mechanism in the literature that imidant-strategy truthful in a multi-parameter
setting: the scheduling mechanismLQf_LasLLand_SM}alm;LﬂZOCV]mrelated machines that have only two
possible processing times. Their mechanism, like oursesigthed by directly constructing an allocation
function that satisfies the cyclic monotonicity constraint

2 Preiminaries

We study reductions from allocations to truthful mechamigor multi-parameter domains. A CS-oriented
background on multi-parameter mechanisms can be fourhd_d]ﬂtand_lsl_emb_e}guzoﬂﬁﬂ a), while an
Economics-oriented background can be found_in Ashlagllefmd)]. Our main result holds for a very
general framework for multi-parameter mechanisms, desdrbelow, where agents’ types are defined as
mappings from outcomes to valuations. Our reduction ingdke allocation rule only once, which make it
particularly useful in domains in which the allocation reennot be invoked (or simulated) more than once
due to informational constraints.

Types, outcomes, and mechanisms. Multi-parameter mechanisms are defined as follows. Thezerar
agents and a s&? of outcomes. Each agents characterized by hig/pex; : O — R, wherex;(o) is
interpreted as the agent’s valuation for the outceneeO. For each agentthere is a set of feasible types,
denoted7;. Denote7 = 771 x ... x T, and call it thetype spacgecall 7; the type space of ageit The
mechanism knowsén, O, T), but not the actual types;; each typex; is known only to the corresponding
agenti. Formally, a problem instance, also callethalti-parameter domairis a tuple(n, O, T).

A (direct revelation) mechanisiv consists of the paif4, P), where4 : T — O is theallocation rule
andP : T — R" is thepayment rule Both .4 andP can be randomized, possibly with a common random
seed. Each agenteports a typé; € 7; to the mechanism, which is called thil of this agent. We denote
the vector of bids byp = (by, ... ,b,) € 7. The mechanism receives the bid vedwoe 7, selects an
outcomeA(b), and charges each agerd payment ofP;(b). The utilities are quasi-linear and agents are
risk-neutral: if agent has typex; € 7; and the bid vector i® € T, then this agent’s utility is

u;(xi;b) = Ep [x;(A(b)) — Pi(b) ] 1)

For each typex; € 7; of agenti we use a standard notatigb_;, x;) to denote the bid vectds such
thatb; = x; andb = b, for every agenyj # i.



Game-theoretic properties. A mechanism idruthful if for every agent: truthful bidding is adominant
strategy
ui(xi; (b_i,Xi)) > U,Z‘(Xi;b) Vx,; € 7;, beT. (2)
An allocation rule is calledruthfully implementabldf it is the allocation rule in some truthful mechanism.
A mechanism isndividually rational (IR)if each agent never receives negative utility by participating
in the mechanism and bidding truthfully:

ui(x;; (b_i,x;)) >0 Vx; €Ty, by € Ty, (3

The right-hand side in Equatiohl(3) represents the maxiraatanteed utility of an “outside option”
(i.e., from not participating in the mechanism). For exagnolur definition of IR is meaningful whenever
this utility is 0, which is a typical assumption for most multi-parameter dors studied in the literature.

Note that if the mechanism is randomized, the above pra@gseedre defined in expectation over the
internal random seed. We can also define utility (and, adaghd truthfulness and IR) for a given realization
of the random seed. We say a mechanismanwsersally truthfulif it is truthful for all realizations of the
random seed; similarly for IR and other properties.

Our assumptions. We make two assumptions on the type space
e non-negative types; (o) > 0 for each agent, typex; € 7;, each outcome € O.

e rescalable types\x; € 7; for each agent, typex; € 7;, and any parametex € [0, 1]. (Ax; denotes
the typex whose valuation for every outcomesatisfiesx; (o) = Ax;(0).)

In particular, for each agenthere exists @ero type a typex; € 7; such thatk;(-) = 0. Let us say that
a mechanism inormalizedf for each agent, the expected payment of this ageni ishenever she submits
the zero type. For domains with non-negative types, it igrdlele that all agents are charged a non-negative
amount; this is known as th@-positive-transferproperty.

Dot-product valuations. An important special case @ot-product valuationswhere the typex € 7; of
each agent can be decomposed as a dot prodkitt) = Ox - ai(o), for each outcome € O, where
By, ai(0) € R are some finite-dimensional vectors. Here the teftn) is the same for all types € 7;
(and known to the mechanism), wheregsis the same for all outcomese O and is known only to agent
i. The terma; (o) is usually called an “allocation” of agentfor outcomeo, and gy is called the “private
value”. Single-parameter domains correspond to the ¢asd.

Note that the typex of each agent is determined by the corresponding private valiie and his type
spaceT7; is determined byD; = {fx : x € T;} C R<. Because of this, in the literature on dot-product
valuations the term “type” often refers 8. To avoid ambiguity, in this section we will refer t6, as
“private value” rather than “type”, and cal); x ... x D,, theprivate value space

In a domain with dot-product valuations, types are resdaldland only if for eachdy € D; and each
A € [0,1] it holds that\8x € D;. In other words, if and only if the sdb; is star-convex ab. To ensure
non-negative types, it suffices to assume that- §Ri for each agent, and all allocations are non-negative:
a;(0) € R4 forallo € O.

Truthfulness characterization. We will use a characterization of truthful mechanisms viaraepprty
called “cycle-monotonicity” (henceforth abbreviated G%0N). A (randomized) allocation ruled satis-
fies CMON if the following holds: for each bid vectds € 7, each agent, eachk > 2, and eachk-tuple
Xi0, Xi1, --- X, € T; Of this agent’s types, we have

Eq [Z?;o X j (0i7) = Xi, (j—1) mod k (Oi,j)] >0, whereo;; = A(b_;, x;;) € O. (4)



Recall that we are using a general notion of agents’ types I@ts), which are defined as functions from
outcomes to real-valued valuations.

It is known thatA is truthfully implementable if and only if it is cycle-mormte, in which case the
corresponding payment rule is essentially fixed.

Theorem 2.1 t 7].) Consider an arbitrary multi-parameter domain, O, 7). A (randomized)
allocation rule A is truthfully implementable if and only if it is cycle-moaongé. Assuming rescalable types,
for any cycle-monotone allocation rulé, a mechanisni.A, P) is truthful and normalized if and only if

E 4 [P;(b)] = EA[ — L, b b_i,tbi))dt]. (5)

This characterization generalizes a well-known trutrdskcharacterization of single-parameter mech-
anisms in terms of monotonicity, due to [Myerson, 1981, Archnd Tardos, 2001]. Recall that for single-
parameter domains, the type of each ageastcaptured by a single number (the private valiye and the
outcome pertinent to this agent is also captured by a singieber (this agent’s allocatiom; (0)). The bid
of agent; is represented bly, € R. Cycle-monotonicity is then equivalent to a much simplaparty called
monotonicity for each agent, fixing the bids of other agents, increasirsgagent’s bid cannot decrease this
agent’s allocation. The payment formula (5) can also be Isiegh, €.g. for non-negative valuations it is

Pi(b) = b Ai(b_i, b;) — [V Ay(b_y, ) du. (6)

External seed. We allow allocation rules to receive input from the envir@mt) a canonical example is pay-
per-click auctions where such input consists of user clickarmally, the allocation rule and the payment
rule depend on the additional argumentwhich captures all relevant input from the environment. (To
simplify the notation, we keep the dependencewimplicit.) We call w the external seedto distinguish
from the internal random seed of the mechanism. We assurhe tisaan independent sample from some
fixed distributionD.y:; this distribution may be unknown to the mechanism.

All game-theoretic properties defined above carry over toharisms with external seed if all expec-
tations are over both internal and external seed. In péaticTheoreni 2]l carries over with no other
modification.

We are primarily interested in properties that hold in exagian over the external seed, for all possible
distributionsD., over the external seed. The corresponding version of a giregrerty P is calledstochas-
tically P. For example, we are interested in mechanisms that areastibcly truthful, and this requires
the allocation rules to be stochasticaliyON.

We also define a stronger version of truthfulness: one thltshior each realization of the external
seed. For each game-theoretic propéttglescribed above, such as truthfulness, IR@M@N, a version that
holds for each realization of the external seed will be dadie-postP. Theoren 2.1 holds for every given
realization of the external seed (but requires the allooatille to satisfy ex-posiMON).

A crucial way in which the external seed is different from th&ernal randomness is that a given run
of the allocation rule might not observe the entire extesesd. More precisely, runs of the allocation rule
on different bid vectors might observe different portiorighe external seed. For example, if an ad is not
displayed to a given user, the mechanism does not obsentbevtikis user would have clicked on this ad if
it were displayed. It follows that the mechanism might noabke to simulate the allocation rule on different
bid vectors — this is precisely the “no-simulation” consttaliscussed in the Introduction. Moreover, this
issue can affect payment computation: the payment presthlg Equation[(5), although well-defined as a



Mechanism 1: The single-parameter mechanisw; from [Babaioff et al.| 2010]
1. Collect bid vectob.

2. Independently for each agent [n], randomly sample; = 1 with probability 1 — ¢ and otherwise
Xi = 73/(1—5), where~; € [0, 1] is sampled uniformly at random.

3. Construct the vector of modified bids= (x1b1,- ., Xnbn)-

4. Allocate according tod(b) = A(z).

iinzl

1

~ 1
5. Compute payments using the form@®gb) = b; - A;(z) - { _ .
-5 ify; <1

mathematical expression, might not be computable giveintbemation available to the mechanié.

To address this issue formally, we say that the mechanigmfoignation-feasiblef for each run of of the
mechanism (i.e., for each bid vectloy each realization of the mechanism’s internal randomraess every
possible value of the external seed) the payments are upidatermined given the information available
to the mechanism.

Implicit payment computation for single-parameter domains. lB.ahaDILe.t.a'.[LZQJJO] provide an implicit
payment computation result for single-parameter domaliey prove that any monotone allocation rule
for any single-parameter domain can be transformed intathftd, information-feasible mechanism with
an arbitrarily small loss in expected welfare. The allamatiule is only invoked once. Below we quote a
special case of this result that is most relevant to the ptexe

Theorem 2.2 (lB_atLaIQﬁ_el_a' lLZQ:IJO}) Consider an arbitrary single-parameter domain where thevate
values of each agent lie in the intervi@l, 1]. Let.A be a stochastically monotone allocation rule for this
domain. Then for each € (0, 1), mechanismM; = (A, P) (described in Mechanisfd 1) is information-
feasible and has the following properties.

(@) [Incentives] M is stochastically truthful, universally ex-post indivally rational. If A is ex-post
monotone, thetM s is ex-post truthful.

(b) [Performance] Forn agents and any bid vectér(and any fixed external seed) aIIocatioﬁ$b) and
A(b) are identical with probability at least — nd. Moreover, if A is a-approximate (for social
welfare), then mechanism; is o/ (1 — 525)-approximate.

(c) [Payments]M; is ex-post no-positive-transfers; and although it is natarsally so, for all realiza-
tions of the internal seed it never pays any agemiore thanb; - A;(x) - (% —1). Mj; is universally
ex-post normalized.

1This has been proved in [Babaioff el al., 2009, Devanur arkhh(thQ] in the context of multi-armed bandit mechanjsms
see Sectioh]4 for more details.

2\We restate the result slightly, to make it consistent with potation. [Babaioff et al., 2010] states the mechanismemor
abstractly, in terms of a generself-resampling procedurel'he simple description o5 that we present here was first published

in [Shnayder et all, 2012].




3 Themulti-parameter transfor mation

In this section we present our first main contribution: thelinit payment computation result for multi-
parameter domains. For a given multi-parameter domain &ivkea CMON allocation rule for this doma,
our goal is to design a truthful, information-feasible mamism with outcome that is almost always identical
to that of the original allocation rule, and this, in partany ensures a small loss in expected welfare. We
achieve this goal foeveryCMON allocation rule ancgeverymulti-parameter domain (under a mild assump-
tion of rescalable, non-negative types). More precise/give a general “multi-parameter transformation”
which takes an arbitrargMON allocation ruled and transforms it into a truthful, information-feasible che
anism which implements the same outcomedawith probability arbitrarily close td. This mechanism
requires evaluatingd only once; its allocation rule randomly modifies the subaditbids, and then calls
A on the modified bidd. The technical contribution here is showing that the natgeaeralization of the
reduction for the single-parameter setting, to the mudtiapneter setting, preserves all desired properties.
The non-trivial part of the proof is showing that althougk 8ingle-parameter transformation only ensures
that each agent does not have an incentive to deviate byigallihis bids by the same scalar[ih 1], he
also does not have an incentive to deviate to any other anpirids.

The transformation. Our multi-parameter transformation is a remarkably sti@yward generalization

of the single-parameter transformation specified in Meigmaf. In fact, there is no need to rewrite the
five steps; the only thing that changes is the interpretaifdhe notation. Specifically, the bids, ..., b,
should now be interpreted as elements of the type spaces., 7, rather than as scalars, and for each
the modified bidx; = x; b; is obtained by multiplying the abstract type (a function from outcomes to
reals) by the random scalgf. (Note thaty; b; is well-defined because we are assuming the rescalable types
property.) The notation; - A;(x) from the single-parameter case is now interpretet;&sl;(x)), where

x = (x1, ... ,Xy) is the vector of re-sampled bids. With this interpretatitw, payment rule is as follows:
~ 1 if Xi = 1

In the remainder of this section we analyze the properti¢éseomulti-parameter transformation, proving
an analogue of Theorem.z. The subtlest step, which occupast of the analysis, is to prove that the
modified allocation ruled satisfiesCMON.

Induced single-parameter domains. To aid in the analysis, it will be helpful to introduce theléaling
notation. Consider a bid vectbre 7 and a vector of “rescaling coefficienta’c [0, 1]". Denote

A@b:()\lbl, ,)\nbn)ET.

In other words \ ® b is the rescaled bid vector where the bid of each agé&ni\;b;. Note that for each
the subset

To={A®b: X [0,1]"} CT
forms a single-parameter type space where each adea private value\; € [0, 1] and allocatiorp;(o)
for every outcome. By abuse of notation, let us treat the allocation and paymees for7y, as functions
from the private value spade, 1]" rather than the type spadg.

3Recall thatcMoN is a necessary and sufficient condition for truthfulness.

“The transformation presented here is certainly not the @mlyiction that transforms multi-parameter allocatioesidatisfying
CMON into truthful, information-feasible mechanisms. One aging feature of our transformation, in comparison to alétives,
is its simplicity. It also optimizes the trade-off betwedre tworst-case bid-to-payment ratio and the probabilitydifpding the
original allocation, as was shown by Wilkens and Sivan (304 2he single-parameter context.

8



We want to prove that the mechaniss = (ﬁ,ﬁ) defined by our transformation is truthful. As a
starting observation, note that when one applies the sipagilameter transformation given in Sectidn 2 to
the allocation rule defined by, (A) = A(A®b), one obtains a mechanism that coincides with the restnictio
of My to T,. By Theoren 2.2, we may conclude that the restriction\¢f to the single-parameter type
spaceTy, is truthful. Yet this conclusion is not sufficient, sincestiiuthfulness condition is actually weaker
than what we are aiming for: it ensures that a deviation esige single-parameter type spdhgis not
beneficial, but says nothing about deviation to other typés i 7y,. Nevertheless, our proof will show that
if the original allocation rule wasMON, the transformed allocation rule is als#oN for the domainy, and
thus is truthful as needed.

Theorem 3.1. Consider an arbitrary multi-parameter domaim, O, 7) with rescalable, non-negative
types. Letd be a stochasticalltMON allocation rule for this domain. Lets = (A, P) be the trans-
formed mechanism for some parametesf (0, 1). ThenM; has the following properties:

(a) [Structure] M is information-feasible.

(b) [Incentives] M is stochastically truthful and universally ex-post indivally rational. If A is ex-post
CMON, thenM is ex-post truthful.

(c) [Performance] Forn agents and any bid vectér(and any fixed external seed) allocatiaﬁ$b) and
A(b) are identical with probability at least — nd. Moreover, ifA is a-approximation to the maximal

social welfare thend is af (1 ) -approximation to the maximal social welfare.

(d) [Payments]M is ex-post no-positive-transfers; and although it is noiversally so, for all realiza-
tions of the internal seed it never pays any agentore thanb;(0)(% — 1), whereo = A(b) € O.
Additionally, M is universally ex-post normalized.

Proof. M is information-feasible by construction, since so are thgls-parameter mechanisms obtained
from Theoreni ZR2. All claimed properties except truthfeméollow immediately from Theorein 2.2. Below
we prove truthfulness.

We claim thatA satisfiesCMON. Indeed, fix bid vectob € 7, agenti, somek > 2, and ak-tuple
X0, Xi1, --- ,X;, € T; Of this agent’s types. Let us consider a fixed realizationhefriandom vector
x € [0,1]™ in step [2) of mechanism\1;. For each type; ;, note that we have

-Z(Xi,jab—i) =A(x® (Xim b_;)) € O.

Denote this outcome by; ;(x). Let us apply the cycle-monotonicity of for bid vectory ® (x; j, b_;):
Ea 3250 %i,i(005(00) = Xi, (1) moa (045 00))] = 0. (7)

Recalling thab; ;(x) = .Z(xl j»b_;), we observe that for this fixed realizationafEquation[(¥) is exactly
the inequality in the definition of cycle-monotonicity fer. Therefore taking expectation overwe obtain
the desired inequality Equationl (4) fet. Claim provecﬁ

It remains to prove that in the transformed mechanistnP), the payment rule satisfies Equatiéh (5).
Fix bid vectorb and consider the transformed single-parameter mecha(nigr,nﬁb) for the single-parameter

®Note that the proof of cycle-monotonicity of did not use any other property 8fs other than that the re-scaling factoys
are chosen independently from a distribution that does apedd ond. The truthfulness of the single-parameter mechanisms
(Ab7 Pb) is used in the forthcoming argument about payments.
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type spacéy,. Inthe terminology of single-parameter domains, eachtageceives an allocatioﬁb,i()\) =
bi(Ap (X)) whenever the bid vector is € [0,1]". Since this is a truthful and normalized single-parameter
mechanism, it follows that

E[ﬁb(x)} ~E {Aiﬂb,,—(x)— /0 : Api(A_i,t)dt|, VA€o, 1"

Plugging in\ = 1 and using the definitions od},, P}, we obtain the desired Equatidd (5). O

4 Multi-parameter MAB mechanisms

Let us define a natural multi-parameter extension to the MABmanism design problem studied.in [Babaioff et al.,

2009, Devanur and Kakdde, 2009, Babaioff ét al., blO].

Problem formulation. There aren agents. For each agent there is a known and fixed set of ads he is
interested in; we assume that these sets are disjoint. T@entanber of ads is denoted hy.

As is common in the literature on sponsored search we asdwahagdents only value clicks; they have
no value for an impression when the ad is not clicked. Foryeadrj there is avalue-per-clickv; such that
the unique agent that is interested in that ad receivesyutiliwhenever this ad is clicked; this value is the
agent’s private information.

A mechanism for this domain proceeds as follows. There€lareunds, where the time horizdh is
fixed and known to everyone. In each round the mechanisnr eiftédes taskip this round or chooses one
ad to display. Then the ad is either clicked or not clicked. agents bid once, before the first round. The
bid of a given agent consists of a tuple of reported valuesifoads. The bid reported for gds denoted
b;; the entire bid vector of all agents for the ads is denoted = (b, ... ,b,,). Payments are assigned
after the last round.

For each adj, the click probability is fixed over time and denotgg. In each round when this ad is
displayed, it is clicked independently with probability. Click probabilities are calledlick-though rates
(CTR9 in the industry. We assume that the CTRs are not known ndihtee mechanism nor to the agents.
For brevity, lety = (41, ... , um) be the vector of all CTRs.

Interpretation as a multi-parameter domain. For our setting, stochastic truthfulness (and similarly
stochasticCMON, etc.) is a property that holds in expectation over clicks, dll possible CTR vectors
.

Following the prior work, the external seed is definealask realizationp, in the following sense. For
every adj and every round, realizationp(t, j) € {0, 1} says whether this ad would be clicked if it is shown
in this round. In particular, ex-post truthfulness cormsts to truthfulness for every click realization. Note
that a given run of a mechanism does not observe the entilerelalization: it only observes clicks for ads
that are displayed in a given round.

For every bid vectob and each click realizatiop, let C;(b, p) be the expected total number of clicks
received by ad, where the expectation is over the internal randomnesim#éthanism. Denoté(b, p) =
(Ci(b,p), ... ,Cnp(b,p)) and call it theclick vector We interpret the click vectors as the “outcomes”
in the multi-parameter domain. Note that a given click vecigb, p) corresponds to expected welfare

225 0iC;(b; p).

%Here and elsewher®)AB stands fomulti-armed bandits
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Note that with this interpretation of the “outcomes”, thioahtion rule is not free to choose any well-
defined outcome. Instead, the collection of outcomes thrabedamplemented on a given run of the mecha-
nism is constrained by the click realizati@n.

For a given CTR vectog, letC (b, n) = E,.,C(b, p), where the expectation is taken over click realiza-
tions p according to the corresponding CTRs. Call it fhelick vector. In expectation over the clicks, the
welfare is} . v;C;(b, ). When considering stochastic truthfulness, it will be meoavenient to re-define
outcomes ag-click vectors.

Discussion and background. If not for the issue of incentives and the requirement ofhfiwihess, the
welfare-maximization problem for the allocation rule igisely themulti-armed bandifproblem (hence-
forth, MAB), a well-studied problem in Machine Learning and Operai&esearch. MABnechanisms
can be seen as a version of the MAB problem that incorporatantives. MAB mechanisms (in the lim-
ited single-parameter case, with one ad per agent), weiedunted and studied in [Babaioff et al., 2009,
IDevanur and Kakade, 2009] for the deterministic case. Sjlesely,| Babaioff et al.| [2010] studied ran-
domized MAB mechanisms. Below we recap some of the contoibsitmade in|[Babaioff et all, 2009,
Devanur and Kakatle, 2009].

MAB mechanisms were suggested as a simple model in which anesttidy the interplay between
incentives and learning, two major issues that arise ingeyelick auctions. Pay-per-click is (along with
pay-per-impression) one of the two prevalent business madehe advertising on the Internet, attte
prevalent pricing model in sponsored search. Comparedygpeaimpression, pay-per-click reduces the
risk that advertisers take, as they only pay when the addkedi. The seller, who has some control over
clicks, bears the risk instead. Moreover, advertiserscallyi have very little or no information about their
CTRs, and should not be required to learn more. The paylprroodel essentially shields the advertisers
from this uncertainty.

The crucial assumption in our model of MAB mechanisms is thatCTRs are initially not known to
the mechanism. This assumption reflects the fact that thesGiF& learned over time, while the ads are
being allocated, and so the process of learning should bettes a part of the gaifle.

The focus of the investigation in [Babaioff et al., 2009, Beur and Kakad e_‘A)IOQ] was whether and
how the requirement of truthfulness restricts the perforceaof MAB algorithms when types are single-
parameter. They found a very severe restriction for detdstié, ex-post truthful mechanisms: the al-
location rule can only have a very simple, “naive” struetseparating exploration and exploitation),
which severely impacts performance compared to the best MIgBrithms. They capitalize on the “no-
simulation” constraint to prove that if an allocation rulees not conform to this simple structure, then a
truthful mechanism with this allocation rule cannot be nfation-feasible.

The obstacle of information-feasibility for the single gareter case is circumvented.in Babaioff et al.
] by moving from deterministic to randomized MAB menfsms. The single-parameter transforma-
tion (Theoreni 2.2) reduces the design of truthful, infoiprafeasible MAB mechanisms to the design of
monotone allocation rules for this domain. Further, théharg provide monotone allocation rules whose
performance matches that of optimal MAB algorithms. Speaiify, they show that (a minor modification
of) a standard MAB algorithnyCB1 [|Au_er_e_t_a|.,|_20_d2] is stochastically monotone, and theygitea new
MAB algorithm which is ex-post monotone and has essenttallysame performance.

"Alternatively, we could have defined “outcomes” via impiess rather than clicks. But then an agent would not have a
full knowledge of his value for each outcome (his type) as@idRs are not known to him. Such a definition necessitates some
cumbersome modifications to the framework in Sedfion 2. Betkions lead to the same results.

8If some information on CTRs is known before the allocatiartst, this can be modeled via Bayesian priors on CTRs. Fellow

ing |[Babaioff et al., 2009, Devanur and Kakade, 2009, Bdbatall,[2010], we focus on the non-Bayesian version.
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5 Multi-parameter M AB mechanisms:
Impossibility result for ex-post truthful mechanisms

In this section we present our second main contributionrasteong impossibility result for ex-post truthful
multi-parameter MAB mechanisms. Consider one of the agamisfix the bids of the others. Essentially,
we show that an allocation rule which satisfies ex-eiN for that agent, cannot depend on the bid of that
agent. More precisely, this holds for a deterministic atamn rule if the bids are large enough, as well as
for any allocation rule (deterministic or randomized) thater skips a round. For randomized allocation
rules that may skip a round, we show that if the allocatioe satisfies ex-po$tMON then it cannot achieve

a nontrivial worst-case approximation ratio.

Theorem 5.1. Let.4 be an allocation rule for multi-parameter MAB which satisfex-posCMON. Fix any
agenti, and fix bids submitted by all other agents.

(a) If Ais any allocation rule (deterministic or randomized) thater skips a round, and if agents the
only agent, then the allocation has no dependence on his bids

(b) If A is deterministic, then there exists a finfiesuch that the allocation for ageftdoes not depend
on his bids, as long as all his bids are larger th&h

(c) If Ais randomized, then its worst-case approximation ratioe(o&ll bid vectors of agent) is no
better than that of the trivial randomized allocation rulet ignores ageni's bid, samples one of his
ads uniformly at random, and allocates all impressions i #d.

The first conclusion presumes there is only a single agedti@prove the remaining two conclusions
it suffices to consider the case of a single agent, becausetfre perspective of any given agent the ads
allocated to other agents can be represented as skips.riicupar, allowing skips in single-agent allocation
rules is essential for the generalization to multiple agénin the rest of this section we assume a single
agent withm ads.

To prove our result we need to set up some notation. Recalthibebids of the agent are represented
by a vectorb = (b1, ... ,b,) € RT. For a given allocation ruled and a given click-realizatiop, the
impression allocationA(b,t, p) € R’ is a vector of probabilities, in expectation over the randsead of
the algorithm, so that;(b,t, p) is the probability that ad is chosen in round given bid vectorb and
realizationp.

Weak monotonicity. We useCMON through a special case whete= 2 in Equation [(#); this special case
is known in the literature aweak monotonicityhenceforth abbreviateg0ON. WMON is equivalent taCMON
if there are finitely many outcomes and the type space is adﬁ@ss_and_ﬂd,_ZD_d)S]. It follows that in our
setting, ex-posWMON is equivalent to ex-posIMON for deterministic allocation rules. For more background
onwMON, see [Archer and Kleinberg, 2008al].

Let us restat&/MON in the notation of multi-parameter MAB mechanisms. Redadlt the click vector
C(b, p) is a vector such that’; (b, p) is the total expected number of clicks for gdyiven bid vecton and
realizationp. Then

Ci(b,p) =Sy p(t,5) Aj(bt,p) = S21 Aulp) A(b,t, p),
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whereA(p) is them x m diagonal matrix with diagonal entrigg(¢, 1), ... ,p(t,m)). Ex-postwMON
states the following: for any realizatignand any bid vectors, b € R?,

Re-writing this in terms of the impression allocation, wéabi:

(5 - b)T E?:l At(p)( A(i)a t? p) - A(ba t? p) ) > 0. (8)

Here and elsewheré/t denotes a transpose of a mathik.

Analysis for allocation rules with no skips (Theorem [5.1(a)). For the sake of contradiction, assume that
A(b,t,p) # AV, t, p) for some round, click-realizationp, and bid vector$, b’ € R’?. Pick the smallest
for which such counterexample exists. Assume w.l.0.g.4hRat0 for all rounds aftet. For each ad, let p;
be a realization that coincides withon all rounds but, and in round adi is clicked and all other ads are
not clicked.

Letb = 1+ max(b,b') € R, wheremax(b, t') is the coordinate-wise maximum é6fand¥’. Since
A(b,t,p) # AU, t, p), we can w.l.0.g. assume thai(b, t, p) # A(b,t, p). Since.A never skips a round,

Combining A(b, t, p) # A(b, t, p) with Equation [) we deduce that for someiadl; (b, t, p) < A;(b,t, p).
We claim thatWMON is violated for bidsh, b and realizatiorp;. Indeed, consider Equationl (8) for realization
pi. The sum in Equatiori18) is 0 for all rounds other thatuecauseél(l;,s,p) = A(b, s, p) for all rounds

s < t (by minimality oft), andp; = 0 for all roundss > ¢. For roundt, the sum in Equatiori{8) i& for all
ads other than, by definition ofp;. Thus, the sum is simply equal t6; — b;) - [A; (b, t, p) — Ai(b,t, p)],
which is negative, contradicting Equatidn (8).

Analysis for the deterministic case (Theorem B.I(b)). We now address deterministic allocation rules that
may skip rounds. The analysis of this case captures the rdaasiof the randomized case while being
significantly easier to present.

Fix click-realizationp and round. Let.4 be the deterministic allocation rule for agéribat is induced
by fixing the bids of all other agents. M skips roundt, write A(b,t,p) = skip. For a vectorb =
(b1, ... ,by) € R, denotemax(b) = max;<;<p, b;. Definemin(b) similarly.

One technicality in the analysis is handling skips; we dati wusing the following notion&

buin(t, p) = sup{max(b) : b € R} andA(b,t,p) = skip}.
B =max( {0} U{bnin(t,p) : 3, psuch thabyi,(t,p) < oo} ). (10)

Note thatB = 0 if byi,(t, p) = oo for all t andp. For a given round and realizatiorp, byin (¢, p) is defined
such that if allm bids are larger thah,;, (¢, p) then the allocation does not skip at rounain realizationp.
B is defined such that for every realization and every rounal] lhids are larger tha® then the allocation
rule never skips.

Claim 5.2. Let. A be a deterministic single-agent allocation rule which séis ex-postMON. Then for each
click-realizationp and each round, .4 does not depend on the bid vectdor all bid vectorsb € (B, c0)™,
whereB is defined in Equatiori (10).

*We use a standard convention thap () = —oc.
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Proof. For the sake of contradiction, assume tHab, ¢, p) # A(V', ¢, p) for some round, click-realization
p, and bid vectord, b’ € (B, oc0)™. Pick the smallest for which such counterexample exists. Assume
w.l.0.g. thatp = 0 for all rounds aftet. For each ad, let p; be a realization such that it coincides wijtlon
all rounds but, and in round ad: is clicked and all other ads are not clicked.
Let us consider two cases, depending on wheihelt, p) is finite.

Case 1: byin(t,p) = oo. At least one ofA(b,t, p), A(V,t,p) is not equal toskip. Since A(b,t,p) #
A t,p), we can w.l.o.g. assume thali(b, t, p) # skip. Hence,A;(b,t,p) = 1 for some adi. Since
buin(t, p) = 00, there existd € (max(b), oo)™ such thatd(b, t, p) = skip.

We claim WMON is violated for bidsb,l; and realizatiorp,;. As in the first case, we see that the sum
in Equation[(8) is O for all rounds other thapand for round the sum i< for all ads other tham. Again, it
follows that the sum is simply equal to— b;, which is negative, contradicting Equatidn (8). Claim oy

Case 2: byin(t, p) < oo. The proof of this case is very similar to the proof of Theoted(15).

Recall that in case 1 it holds thagi,(t, p) < co. Leth = I 4 max(b,b') € R, wheremax(b, ') is
the coordinate-wise maximum éfandd’. Sinceb,iy(t, p) < oo, it follows that B > byi,(¢, p), SO neither
A(b,t, p) nor A(V,t,p) nor A(b,t, p) is equal toskip. Since A(b,t,p) # A(V,t,p), we can w.l.o.g.
assume that (b, t, p) # A(b,t, p). In particular,4;(b, t, p) = 0 and.A;(b, t, p) = 1 for some ad.

We claim thatwMON is violated for bidsh, b and realizatiorp,. Indeed, consider Equatiohl (8) for real-
ization p;. The sum in Equatiori{8) is O for all rounds other thdvecauseél(B, s,p) = A(b, s, p) for all
roundss < ¢ (by minimality oft), andp; = 0 for all roundss > ¢. For roundt, the sum in Equatiori 8)

is 0 for all ads other tham, by definition ofp;. Thus, the sum is simply equal t¢ — b;, which is negative,
contradicting Equatiori.{8). Claim proved. O

5.1 Analysisof the randomized case: proof of Theorem[5.1(c)

The proof of the randomized case of Theoren 5.1 is techgicabire involved than the proof of Theo-
rem[5.1(b)). In particular, even stating the analog of C[&ihrequires a considerable amount of setup.

Define functionsf, g, G : N x R, — R, by the following recurrencef (0,y) = g(0,y) = G(0,y) =0
for all y; while for ¢ > 0:

flit,y) =3ymG(t —1,y)+1
g(t,y) =2f(t,y) +2+3ymG(t - 1,y)
G(t,y) = g(t,y) + Gt —1,y) = >i_1 9(s,y)-
For real number®3 > 0,y > 1, let D(B, y) denote the set
D(B,y) = {b : min(b) > B, max(b)/ min(b) < y}.

We will refer to a bid vector asy-balanced” if it satisfiesnax(b)/ min(b) < y.
Let .4 be a (potentially randomized) allocation rule. Fix redi@ap. For all timest and alle > 0,y > 1
let

Apax(t, p,y) = linlsup{ A, t,p)ll; = b€ D(x,y) }

bnax(t, p,€,y) =sup{z : I € D(x,y) [AD, L, p)ll; < Anax(t,p,y) — € f(t,y) }

Buy) = 0 if buax(t, p,€,y) = oo forallt, p, e
U L sup (RN {bgax(t, pr6,y) - t €N,e>0}) otherwise.
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Here Anax(t, p,y) is the maximal expected number of impressions at tiraech that the agent can obtain
this number with arbitrarily largg-balanced bids. The meaning @&f,, is as follows: if every component

of ay-balanced vectob is aboveb,.,, the expected number of impressions for tifnie guaranteed to be

within € f(¢,y) of the best possible. Note th&t (y) = 0 if buax(, p, €, v) is infinite for all ¢ and allp.

Claim 5.3. Let A be a single-agent allocation rule which satisfies ex-po#iN. Then for anyy > 1, any
e > 0, any bid vector$, v’ € D(B.(y),y), any realizationp, and any round, we have

| A, t,p) — AW £, p)||, < €g(t,y)

Proof. Fix e > 0 and realizatiorp. Let us use induction oh Caset = 0 is trivial, interpretingA(b, 0, p) =
0 for all p,b. Now assume the claim is true for all times< ¢. For the sake of contradiction, assume the
claim does not hold for timéand some realizatiop.

By definition of A,.y, there exists a numbéi* such that

sup || A(b,t, )|l < Anax(t, p,y) + €.
beD(M*,y)

For each ad, define a new realizatiop; as follows: it coincides witlp before timet, only i gets clicked at
timet, and there are no clicks after ) .
Fix bid vectorsh, b’ € D(B.(y),y). Pick some bid vectds € D(M,y), where

M = max(M*, 3y o+ ).

Let M = max(b). .
WMON for realizationp;, applied to bid vectors andb, states the following:

(=)' Alps) ((AB,t.p) — At p) ) (11)
t—1

+(b=0)" D" Aup) (A, p) = Albis,p) = 0. (12)
s=1

The first summand in Equation {11) is simghy — b;) < Ai(b,t, p) — Ai(b,t, p) )
By the induction hypothesis, for each time< ¢ it holds that

(b=5)" Aulp) (Alb,s.p) = Albs,p)) < Meg(s.y)

It follows that

t—1 t—1

(b=0)" D" Au(0) (Albis,p) = Albs,p)) < Me Y gls,y) = MeG(t—1,y)

s=1 s=1

Plugging this into Equatioi(11), we obtain

(bi = b5) (Aibt,p) = Ai(bit,p) ) = =M eG(t — 1y)
Ai(b,t,p) — Ai(bt,p) > —(b; — b)) "M e G(t — 1, ).
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We haveb; > M /y sinceb is y-balanced. Alsé; < M/(3y) by our choice of\l. Therefores; — b; > 2}/
and
Ai(b,t, p) — Ai(b,t,p) > =F Gt —1,y). (13)

Case 1: bpax(t, p,€,y) < oo. DenoteX; = A;(b,t,p) and X! = A;(V',t,p). Let min(X;, X!) be the
coordinate-wise minimum aX; and X/; definemax(X;, X/) similarly.

In this notation, our goal is to bounjd¥ — X'||, above bye g(t,y). Assume = M 1 for someM > M.
By Equation[(1B), noting that this argument applies to bodimdd’, we have:

A;i(b,t, p) > max(X;, X]) — 2 eG(t — 1,y).
Summing this over all ads:

HA(ZN),t,p)Hl > ||max(X, X’)H1 - %y emG(t—1,y).
Recall thatHA(E, t,p) Hl < Anax(t, p,y) + € by our choice ofd/. Therefore:

HmaX(X7 X,)Hl é Amax(t7p7y) +e (1 + 3731 mG(t - 17y))
Note that
X1, + || X7
X - X'
X0+ X, + X = X7

= HmaX(X, X')H1 + Hmin(X, X')H1
= HmaX(X, X')H1 — Hmin(X, X')H1
= 2Hmax(X,X')H1

h
h
Iy

Becausehnax(t, p,€,y) < oo andb, b’ € D(Bc(y),y), both || X||; and || X"[|; are at leastuax(t, p,y) —
e f(t,y). Therefore:

2Anax (t, p) — 2€ f(t,y) + HX — X’Hl <2 Hmax(X, X/)H1
< 2Anax(t, p,y) + 26 (1+ F Gt —1,y)).

It follows that
IX = X[, < 2¢ (14 fltg) + FmGle—1y) ) = eglt.p).

Thus, we have proved the induction step assuming(t, p, €, y) is finite.
Case 2: byax(t, p, €, y) = co. This case is impossible: we will arrive at a contradiction.
By definition of Ay, there exists a bid vectére D(B.(y),y) such that
||A(b7 t7 p)Hl > AmaX(tv P y) - % € f(tv y)

Sincebyax(t, p, €,y) = oo, We can pickh € D(M, y) such that

[AG.4.0)|| < Aaasltepy) = € Flty) < NAG LD — Fe Sty

It follows that

m

Al tp) = Ailbtp)] 2 §e ()

=1
Ji Ai(b7t7p) - Ai(57t7p) > = Gf(t,y).

2m
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Using Equation[(1I3), for thiswe have:
s e f(ty) < Ai(b,t,p) — Aibt,p) < LeG(t —1,y).
Thus, f(t,y) < 3ym G(t — 1,y), contradicting the definition of . O
Using Claim(5.3, it is now easy to prove Theorem 5.1(c).
of Theoreni 5]1(c)For anyé > 0, let

y=2m/d
_ )
€= 2mg(Tw)
B = B.(y).

In our proof we will considering applyingt to the bid vectob? = BT as well as the vectors defined for
j =1,...,m by changing thg*" of 4° from B to yB. The vectorg?, ..., b™ all belong toD(B, 7).

Let p be a realization such thai¢, ;) = 1 for all ¢, j, i.e. every ad is always clicked. Singé can
never allocate more thah impressions, we have."_, S | A;(b°,t, p) < T. Hence, there is at least one
J € [m] such that

T
ST A0t p) < T/m. (14)
t=1

Now, for every round, we have

A](ij t, p) - Aj(bov t, p) < HA(bj7 t, p) - A(bov t, p)Hl < Eg(tv y) = %7 (15)

where the second inequality follows from Claim15.3. Summigguation [(I5) over = 1,...,7 and
combining with Equation({14), we deduce that

T
S AWt < (19) L.

t=1

The optimal allocation for bid vectd¥ assigns every impression to gcachieving a total value of BT'. In-
stead, the allocation computed yachieves a total value bounded above(by- 3) “2L 1 BT, where the
first term accounts for impressions allocated tgjahd the second term accounts for all other impressions.
We have

) BT BT ) 1+6
(1+§)%+BT:%-<1+5+%):yBT-%.

Sinced > 0 was an arbitrarily small positive constant, we conclude tina worst-case approximation ratio
of A is no better than /m, which is trivially achieved by a random allocation. O
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6 Multi-parameter MAB mechanisms. A stochastic CMON allocation rule

In this section we consider the problem of designing stadtadly truthful multi-parameter MAB mech-
anisms. As discussed in the introduction, the VCG mechamianmot be used as it is informationally-
infeasible. Additionally, pricing based mechanisms do segm to be feasible. The only other technique
that is extensively exploited in the literature for mularameter domains is usimgaximal in distributional
range (MIDR) allocation rules. We formalize the limitations of a natdeanily of MIDR allocation rules (in
which the set of distributions the rule optimizes over isependent of the CTRs) in Sectibn6.3, showing
that the performance of such rules is no better than randseicting an ad to present. We next discuss
some simple approaches to create truthful mechanisms: ritelisregards the bids, and the second uses
randomization to reduce the problem to a single parametdaigm.

The first approach ibid-independengllocation rules — ones that do not depend on the bids. Among
those, we naturally focus on the allocation rule that adsethe best worst-case performance, that rule
samples an ad independently and uniformly at random in eaghdr call itRND.

A slightly more sophisticated approach randomly reducesptbblem to a single parameter problem as
follows. One ad is selected independently for each ageifgranly at random from this agent’s ads. Then
some truthful single-parameter mechanidrhis run on the selected ads. Call this mechantsiSample.
This mechanism is truthful (ex-post or stochastically, s@®M) because for each realization of the selec-
tion described above, it is simply a truthful single-paré&nenechanism. The performance of this mecha-
nism is the same as the performance of the triki@l mechanism when there is only one agent.

These two naive approaches have poor performance. Fompéxafor a single agent none performs
better than uniformly randomizing over the ads. We call saigierformancdrivial. This gives rise to the
following major open problem.

Open Problem: Design a stochastically truthful mechanism for the mudtiggmmeter MAB problem that
achieves optimal approximation.

A more modest goal is to design a stochastically truthfullmeésm for the multi-parameter MAB prob-
lem that achieveson-trivial performance, even for some “well-behaved” subset of inputsfortunately,
it seems that all standard tools fail to achieve even thisasbdoal. Below we achieve this by designing
a stochasticallyMoN allocation rule and then applying the multi-parametergfarmation from Sectiohl 3.
We interpret this result as an evidence that it is not corapldiopeless to significantly improve over the
trivial approaches.

6.1 Thestochastically CMON allocation rule

We design a stochastical@ON allocation ruleALL whose expected welfare exceeds thatds on all prob-
lem instances with at least two agents, and th&uSample on an important family of problem instances
which we characterize below. Structuralli.. depends on all submitted bids, is provably M@DR, and,
unlike SubSample, does not proceed through an explicit reduction to a sipglameter allocation rule. Im-
plementingALL as a truthful, information-feasible mechanism requirestiti power of our multi-parameter
transformation.

All results in this section require all private values to lmeibded from above by. We will assume that
without further notice.

Recap of notation. The term “expected welfare” refers to expectation over &melomness in the allocation
rule and the clicks (for a given vector of CTRs). LU&t(RND) denote the expected welfare RfiD. Let
Ap = {1, ... ,m} be the set ofn ads of all agents. Recall thaj, b; and; be, resp., denote the private
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value, the submitted bid, and the CTR for ad\ote that the expected value from each time a giveniad
displayed isv;j;.

Allocation rule ALL for > 2 agents. Assume there are at least two agents. Define the followirngailon
rule, call it ALL. It consists of two phases: exploration and exploitatiompl&ration lasts forl; rounds,
whereTy > 1isfixed and chosen in advance. In each exploration round anchgdsen uniformly at random
among all ads. Let; be the number of clicks for aflby the end of the exploration phase. In each round of
exploitationALL does the following:

(L1) pick each ad with probabilityb; n; /T, whereb; is the bid for ad;.

(L2) with the remaining probability pick an ad uniformly andom.

This completes the specification SLL. We note that even a single round of exploration suffices tor o
purposes. Using a small does not affect the expected performance, but results iarg)(high variance.

Discussion. We designALL to ensure that the allocation probabilities depend on CTRId&s in a simple,
linear way. Below we explain why this “linear dependencedparty is useful, and discuss some of the
challenges in the analysis 8f.L.

Let theallocation-vectorbe a vecton € R whosej-th component is the expected number of times ad
j is allocated byALL. For a given vector of CTRs, thalocation-rangeis the set of all allocation-vectors
that can be realized ALL. We conjecture that the allocation-range needs to deper@iléts in order for
an allocation rule to satisfy stochasti®ON and be, in some sense, non-trivial. (In Secfion 6.3, we paove
version of this conjecture that is restricted to stocha#i}i¢1IDR allocation rules.) The “linear dependence”
property ofALL ensures that the allocation-range does depend on CTRs.

For example, consider an allocation rule which has an eaptor phase of fixed duration, picks the
best (estimated) ad based on the clicks received so far tighd with this ad from then on. This allocation
rule that is ex-post truthful in the single-parameter sgttiand is perhaps the most natural candidate for a
reasonable, easy-to-analyze allocation rule for ourrggettHowever, the allocation-range of this allocation
rule does not depend on CTRs (because the set of possibbme[itr exploitation is fixed: any one ad can
be chosen).

Further, the proof technique that we use in the analysigLafessentially requires us, for every given
agent, to solve a system of equations where the unknownsiaragent’s bids and the parameters are the
CTRs and the components of the allocation vector. The dllmtarobabilities inALL are explicitly defined
in terms of bids in order to enable us to solve this system afggns in a desirable way; this is another
place where the “linear dependence” propertyki. is helpful.

The subtle point in our analysis af.L. — or, it seems, in any analysis using the same proof techrique
is that one needs to ensure that the allocation vector is ammet of a certain expression, which requires
us to prove the positive-definiteness of the correspondiegstdn matrix. The “linear dependence” property
of ALL enables us to argue about the Hessian matrix in a useful way.

As we discovered, the positive-definiteness of the Hesdianld not be taken for granted: indeed, it
fails for a number of otherwise promising allocation ruleghwvbetter performance. We believe that further
progress on stochastical§MON allocation rules would require a more systematic undedstgnof how
changes in the allocation rule propagate through the asaysl affect the Hessian matrix.

Guarantees for ALL for > 2 agents. A problem instance is calledniformif the productv;y; is the same
for all 7, andnon-uniformotherwise. Note that for uniform problem instan®® is optimal, and in fact all
allocation rules without skips have the same expected veglénd are all optimal. We will assume that all
values-per-click are at most and that all CTRs are strictly positive.

Note that instances on whi@ND performs very poorly are those where for onejatle productv;1.; is
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large while for all other ads this product is very low. On tlieew hand, for such inputsLL plays the best
ad significantly more often.

We next present a parameter that aims to quantify the dimeegef the instance from uniform and will
be used to measure the performanceldf. A problem instance is calleg-skewed, for some € [1,m], if
it satisfies

(M2)2 > O‘(Ml)z, Wherqu = (% 27;1 (’Uj ,uj)q) Ve . (16)

Note that problem instances candekewed for any gives € [1,m]. Itis 1-skewed for uniform problem
instances, andh-skewed when only one ad is good while all other ads have \@alue

Let Wy (ALL) be the expected per-round welfare for the exploitation @ledaLL, and let},(RND) be
the expected per-round welfare feXD. Note thati¥,(RND) = M;. The properties ofLL with at least
two agents are captured by the next lemma (which is the maimieal lemma in this section); its proof is
deferred to Appendik 61 2.

Lemma 6.1. With at least two agents, allocation rukd.L satisfies the following:

(a) If the CTRs for all ads are strictly positive thanL satisfies stochasticMON.
(b) For Wy(ALL) and W, (RND) as defined above it holds that

1/q

Wo(ALL) — Wo(RND) = M2 — M2, whereM, = (% > (b uj)q)

In particular, W (ALL) > W (RND) for all non-uniform problem instances.

The allocation ruleALL does not have the property that scaling all bids by a commciorfgcales the
expected welfare by the same factor; therefore it isMIOR (see Sectioh 613 for the definition BIDR, as
it applies to our setting).

Reduction to the single-agent case. For a single agent, we define our allocation raié. as follows: we
simulate a run oALL with a single round of exploration and two agents, where goeisd agent is a dummy
agent with a single ad. The dummy agent submits a bid of zeroi$ad, and we fix its CTR té (any CTR
works). This completes the specificationAafL.

Denote the resulting two-agent allocation ruleAnl.*. The single-agent allocation rule satisfEMON
because so dogd.L*. Since the dummy agent does not contribute welfare (becafude zero bid), we
haveWW,(ALL) = Wy(ALL*). Applying Lemmd 6.l1(a) taLL*, we see that

Wo(ALL) = M7 + (M3)? — (M{)?, whereM; = <m+r1 > i1 (b Nj)q) : 17)

We summarize the useful propertiesaaf. in the following lemma:

Lemma6.2. Consider the case of a single agent; assyme> 0 for all ads ;. ThenALL satisfies stochastic
CMON, and its welfare in exploitation rounds satisfies Equati@@)( In the one exploration round\LL
obtains welfare_ " W, (RND).

Main provable guarantee. Let M; be the mechanism obtained by applying Theotem 3.ALfo with
parametep < (0,1). The main result of this section follows.
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Theorem 6.3. Consider a multi-parameter MAB domain with < 1 and u; > 0 for every adj. Then
mechanismM; is stochastically truthful, for every € (0, 1).

Considero-skewed problem instances, and assumag jc 4, vju; > € > 0. There exists € (0, 1) such
that mechanisriVi satisfies the following:

(a) W(M) > W (RND) on all problem instances with at least two agents, as long as1.

(b) W(M) > W(RND) = W (SubSample) on all problem instances with a single agent withads, as
long aso > 1 + ZHEL 4+ i

(c) Suppose there exists an agent with- m/2 ads; w.l.o.g. assume this is agent ThenWW (M) >

W (SubSample) on alliroblem instances such that> 1 + m(m %) when for all agents > 1 all
private values ar@.

The theorem follows from Lemma .1, Leminal6.2 and Thedremvia. $traightforward computations,
some of which we omit from this version. Recall that for edch 0 we havelW (M;) > (1 — §) W (ALL).

Theoreni 613(a) Assumel/, > (1+¢)M; andmax;c 4, bjp; > € for somee > 0. Then, using the notation
of Lemmd6.1(b), we havél; > ¢/m, and therefore

Wo(ALL) — Wo(RND) > M? (14 ¢)® — 1) > M; 2.
Recall thatTy is the duration of exploration iALL, andT" is the time horizon. Then:

W (RND) = T'Wy(RND) = T M,
W (ALL) = To Wo(RND) + (7' — Tp) Wo(ALL)
= W(RND) + (T — Tp) (Wp(ALL) — W (RND))

> W (RND) + W (RND), wherey = 22 -10)

W(M) > (1 —n) W(ALL) > (1 —n)(1 + ) W(RND).

Thus, to ensure thal’ (M) > W (RND), it suffices to take) < 1 — m O

Proof Sketch of Theoreim 6.3(bd¥or part (b), recall that¥, (RND) = Wy (SubSample) = L > iy bjpj.
With a simple computation which we omit from this versioneaterives that?V (A) > W (RND). We prove
W (M) > W(RND) using a computation similar to the one in the proof of part\{@ omit the details.

For part (c), note thdl/y(RND) = M; and (under the assumptions in Theofenh 6.3{¢)jSubSample) <
%Ml. Again, using a simple computation one can show #gtd) > W (SubSample), and then pick a
sufficiently small§ as in the proof of part (a). O

%0One can also derive a version of this result where the privaliges for all agents > 1 are smaller thad, for somes < e.
We omit the easy detalils.

HNote that the instances considered in this result are gkiaggthe instances we have discussed before. There aenires in
which one agent have all but one ad, and only one of his adsdstive value, while all the rest of the ads (his and otheeseh
value0.
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6.2 Proof of the main technical lemma (Lemmal6.1)

Let us set up some notation. Consider an exploitation roortle execution oALL. For each adg, let E;
be the event that aflis chosen in line (L1) of the algorithm’s specification. Liet be the remaining event
in line (L2) when the ad is chosen uniformly at random. Dengte= Pr[E;], and note that for each gd

2 £ Pr(Ej] = b Eln,]/To = L b,

of Lemmd 6J]1(b)Consider a round in the exploitation phaseinf.. Partition this round into evenf8 =
{E1, ... ,En; Ey}. For each eventl € P in this partition, letiV(E) be the expected per-round welfare
of ALL from this event, so thdl/o(ALL) = > .» Wo(E). Note thatiVy(E,) = Pr[E,] Wy(RND). Further,
Wo(Ej) = bjpu; Pr[E;] = ma? for each ad.

It is easy to see that/(RND) = 1 > bing = > w;. It follows that

Wo(ALL) — Wo(RND) = 3~ ocpp Wo(E) — Pr[E] Wo (RND)
= Zj WO(EJ) — Zj PI‘[E]] W()(RND)

2
= (m%45) - ()
= M2 — M2 O
For Lemmd6.11(a), we rely on the following characterizatdeMoN from prior work:

Lemma 6.4. Consider a functiory : S — R*, whereS ¢ ®*. Let f(S) c R* be the image of. Thenf
is CMON if and only if it is an affine maximizer, i.e.

f(z) = argmax [z -y — g(y)] for some functiory : f(S) — R.
yef(S)

Proof of Lemm& 6]1(a)Assume that there are at least two agents, and all CTRs mtéygositive. Without
loss of generality, let us focus on agéntWe will use the following notation. Lett = {1, ... , k} be the
set of ads submitted by ageht Herek is the number of ads submitted by agent 1; note that m. Let
b= (b1, ... ,b;) be the vector of bids for agemt whereb, is the bid on ag. Let B = [0, 1]* be the set of
all possible bid vectors for agent 1. Let= (i1, ... ,ux) be the vector of CTRs for agent 1. We will use
bothi andj to index ads.

Throughout the proof, let us keep the bids of all other agixesl. LetC; .(b) be the expected number
of clicks that ad; receives in round of ALL, given the bid vectob, where the expectation is taken over all
realizations of the clicks and over the randomness in thezrhiign

Let Cy(b) = (C14(b), ... ,Ch.(b)) be the round- vector over the ads of agent 1, and (&th) =
> éi,t(b) be the vector whoseth component is the total expected number of clicks foi.ad

We need to prove that the functich: B — R* satisfiescMoN. It suffices to prove thatMON is satisfied
for each round separately, i.e. that it is satisfied for each functidn This is obvious ift is an exploration
round. In the rest of the proof we fixto be an exploitation round.

By Lemmd 6.4, it suffices to prove thé@(b) is an affine maximizer, i.e. that

Cy(b) = argmax Z bipi — G(p, 1) (18)
PECH(B) jeA

12Here it is more convenient to use a slightly different natafior click-vectors, compared to Sectfoh 4.
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for some functionG(p, 1) J}a 0,1)* — R, whereC,(B) c [0,1]* is the image of’;. Crucially, the
function G cannot depend oh [

Denotep* = C,(b). If p* is an interior point ofC;(B) and functionG is differentiable, then Equa-
tion (I18) implies the following:

86 G(p*,u) = b; foreach ad, bid vectorb and CTR vectoy.. (29)
Pi

We will construct a functiorZ(p, 1) so that it satisfies Equatioh (19).
Here and on; € A denotes an arbitrary ad of agent 1. Recall that Pr[F;| = %bmi- Thus:

PT[EH] =1- ZjEAO Pr[E.Y] =1- Zjer '1:.7
Ciu(b) = pi (Pr[E] 4 - Pr[Ey]) = p (332 +tom > jeAo xﬂ') :

Recalling the notatiop* = @(b) and solving forz;, we obtain

* o 1 1
Pi/i =Tit o = X e, T

N ko k
D el 1y =2 5ea®it o = 1 2jeao T
k k
P/t =m —ad e ap;/ 1+ B
wherea = —L-andg = L — (Y — ). It follows that

bi:ﬁ Zy

i I o maty m'

(20)

Denote the RHS of Equatioh (R0) kfy(p*, 1). We have proved thdi; = f;(p*, 1) for each ad. Thus to
obtain Equation[(19) it suffices to piek(p, 1) so that it satisfies

ap‘G(p,u) = fi(p,u) foreachi € A. (21)

Integratingf;(p*, 1u) overp;, for each ad, and combining the resulting expressions, we obtain

sz Z 214‘04_'_ Z pip; e (22)

iea M icA i jEA\{i} ity

It is easy to check that thi€ satisfies Equatior (21), which in turn implies Equatibn] (1@ It follows
that for thisG, p = p* is a critical point in Equation[(18). From here on we will ube &G as defined
in Equation [(Z2DR).

We claim that the critical point = p* is in fact a local maximum in Equatiof (18). Equivalently, we
claim thatp = p* is a local minimum of the function

Ap) =Gp,pn) —p-b: R* = R,

BNote thatG candepend on the CTRs, even though the mechanism does not keow This is becaus@ is only used for the
analysis — to proveMoN, and it is not actually used in the mechanism.

write fi(p, ) = ¢i + > jea pjvi; for some numberg; andy;;. Then a functiorG(p, n) satisfying Equatior[{21) exists if
and only ify;; = v, forall i # j.
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For that, it suffices to prove that the Hessian maikfixof A(-), defined by

0
p— A pr—
Op; Op; ) Op; Op;

is positive-definite fop = p* . Note that for any € R it holds that

9 .
Hi; = {T‘”’ L (23)
PiPj, 1 # Js

wherep;, = @ for eachi € A, andr = “fTo‘ = 1+m —k > 2. By Claim[65, such matrix is

positive-definite.
To complete the proof, we will show that = p* is the global maximum in Equation[{18) over all

p € R*. For that, it suffices to prove that that= p* is the unique critical point over the entii®®, i.e. the

unique solution for the system

c‘% G(p,u) =b; foreachad € A. (24)

Let us re-write this system using Equatidnl(21). (We find invamient to use the notation and p;, as
in Equation[[2B).) Namely, for eache A we have:

b; + Bu_m = fi(p, p) + B,Tm
=i (T0}) + Xjen gy 2i (Pirg)-
It follows that the system in Equatiopn (24) is equivalent to
H-p=w,

where thek x k matrix H is defined by Equatiod (23), and the vector= R* is defined byw; = b; + i—m
for all i. The matrixH is non-singular (since it is positive-definite), so the syst{ - p = w has a unique
solutionp. O

Claim 6.5. Consider ak x k matrix H given by Equation(23), where , ... , p, are arbitrary positive
numbers. Assume> 1. ThenH is positive definite.

Proof. We will use theGram matrixcharacterization of positive-definite matrices. Namedypriove thatd
is positive-definite, it suffices to construct finite-dimiemsl vectorsw, , ... ,wy such thatt;; = w; - w;
for all 4,7 and the vectors are linearly independent. Consider veators... ,w; € RFt! defined as

follows:
\/T—lpi, Bzz,ﬁgk
wi(f) =<0, C#i, L <k
Pis t=k + 17
It is easy to see that these vectors satisfy the desired ipiege O
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6.3 Animpossibility result for stochastically MIDR allocation rules

Let us consider stochastically MIDR allocation rules forltiaparameter MAB mechanisms. We show that
any such allocation rule (with a significant but reasonabsgriction) is essentially trivial.

Let us formulate what it means for a given allocation rdl¢o be stochasticallyIDR in our setting, in
a specific way that is convenient for us to work with. For a gibéd vectorb € (0,00)™, and CTR vector
w € [0,1]™, let theallocation-vectorbe a vecton = (a1 , ... ,a,) such thau; is the expected number of
times adj € [m] is allocated by4. Note that the expected welfare corresponding to a givexation vector
aissimply; a;bju;. LetFo = {a € [0,T]™ : > . a; < T'} be the set of all feasible allocation-vectors.
(The sum of the entries can be less tliahecause skips are allowed.) Thdris stochasticallyMIDR if and
only if for all bid vectorsb and all CTR vectorg: it holds that

W(A(®)) = max3_; a;bjn (25)

for someF C F; that does not depend énbut can depend opn.

Note that Equation{25) does not immediately provide a ststitally truthful mechanism via VCG
payments, because the computation of VCG payments is noediately feasible without knowing the
CTRs. In fact, Equatiori_(25) does not even provide an imntediay to compute the allocation (assuming
|F| > 2), again because of the issue of not knowing the CTRs. This &adrk contrast with the prior
work on MIDR (which studied settings without the "no-simulation” caa#tt) where theMIDR property
immediately gave rise to a truthful mechanism via the VCGnpawt rule.

However, if an allocation rule satisfies Equatifn](25) therughful mechanism can be obtained, with
an arbitrarily small loss in welfare, via the transformatioMﬂKQDS_anﬂ_S_iMdﬁ_LZQiZ].

We consider a restricted version of Equatibnl (25) where dingeF cannot depend on the CTRs (we
will call such rangeF CTR-independeht We prove that any such allocation rule is welfare-eqeinato a
time-invariant allocation rule. Here an allocation rulec@ledtime-invariantif in each round, it picks an
ad independently from the same distribution over ads (lisisilbution may depend on the bids). Note that
time-invariant allocation rules ignore the feedback thatreceive (i.e., the clicks), and thus cannot adjust
to the CTRs.

Lemma 6.6. Consider a multi-parameter MAB domain. Ldtbe a stochastical\MIDR allocation rule
with CTR-invariant range. For each bid vectbthere exists an allocation-vectar = a(b) € F, such that
W(A(b)) = >, a;bju; for all CTR vectorsu. So.A is welfare-equivalent to a time-invariant allocation
rule (where, lettingl” be the time horizon, each gds chosen with probability; (b) /T"). The approximation
ratio of A (compared to the welfare of the best ad) is at leastn some problem instances.

Proof. Let us fix the bid vectob and consider both sides of Equatién](25) as functions. dfirst, we note
that the expected welfar@ (A(b)) is a finite-degree polynomial in variables , ... , p,. This is
because, lettingd;(b, p,t) be the probability that agl is displayed at round given click-realizationp, it

holds that

WI(A(®b) = 32, Prlp] 325, p(t,5) Aj(b, p,t). (26)

Here the outer sum is over all click-realizatiomsand the inner sum is over all rountland all adsj. Pr[y]
is the probability thap is realized for the given CTR vector. Equati¢nl(26) is a polyial in the CTRs

SNamely, the degree is at mdkt the time horizon.

25



because for each click-realizatipnthe inner sum is a fixed number, aRd[y] is a polynomial in the CTRs
of degree€rl’.
Let us re-write Equatiori(25) as follows:

W(A()) = Iﬁnz}_g(ﬂ -, WhereF, = {5 € R™ : 5; = a;b; for eachj,a € F}. (27)
€%
Since F;, is fixed, the right-hand side of Equatidn {27) is uniquelyedetined by, denote it ().
Note that for eaclp € F;, it holds that

W(p)=B-pifandonlyif (3 — 3') - u > 0forall g’ € F,.
For each3 € ®*, consider the half-spadds = {1 € [0,1]™ : 8- u > 0}. Then

W(p) = 8- pifandonly if o € S, whereSs = (] Hg_g.
B'eFp

Note thatSs is a convex set, as an intersection of convex sets. Morealdralf-spaces in the intersection
contain thed-vector, and hence so doss. Therefore ifiV (1) = S for somep # 0 andjg € F;, then by
convexity for anyz € [0,1] it holds thatzy € Sg, and therefordV (zp) = 2 (8 - 1) = 2 W(u). We have
proved the following:

W (zu) = zW(u) for everyz € [0,1] andp € [0, 1]™. (28)

Now recall thatiV () is a finite-degree polynomial in. A known fact about multi-variate polynomials
is that any finite-degree polynomial jnwhich satisfies Equatiofl (28) is in fact of the fofi(u) = v - u
for somey € R™.

Now, letA = {j : b; > 0} be the set of ads with non-zero bids. Define a veaterR™ by a; = ~,/b;
for each adj € A, anda; = 0 otherwise. To complete the proof, it remains to show thdinig 7" be the
time horizon,a/T is a valid distribution over the ads (assuming skips arevaltt). That is, we need to show
thata; > 0 and} .., a; < T. We use the fact that for any allocation rule, the expectelfaveeis at least
0 and at most that of always playing the best ad:

W('u) = zjeA ajbj,uj S [O,T max; bj,uj]. (29)

Applying Equation[(ZP) with: being the unit vector in the directighe A, it follows thatiW (x) = a;b; > 0,
soa; > 0. Now, let B = (maxjca bj‘l)‘1 and define a CTR vectqr by pi; = B/b; for j € Aandpu; =0
otherwisd:g Plugging thisy into Equation [(2B), we obtaifl (1) = ZjeA Ba; < BT, which implies
>_jeaaj < T, completing the proof. O
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