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Abstract

In this paper we show that payment computation essentially does not present any obstacle in de-
signing truthful mechanisms, even for multi-parameter domains, and even when we can only call the
allocation rule once. We present a general reduction that takes any allocation rule which satisfies “cyclic
monotonicity” (a known necessary and sufficient condition for truthfulness) and converts it to a truthful
mechanism using a single call to the allocation rule, with arbitrarily small loss to the expected social
welfare.

A prominent example for a multi-parameter setting in which an allocation rule can only be called
once arises in sponsored search auctions. These are multi-parameter domains when each advertiser has
multiple possible ads he may display, each with a different value per click. Moreover, the mechanism
typically does not have complete knowledge of the click-realization or the click-through rates (CTRs);
it can only call the allocation rule a single time and observethe click information for ads that were pre-
sented. On the negative side, we show that an allocation thatis truthful for any realization essentially
cannot depend on the bids, and hence cannot do better than random selection for one agent. We then
consider a relaxed requirement of truthfulness, only in expectation over the CTRs. Even for that relaxed
version, making any progress is challenging as standard techniques for construction of truthful mecha-
nisms (as using VCG or an MIDR allocation rule) cannot be usedin this setting. We design an allocation
rule with non-trivial performance and directly prove it is cyclic-monotone, and thus it can be used to
create a truthful mechanism using our general reduction.
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1 Introduction

In this paper we show that payment computation essentially does not present any obstacle in designing
truthful mechanisms, even for multi-parameter domains, and even when we can only call the allocation rule
once. This extends the result of [Babaioff et al., 2010] for single parameter domains to multi-parameter
domains. We present a general reduction that takes any allocation rule which satisfies “cyclic monotonicity”
(a known necessary and sufficient condition for truthfulness) and convert it to a truthful mechanism using a
single call to the allocation rule, with arbitrarily small loss to the expected social welfare. The mechanism
does not compute the payments explicitly but rather chargesrandom payments having the right expectation.

Such a reduction is particularly attractive as it can handlemulti-parameter settings where it is impossible
to decouple the computation of the allocation from the actual execution of the allocation. In such situations,
the entire mechanism — including the payment computation — can only execute a single call to the allo-
cation rule. We call this the “no-simulation” constraint; it can arise when a mechanism interacts with the
environment, and the information revealed by the environment depends on the choices made by the alloca-
tion rule. The no-simulation constraint is a significant hurdle because the existing approaches to payment
computation require multiple calls to the allocation rule,with different vectors of bids.

Sponsored search auctions supply a prominent example of a multi-parameter setting with the no-simulation
constraint. In this setting each advertiser has multiple possible ads he is interested in displaying, each with
a different value per click, and the mechanism does not have complete knowledge of the click-realization or
the click-through rates (CTRs). Instead, it can only allocate ad impressions and observe the click informa-
tion for ads that were presented. The no-simulation constraint also arises in other contexts, such as packet
routing [Shnayder et al., 2012].

We note that our reduction — the multi-parameter transformation — has other uses beyond settings
with the no-simulation constraint. For example, it can alsobe used to speed up the computation of payments
in most multi-parameter mechanisms. Indeed, it has alreadybeen used for this purpose by two recent
papers. Jain et al. [2011] used it to speed up the payment computation for a mechanism that allocates batch
jobs in a cloud system. Huang and Kannan [2012] used it to compute payments for their privacy-preserving
procurement auction for spanning trees, which is based on the well-known “exponential privacy mechanism”
from prior work [McSherry and Talwar, 2007].

Sponsored search mechanisms with unknown CTRs. In the remainder of the paper we focus on the prob-
lem of designing truthful mechanisms for an archetypical multi-parameter setting with the no-simulation
constraint: sponsored search auctions with unknown click-through rates (CTRs). The difficulty in designing
such allocation rules stems from the fact that the welfare ofa given allocation depends on clicks of the allo-
cated ads, which are unknown to the bidders and to the mechanism. This prevents us from using the VCG
mechanism since it depend on choosing a welfare-maximizingallocation. Yet, it is possible that welfare can
at least be approximated.

We focus on a simple single-shot ad auction in which the allocation rule unfolds over time (and the CTRs
are not known). As such, we contribute to a growing literature on ad auctions that unfold over time, as they
do in practice. The non-strategic version of our model is a well-understood variant of themulti-armed bandit
problem.

Mechanisms that are truthful for every realization of the clicks would be most attractive, as the strategic
behavior in such mechanisms would not depend on the agents’ beliefs about the process generating the clicks
— for example, the belief that clicks for each ad are i.i.d. from a fixed distribution. Such mechanisms were
constructed in Babaioff et al. [2009, 2010] for the single-parameter version of the problem. Unfortunately,
the multi-parameter setting is much harder. In the setting of sponsored search with multiple ads per bidder
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and unknown CTRs, we show that if the mechanism is required tobe truthful for every realization of the
clicks, then it must be a trivial mechanism that outputs a fixed allocation (or distribution over allocations)
with no dependence on the bids.

In light of this negative result we consider a weaker notion of truthfulness. Assume that clicks are
stochastic (meaning that each ad has a CTR, and clicks are independent Bernoulli trials with the specified
click probabilities) but the CTRs are not known. The mechanism is required to be truthful for every vector
of CTRs; we call mechanisms with this propertystochastically truthful. The VCG mechanism still cannot
be used as we cannot maximize the expected welfare without knowing the CTRs. An alternative is to use
a maximal-in-distributional-range (MIDR) allocation rule combined with VCG-based payment rule, butwe
show that for a natural family ofMIDR allocation rules (in which the set of distributions the ruleoptimizes
over is independent of the CTRs) the performance of such rules is no better than randomly selecting an ad
to present.

There are a few examples in the literature of non-VCG-based truthful multi-parameter mechanisms in
which bidders freely choose an option from a hand-crafted menu of allocations and prices, e.g. [Bartal et al.,
2003, Dobzinski et al., 2006, Dobzinski and Nisan, 2011], but this technique similarly fails in our setting
because the bidders do not have a dominant strategy for choosing from such a menu when they do not know
their own CTRs.

Given all these negative results we turn to our multi-parameter transformation which reduces the problem
of designing truthful randomized mechanisms to the (seemingly simpler) problem of designing cyclically
monotone (CMON) allocation rules. In contrast to the negative result for truthfulness for every realization,
we directly craft an allocation rule that satisfies stochastic CMON; to our knowledge, the only previous paper
to successful apply this approach is [Lavi and Swamy, 2007].Using the transformation we construct a
stochastically truthful mechanism that outperforms the naı̈ve random allocation for a single agent, when the
difference in value-per-impression of his ads is sufficiently large. While this is clearly just a small step, it
proves to be rather challenging, and relies heavily on the multi-parameter transformation described above.

Related work. Our earlier paper [Babaioff et al., 2010] considers the limited case of single parameter do-
mains. It introduced the technique of designing black-box transformations that perform implicit payment
computation while evaluating a given monotone allocation function only once. The same paper introduced
monotone allocation rules with strong welfare guarantees for sponsored search auctions with unknown
CTRs, by modifying multi-armed bandit algorithms to achieve the requisite monotonicity property. As
all the results in our earlier paper are limited to single-parameter settings, they only apply to sponsored
search when each advertiser has onlyonead to display. In the present paper, we show that the black-box
transformation extends readily from single-parameter to multi-parameter settings, whereas extending the
results on sponsored search to multi-parameter settings ismuch more delicate, and in some cases (i.e. for
the strongest notion of truthfulness) outright impossible.

Wilkens and Sivan [2012] extended the results of [Babaioff et al., 2010] to multi-parameter domains
under some limitations. Their work provides a black-box transformation that allows implicit payment com-
putation when the allocation function is maximal-in-distributional-range (MIDR). While theMIDR property
is the most widely used method for achieving truthfulness inmulti-parameter settings, it is not a necessary
condition for truthfulness. In fact several papers (including this one) depend on multi-parameter mecha-
nisms that are notMIDR. By presenting an implicit payment computation procedure that workswhenever
there exists a truthful mechanism utilizing the given allocation function, we believe that we have posed the
multi-parameter transformation at the appropriate level of generality for future applications.

The literature contains surprisingly few examples of truthful multi-parameter mechanisms that are not
based onMIDR allocation rules. Mechanisms designed by Bartal et al. [2003], Dobzinski et al. [2006],
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Dobzinski and Nisan [2011] for various combinatorial auction domains make use of what might be termed
thepricing technique: each agent is allowed to choose freely from a menu of alternatives, each specifying
an allocation and price. The menu presented to a given agent may depend on the others’ bids, but it must
be carefully constructed so that self-interested agents each choosing from their own menu will never jointly
select an infeasible allocation. The taxation principle [Guesnerie, 1981, Hammond, 1979] implies thatevery
dominant-strategy truthful mechanism can actually be represented this way, provided that agents are able
to evaluate their own utilities for different allocations before the allocation is actually executed. In settings
with the no-simulation constraint, the taxation principledoes not apply because agents can only evaluate
their utility ex post. In the sponsored search setting, for example, agents have no dominant strategy for
choosing from a menu listing bundles of ad impressions, because without knowing CTRs they can’t pre-
cisely determine the value of an impression; on the other hand, the mechanism is powerless to offer a menu
listing bundles of clicks, because there is no way to guarantee that a bidder who chooses a certain bundle
will receive the specified number of clicks.

Apart from mechanisms withMIDR allocation rules and those based on the pricing technique, we are
aware of only one other mechanism in the literature that is dominant-strategy truthful in a multi-parameter
setting: the scheduling mechanism of Lavi and Swamy [2007] for unrelated machines that have only two
possible processing times. Their mechanism, like ours, is designed by directly constructing an allocation
function that satisfies the cyclic monotonicity constraints.

2 Preliminaries

We study reductions from allocations to truthful mechanisms for multi-parameter domains. A CS-oriented
background on multi-parameter mechanisms can be found in Archer and Kleinberg [2008b,a], while an
Economics-oriented background can be found in Ashlagi et al. [2010]. Our main result holds for a very
general framework for multi-parameter mechanisms, described below, where agents’ types are defined as
mappings from outcomes to valuations. Our reduction invokes the allocation rule only once, which make it
particularly useful in domains in which the allocation rulecannot be invoked (or simulated) more than once
due to informational constraints.

Types, outcomes, and mechanisms. Multi-parameter mechanisms are defined as follows. There are n
agents and a setO of outcomes. Each agenti is characterized by histypexi : O → ℜ, wherexi(o) is
interpreted as the agent’s valuation for the outcomeo ∈ O. For each agenti there is a set of feasible types,
denotedTi. DenoteT = T1 × . . . × Tn and call it thetype space; call Ti the type space of agenti. The
mechanism knows(n,O,T ), but not the actual typesxi; each typexi is known only to the corresponding
agenti. Formally, a problem instance, also called amulti-parameter domain, is a tuple(n,O,T ).

A (direct revelation) mechanismM consists of the pair(A,P), whereA : T → O is theallocation rule
andP : T → ℜn is thepayment rule. BothA andP can be randomized, possibly with a common random
seed. Each agenti reports a typebi ∈ Ti to the mechanism, which is called thebid of this agent. We denote
the vector of bids byb = (b1 , . . . ,bn) ∈ T . The mechanism receives the bid vectorb ∈ T , selects an
outcomeA(b), and charges each agenti a payment ofPi(b). The utilities are quasi-linear and agents are
risk-neutral: if agenti has typexi ∈ Ti and the bid vector isb ∈ T , then this agent’s utility is

ui(xi;b) = EM [xi(A(b))− Pi(b) ] . (1)

For each typexi ∈ Ti of agenti we use a standard notation(b−i,xi) to denote the bid vector̂b such
thatb̂i = xi andb̂j = bj for every agentj 6= i.
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Game-theoretic properties. A mechanism istruthful if for every agenti truthful bidding is adominant
strategy:

ui(xi; (b−i,xi)) ≥ ui(xi;b) ∀xi ∈ Ti, b ∈ T . (2)

An allocation rule is calledtruthfully implementableif it is the allocation rule in some truthful mechanism.
A mechanism isindividually rational (IR)if each agenti never receives negative utility by participating

in the mechanism and bidding truthfully:

ui(xi; (b−i,xi)) ≥ 0 ∀xi ∈ Ti, b−i ∈ T−i. (3)

The right-hand side in Equation (3) represents the maximal guaranteed utility of an “outside option”
(i.e., from not participating in the mechanism). For example, our definition of IR is meaningful whenever
this utility is 0, which is a typical assumption for most multi-parameter domains studied in the literature.

Note that if the mechanism is randomized, the above properties are defined in expectation over the
internal random seed. We can also define utility (and, accordingly, truthfulness and IR) for a given realization
of the random seed. We say a mechanism isuniversally truthfulif it is truthful for all realizations of the
random seed; similarly for IR and other properties.

Our assumptions. We make two assumptions on the type spaceT :

• non-negative types: xi(o) ≥ 0 for each agenti, typexi ∈ Ti, each outcomeo ∈ O.

• rescalable types: λxi ∈ Ti for each agenti, typexi ∈ Ti, and any parameterλ ∈ [0, 1]. (λxi denotes
the typex′

i whose valuation for every outcomeo satisfiesx′
i(o) = λxi(o).)

In particular, for each agenti there exists azero type: a typexi ∈ Ti such thatxi(·) ≡ 0. Let us say that
a mechanism isnormalizedif for each agenti, the expected payment of this agent is0 whenever she submits
the zero type. For domains with non-negative types, it is desirable that all agents are charged a non-negative
amount; this is known as theno-positive-transfersproperty.

Dot-product valuations. An important special case isdot-product valuations, where the typex ∈ Ti of
each agenti can be decomposed as a dot productx(o) = βx · ai(o), for each outcomeo ∈ O, where
βx, ai(o) ∈ ℜd are some finite-dimensional vectors. Here the termai(o) is the same for all typesx ∈ Ti
(and known to the mechanism), whereasβx is the same for all outcomeso ∈ O and is known only to agent
i. The termai(o) is usually called an “allocation” of agenti for outcomeo, andβx is called the “private
value”. Single-parameter domains correspond to the cased = 1.

Note that the typex of each agenti is determined by the corresponding private valueβx, and his type
spaceTi is determined byDi = {βx : x ∈ Ti} ⊂ ℜd. Because of this, in the literature on dot-product
valuations the term “type” often refers toβx. To avoid ambiguity, in this section we will refer toβx as
“private value” rather than “type”, and callD1 × . . . ×Dn theprivate value space.

In a domain with dot-product valuations, types are rescalable if and only if for eachβx ∈ Di and each
λ ∈ [0, 1] it holds thatλβx ∈ Di. In other words, if and only if the setDi is star-convex at0. To ensure
non-negative types, it suffices to assume thatDi ⊂ ℜd

+ for each agenti, and all allocations are non-negative:
ai(o) ∈ ℜd

+ for all o ∈ O.

Truthfulness characterization. We will use a characterization of truthful mechanisms via a property
called “cycle-monotonicity” (henceforth abbreviated asCMON). A (randomized) allocation ruleA satis-
fiesCMON if the following holds: for each bid vectorb ∈ T , each agenti, eachk ≥ 2, and eachk-tuple
xi,0, xi,1 , . . . ,xi,k ∈ Ti of this agent’s types, we have

EA
[∑k

j=0 xi,j (oi,j)− xi, (j−1) mod k (oi,j)
]
≥ 0, whereoi,j = A (b−i, xi,j) ∈ O. (4)
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Recall that we are using a general notion of agents’ types (and bids), which are defined as functions from
outcomes to real-valued valuations.

It is known thatA is truthfully implementable if and only if it is cycle-monotone, in which case the
corresponding payment rule is essentially fixed.

Theorem 2.1 (Rochet [1987]). Consider an arbitrary multi-parameter domain(n,O,T ). A (randomized)
allocation ruleA is truthfully implementable if and only if it is cycle-monotone. Assuming rescalable types,
for any cycle-monotone allocation ruleA, a mechanism(A,P) is truthful and normalized if and only if

EA [Pi(b)] = EA
[
bi(A(b))−

∫ 1
t=0 bi(A(b−i, tbi)) dt

]
. (5)

This characterization generalizes a well-known truthfulness characterization of single-parameter mech-
anisms in terms of monotonicity, due to [Myerson, 1981, Archer and Tardos, 2001]. Recall that for single-
parameter domains, the type of each agenti is captured by a single number (the private valuevi), and the
outcome pertinent to this agent is also captured by a single number (this agent’s allocationai(o)). The bid
of agenti is represented bybi ∈ ℜ. Cycle-monotonicity is then equivalent to a much simpler property called
monotonicity: for each agent, fixing the bids of other agents, increasing this agent’s bid cannot decrease this
agent’s allocation. The payment formula (5) can also be simplified, e.g. for non-negative valuations it is

Pi(b) = biAi(b−i, bi)−
∫ bi
0 Ai(b−i, u) du. (6)

External seed. We allow allocation rules to receive input from the environment; a canonical example is pay-
per-click auctions where such input consists of user clicks. Formally, the allocation rule and the payment
rule depend on the additional argumentω which captures all relevant input from the environment. (To
simplify the notation, we keep the dependence onω implicit.) We callω the external seed, to distinguish
from the internal random seed of the mechanism. We assume that ω is an independent sample from some
fixed distributionDext; this distribution may be unknown to the mechanism.

All game-theoretic properties defined above carry over to mechanisms with external seed if all expec-
tations are over both internal and external seed. In particular, Theorem 2.1 carries over with no other
modification.

We are primarily interested in properties that hold in expectation over the external seed, for all possible
distributionsDext over the external seed. The corresponding version of a givenpropertyP is calledstochas-
tically P . For example, we are interested in mechanisms that are stochastically truthful, and this requires
the allocation rules to be stochasticallyCMON.

We also define a stronger version of truthfulness: one that holds for each realization of the external
seed. For each game-theoretic propertyP described above, such as truthfulness, IR andCMON, a version that
holds for each realization of the external seed will be called ex-postP . Theorem 2.1 holds for every given
realization of the external seed (but requires the allocation rule to satisfy ex-postCMON).

A crucial way in which the external seed is different from theinternal randomness is that a given run
of the allocation rule might not observe the entire externalseed. More precisely, runs of the allocation rule
on different bid vectors might observe different portions of the external seed. For example, if an ad is not
displayed to a given user, the mechanism does not observe whether this user would have clicked on this ad if
it were displayed. It follows that the mechanism might not beable to simulate the allocation rule on different
bid vectors – this is precisely the “no-simulation” constraint discussed in the Introduction. Moreover, this
issue can affect payment computation: the payment prescribed by Equation (5), although well-defined as a

6



Mechanism 1: The single-parameter mechanismMδ from [Babaioff et al., 2010]

1. Collect bid vectorb.

2. Independently for each agenti ∈ [n], randomly sampleχi = 1 with probability1− δ and otherwise

χi = γ
1/(1−δ)
i , whereγi ∈ [0, 1] is sampled uniformly at random.

3. Construct the vector of modified bids,x = (χ1b1, . . . , χnbn).

4. Allocate according tõA(b) = A(x).

5. Compute payments using the formulaP̃i(b) = bi · Ai(x) ·
{
1 if χi = 1

1− 1
δ if χi < 1

.

mathematical expression, might not be computable given theinformation available to the mechanism.1

To address this issue formally, we say that the mechanism isinformation-feasibleif for each run of of the
mechanism (i.e., for each bid vectorb, each realization of the mechanism’s internal randomness,and every
possible value of the external seed) the payments are uniquely determined given the information available
to the mechanism.

Implicit payment computation for single-parameter domains. Babaioff et al. [2010] provide an implicit
payment computation result for single-parameter domains.They prove that any monotone allocation rule
for any single-parameter domain can be transformed into a truthful, information-feasible mechanism with
an arbitrarily small loss in expected welfare. The allocation rule is only invoked once. Below we quote a
special case of this result that is most relevant to the present paper.2

Theorem 2.2 (Babaioff et al. [2010]). Consider an arbitrary single-parameter domain where the private
values of each agent lie in the interval[0, 1]. LetA be a stochastically monotone allocation rule for this
domain. Then for eachδ ∈ (0, 1), mechanismMδ = (Ã, P̃) (described in Mechanism 1) is information-
feasible and has the following properties.

(a) [Incentives]Mδ is stochastically truthful, universally ex-post individually rational. If A is ex-post
monotone, thenMδ is ex-post truthful.

(b) [Performance] Forn agents and any bid vectorb (and any fixed external seed) allocations̃A(b) and
A(b) are identical with probability at least1 − nδ. Moreover, ifA is α-approximate (for social
welfare), then mechanismMδ is α/(1 − δ

2−δ )-approximate.

(c) [Payments]Mδ is ex-post no-positive-transfers; and although it is not universally so, for all realiza-
tions of the internal seed it never pays any agenti more thanbi · Ai(x) · (1δ − 1). Mδ is universally
ex-post normalized.

1This has been proved in [Babaioff et al., 2009, Devanur and Kakade, 2009] in the context of multi-armed bandit mechanisms,
see Section 4 for more details.

2We restate the result slightly, to make it consistent with our notation. [Babaioff et al., 2010] states the mechanism more
abstractly, in terms of a generalself-resampling procedure. The simple description ofMδ that we present here was first published
in [Shnayder et al., 2012].
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3 The multi-parameter transformation

In this section we present our first main contribution: the implicit payment computation result for multi-
parameter domains. For a given multi-parameter domain and agivenCMON allocation rule for this domain,3

our goal is to design a truthful, information-feasible mechanism with outcome that is almost always identical
to that of the original allocation rule, and this, in particular, ensures a small loss in expected welfare. We
achieve this goal foreveryCMON allocation rule andeverymulti-parameter domain (under a mild assump-
tion of rescalable, non-negative types). More precisely, we give a general “multi-parameter transformation”
which takes an arbitraryCMON allocation ruleA and transforms it into a truthful, information-feasible mech-
anism which implements the same outcome asA with probability arbitrarily close to1. This mechanism
requires evaluatingA only once; its allocation rule randomly modifies the submitted bids, and then calls
A on the modified bids.4 The technical contribution here is showing that the naturalgeneralization of the
reduction for the single-parameter setting, to the multi-parameter setting, preserves all desired properties.
The non-trivial part of the proof is showing that although the single-parameter transformation only ensures
that each agent does not have an incentive to deviate by scaling all his bids by the same scalar in[0, 1], he
also does not have an incentive to deviate to any other arbitrary bids.

The transformation. Our multi-parameter transformation is a remarkably straightforward generalization
of the single-parameter transformation specified in Mechanism 1. In fact, there is no need to rewrite the
five steps; the only thing that changes is the interpretationof the notation. Specifically, the bidsb1, . . . ,bn

should now be interpreted as elements of the type spacesT1, . . . ,Tn rather than as scalars, and for eachi
the modified bidxi = χi bi is obtained by multiplying the abstract typebi (a function from outcomes to
reals) by the random scalarχi. (Note thatχi bi is well-defined because we are assuming the rescalable types
property.) The notationbi · Ai(x) from the single-parameter case is now interpreted asbi(Ai(x)), where
x = (x1 , . . . ,xn) is the vector of re-sampled bids. With this interpretation,the payment rule is as follows:

P̃i(b) = bi(Ai(x)) ·
{
1 if χi = 1

1− 1
δ if χi < 1

.

In the remainder of this section we analyze the properties ofthe multi-parameter transformation, proving
an analogue of Theorem 2.2. The subtlest step, which occupies most of the analysis, is to prove that the
modified allocation ruleÃ satisfiesCMON.

Induced single-parameter domains. To aid in the analysis, it will be helpful to introduce the following
notation. Consider a bid vectorb ∈ T and a vector of “rescaling coefficients”λ ∈ [0, 1]n. Denote

λ⊗ b = (λ1b1 , . . . , λnbn) ∈ T .

In other words,λ ⊗ b is the rescaled bid vector where the bid of each agenti is λibi. Note that for eachb
the subset

Tb = {λ⊗ b : λ ∈ [0, 1]n} ⊂ T
forms a single-parameter type space where each agenti has private valueλi ∈ [0, 1] and allocationbi(o)
for every outcomeo. By abuse of notation, let us treat the allocation and payment rules forTb as functions
from the private value space[0, 1]n rather than the type spaceTb.

3Recall thatCMON is a necessary and sufficient condition for truthfulness.
4The transformation presented here is certainly not the onlyreduction that transforms multi-parameter allocation rules satisfying

CMON into truthful, information-feasible mechanisms. One appealing feature of our transformation, in comparison to alternatives,
is its simplicity. It also optimizes the trade-off between the worst-case bid-to-payment ratio and the probability of adopting the
original allocation, as was shown by Wilkens and Sivan (2012) in the single-parameter context.
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We want to prove that the mechanismMδ = (Ã, P̃) defined by our transformation is truthful. As a
starting observation, note that when one applies the single-parameter transformation given in Section 2 to
the allocation rule defined byAb(λ) = A(λ⊗b), one obtains a mechanism that coincides with the restriction
of Mδ to Tb. By Theorem 2.2, we may conclude that the restriction ofMδ to the single-parameter type
spaceTb is truthful. Yet this conclusion is not sufficient, since this truthfulness condition is actually weaker
than what we are aiming for: it ensures that a deviation inside the single-parameter type spaceTb is not
beneficial, but says nothing about deviation to other types in T \ Tb. Nevertheless, our proof will show that
if the original allocation rule wasCMON, the transformed allocation rule is alsoCMON for the domainT , and
thus is truthful as needed.

Theorem 3.1. Consider an arbitrary multi-parameter domain(n,O,T ) with rescalable, non-negative
types. LetA be a stochasticallyCMON allocation rule for this domain. LetMδ = (Ã, P̃) be the trans-
formed mechanism for some parameterδ ∈ (0, 1). ThenMδ has the following properties:

(a) [Structure]Mδ is information-feasible.

(b) [Incentives]Mδ is stochastically truthful and universally ex-post individually rational. IfA is ex-post
CMON, thenM is ex-post truthful.

(c) [Performance] Forn agents and any bid vectorb (and any fixed external seed) allocations̃A(b) and
A(b) are identical with probability at least1−nδ. Moreover, ifA isα-approximation to the maximal

social welfare thenÃ is α/
(
1− 2

1−δ

)
-approximation to the maximal social welfare.

(d) [Payments]M is ex-post no-positive-transfers; and although it is not universally so, for all realiza-
tions of the internal seed it never pays any agenti more thanbi(o)(

1
δ − 1), whereo = A(b) ∈ O.

Additionally,M is universally ex-post normalized.

Proof. Mδ is information-feasible by construction, since so are the single-parameter mechanisms obtained
from Theorem 2.2. All claimed properties except truthfulness follow immediately from Theorem 2.2. Below
we prove truthfulness.

We claim thatÃ satisfiesCMON. Indeed, fix bid vectorb ∈ T , agenti, somek ≥ 2, and ak-tuple
xi,0, xi,1 , . . . ,xi,k ∈ Ti of this agent’s types. Let us consider a fixed realization of the random vector
χ ∈ [0, 1]n in step (2) of mechanismMδ. For each typexi,j , note that we have

Ã(xi,j,b−i) = A (χ⊗ (xi,j, b−i)) ∈ O.

Denote this outcome byoi,j(χ). Let us apply the cycle-monotonicity ofA for bid vectorχ⊗ (xi,j,b−i):

EA
[∑k

j=0 xi,j(oi,j(χ)) − xi, (j−1) mod k(oi,j(χ))
]
≥ 0. (7)

Recalling thatoi,j(χ) = Ã(xi,j ,b−i), we observe that for this fixed realization ofχ, Equation (7) is exactly
the inequality in the definition of cycle-monotonicity for̃A. Therefore taking expectation overχ, we obtain
the desired inequality Equation (4) for̃A. Claim proved.5

It remains to prove that in the transformed mechanism(Ã, P̃), the payment rule satisfies Equation (5).
Fix bid vectorb and consider the transformed single-parameter mechanism(Ãb, P̃b) for the single-parameter

5Note that the proof of cycle-monotonicity of̃A did not use any other property ofMδ other than that the re-scaling factorsχi

are chosen independently from a distribution that does not depend onA. The truthfulness of the single-parameter mechanisms
(Ãb, P̃b) is used in the forthcoming argument about payments.
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type spaceTb. In the terminology of single-parameter domains, each agent i receives an allocatioñAb, i(λ) =

bi(Ãb(λ)) whenever the bid vector isλ ∈ [0, 1]n. Since this is a truthful and normalized single-parameter
mechanism, it follows that

E

[
P̃b(λ)

]
= E

[
λi Ãb, i(λ)−

∫ λi

0
Ãb, i(λ−i, t) dt

]
, ∀λ ∈ [0, 1]n.

Plugging inλ = ~1 and using the definitions of̃Ab, P̃b, we obtain the desired Equation (5).

4 Multi-parameter MAB mechanisms

Let us define a natural multi-parameter extension to the MAB mechanism design problem studied in [Babaioff et al.,
2009, Devanur and Kakade, 2009, Babaioff et al., 2010].6

Problem formulation. There aren agents. For each agent there is a known and fixed set of ads he is
interested in; we assume that these sets are disjoint. The total number of ads is denoted bym.

As is common in the literature on sponsored search we assume that agents only value clicks; they have
no value for an impression when the ad is not clicked. For every adj there is avalue-per-clickvj such that
the unique agent that is interested in that ad receives utility vj whenever this ad is clicked; this value is the
agent’s private information.

A mechanism for this domain proceeds as follows. There areT rounds, where the time horizonT is
fixed and known to everyone. In each round the mechanism either decides toskip this round or chooses one
ad to display. Then the ad is either clicked or not clicked. All agents bid once, before the first round. The
bid of a given agent consists of a tuple of reported values forhis ads. The bid reported for adj is denoted
bj ; the entire bid vector of all agents for them ads is denotedb = (b1 , . . . , bm). Payments are assigned
after the last round.

For each adj, the click probability is fixed over time and denotedµj . In each round when this ad is
displayed, it is clicked independently with probabilityµj. Click probabilities are calledclick-though rates
(CTRs) in the industry. We assume that the CTRs are not known neither to the mechanism nor to the agents.
For brevity, letµ = (µ1 , . . . , µm) be the vector of all CTRs.

Interpretation as a multi-parameter domain. For our setting, stochastic truthfulness (and similarly
stochasticCMON, etc.) is a property that holds in expectation over clicks, for all possible CTR vectors
µ.

Following the prior work, the external seed is defined asclick realizationρ, in the following sense. For
every adj and every roundt, realizationρ(t, j) ∈ {0, 1} says whether this ad would be clicked if it is shown
in this round. In particular, ex-post truthfulness corresponds to truthfulness for every click realization. Note
that a given run of a mechanism does not observe the entire click realization: it only observes clicks for ads
that are displayed in a given round.

For every bid vectorb and each click realizationρ, let Cj(b, ρ) be the expected total number of clicks
received by adj, where the expectation is over the internal randomness in the mechanism. DenoteC(b, ρ) =
(C1(b, ρ) , . . . , Cm(b, ρ)) and call it theclick vector. We interpret the click vectors as the “outcomes”
in the multi-parameter domain. Note that a given click vector C(b, ρ) corresponds to expected welfare∑

j vjCj(b, ρ).

6Here and elsewhere,MABstands formulti-armed bandits.
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Note that with this interpretation of the “outcomes”, the allocation rule is not free to choose any well-
defined outcome. Instead, the collection of outcomes that can be implemented on a given run of the mecha-
nism is constrained by the click realization.7

For a given CTR vectorµ, letC(b, µ) = Eρ∼µC(b, ρ), where the expectation is taken over click realiza-
tionsρ according to the corresponding CTRs. Call it theµ-click vector. In expectation over the clicks, the
welfare is

∑
j vjCj(b, µ). When considering stochastic truthfulness, it will be moreconvenient to re-define

outcomes asµ-click vectors.

Discussion and background. If not for the issue of incentives and the requirement of truthfulness, the
welfare-maximization problem for the allocation rule is precisely themulti-armed banditproblem (hence-
forth, MAB), a well-studied problem in Machine Learning and Operations Research. MABmechanisms
can be seen as a version of the MAB problem that incorporates incentives. MAB mechanisms (in the lim-
ited single-parameter case, with one ad per agent), were introduced and studied in [Babaioff et al., 2009,
Devanur and Kakade, 2009] for the deterministic case. Subsequently, Babaioff et al. [2010] studied ran-
domized MAB mechanisms. Below we recap some of the contributions made in [Babaioff et al., 2009,
Devanur and Kakade, 2009].

MAB mechanisms were suggested as a simple model in which one can study the interplay between
incentives and learning, two major issues that arise in pay-per-click auctions. Pay-per-click is (along with
pay-per-impression) one of the two prevalent business models in the advertising on the Internet, andthe
prevalent pricing model in sponsored search. Compared to pay-per-impression, pay-per-click reduces the
risk that advertisers take, as they only pay when the ad is clicked. The seller, who has some control over
clicks, bears the risk instead. Moreover, advertisers typically have very little or no information about their
CTRs, and should not be required to learn more. The pay-per-click model essentially shields the advertisers
from this uncertainty.

The crucial assumption in our model of MAB mechanisms is thatthe CTRs are initially not known to
the mechanism. This assumption reflects the fact that the CTRs are learned over time, while the ads are
being allocated, and so the process of learning should be treated as a part of the game.8

The focus of the investigation in [Babaioff et al., 2009, Devanur and Kakade, 2009] was whether and
how the requirement of truthfulness restricts the performance of MAB algorithms when types are single-
parameter. They found a very severe restriction for deterministic, ex-post truthful mechanisms: the al-
location rule can only have a very simple, “naı̈ve” structure (separating exploration and exploitation),
which severely impacts performance compared to the best MABalgorithms. They capitalize on the “no-
simulation” constraint to prove that if an allocation rule does not conform to this simple structure, then a
truthful mechanism with this allocation rule cannot be information-feasible.

The obstacle of information-feasibility for the single parameter case is circumvented in Babaioff et al.
[2010] by moving from deterministic to randomized MAB mechanisms. The single-parameter transforma-
tion (Theorem 2.2) reduces the design of truthful, information-feasible MAB mechanisms to the design of
monotone allocation rules for this domain. Further, the authors provide monotone allocation rules whose
performance matches that of optimal MAB algorithms. Specifically, they show that (a minor modification
of) a standard MAB algorithmUCB1 [Auer et al., 2002] is stochastically monotone, and they design a new
MAB algorithm which is ex-post monotone and has essentiallythe same performance.

7Alternatively, we could have defined “outcomes” via impressions rather than clicks. But then an agent would not have a
full knowledge of his value for each outcome (his type) as theCTRs are not known to him. Such a definition necessitates some
cumbersome modifications to the framework in Section 2. Bothversions lead to the same results.

8If some information on CTRs is known before the allocation starts, this can be modeled via Bayesian priors on CTRs. Follow-
ing [Babaioff et al., 2009, Devanur and Kakade, 2009, Babaioff et al., 2010], we focus on the non-Bayesian version.
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5 Multi-parameter MAB mechanisms:
Impossibility result for ex-post truthful mechanisms

In this section we present our second main contribution: a very strong impossibility result for ex-post truthful
multi-parameter MAB mechanisms. Consider one of the agentsand fix the bids of the others. Essentially,
we show that an allocation rule which satisfies ex-postCMON for that agent, cannot depend on the bid of that
agent. More precisely, this holds for a deterministic allocation rule if the bids are large enough, as well as
for any allocation rule (deterministic or randomized) thatnever skips a round. For randomized allocation
rules that may skip a round, we show that if the allocation rule satisfies ex-postCMON then it cannot achieve
a nontrivial worst-case approximation ratio.

Theorem 5.1. LetA be an allocation rule for multi-parameter MAB which satisfies ex-postCMON. Fix any
agenti, and fix bids submitted by all other agents.

(a) If A is any allocation rule (deterministic or randomized) that never skips a round, and if agenti is the
only agent, then the allocation has no dependence on his bids.

(b) If A is deterministic, then there exists a finiteB such that the allocation for agenti does not depend
on his bids, as long as all his bids are larger thanB.

(c) If A is randomized, then its worst-case approximation ratio (over all bid vectors of agenti) is no
better than that of the trivial randomized allocation rule that ignores agenti’s bid, samples one of his
ads uniformly at random, and allocates all impressions to that ad.

The first conclusion presumes there is only a single agent, and to prove the remaining two conclusions
it suffices to consider the case of a single agent, because from the perspective of any given agent the ads
allocated to other agents can be represented as skips. (In particular, allowing skips in single-agent allocation
rules is essential for the generalization to multiple agents.) In the rest of this section we assume a single
agent withm ads.

To prove our result we need to set up some notation. Recall that the bids of the agent are represented
by a vectorb = (b1 , . . . , bm) ∈ R

m
+ . For a given allocation ruleA and a given click-realizationρ, the

impression allocationA(b, t, ρ) ∈ R
m
+ is a vector of probabilities, in expectation over the randomseed of

the algorithm, so thatAi(b, t, ρ) is the probability that adi is chosen in roundt given bid vectorb and
realizationρ.

Weak monotonicity. We useCMON through a special case wherek = 2 in Equation (4); this special case
is known in the literature asweak monotonicity, henceforth abbreviatedWMON. WMON is equivalent toCMON
if there are finitely many outcomes and the type space is convex [Saks and Yu, 2005]. It follows that in our
setting, ex-postWMON is equivalent to ex-postCMON for deterministic allocation rules. For more background
onWMON, see [Archer and Kleinberg, 2008a].

Let us restateWMON in the notation of multi-parameter MAB mechanisms. Recall that the click vector
C(b, ρ) is a vector such thatCj(b, ρ) is the total expected number of clicks for adj, given bid vectorb and
realizationρ. Then

Cj(b, ρ) =
∑T

t=1 ρ(t, j)Aj(b, t, ρ) =
∑T

t=1 ∆t(ρ)A(b, t, ρ),
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where∆t(ρ) is them × m diagonal matrix with diagonal entries(ρ(t, 1) , . . . , ρ(t,m)). Ex-postWMON
states the following: for any realizationρ and any bid vectorsb, b̃ ∈ R

m
+ ,

(b̃− b) · ( C(b̃, ρ)− C(b̃, ρ) ) ≥ 0

Re-writing this in terms of the impression allocation, we obtain:

(b̃− b)†
∑T

t=1 ∆t(ρ)( A(b̃, t, ρ)−A(b, t, ρ) ) ≥ 0. (8)

Here and elsewhere,M † denotes a transpose of a matrixM .

Analysis for allocation rules with no skips (Theorem 5.1(a)). For the sake of contradiction, assume that
A(b, t, ρ) 6= A(b′, t, ρ) for some roundt, click-realizationρ, and bid vectorsb, b′ ∈ R

m
+ . Pick the smallestt

for which such counterexample exists. Assume w.l.o.g. thatρ ≡ 0 for all rounds aftert. For each adi, let ρi
be a realization that coincides withρ on all rounds butt, and in roundt adi is clicked and all other ads are
not clicked.

Let b̃ = ~1 + max(b, b′) ∈ R
m
+ , wheremax(b, b′) is the coordinate-wise maximum ofb andb′. Since

A(b, t, ρ) 6= A(b′, t, ρ), we can w.l.o.g. assume thatA(b̃, t, ρ) 6= A(b, t, ρ). SinceA never skips a round,

∑m
i=1 Ai(b̃, t, ρ) = 1 =

∑m
i=1Ai(b, t, ρ). (9)

CombiningA(b̃, t, ρ) 6= A(b, t, ρ) with Equation (9) we deduce that for some adi, Ai(b̃, t, ρ) < Ai(b, t, ρ).
We claim thatWMON is violated for bidsb, b̃ and realizationρi. Indeed, consider Equation (8) for realization
ρi. The sum in Equation (8) is 0 for all rounds other thant becauseA(b̃, s, ρ) = A(b, s, ρ) for all rounds
s < t (by minimality of t), andρi ≡ 0 for all roundss > t. For roundt, the sum in Equation (8) is0 for all
ads other thani, by definition ofρi. Thus, the sum is simply equal to(bi − b̃i) · [Ai(b, t, ρ) − Ai(b̃, t, ρ)],
which is negative, contradicting Equation (8).

Analysis for the deterministic case (Theorem 5.1(b)). We now address deterministic allocation rules that
may skip rounds. The analysis of this case captures the main ideas of the randomized case while being
significantly easier to present.

Fix click-realizationρ and roundt. LetA be the deterministic allocation rule for agenti that is induced
by fixing the bids of all other agents. IfA skips roundt, write A(b, t, ρ) = skip. For a vectorb =
(b1 , . . . , bm) ∈ R

m
+ , denotemax(b ) = max1≤i≤m bi. Definemin(b) similarly.

One technicality in the analysis is handling skips; we deal with it using the following notions:9

bmin(t, ρ) = sup{max(b) : b ∈ R
m
+ andA(b, t, ρ) = skip}.

B = max ( {0} ∪ {bmin(t, ρ) : ∃ t, ρ such thatbmin(t, ρ) < ∞} ) . (10)

Note thatB = 0 if bmin(t, ρ) = ∞ for all t andρ. For a given roundt and realizationρ, bmin(t, ρ) is defined
such that if allm bids are larger thanbmin(t, ρ) then the allocation does not skip at roundt on realizationρ.
B is defined such that for every realization and every round, ifall bids are larger thanB then the allocation
rule never skips.

Claim 5.2. LetA be a deterministic single-agent allocation rule which satisfies ex-postWMON. Then for each
click-realizationρ and each roundt, A does not depend on the bid vectorb for all bid vectorsb ∈ (B,∞)m,
whereB is defined in Equation (10).

9We use a standard convention thatsup(∅) = −∞.
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Proof. For the sake of contradiction, assume thatA(b, t, ρ) 6= A(b′, t, ρ) for some roundt, click-realization
ρ, and bid vectorsb, b′ ∈ (B,∞)m. Pick the smallestt for which such counterexample exists. Assume
w.l.o.g. thatρ ≡ 0 for all rounds aftert. For each adi, let ρi be a realization such that it coincides withρ on
all rounds butt, and in roundt adi is clicked and all other ads are not clicked.

Let us consider two cases, depending on whetherbmin(t, ρ) is finite.

Case 1: bmin(t, ρ) = ∞. At least one ofA(b, t, ρ), A(b′, t, ρ) is not equal toskip. SinceA(b, t, ρ) 6=
A(b′, t, ρ), we can w.l.o.g. assume thatA(b, t, ρ) 6= skip. Hence,Ai(b, t, ρ) = 1 for some adi. Since
bmin(t, ρ) = ∞, there exists̃b ∈ (max(b ), ∞)m such thatA(b̃, t, ρ) = skip.

We claimWMON is violated for bidsb, b̃ and realizationρi. As in the first case, we see that the sum
in Equation (8) is 0 for all rounds other thant, and for roundt the sum is0 for all ads other thani. Again, it
follows that the sum is simply equal tobi − b̃i, which is negative, contradicting Equation (8). Claim proved.

Case 2: bmin(t, ρ) < ∞. The proof of this case is very similar to the proof of Theorem 5.1(b).
Recall that in case 1 it holds thatbmin(t, ρ) < ∞. Let b̃ = ~1 + max(b, b′) ∈ R

m
+ , wheremax(b, b′) is

the coordinate-wise maximum ofb andb′. Sincebmin(t, ρ) < ∞, it follows thatB ≥ bmin(t, ρ), so neither
A(b, t, ρ) nor A(b′, t, ρ) nor A(b̃, t, ρ) is equal toskip. SinceA(b, t, ρ) 6= A(b′, t, ρ), we can w.l.o.g.
assume thatA(b̃, t, ρ) 6= A(b, t, ρ). In particular,Ai(b̃, t, ρ) = 0 andAi(b, t, ρ) = 1 for some adi.

We claim thatWMON is violated for bidsb, b̃ and realizationρi. Indeed, consider Equation (8) for real-
ization ρi. The sum in Equation (8) is 0 for all rounds other thant becauseA(b̃, s, ρ) = A(b, s, ρ) for all
roundss < t (by minimality of t), andρi ≡ 0 for all roundss > t. For roundt, the sum in Equation (8)
is 0 for all ads other thani, by definition ofρi. Thus, the sum is simply equal tobi − b̃i, which is negative,
contradicting Equation (8). Claim proved.

5.1 Analysis of the randomized case: proof of Theorem 5.1(c)

The proof of the randomized case of Theorem 5.1 is technically more involved than the proof of Theo-
rem 5.1(b)). In particular, even stating the analog of Claim5.2 requires a considerable amount of setup.

Define functionsf, g,G : N×R+ → R+ by the following recurrence:f(0, y) = g(0, y) = G(0, y) = 0
for all y; while for t > 0:

f(t, y) = 3ymG(t− 1, y) + 1

g(t, y) = 2 f(t, y) + 2 + 3ymG(t− 1, y)

G(t, y) = g(t, y) +G(t− 1, y) =
∑t

s=1 g(s, y).

For real numbersB ≥ 0, y ≥ 1, letD(B, y) denote the set

D(B, y) = {b : min(b ) ≥ B,max(b)/min(b) ≤ y}.
We will refer to a bid vector as “y-balanced” if it satisfiesmax(b)/min(b) ≤ y.

LetA be a (potentially randomized) allocation rule. Fix realization ρ. For all timest and allǫ > 0, y ≥ 1
let

Amax(t, ρ, y) = lim sup
x→∞

{ ‖A(b, t, ρ)‖1 : b ∈ D(x, y) }

bmax(t, ρ, ǫ, y) = sup {x : ∃b ∈ D(x, y) ‖A(b, t, ρ)‖1 < Amax(t, ρ, y) − ǫ f(t, y) }

Bǫ(y) =

{
0 if bmax(t, ρ, ǫ, y) = ∞ for all t, ρ, ǫ

sup (R ∩ {bmax(t, ρ, ǫ, y) : t ∈ N, ǫ > 0}) otherwise.
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HereAmax(t, ρ, y) is the maximal expected number of impressions at timet such that the agent can obtain
this number with arbitrarily largey-balanced bids. The meaning ofbmax is as follows: if every component
of a y-balanced vectorb is abovebmax, the expected number of impressions for timet is guaranteed to be
within ǫ f(t, y) of the best possible. Note thatBǫ(y) = 0 if bmax(t, ρ, ǫ, y) is infinite for all t and allρ.

Claim 5.3. LetA be a single-agent allocation rule which satisfies ex-postWMON. Then for anyy ≥ 1, any
ǫ > 0, any bid vectorsb, b′ ∈ D(Bǫ(y), y), any realizationρ, and any roundt, we have

∥∥A(b, t, ρ)−A(b′, t, ρ)
∥∥
1
≤ ǫ g(t, y)

Proof. Fix ǫ > 0 and realizationρ. Let us use induction ont. Caset = 0 is trivial, interpretingA(b, 0, ρ) =
~0 for all ρ, b. Now assume the claim is true for all timess < t. For the sake of contradiction, assume the
claim does not hold for timet and some realizationρ.

By definition ofAmax, there exists a numberM∗ such that

sup
b∈D(M∗,y)

‖A(b, t, ρ)‖1 < Amax(t, ρ, y) + ǫ.

For each adi, define a new realizationρi as follows: it coincides withρ before timet, only i gets clicked at
time t, and there are no clicks aftert.

Fix bid vectorsb, b′ ∈ D(Bǫ(y), y). Pick some bid vector̃b ∈ D(M̃, y), where

M̃ = max(M∗, 3y
∥∥b+ b′

∥∥
∞).

LetM = max(b̃).
WMON for realizationρi, applied to bid vectorsb andb̃, states the following:

(b̃− b )† ∆t(ρi)
(
A(b̃, t, ρ)−A(b, t, ρ)

)
(11)

+ (b̃− b )†
t−1∑

s=1

∆s(ρ)
(
A(b̃, s, ρ)−A(b, s, ρ)

)
≥ 0. (12)

The first summand in Equation (11) is simply(b̃i − bi)
(
Ai(b̃, t, ρ)−Ai(b, t, ρ)

)
.

By the induction hypothesis, for each times < t it holds that

(b̃− b )† ∆s(ρ)
(
A(b̃, s, ρ)−A(b, s, ρ)

)
≤ M ǫg(s, y)

It follows that

(b̃− b )†
t−1∑

s=1

∆s(ρ)
(
A(b̃, s, ρ)−A(b, s, ρ)

)
≤ M ǫ

t−1∑

s=1

g(s, y) = M ǫG(t− 1, y)

Plugging this into Equation (11), we obtain

(b̃i − bi)
(
Ai(b̃, t, ρ)−Ai(b, t, ρ)

)
≥ −M ǫG(t− 1, y)

Ai(b̃, t, ρ)−Ai(b, t, ρ) ≥ −(b̃i − bi)
−1M ǫG(t− 1, y).
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We havẽbi ≥ M/y sinceb̃ is y-balanced. Alsobi ≤ M/(3y) by our choice ofM . Thereforẽbi − bi ≥ 2M
3y

and
Ai(b̃, t, ρ)−Ai(b, t, ρ) ≥ −3y

2 ǫG(t− 1, y). (13)

Case 1: bmax(t, ρ, ǫ, y) < ∞. DenoteXi = Ai(b, t, ρ) andX ′
i = Ai(b

′, t, ρ). Let min(Xi,X
′
i) be the

coordinate-wise minimum ofXi andX ′
i; definemax(Xi,X

′
i) similarly.

In this notation, our goal is to bound‖X −X ′‖1 above byǫ g(t, y). Assumẽb = M~1 for someM ≥ M̃ .
By Equation (13), noting that this argument applies to bothb andb′, we have:

Ai(b̃, t, ρ) ≥ max(Xi,X
′
i)− 3y

2 ǫG(t− 1, y).

Summing this over all ads:
∥∥∥A(b̃, t, ρ)

∥∥∥
1
≥

∥∥max(X,X ′)
∥∥
1
− 3y

2 ǫmG(t− 1, y).

Recall that
∥∥∥A(b̃, t, ρ)

∥∥∥
1
≤ Amax(t, ρ, y) + ǫ by our choice ofM . Therefore:

∥∥max(X,X ′)
∥∥
1
≤ Amax(t, ρ, y) + ǫ (1 + 3y

2 mG(t− 1, y)).

Note that

‖X‖1 +
∥∥X ′∥∥

1
=

∥∥max(X,X ′)
∥∥
1
+
∥∥min(X,X ′)

∥∥
1∥∥X −X ′∥∥

1
=

∥∥max(X,X ′)
∥∥
1
−
∥∥min(X,X ′)

∥∥
1

‖X‖1 +
∥∥X ′∥∥

1
+

∥∥X −X ′∥∥
1
= 2

∥∥max(X,X ′)
∥∥
1

Becausebmax(t, ρ, ǫ, y) < ∞ andb, b′ ∈ D(Bǫ(y), y), both‖X‖1 and‖X ′‖1 are at leastAmax(t, ρ, y) −
ǫ f(t, y). Therefore:

2Amax(t, ρ)− 2ǫ f(t, y) +
∥∥X −X ′∥∥

1
≤ 2

∥∥max(X,X ′)
∥∥
1

≤ 2Amax(t, ρ, y) + 2 ǫ (1 + 3y
2 G(t− 1, y)).

It follows that ∥∥X −X ′∥∥
1
≤ 2ǫ

(
1 + f(t, y) + 3y

2 mG(t− 1, y)
)
= ǫ g(t, y).

Thus, we have proved the induction step assumingbmax(t, ρ, ǫ, y) is finite.

Case 2: bmax(t, ρ, ǫ, y) = ∞. This case is impossible: we will arrive at a contradiction.
By definition ofAmax, there exists a bid vectorb ∈ D(Bǫ(y), y) such that

‖A(b, t, ρ)‖1 > Amax(t, ρ, y) − 1
2 ǫ f(t, y).

Sincebmax(t, ρ, ǫ, y) = ∞, we can pick̃b ∈ D(M̃, y) such that
∥∥∥A(b̃, t, ρ)

∥∥∥
1
≤ Amax(t, ρ, y)− ǫ f(t, y) ≤ ‖A(b, t, ρ)‖1 − 1

2 ǫ f(t, y).

It follows that
m∑

i=1

[
Ai(b, t, ρ)−Ai(b̃, t, ρ)

]
≥ 1

2 ǫ f(t, y)

∃i Ai(b, t, ρ)−Ai(b̃, t, ρ) ≥ 1
2m ǫ f(t, y).
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Using Equation (13), for thisi we have:

1
2m ǫ f(t, y) ≤ Ai(b, t, ρ) −Ai(b̃, t, ρ) ≤ 3y

2 ǫG(t− 1, y).

Thus,f(t, y) ≤ 3ymG(t− 1, y), contradicting the definition off .

Using Claim 5.3, it is now easy to prove Theorem 5.1(c).

of Theorem 5.1(c).For anyδ > 0, let

y = 2m/δ

ǫ = δ
2mg(T,y)

B = Bǫ(y).

In our proof we will considering applyingA to the bid vectorb0 = B~1 as well as the vectorsbj defined for
j = 1, . . . ,m by changing thejth of b0 from B to yB. The vectorsb0, . . . , bm all belong toD(B, y).

Let ρ be a realization such thatρ(t, j) = 1 for all t, j, i.e. every ad is always clicked. SinceA can
never allocate more thanT impressions, we have

∑T
t=1

∑m
i=1Ai(b

0, t, ρ) ≤ T . Hence, there is at least one
j ∈ [m] such that

T∑

t=1

Aj(b
0, t, ρ) ≤ T/m. (14)

Now, for every roundt, we have

Aj(b
j , t, ρ)−Aj(b

0, t, ρ) ≤
∥∥A(bj, t, ρ)−A(b0, t, ρ)

∥∥
1
≤ ǫ g(t, y) = δ

2m , (15)

where the second inequality follows from Claim 5.3. SummingEquation (15) overt = 1, . . . , T and
combining with Equation (14), we deduce that

T∑

t=1

Aj(b
j , t, ρ) ≤

(
1 δ
2

)
T
m .

The optimal allocation for bid vectorbj assigns every impression to adj, achieving a total value ofyBT . In-
stead, the allocation computed byA achieves a total value bounded above by

(
1 + δ

2

) yBT
m +BT , where the

first term accounts for impressions allocated to adj and the second term accounts for all other impressions.
We have (

1 + δ
2

) yBT
m +BT = yBT

m ·
(
1 + δ

2 +
m
y

)
= yBT · 1+δ

m .

Sinceδ > 0 was an arbitrarily small positive constant, we conclude that the worst-case approximation ratio
of A is no better than1/m, which is trivially achieved by a random allocation.
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6 Multi-parameter MAB mechanisms: A stochastic CMON allocation rule

In this section we consider the problem of designing stochastically truthful multi-parameter MAB mech-
anisms. As discussed in the introduction, the VCG mechanismcannot be used as it is informationally-
infeasible. Additionally, pricing based mechanisms do notseem to be feasible. The only other technique
that is extensively exploited in the literature for multi-parameter domains is usingmaximal in distributional
range(MIDR) allocation rules. We formalize the limitations of a natural family of MIDR allocation rules (in
which the set of distributions the rule optimizes over is independent of the CTRs) in Section 6.3, showing
that the performance of such rules is no better than randomlyselecting an ad to present. We next discuss
some simple approaches to create truthful mechanisms: the first disregards the bids, and the second uses
randomization to reduce the problem to a single parameter problem.

The first approach isbid-independentallocation rules – ones that do not depend on the bids. Among
those, we naturally focus on the allocation rule that achieves the best worst-case performance, that rule
samples an ad independently and uniformly at random in each round; call itRND.

A slightly more sophisticated approach randomly reduces the problem to a single parameter problem as
follows. One ad is selected independently for each agent, uniformly at random from this agent’s ads. Then
some truthful single-parameter mechanismM is run on the selected ads. Call this mechanismSubSample.
This mechanism is truthful (ex-post or stochastically, same asM) because for each realization of the selec-
tion described above, it is simply a truthful single-parameter mechanism. The performance of this mecha-
nism is the same as the performance of the trivialRND mechanism when there is only one agent.

These two naı̈ve approaches have poor performance. For example, for a single agent none performs
better than uniformly randomizing over the ads. We call sucha performancetrivial . This gives rise to the
following major open problem.

Open Problem: Design a stochastically truthful mechanism for the multi-parameter MAB problem that
achieves optimal approximation.

A more modest goal is to design a stochastically truthful mechanism for the multi-parameter MAB prob-
lem that achievesnon-trivial performance, even for some “well-behaved” subset of inputs. Unfortunately,
it seems that all standard tools fail to achieve even this modest goal. Below we achieve this by designing
a stochasticallyCMON allocation rule and then applying the multi-parameter transformation from Section 3.
We interpret this result as an evidence that it is not completely hopeless to significantly improve over the
trivial approaches.

6.1 The stochastically CMON allocation rule

We design a stochasticallyCMON allocation ruleALL whose expected welfare exceeds that ofRND on all prob-
lem instances with at least two agents, and that ofSubSample on an important family of problem instances
which we characterize below. StructurallyALL depends on all submitted bids, is provably notMIDR, and,
unlikeSubSample, does not proceed through an explicit reduction to a single-parameter allocation rule. Im-
plementingALL as a truthful, information-feasible mechanism requires the full power of our multi-parameter
transformation.

All results in this section require all private values to be bounded from above by1. We will assume that
without further notice.

Recap of notation. The term “expected welfare” refers to expectation over the randomness in the allocation
rule and the clicks (for a given vector of CTRs). LetW (RND) denote the expected welfare ofRND. Let
A0 = {1 , . . . ,m} be the set ofm ads of all agents. Recall thatvj, bj andµj be, resp., denote the private
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value, the submitted bid, and the CTR for adj. Note that the expected value from each time a given adj is
displayed isvjµj.

Allocation rule ALL for ≥ 2 agents. Assume there are at least two agents. Define the following allocation
rule, call it ALL. It consists of two phases: exploration and exploitation. Exploration lasts forT0 rounds,
whereT0 ≥ 1 is fixed and chosen in advance. In each exploration round an adis chosen uniformly at random
among all ads. Letnj be the number of clicks for adj by the end of the exploration phase. In each round of
exploitationALL does the following:
(L1) pick each adj with probabilitybj nj/T0, wherebj is the bid for adj.
(L2) with the remaining probability pick an ad uniformly at random.
This completes the specification ofALL. We note that even a single round of exploration suffices for our
purposes. Using a smallT0 does not affect the expected performance, but results in a (very) high variance.

Discussion. We designALL to ensure that the allocation probabilities depend on CTRs and bids in a simple,
linear way. Below we explain why this “linear dependence” property is useful, and discuss some of the
challenges in the analysis ofALL.

Let theallocation-vectorbe a vectora ∈ ℜm whosej-th component is the expected number of times ad
j is allocated byALL. For a given vector of CTRs, theallocation-rangeis the set of all allocation-vectors
that can be realized byALL. We conjecture that the allocation-range needs to depend onCTRs in order for
an allocation rule to satisfy stochasticCMON and be, in some sense, non-trivial. (In Section 6.3, we provea
version of this conjecture that is restricted to stochastically MIDR allocation rules.) The “linear dependence”
property ofALL ensures that the allocation-range does depend on CTRs.

For example, consider an allocation rule which has an exploration phase of fixed duration, picks the
best (estimated) ad based on the clicks received so far, and sticks with this ad from then on. This allocation
rule that is ex-post truthful in the single-parameter setting, and is perhaps the most natural candidate for a
reasonable, easy-to-analyze allocation rule for our setting. However, the allocation-range of this allocation
rule does not depend on CTRs (because the set of possible options for exploitation is fixed: any one ad can
be chosen).

Further, the proof technique that we use in the analysis ofALL essentially requires us, for every given
agent, to solve a system of equations where the unknowns are this agent’s bids and the parameters are the
CTRs and the components of the allocation vector. The allocation probabilities inALL are explicitly defined
in terms of bids in order to enable us to solve this system of equations in a desirable way; this is another
place where the “linear dependence” property ofALL is helpful.

The subtle point in our analysis ofALL – or, it seems, in any analysis using the same proof technique–
is that one needs to ensure that the allocation vector is a maximizer of a certain expression, which requires
us to prove the positive-definiteness of the corresponding Hessian matrix. The “linear dependence” property
of ALL enables us to argue about the Hessian matrix in a useful way.

As we discovered, the positive-definiteness of the Hessian should not be taken for granted: indeed, it
fails for a number of otherwise promising allocation rules with better performance. We believe that further
progress on stochasticallyCMON allocation rules would require a more systematic understanding of how
changes in the allocation rule propagate through the analysis and affect the Hessian matrix.

Guarantees for ALL for ≥ 2 agents. A problem instance is calleduniform if the productvjµj is the same
for all j, andnon-uniformotherwise. Note that for uniform problem instancesRND is optimal, and in fact all
allocation rules without skips have the same expected welfare, and are all optimal. We will assume that all
values-per-click are at most1, and that all CTRs are strictly positive.

Note that instances on whichRND performs very poorly are those where for one adj the productvjµj is
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large while for all other ads this product is very low. On the other hand, for such inputsALL plays the best
ad significantly more often.

We next present a parameter that aims to quantify the divergence of the instance from uniform and will
be used to measure the performance ofALL. A problem instance is calledσ-skewed, for someσ ∈ [1,m], if
it satisfies

(M2)
2 ≥ σ(M1)

2, whereMq =
(

1
m

∑m
j=1 (vj µj)

q
)1/q

. (16)

Note that problem instances can beσ-skewed for any givenσ ∈ [1,m]. It is 1-skewed for uniform problem
instances, andm-skewed when only one ad is good while all other ads have value0.

Let W0(ALL) be the expected per-round welfare for the exploitation phase of ALL, and letW0(RND) be
the expected per-round welfare forRND. Note thatW0(RND) = M1. The properties ofALL with at least
two agents are captured by the next lemma (which is the main technical lemma in this section); its proof is
deferred to Appendix 6.2.

Lemma 6.1. With at least two agents, allocation ruleALL satisfies the following:

(a) If the CTRs for all ads are strictly positive thenALL satisfies stochasticCMON.

(b) For W0(ALL) andW0(RND) as defined above it holds that

W0(ALL)−W0(RND) = M2
2 −M2

1 , whereMq =
(

1
m

∑m
j=1 (bj µj)

q
)1/q

.

In particular, W (ALL) > W (RND) for all non-uniform problem instances.

The allocation ruleALL does not have the property that scaling all bids by a common factor scales the
expected welfare by the same factor; therefore it is notMIDR (see Section 6.3 for the definition ofMIDR, as
it applies to our setting).

Reduction to the single-agent case. For a single agent, we define our allocation ruleALL as follows: we
simulate a run ofALL with a single round of exploration and two agents, where the second agent is a dummy
agent with a single ad. The dummy agent submits a bid of zero for his ad, and we fix its CTR to12 (any CTR
works). This completes the specification ofALL.

Denote the resulting two-agent allocation rule byALL∗. The single-agent allocation rule satisfiesCMON

because so doesALL∗. Since the dummy agent does not contribute welfare (becauseof the zero bid), we
haveW0(ALL) = W0(ALL

∗). Applying Lemma 6.1(a) toALL∗, we see that

W0(ALL) = M∗
1 + (M∗

2 )
2 − (M∗

1 )
2, whereM∗

q =
(

1
m+1

∑m
j=1 (bj µj)

q
)1/q

. (17)

We summarize the useful properties ofALL in the following lemma:

Lemma 6.2. Consider the case of a single agent; assumeµj > 0 for all adsj. ThenALL satisfies stochastic
CMON, and its welfare in exploitation rounds satisfies Equation (17). In the one exploration round,ALL
obtains welfare m

m+1W0(RND).

Main provable guarantee. Let Mδ be the mechanism obtained by applying Theorem 3.1 toALL with
parameterδ ∈ (0, 1). The main result of this section follows.
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Theorem 6.3. Consider a multi-parameter MAB domain withvj ≤ 1 andµj > 0 for every adj. Then
mechanismMδ is stochastically truthful, for everyδ ∈ (0, 1).

Considerσ-skewed problem instances, and assumemaxj∈A0
vjµj > ǫ > 0. There existsδ ∈ (0, 1) such

that mechanismMδ satisfies the following:

(a) W (M) > W (RND) on all problem instances with at least two agents, as long asσ > 1.

(b) W (M) > W (RND) = W (SubSample) on all problem instances with a single agent withm ads, as
long asσ > 1 + m+1

mǫ + m+1
ǫ(T−1) .

(c) Suppose there exists an agent withk > m/2 ads; w.l.o.g. assume this is agent1. ThenW (M) >

W (SubSample) on all problem instances such thatσ > 1 + m(m−k)
kǫ when for all agentsi > 1 all

private values are0.10 11

The theorem follows from Lemma 6.1, Lemma 6.2 and Theorem 3.1via straightforward computations,
some of which we omit from this version. Recall that for eachδ > 0 we haveW (Mδ) > (1− δ)W (ALL).

Theorem 6.3(a).AssumeM2 > (1+ǫ)M1 andmaxj∈A0
bjµj > ǫ for someǫ > 0. Then, using the notation

of Lemma 6.1(b), we haveM1 ≥ ǫ/m, and therefore

W0(ALL)−W0(RND) ≥ M2
1 ((1 + ǫ)2 − 1) > M1

2ǫ2

m .

Recall thatT0 is the duration of exploration inALL, andT is the time horizon. Then:

W (RND) = T W0(RND) = T M1

W (ALL) = T0W0(RND) + (T − T0)W0(ALL)

= W (RND) + (T − T0) (W0(ALL)−W0(RND))

> W (RND) + γ W (RND), whereγ = 2ǫ2(T−T0)
mT

W (M) > (1− η)W (ALL) > (1− η)(1 + γ)W (RND).

Thus, to ensure thatW (M) > W (RND), it suffices to takeη < 1− 1
1+γ .

Proof Sketch of Theorem 6.3(bc).For part (b), recall thatW0(RND) = W0(SubSample) =
1
m

∑m
j=1 bj µj.

With a simple computation which we omit from this version, one derives thatW (A) > W (RND). We prove
W (M) > W (RND) using a computation similar to the one in the proof of part (a), we omit the details.

For part (c), note thatW0(RND) = M1 and (under the assumptions in Theorem 6.3(c)),W (SubSample) ≤
1
kM1. Again, using a simple computation one can show thatW (A) > W (SubSample), and then pick a
sufficiently smallδ as in the proof of part (a).

10One can also derive a version of this result where the privatevalues for all agentsi > 1 are smaller thanδ, for someδ ≪ ǫ.
We omit the easy details.

11Note that the instances considered in this result are generalizing the instances we have discussed before. There are instances in
which one agent have all but one ad, and only one of his ads has positive value, while all the rest of the ads (his and others) have
value0.
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6.2 Proof of the main technical lemma (Lemma 6.1)

Let us set up some notation. Consider an exploitation round in the execution ofALL. For each adj, let Ej

be the event that adj is chosen in line (L1) of the algorithm’s specification. LetEu be the remaining event
in line (L2) when the ad is chosen uniformly at random. Denotexj = Pr[Ej ], and note that for each adj,

xj , Pr[Ej ] = bj E[nj]/T0 = 1
m bjµj.

of Lemma 6.1(b).Consider a round in the exploitation phase ofALL. Partition this round into eventsP =
{E1 , . . . , Em;Eu}. For each eventE ∈ P in this partition, letW0(E) be the expected per-round welfare
of ALL from this event, so thatW0(ALL) =

∑
E∈P W0(E). Note thatW0(Eu) = Pr[Eu]W0(RND). Further,

W0(Ej) = bjµj Pr[Ej ] = mx2j for each adi.
It is easy to see thatW0(RND) =

1
m

∑
j bjµj =

∑
j xj. It follows that

W0(ALL)−W0(RND) =
∑

E∈P W0(E) − Pr[E]W0(RND)

=
∑

j W0(Ej)−
∑

j Pr[Ej ]W0(RND)

=
(
m

∑
j x

2
j

)
−

(∑
j xj

)2

= M2
2 −M2

1 .

For Lemma 6.1(a), we rely on the following characterizationof CMON from prior work:

Lemma 6.4. Consider a functionf : S → ℜk, whereS ⊂ ℜk. Letf(S) ⊂ ℜk be the image off . Thenf
is CMON if and only if it is an affine maximizer, i.e.

f(x) = argmax
y∈f(S)

[x · y − g(y)] for some functiong : f(S) → ℜ.

Proof of Lemma 6.1(a).Assume that there are at least two agents, and all CTRs are strictly positive. Without
loss of generality, let us focus on agent1. We will use the following notation. LetA = {1 , . . . , k} be the
set of ads submitted by agent1. Herek is the number of ads submitted by agent 1; note thatk < m. Let
b = (b1 , . . . , bk) be the vector of bids for agent1, wherebj is the bid on adj. LetB = [0, 1]k be the set of
all possible bid vectors for agent 1. Letµ = (µ1 , . . . , µk) be the vector of CTRs for agent 1. We will use
bothi andj to index ads.

Throughout the proof, let us keep the bids of all other agentsfixed. LetCi,t(b) be the expected number
of clicks that adi receives in roundt of ALL, given the bid vectorb, where the expectation is taken over all
realizations of the clicks and over the randomness in the algorithm.12

Let ~Ct(b) = (C1,t(b) , . . . , Ck,t(b)) be the round-t vector over the ads of agent 1, and let~C(b) =∑
t
~Ci,t(b) be the vector whosei-th component is the total expected number of clicks for adi.
We need to prove that the function~C : B → ℜk satisfiesCMON. It suffices to prove thatCMON is satisfied

for each roundt separately, i.e. that it is satisfied for each function~Ct. This is obvious ift is an exploration
round. In the rest of the proof we fixt to be an exploitation round.

By Lemma 6.4, it suffices to prove that~Ct(b) is an affine maximizer, i.e. that

~Ct(b) = argmax
p∈ ~Ct(B)

∑

j∈A
bi pi −G(p, µ) (18)

12Here it is more convenient to use a slightly different notation for click-vectors, compared to Section 4.
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for some functionG(p, µ) : ~Ct(B)× [0, 1]k → ℜ, where~Ct(B) ⊂ [0, 1]k is the image of~Ct. Crucially, the
functionG cannot depend onb. 13

Denotep∗ = ~Ct(b). If p∗ is an interior point of~Ct(B) and functionG is differentiable, then Equa-
tion (18) implies the following:

∂

∂pi
G(p∗, µ) = bi for each adi, bid vectorb and CTR vectorµ. (19)

We will construct a functionG(p, µ) so that it satisfies Equation (19).
Here and on,i ∈ A denotes an arbitrary ad of agent 1. Recall thatxi = Pr[Ei] =

1
mbiµi. Thus:

Pr[Eu] = 1−∑
j∈A0

Pr[Ej] = 1−∑
j∈A0

xj

Ci,t(b) = µi

(
Pr[Ei] +

1
m Pr[Eu]

)
= µi

(
xi +

1
m − 1

m

∑
j∈A0

xj

)
.

Recalling the notationp∗ = ~Ct(b) and solving forxi, we obtain

p∗i /µi = xi +
1
m − 1

m

∑
j∈A0

xj
∑

j∈A p∗j/µj =
∑

j∈A xj +
k
m − k

m

∑
j∈A0

xj

= ( k
m − Y ) + (1− k

m )
∑

j∈A0
xj , whereY =

∑
j∈A0\A xj.

p∗i /µi = xi − α
∑

j∈A p∗j/µj + β.

whereα = 1
m−k andβ = 1

m − α(Y − k
m). It follows that

bi =
m

µi
xi = p∗i

m

µ2
i

+
∑

j∈A
p∗j

αm

µiµj
− βm

µi
. (20)

Denote the RHS of Equation (20) byfi(p∗, µ). We have proved thatbi = fi(p
∗, µ) for each adi. Thus to

obtain Equation (19) it suffices to pickG(p, µ) so that it satisfies

∂

∂pi
G(p, µ) = fi(p, µ) for eachi ∈ A. (21)

Integratingfi(p∗, µ) overpi, for each adi, and combining the resulting expressions, we obtain

G(p, µ) = −
∑

i∈A
pi

mβ

µi
+

m

2

∑

i∈A
p2i

1 + α

µ2
i

+
∑

j∈A\{i}
pipj

mα

µiµj
. (22)

It is easy to check that thisG satisfies Equation (21), which in turn implies Equation (19). 14 It follows
that for thisG, p = p∗ is a critical point in Equation (18). From here on we will use theG as defined
in Equation (22).

We claim that the critical pointp = p∗ is in fact a local maximum in Equation (18). Equivalently, we
claim thatp = p∗ is a local minimum of the function

λ(p) = G(p, µ)− p · b : ℜk → ℜ.
13Note thatG candepend on the CTRs, even though the mechanism does not know them. This is becauseG is only used for the

analysis – to proveCMON, and it is not actually used in the mechanism.
14Write fi(p, µ) = φi +

∑
j∈A pj γij for some numbersφi andγij . Then a functionG(p, µ) satisfying Equation (21) exists if

and only ifγij = γji for all i 6= j.
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For that, it suffices to prove that the Hessian matrixH of λ(·), defined by

Hij =
∂

∂pi ∂pj
λ(p) =

∂

∂pi ∂pj
G(p, µ),

is positive-definite forp = p∗ . Note that for anyp ∈ ℜk it holds that

Hij =

{
τρ2i , i = j,

ρiρj , i 6= j,
(23)

whereρi =
√
αm
µi

for eachi ∈ A, andτ = 1+α
α = 1 + m − k ≥ 2. By Claim 6.5, such matrix is

positive-definite.
To complete the proof, we will show thatp = p∗ is the global maximum in Equation (18) over all

p ∈ ℜk. For that, it suffices to prove that thatp = p∗ is the unique critical point over the entireℜk, i.e. the
unique solution for the system

∂

∂pi
G(p, µ) = bi for each adi ∈ A. (24)

Let us re-write this system using Equation (21). (We find it convenient to use the notationτ andρi, as
in Equation (23).) Namely, for eachi ∈ A we have:

bi +
βm
µi

= fi(p, µ) +
βm
µi

= pi
(
τρ2i

)
+

∑
j∈A\{i} pj (ρiρj) .

It follows that the system in Equation (24) is equivalent to

H · p = w,

where thek × k matrixH is defined by Equation (23), and the vectorw ∈ ℜk is defined bywi = bi +
βm
µi

for all i. The matrixH is non-singular (since it is positive-definite), so the systemH · p = w has a unique
solutionp.

Claim 6.5. Consider ak × k matrixH given by Equation (23), whereρ1 , . . . , ρk are arbitrary positive
numbers. Assumeτ ≥ 1. ThenH is positive definite.

Proof. We will use theGram matrixcharacterization of positive-definite matrices. Namely, to prove thatH
is positive-definite, it suffices to construct finite-dimensional vectorsw1 , . . . , wk such thatHij = wi · wj

for all i, j and the vectors are linearly independent. Consider vectorsw1 , . . . , wk ∈ ℜk+1 defined as
follows:

wi(ℓ) =





√
τ − 1 ρi, ℓ = i, ℓ ≤ k

0, ℓ 6= i, ℓ ≤ k

ρi, ℓ = k + 1,

It is easy to see that these vectors satisfy the desired properties.
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6.3 An impossibility result for stochastically MIDR allocation rules

Let us consider stochastically MIDR allocation rules for multi-parameter MAB mechanisms. We show that
any such allocation rule (with a significant but reasonable restriction) is essentially trivial.

Let us formulate what it means for a given allocation ruleA to be stochasticallyMIDR in our setting, in
a specific way that is convenient for us to work with. For a given bid vectorb ∈ (0,∞)m, and CTR vector
µ ∈ [0, 1]m, let theallocation-vectorbe a vectora = (a1 , . . . , am) such thataj is the expected number of
times adj ∈ [m] is allocated byA. Note that the expected welfare corresponding to a given allocation vector
a is simply

∑
j ajbjµj. LetF0 = {a ∈ [0, T ]m :

∑
j aj ≤ T} be the set of all feasible allocation-vectors.

(The sum of the entries can be less thanT because skips are allowed.) ThenA is stochasticallyMIDR if and
only if for all bid vectorsb and all CTR vectorsµ it holds that

W (A(b)) = max
a∈F

∑
j ajbjµj (25)

for someF ⊂ F0 that does not depend onb, but can depend onµ.
Note that Equation (25) does not immediately provide a stochastically truthful mechanism via VCG

payments, because the computation of VCG payments is not immediately feasible without knowing the
CTRs. In fact, Equation (25) does not even provide an immediate way to compute the allocation (assuming
|F| ≥ 2), again because of the issue of not knowing the CTRs. This is in stark contrast with the prior
work on MIDR (which studied settings without the ”no-simulation” constraint) where theMIDR property
immediately gave rise to a truthful mechanism via the VCG payment rule.

However, if an allocation rule satisfies Equation (25) then atruthful mechanism can be obtained, with
an arbitrarily small loss in welfare, via the transformation in Wilkens and Sivan [2012].

We consider a restricted version of Equation (25) where the rangeF cannot depend on the CTRs (we
will call such rangeF CTR-independent). We prove that any such allocation rule is welfare-equivalent to a
time-invariant allocation rule. Here an allocation rule iscalled time-invariant if in each round, it picks an
ad independently from the same distribution over ads (this distribution may depend on the bids). Note that
time-invariant allocation rules ignore the feedback that they receive (i.e., the clicks), and thus cannot adjust
to the CTRs.

Lemma 6.6. Consider a multi-parameter MAB domain. LetA be a stochasticallyMIDR allocation rule
with CTR-invariant range. For each bid vectorb there exists an allocation-vectora = a(b) ∈ F0 such that
W (A(b)) =

∑
j ajbjµj for all CTR vectorsµ. SoA is welfare-equivalent to a time-invariant allocation

rule (where, lettingT be the time horizon, each adj is chosen with probabilityaj(b)/T ). The approximation
ratio of A (compared to the welfare of the best ad) is at leastm on some problem instances.

Proof. Let us fix the bid vectorb and consider both sides of Equation (25) as functions ofµ. First, we note
that the expected welfareW (A(b)) is a finite-degree polynomial in variablesµ1 , . . . , µm. 15 This is
because, lettingAj(b, ρ, t) be the probability that adj is displayed at roundj given click-realizationρ, it
holds that

W (A(b)) =
∑

ρ Pr[ρ]
∑

j,t ρ(t, j)Aj(b, ρ, t). (26)

Here the outer sum is over all click-realizationsρ, and the inner sum is over all roundst and all adsj. Pr[ρ]
is the probability thatρ is realized for the given CTR vector. Equation (26) is a polynomial in the CTRs

15Namely, the degree is at mostT , the time horizon.
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because for each click-realizationρ, the inner sum is a fixed number, andPr[ρ] is a polynomial in the CTRs
of degreeT .

Let us re-write Equation (25) as follows:

W (A(b)) = max
β∈Fb

β · µ, whereFb = {β ∈ ℜm : βj = ajbj for eachj, a ∈ F}. (27)

SinceFb is fixed, the right-hand side of Equation (27) is uniquely determined byµ, denote itW (µ).
Note that for eachβ ∈ Fb, it holds that

W (µ) = β · µ if and only if (β − β′) · µ ≥ 0 for all β′ ∈ Fb.

For eachβ ∈ ℜk, consider the half-spaceHβ = {µ ∈ [0, 1]m : β · µ ≥ 0}. Then

W (µ) = β · µ if and only if µ ∈ Sβ, whereSβ =
⋂

β′∈Fb

Hβ−β′ .

Note thatSβ is a convex set, as an intersection of convex sets. Moreover,all half-spaces in the intersection
contain the0-vector, and hence so doesSβ. Therefore ifW (µ) = βµ for someµ 6= 0 andβ ∈ Fb then by
convexity for anyz ∈ [0, 1] it holds thatzµ ∈ Sβ, and thereforeW (zµ) = z (β · µ) = zW (µ). We have
proved the following:

W (zµ) = z W (µ) for everyz ∈ [0, 1] andµ ∈ [0, 1]m. (28)

Now recall thatW (µ) is a finite-degree polynomial inµ. A known fact about multi-variate polynomials
is that any finite-degree polynomial inµ which satisfies Equation (28) is in fact of the formW (µ) = γ · µ
for someγ ∈ ℜm.

Now, letA = {j : bj > 0} be the set of ads with non-zero bids. Define a vectora ∈ ℜm by aj = γj/bj
for each adj ∈ A, andaj = 0 otherwise. To complete the proof, it remains to show that, letting T be the
time horizon,a/T is a valid distribution over the ads (assuming skips are allowed). That is, we need to show
thataj ≥ 0 and

∑
j∈A aj ≤ T . We use the fact that for any allocation rule, the expected welfare is at least

0 and at most that of always playing the best ad:

W (µ) =
∑

j∈A ajbjµj ∈ [0, T maxj bjµj ]. (29)

Applying Equation (29) withµ being the unit vector in the directionj ∈ A, it follows thatW (µ) = ajbj ≥ 0,
soaj ≥ 0. Now, letB = (maxj∈A b−1

j )−1 and define a CTR vectorµ by µj = B/bj for j ∈ A andµj = 0

otherwise.16 Plugging thisµ into Equation (29), we obtainW (µ) =
∑

j∈ABaj ≤ BT , which implies∑
j∈A aj ≤ T , completing the proof.
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