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ABSTRACT

In this paper, we present a new approach for the automatic
generation of lexical-semantic structures from texts. In par-
ticular, we propose a pretopological framework to formalize
and combine various hypotheses on textual data in order to
automatically derive a structure similar to common lexical-
semantic knowledge bases such as WordNet. In addition, we
define a new metric to intrinsically evaluate structures.

Categories and Subject Descriptors: 1.2.4 [Artificial
Intelligence]: Knowledge Representation Formalisms and
Methods; 1.2.7 [Artificial Intelligence]: Natural Language
Processing

General Terms: Algorithms, Experimentation

Keywords:
Evaluation

Lexical-Semantic Structures; Pretopology;

1. INTRODUCTION

Coding the semantic relationships between concepts of dis-
course into a lexical-semantic structure may enrich the rea-
soning capabilities of Information Retrieval and Natural
Language Processing applications. However, their develop-
ment is largely limited by the efforts required for their con-
struction. To reduce the amount of work needed, many re-
search have appeared in recent years to learn such structures
from texts, fostering new surveys in the field [1, 5]. Learn-
ing lexical-semantic resources from texts instead of manually
creating them has undeniable advantages. First, creating
resources from texts within a domain may fit the semantic
component neatly and directly, which will never be possible
with general-purpose resources. Second, the cost per entry
is greatly reduced, giving rise to much larger resources than
an advocate of a manual approach could ever afford.

Different learning methods have been proposed to automati-
cally build lexical-semantic structures. They can be grouped
into three main classes: the similarity-based methods [12,
3], the set-theoretical approaches [9, 4] and the associative
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frameworks [13, 7]. In this paper, we aim at learning termi-
nological ontologies following the associative framework but
relieving the frequency problem evidenced in [13, 7).
For that purpose, we propose to analyze the topology of the
graph structure between terms induced by associative mea-
sures. Within this context, we propose an unsupervised
methodology based on Pretopology, which automatically
learns lexical-semantic structures. Thus, from a given set
of terms from potentially different domains and any domain
corpus, we assess the asymmetric proximity between terms
using asymmetric similarity measures. From the resulting
proximity matrix, we present a Pretopological framework to
obtain a non-triangular directed acyclic graph corresponding
to the semantic structure of the domains.

The evaluation of learned structures is a rather complicated
task. Indeed, [14] claims that there are several possibili-
ties of conceptualizations for one domain that might differ
in their usefulness for different groups of people, but not
in their soundness and justification. In this paper, we pro-
pose an exhaustive intrinsic evaluation of the learned lexical-
semantic structures by comparing them to the state-of-the-
art approach [13]. For that purpose, we take as baseline the
work done by [11] and propose an alternative solution to
overcome some evidenced drawbacks as well as we present
an original methodology for a “fair” comparison.

2. PRETOPOLOGICAL FRAMEWORK

The links between elements of a population can be mod-
eled in several ways, e.g. Topology. However, topological
axioms and properties are too restrictive to model a space
in concrete terms. Instead, Pretopology models proximity
in a more general way. So, we propose to use this theoreti-
cal framework to model a “lexical space” with pretopological
relations and derive a structure with propagation strategies.

2.1 Notions of Pretopology

We can define a pretopological space by a family of neigh-
borhoods. Let (E,a) be a pretopological space [2] where
a(.) is a pseudo-closure function and E a non-empty set. A
neighborhood N(z) of € E is a subset of FE containing z
and a family of neighborhoods N (z) for z can be defined by
the union of neighborhoods as N'(z) = {N C E|z € N}. We
then construct the pseudo-closure function based on the fam-
ily of neighborhoods as VA € P(E),a(A) ={z € E|V N €
N(z), NN A # 0}. Within our context, a pretopological
space is defined by a vocabulary E (set of terms) and a



pseudo-closure operator a(.) supposed to model the propa-
gation of semantic dependencies over term sets. The way to
define the family of neighborhoods is crucial for the mod-
eling. For example, the approach proposed by [13] can be
instantiated in our pretopological framework by consider-
ing a family composed of two neighborhoods Nonc(z) =
{No(z), Nuc(x)} matching the two properties (high confi-
dence and order respectively) used in the subsumption def-
inition of [13] i.e. Nuc(z) = {y € E|P(y|z) > t} and
No(x) = {y € E|P(y|z) > P(aly)}.

As the pseudo-closure function is not idempotent, its succes-
sive applications lead to the achievement of closed subsets.
These closed subsets represent interdependent subsets re-
lated to the pseudo-closure function. As a consequence, a
structure is induced by the elementary closed subsets and
maximal closed subsets can be seen as the less homogeneous
groups of IZ. The nature of these particular subsets is in-
teresting in terms of space analysis, as we can consider an
inclusion relation between them, leading to a structural anal-
ysis algorithm. Such a structure can be obtained with the
pretopological algorithm proposed by [10]. In particular, we
proposed a top-down version of this algorithm in [6]. So,
when using Nomc, the algorithm provides a non-triangular
directed acyclic graph that is exactly the final structure ob-
tained by [13]. In the next section, we take advantage of
this general framework to propose new neighborhoods rele-
vant for lexical space modeling.

2.2 Lexical Space Modeling
Various pretopological neighborhoods may exist to model
the proximity relations between elements in the vocabulary.

2.2.1 K-Nearest Neighbors

A Ek-Nearest Neighbors pretopological space (k-NN) consists
in defining the neighborhood of an element x by the subset
composed of the k elements having the highest proximity
with x. For the lexical application, we choose as neigh-
borhood for a term x, the terms y with the highest confi-
dences using P(y|z). As such, we define the following fam-
ily of neighborhoods: Nynn(z) = {Nknn(z), No(z)} where
Ninn(z) ={y € Ely € kNNg(z)}. The family Ny leads
to a pseudo-closure operator a(.) such that a(z) is the set
{z} extended by its more general terms (No), which have z
among its k best direct predecessors (Ngnn).

2.2.2 Directed Relative Neighborhood (DRN)

The second modeling is based on a statistical property ob-
served on lexical structures. Given a benchmark struc-
ture S, as reference and a corpus on the domain of S,
we performed an analysis on the distribution of the confi-
dence values along the paths from a root to a leaf on the
reference. Several intuitive hypotheses have been tested
and one of them appeared to be statistically relevant. Let
Ti,x2,...,Tn be a path in the reference structure such that
x; subsumes z;+1. We observed that a term z; in the
path has a higher minimal confidence with its predeces-
sors than its successors have with their own predecessors.
This statement can be formalized by the following property:
Vi, min{ P(x;|x:)};27 > min{ P(z;|xit1)};=1. By applying
this property locally on a triplet (w,z,y), y is a neighbor
of x if and only if any w satisfies the property to be a suc-
cessor of x in the path (z,y) i.e. Nprn(z) = {y € E|Vw €

E, P(y|lz) > min{P(z|w), P(y|lw)}}. As a consequence,
a new family of neighborhoods is proposed Nprn(z) =
{Nprn~n(z), No(x)}. In particular, the pseudo-closure oper-
ator derived from Nprn extends a term singleton {z} with
its more general terms (No) satisfying the extended ultra-
metric property (Nprn). The interesting property of Npry
is that it is free of parameter. However, it leads on practice
to over-sized neighborhoods. A way to adjust the neighbor-
hoods consists in introducing the high confidence parame-
ter such that Ngc prn(z) = {Npgrn~(z), No(z), Nuc(z)}.
Another solution that avoids the threshold problem is pre-
sented in the next section.

2.2.3 K-Nearest DRN

As mentioned above, the Directed Relative Neighborhood
produces over-sized neighborhoods. However, it could be
used as a relevant “filter” and force other neighborhood func-
tions to select elements satisfying a property observed on
expected structures. In that sense, we define a new neigh-
borhood that combines on the one hand the structural ben-
efits and the simplicity of the parametrization of the kNN
approach and on the other hand the statistical property of
the DRN topology such that Nyny pryv(z) = {y € Ely €
ENNNp pn(2)(2)}. Finally, the new family of neighborhoods
is given by /\/’kaDRN(a:) = {NkJ\LDRN(aJ),No(:E)}.

3. INTRINSIC EVALUATION

Two benchmarks have been used as references to tackle two
different semantic relationships: synonymy and meronymy.
First, we used the UMLS! from which four distinct sub-
domains have been selected (cardiovascular (CS), digestive
(DS), respiratory (RS) and nervous (NS)). In particular,
each sub-domain is represented by its own lexical struc-
ture present in the meta-thesaurus using the hypernym/hy-
ponym relation. The second reference ontology was obtained
from WordNet by considering all geographical places deriv-
ing from the concept “United States of America” by means of
the meronymy relation. We call it GEO-WordNet. For each
reference, we retrieved the proximities between terms from
two different corpora. For the UMLS, we used (1) PubMed?
and (2) BioMed®. For the GEO-WordNet, we exploited the
Glasgow Herald (GH95) and Los Angeles Times (LAT94)
both used in the GeoCLEF evaluation campaigns®, where
toponyms have been identified with the Stanford Named
Entity Recognition (NER) [8] and disambiguated using a
conceptual-density based method.

[11] proposed a way to compare ontologies at the structural
level (the J; measure). Given a set of terms E and two on-
tologies 01 and O structuring E, the general principle is to
compare for each entry x € E the matching between the su-
per/subconcepts of z in O; and the super/subconcepts of x
in Q2. This evaluation approach is also suitable in our con-
text by quantifying the matching between the predecessors
Preds(x) and successors Succs(x) of a term z in the two
lexical structures 81, S2. However, the main drawback of Jy
is its insensitivity to the direction of the relations into the
structures. Such, two structures with full inversion would

"http://www.nlm.nih.gov/research/umls/
http://www.ncbi.nih.gov/pubmed/
3http://www.biomedcentral.com/
“http://ir.shef.ac.uk/geoclef



have a perfect matching according. To avoid the inversion
problem, we propose to consider separately predecessors and
successors in the matching evaluation. A new Jo matching
index is proposed as the (geometric) mean of two Jaccard
indices for which a perfect matching of 1 implies strictly
identical structures as shown in Equation 1.

1 Z (|Preds1 (z) N Preds, (z

= |Preds, (x) U Preds, (z
(
(

(1)

x) N Suces, (x

N
1/2
i)

In order to evaluate the acquired structure with the intrinsic
J2 measures, we need to fix the parameter k or the thresh-
old ¢t depending on the pretopological space used. In our
experiments, we noticed two generic phenomena: (1) the
best structures are obtained with small-sized neighborhood
and (2) the size of the neighborhoods must be comparable
to be fair in the comparison of the different pretopologi-
cal spaces. The first observation corroborates the intent of
[13] to filter only very high confidence values by means of
a strong threshold (e.g. t = 0.8). This is illustrated by
Figure 1 that reports the Js scores obtained by the Nonc
pretopological space when the number of confidence values
retained grows (i.e. threshold ¢ decreases). Furthermore,
such a threshold cannot be universal and must be adjusted
for each corpus. For example, the proportion of confidence
values greater than 0.8 is about 1% for the CS sub-domain
of the UMLS on the BioMed corpus, but only 0.07% for the
GEO-WordNet observed on the LAT94 corpus.

< |Succs,

(z)
|Suces, (z) U Suces, (x

Based on these findings, we chose two heuristics for the
parametrization of the pretopological spaces. Let n be the
size of the vocabulary E to structure, the threshold ¢ is ad-
justed in such a way that only n (first heuristic) and 2n (sec-
ond heuristic) confidence values exceed t. The two heuristics
are used for high confidence-based pretopological spaces (i.e.
Norc and NHQDRN). For the nearest neighbors-like spaces
(i.e. Ngnn and Ngny pra) neighbors with comparable sizes
are obtained with parameters k = 1 and k£ = 2 respectively.
Table 1 reports the structural evaluation of each acquired
structure compared to the corresponding reference.

Important variations on the J2 index are observed depend-
ing of the benchmark and the corpus. Very poor matching
are obtained for example on the RS with PubMed where the
scores are sometimes lower than 0.10 and strong promising
matching are obtained for example on the NS sub-domain
and the Geographical domain where the scores are closed
or higher than 0.40. Such variations can be explained by
the nature of the reference used and especially the kind of
semantic relations into consideration. Some of the domains
are structured based exclusively on the Part-of relation (e.g.
Geo-WordNet) or the Is-a relation (e.g. NS sub-domain),
while other references mix up both types of relations such
as the CS sub-domain (and the global UMLS reference by
extension). It seems to be incontestable that such an het-
erogeneity in the semantic structuring of the vocabulary is
a problem that current approaches do not transcend.

in=21  [2.n=41

J2 score
00 01 02 03 04 05
P

No. Confidence values retained

J2 score
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| |
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Figure 1: J, scores with the baseline approach of
[13] on the BioMed corpus: CS, DS, NS and RS
sub-domains in the top-down order.

The corpus used and the way to exploit the text collection
also have a significant impact on the quality of the retrieved
statistics and then on the acquired lexical structure. In-
deed, the matching scores are lower overall when using the
PubMed corpus compared to BioMed. It is mainly due to
the fact that only abstracts of the scientific papers have been
used for the statistics computation with PubMed whereas
full text retrieval has been performed on BioMed, thus pro-
viding more confidence in the extracted statistics.

Table 1 also reports the comparison between the structures
obtained from different pretopological spaces. Bold values
in the table distinguish the modeling that leads to the best
matching for a benchmark and a corpus. It is interesting
to observe that even if the ultrametric topological space
(Nuc_prn) never leads to the best matching, the filter per-
formed by this space is profitable to the nearest neighbors-
like space since the Nin_prny modeling obtains best results
on four experiments. As a summary one can notice that the
new proposed Nxn_pry modeling outperforms the baseline
proposed by [13] in two thirds of the experimented contexts
and sometimes with strong improvements as for example on



Corpora | Domain n Nonc Ninn Nuc_pry NinN_DRN
n 2n k=1 k=2 n 2n k=1 k=2
Cardiovascular system 21 | 0191 0.138 | 0.189 0.304 | 0.192 0.133 | 0.144 0.136
Digestive system 48 | 0.116 0.187 | 0.104 0.137 | 0.116 0.175 | 0.110 0.116
BioMed | Nervous system 28 | 0.328 0.419 | 0.428 0.382 | 0.344 0.392 | 0.428 0.414
Respiratory system 32 | 0.215 0.149 0.188 0.240 | 0.220 0.138 | 0.154 0.251
UMLS (4 sub-domains) | 128 | 0.172 0.218 | 0.151 0.162 | 0.184 0.213 | 0.180 0.173
Cardiovascular system 21 | 0.100 0.173 | 0.133 0.147 | 0.097 0.162 | 0.133 0.166
Digestive system 48 | 0.130 0.107 | 0.123 0.111 | 0.117 0.138 | 0.243 0.188
PubMed | Nervous system 28 | 0.196 0.258 | 0.440 0.401 | 0.208 0.257 | 0.429 0.381
Respiratory system 32 1 0.095 0.119 | 0.143 0.139 | 0.092 0.127 | 0.131 0.101
UMLS (4 sub-domains) | 128 | 0.102  0.132 0.165 0.142 | 0.096 0.145 | 0.169 0.171
LAT94 150 | 0.207 0.312 | 0.392 0.332 | 0.183 0.276 | 0.386  0.347
GHY95 GEO-WordNet (USA) | 151 | (305 0372 | 0.399 0.382 | 0.289 0.312 | 0.391  0.382

Table 1: Structural matching of each acquired structure with its reference using the J> index.

the geographical benchmark with a score increased by 87%
at the very most.

4. CONCLUSIONS

In this paper, we presented a new framework to automati-
cally build terminological ontologies based on the formalism
of Pretopology. In particular, Pretopology proposes a well-
founded mathematical framework to model the degree of
generality /specificity as well as the semantic closeness be-
tween terms based on an asymmetric proximity measure.
Unlike similarity-based and set-theoretic approaches, we
deal with asymmetry in NLP based on the associative frame-
work, which allows domain and language independency and
opens new research directions. In particular and compared
to the work of [13], we proposed to focus on the topology
of the structure obtained from the proximity measure thus
avoiding isolated terms and simplifying the parametrization.
We also proposed an exhaustive intrinsic evaluation of the
learned lexical-semantic structures based on a new metric
called the J> index, which proposes a solution to the ontol-
ogy inversion problem untreated by [11]. We validated our
model based on two benchmarks: the UMLS referential med-
ical ontology over the PubMed and BioMed corpora, and the
GEO-WordNet referential over two news stories collections.
We compared it to the best-so-far state-of-the-art methodol-
ogy proposed by [13]. The results showed that the pretopo-
logical structuralist formalism outperforms the methodology
of [13] in the majority of the cases.
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