N
N

N

HAL

open science

Refining and verifying the solution of a linear system

Hong Diep Nguyen, Nathalie Revol

» To cite this version:

Hong Diep Nguyen, Nathalie Revol. Refining and verifying the solution of a linear system. SNC 2011
- Symbolic Numeric Computation, Jun 2011, San Jose, United States. hal-00641659

HAL Id: hal-00641659
https://inria.hal.science/hal-00641659v1

Submitted on 16 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-00641659v1
https://hal.archives-ouvertes.fr

Refining and Verifying the Solution of a Linear System’

Hong Diep Nguyen
INRIA

LIP (CNRS - ENS de Lyon - INRIA - UCBL)
Université de Lyon
ENS de Lyon
46 allée d'ltalie
69007 Lyon, France

hong.diep.nguyen@ens-lyon.org

ABSTRACT

The problem considered here is to refine an approximate,
numerical, solution of a linear system and simultaneously
give an enclosure of the error between this approximate so-
lution and the exact one: this is the wverification step. De-
sirable properties for an algorithm solving this problem are
accuracy of the results, complexity and performance of the
actual implementation. A new algorithm is given, which has
been designed with these desirable properties in mind. It is
based on iterative refinement for accuracy, with well-chosen
computing precisions, and uses interval arithmetic for veri-
fication.

Categories and Subject Descriptors

G.1.3 [Numerical Linear Algebra]: Error analysis - Lin-

ear systems (direct and iterative methods); G.4 [Mathematical

Software]|: Verification

General Terms

Reliability, verification.

Keywords

Scientific computing, numerical linear algebra, verified com-
putations, symbolic-numeric, interval arithmetic, floating-
point arithmetic, precision, accuracy.

1. INTRODUCTION

The solution of a linear system using floating-point arith-
metic entails roundoff errors. One approach to get exactly
the solution consists in representing the coefficients as ratio-
nal numbers and in solving the linear system exactly. An-
other approach, developed here, consists in mixing iterative
refinement — for a better accuracy — and interval arithmetic
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— for guarantee — to get a tight enclosure of the exact solu-
tion. This latter approach can extend to linear systems with
interval coefficients of small width.

The algorithm proposed here evolved from an initial ver-
sion detailed in Section 2, which is very similar to the best
available implementation, namely the verifylss routine of
IntLab [9]. However, this initial version had 3 flaws: failure
when the matrix of the system is too ill-conditioned, loss
of accuracy and increase of the execution time when it is
ill-conditioned. Working on two of these three weak points
led us to the algorithm given in Section 3. Further remarks
open the way to a better understanding of the respective
strengths and weaknesses of exact computations and inter-
val computations, in Section 4.

2. PROBLEM AND INITIAL ALGORITHM

We consider numerical computations, in other words floa-
ting-point arithmetic. Let A be an n X n matrix and b an
n-dimensional vector, both with floating-point coefficients:
A eF""™ and b € F”. Let us denote by * the exact solution
of the linear system Ax = b, and let £ be an approximate
solution, computed with a so-called numerical routine (LU
with partial pivoting in our experiments, such as the dgetrf
routine of LAPACK). The vector Z has floating-point coef-
ficients.

Let us denote by e = ™ — & the error between the exact
and the approximate solutions. We look for an enclosure
of e, that is, a vector with interval coefficients e such that
e € e. Let us note here that intervals are denoted with
boldface characters. More precisely, the goal is to develop
an algorithm which increases the accuracy of & and computes
e. We would like this algorithm to satisfy the following four
criteria and we will explain our contribution in this direction:

e e contains the error e = z* — T;

e the accuracy of the result should be close to the best
accuracy offered by the floating-point arithmetic, i.e.
the relative error should be close to 27° in IEEE-754
double precision floating-point arithmetic;

e the complexity of the algorithm should be comparable
to the complexity of the numerical algorithm, which is
2n®: the algorithm must exhibit a complexity O(n®)

and the constant hidden in the O must be moderate;

e the actual performance of the implementation should
be close to the performance of the numerical routine.

The starting point is to use iterative refinement, and to re-
place floating-point operations by interval operations when



it is appropriate to do so. Indeed, iterative refinement is a
method that starts from an approximate solution and ”con-
tracts” the error, and contractant iterations are methods
of choice in interval arithmetic. An algorithm which uses
this idea to refine the solution and enclose the error is the
verifylss function of IntLab [9], a MatLab toolbox that
offers interval arithmetic. Our initial algorithm, called cer-
tifylss, differs from verifylss in the computation of e,
the enclosure of the error: verifylss employs Krawczyk
iteration [4] and the Hansen-Bliek-Rohn-Ning-Kearfott for-
mula [5] whereas certifylss uses Gauss-Seidel or Jacobi [4,
pp- 131 ff.]. (Let us mention here that computing exactly
the solution of this interval linear system is not considered:
it is known to be NP-hard [8]). The approximate solution &
is then corrected and the correction term is the center of e,
the enclosure of the error.

A main difference with numerical iterative refinement is
that the algorithm premultiplies, using interval arithmetic,
the matrix A of the linear system by an approximate, nu-
merical, inverse R: the resulting system has a matrix which
should be close to the identity matrix, or rather which should
be an H-matrix (see [4, p. 111] for the definition) and thus
which behaves well when it comes to solve a linear system.

Algorithm certifylss % in MatLab-like syntax
Input: A € F"*" b e F"

Z=A\b, R = inv(A), K = [RA]

while(not converged)
r =[Rb— K 7] % RA(z*—2Z)€r
e=K\r % z"—Zc€e
Z =171+ mid(e), e=e—mid(e)

end

Output: x =% +e

Actually, the iteration needs an initial enclosure ey of the
error, which is then refined at each step. Determining ey is
based on a heuristic, that relies on K being an H-matrix,
and that can fail. Experiments indicate that failure occurs
when A is ill-conditioned: our guess is that R then is a poor
approximate of A~! and that K is not an H-matrix.

The stopping criterion is reached either when the iteration
stagnates (no change for e) or when the approximate solu-
tion Z is approximate to the last bit, in other words when
the width of x corresponds to a relative error of 2752 on %,
in IEEE-754 double precision.

As already mentioned, three flaws have been identified:
loss of accuracy and large execution time for ill-conditioned
matrices, failure of the algorithm for extremely ill-conditioned
matrices. A new algorithm has been developed to obviate
the first two flaws.

3. NEW ALGORITHM TO IMPROVE AND
VERIFY THE SOLUTION

3.1 Reducing execution time: relaxation tech-
nique

The major contribution to execution time is the operation

e = K\ r. This is performed iteratively, using Gauss-Seidel

method which is intrinsically sequential. Furthermore, inter-

val Gauss-Seidel iterations cannot be expressed using LA-

PACK (floating-point and thus fast) routines. However,

they boil down to a floating-point matrix-vector product
when Jacobi iterations are used and when the matrix K
is centered around a diagonal matrix. Thus, to reduce exe-
cution time, the matrix K is inflated into a matrix K that
contains K (otherwise it would no more be guaranteed that
e € e) and that is centered around a diagonal. This is justi-
fied by the fact that K is expected to be close to the iden-
tity matrix. Moreover, Jacobi iterations are used instead of
Gauss-Seidel ones. The corresponding algorithm is called
certifylss_relaxed.

3.2 Increasing the accuracy of the result: well-
chosen computing precisions

It is well-known [3, ch. 12] (and already done in certi-
fylss) that computing the residual r is subject to cancella-
tion and must be performed using twice the working preci-
sion, for accuracy purpose. Following an idea given in [1],
we also compute the current approximate solution & using
twice the working precision, and we prove in [6] that this
yields a fully accurate result, that is, an error of relative
width to 1 ulp. Carefully chosen formulas for the computa-
tion of e yield this accuracy without implying extra, useless
computations: terms corresponding to 3 times the working
precision are not explicitly computed. Details are given in
[6] and are not developed below.

3.3 New algorithm: certifylssx

Algorithm certifylssx
Input: A € F"*" b e F"
Z=A\b, R =inv(A),
K = inflated(K)
while(not converged)

K = [RA]
% K is centered on a diagonal matrix

r=[b- A 7] % r in twice the working precision
r = Rr]

e=K\r

Z =T+ mid(e) % Z in twice the working precision

end
Output: x =%+ e

The performance of this new algorithm, in terms of accu-
racy (maximal componentwise relative width of the final e)
and execution time, is shown on Figure 1, each dot being the
average on 10 matrices of dimensions 1000 x 1000 generated
using the gallery (randsvd, ...) command of MatLab.
These curves illustrate that we succeeded in obviating the
two target problems: we obtained a solution accurate to the
last bit, and we verified this accuracy, for the whole range
of validity of our algorithm. We succeeded in doing so with
acceptable execution time: the theoretical overhead factor
is 6 and the practical factor is 15. Finally, let us also note
that when the algorithm fails, it does so quickly, without
wasting computational time.

4. CONCLUSION, FUTURE WORK, COM-
PLEXITY COMPARISONS

The algorithms presented in Sections 2 and 3 succeeded in
providing an accurate solution Z of a linear system, with a
guarantee on this accuracy being given by an enclosure e of
the error. However, these algorithms fail when the condition
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Figure 1: Performances of the certifylssx algo-
rithm.

number of the matrix becomes too large. This is due to the
fact that the approximate inverse R of A becomes poor,
and thus the interval matrix K becomes wide. A solution
would thus be to compute a more accurate R, using extended
precision, as proposed in [10, 7]. Preliminary experiments
tend to show that the increase in execution time is drastic.
To keep it reasonable, again a solution seems to trade off
execution time against accuracy in well-chosen parts of the
code.

Desirable properties for such an algorithm were mentioned
in Section 1: accuracy, complexity, execution time. Accu-
racy and execution time have been shown on figures and
results are thoroughly proven in [6]. Let us mention the
complexity of algorithms for solving linear systems:

e the numerical, non-verified algorithm (based on LU
factorization with partial pivoting) has a complexity
of §n3 + O(n?) flops (flops stands for floating-point
operations per second);

e the numerical, verified algorithm of Section 3 has a
complexity of 8n® 4 2n%p/(p —log, k(A)) +8n? +O(n)
flops, where p is the precision (53 for the IEEE-754
double precision) and k(A) is the condition number of

A. For the algorithm to terminate, one needs log, k(A4) <

p, in our experiments we need log, k(A) < 45. Because
the refinement iterations converge linearly, as well as
the iterations of e (Krawczyk iterations are known to
converge linearly and Gauss-Seidel iterations are even
faster [4]), one can show that the complexity of the it-
erative refinement part is 2n°p/(p — log, x(A)). These
complexity results are new.

e the complexity of solving exactly the linear system [2],
where the coefficients of A and b are considered as ra-
tional numbers, is @ (pn3) where again p is the preci-
sion, and @ means that (poly-)logarithmic terms are
not explicited.

In other words, this means that exact methods seem supe-
rior to get exact (and thus verified) results. However, only
methods based on interval arithmetic can extend to data
given with uncertainties, i.e. with coefficients which are
(tight) intervals. Indeed, the algorithms given here apply,
as long as K remains an H-matrix.
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