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ABSTRACT
In this paper we present an extension to the classical k-
dependence Bayesian network classifier algorithm.

The original method intends to work for the whole contin-
uum of Bayesian classifiers, from näıve Bayes to unrestricted
networks. In our experience, it performs well for low values
of k. However, the algorithm tends to degrade in more com-
plex spaces, as it greedily tries to add k dependencies to all
feature nodes of the resulting net.

We try to overcome this limitation by seeking for opti-
mal values of k on a feature per feature basis. At the same
time, we look for the best feature ordering. That is, we try
to estimate the joint probability distribution of optimal fea-
ture orderings and individual number of dependencies. We
feel that this preserves the essence of the original algorithm,
while providing notable performance improvements.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—induction, know-
ledge acquisition; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—heuristic methods

General Terms
Machine learning, classification

Keywords
Bayesian network classifier, estimation of distribution algo-
rithm, flexible learning

1. INTRODUCTION

1.1 Probabilistic classifiers
Supervised classification is a very common machine learn-

ing task with applications in many aspects of daily life. Ex-
amples include spam detection, automatic mail tagging, or
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product recommendations. Probabilistic classifiers offer sig-
nificant advantages over other approaches for these kind of
problems. They are able to deal naturally with uncertainty
and estimate not only the label assigned to every object, but
also the probability distribution over all possible labels for
the class variable.

Among probabilistic classifiers, perhaps those based on
Bayesian networks (BNs) are the most used in practice [12,
18]. They inherit important virtues from these, which stem
from their rigorous probability basis [23]. In the probabilistic
setting, classification is carried out by estimating the proba-
bility distribution of the class variable given the attributes.
These probability estimates are strictly more powerful than
plain class predictions, as they allow to rank and minimize
the expected cost.

It should be noted that general-purpose Bayesian net-
works can be applied to the the aforementioned problem—
determining the class of an instance given its attributes.
However, this is an overkill. Bayesian networks can infer
any probability from the joint distribution given some prior
knowledge, not just the class one.

1.2 Naïve Bayes and its extensions
Since we do not require the flexibility of reasoning about

any possible variable, we can build simplified custom nets
focused in making predictions exclusively about the class.
The most simple one is the well-known näıve Bayes (NB),
which assumes independence among all features given the
class [8]. Despite this strong premise about attributes, it
works surprisingly well, even when compared to other more
sophisticated models [7, 18].

More precisely, näıve Bayes has a good performance if
we employ the usual 0-1 loss function, i.e. accuracy, as a
benchmark. However, this does not stand if we consider a
performance measure which takes into account the predicted
probabilities, e.g. themean square error or Brier score. Note
that many real world applications require not only a good
prediction of the most probable class label, but also a precise
ranking of all the label probabilities.

Between fully general Bayesian network classifiers and na-
ı̈ve Bayes, there is a whole spectrum of classifiers that offer
different trade-offs with respect to the model learned. The
so-called semi-näıve Bayes approach [17, 22, 28] subsumes
all those which have been designed as a direct generalisation
of näıve Bayes. The idea is to relax conditional independence
relations among features so that redundant attributes do not
degrade performance, while preserving the näıve structure.
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Featured members in the semi-näıve family are those al-
gorithms that increase the allowed dependencies by using
clusters of variables instead of single ones [17, 22]. Besides,
it also includes those that allow extra dependencies between
predictive attributes by adding arcs, like tree-augmented
näıve Bayes (TAN) [12], k-dependence BNs (KDB) [25], or
super-parent TAN (SP-TAN) [16]. Finally those which use
mixtures of NB-based limited structures such as AODE [27]
are also comprised.

Not surprisingly, even a modest relaxation of NB assump-
tions leads to much larger network spaces where the algo-
rithms have to find the optimal model for a given problem.
In order to maintain tractability, semi-näıve methods main-
ly use greedy strategies. These are typically O(n2), where n
is the number of predictive variables.

While such an approach keeps running time at a mini-
mum, the greediness leads to locally optimal solutions, of-
ten far from the optimum. Hence, we consider it appropriate
to trade time for potentially better solutions by embracing
metaheuristic search procedures as a mechanism for explor-
ing network spaces. In particular, we build our approach as
a generalisation of KDB [25].

2. THE GREEDY KDB ALGORITHM
Our setting is a problem with n predictive attributes

X1, . . . , Xn and a class C.1 We assume all of them are
discrete variables taking values in a finite and disjoint set
Ω(Xi). Therefore, our goal is to obtain a discrete semi-näıve
classifier.

The notion of k-dependence estimators was introduced by
Sahami [25]. In those, the probability of each attribute value
is conditioned by the class and, at most, k other attributes.
The resulting model is a k-dependence BN (KDB).

Hence, by simply setting k, i.e., the maximum number of
parent nodes that any attribute may have, we can establish
the complexity of the classifiers we are looking for. These
range from a simple NB structure (k = 0) to fully gener-
alised BN structures (k = n), and subsume other semi-NB
approaches like TAN and super-parent one dependence es-
timators (k = 1). Due to its flexibility, we find the KDB
algorithm especially appealing.

The KDB algorithm adopts a greedy strategy in order to
identify the graphical structure of the resulting classifier. It
is based on the information theory concepts of mutual infor-
mation and conditional mutual information [5]. Algorithm 1
shows the pseudocode of the original greedy KDB algorithm,
which takes as input the dataset, k and θ — a user-defined
parameter to avoid overfitting.

The algorithm first computes the mutual information
I(Xi;C) between each predictive attribute Xi and the class
C. Attributes are sorted in decreasing order. Then, a set S
is initialised to the empty set. It is used for keeping track
of the nodes already considered. Nodes are traversed in the
ordering just established. When the j-th variable in that
order is added, k + 1 variables are set as its parents in the
graph:2 the class C and the k variables already considered
with greater conditional mutual information with respect to
Xj given the class I(Xj ;Xm|C).

1We use capital letters for variables (e.g. X1, . . . , Xn, C);
boldfaced capital letters for sets of variables (e.g. S) and
non-capital letters for values of variables (e.g. Ω(C) =
{c1, . . . , cr}).
2Obviously, if j ≤ k only j parents are added.

Algorithm 1 Greedy KDB

1: function KDB(data, k, θ)
2: C ← class(data)
3: net← C
4: N← sort(features(data), f(Xi) I(Xi;C))
5: S← ∅
6: for Xj in N do
7: add node(Xj)
8: add edge(net,Xj , C)
9: SS← sort(S, f(Xm) I(Xj ;Xm|C))
10: SS← filter(SS, f(Xm) I(Xj ;Xm|C) > θ)
11: SS← take(SS,min(k, |S|))
12: for Xm in SS do
13: add edge(net,Xi, Xm)
14: end for
15: S← S ∪ {Xj}
16: end for
17: return net
18: end function

Figure 1 shows three different networks for a problem with
4 predictive attributes: (a) NB; (b) a KDB structure with
k=1, also a TAN as the graph between the predictive at-
tributes is a tree; (c) a KDB structure with k=2.

3. GENERALIZED KDB
The original greedy KDB algorithm is very efficient and

usually achieves significantly better performance than NB
and other semi-NB algorithms. However, we can identify
some limitations on its behaviour:

• The algorithm is guided by a greedy ordering obtained
by using marginal knowledge between the attributes
and the class only. This solution is likely to be a sub-
optimal one given that interactions between predictive
attributes are not considered.

• Since k is the same for all nodes, it is unpractical to
set it to values higher than 5 or 6 in almost every sce-
nario. This results in overly complex networks, as all
nodes are given k parents. This unnecessary complex-
ity harms classifier performance, as it leads to overfit-
ting. Furthermore, it is not possible to model cases
where some nodes have a large number of dependen-
cies, whereas others just have a few.

To relax this behaviour and prevent overfitting, Sahami
introduced the threshold θ in order to avoid adding edges
between variables (almost) conditionally independent given
the class [25]. However, relying on θ for fixing that issue is
not a realistic solution, as this value is difficult to determine
by a user. In fact, most of the times KDB is used on the
literature, θ is not set. Hence, exactly k predictive attributes
are set as parents for all the nodes — but for the first k.

We can overcome these two drawbacks by providing the
algorithm with such an optimal ordering and an individual
k-value for each node, which leads us to the generalised KDB
method shown in algorithm 2. Note that the parameter N
received by the algorithm is a vector of pairs representing the
ordering or permutation (first component), and the number
of parents for each variable (second component).
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Figure 1: Examples of 4-predictive-attributes network structure for the BN classifiers: NB, KDB(1)/TAN
and KDB(2)

For instance, if we are considering a dataset with 5 fea-
tures {X0, X1, X2, X3, X4} N could be

N = ((1, 0), (3, 1), (2, 2), (0, 3), (4, 1))

which indicates that our generalised KDB should consider
first attribute X1 and add no parents to it.
Then it should consider attribute X3 adding 1 parent, and
so on.

Algorithm 2 Generalised KDB

1: function gKDB(data,N)
2: C ← class(data)
3: net← C
4: S← ∅
5: for p in N do
6: add node(p.attribute)
7: add edge(net, p.attribute,C)
8: SS← sort(S, f(Xm) I(p.attribute;Xm|C))
9: SS← filter(SS, f(Xm) I(p.attribute;Xm|C))
10: SS← take(SS,min(p.k, |S|))
11: for Xm in SS do
12: add edge(net,Xi, Xm)
13: end for
14: S← S ∪ {p.attribute}
15: end for
16: return net
17: end function

4. FLEXIBLE KDB
Obviously, the generalized KDB algorithm just described

has an intentional omission. The mechanism for feeding in
orderings and number of parents per node has not being
specified.

We are facing a search problem where the evaluation func-
tion is precisely the previous algorithm. Hence we need to
determine how to explore the problem space. In other words,
we have to decide how to look for good node orderings and
k-values for each node.

Therefore, our goal now is to design an optimization pro-
cedure than will search in a joint space consisting on the
space of permutations to identify the sequence or ordering
in which attributes are considered, times the space of integer
vectors to identify the number of parents (ki) for each node.

Thus, if we are dealing with n predictive attributes and k̂
is the max number of parents a node can have, the cardinal-
ity of the search space is n! · (k̂ + 1)n.

For instance, if we are considering a dataset with 5 fea-
tures {X0, X1, X2, X3, X4} and k̂ = 3, a possible solution to
our problem is the pair

〈σ = (1, 3, 2, 0, 4) ; K = [0, 1, 2, 3, 1]〉
which gives rise to vector N shown above.

4.1 Solution representation
Given a problem with n predictive variables {X0, . . . ,

Xn−1} and a value k̂ representing the max number of parents
per variable, we encode any solution as a vector consisting
on n pairs

((a0, k0), (a1, k1), . . . , (an−1, kn−1))

• ai ∈ {0, 1, . . . , n− 1}
• (a0, a1, . . . , an−1) is a permutation without repetition

of numbers {0, 1, . . . , n− 1}
• 0 ≤ ki ≤ k̂, ∀i = 0, . . . , n− 1

• (ai, ki) accounts for the fact that variable Xai is used
in position i-th of the ordering by generalized KDB,
and has exactly ki parents

4.2 Fitness function
Since the individual is used as input for generalized KDB,

its evaluation depends on the goodness of the KDB model
returned by that algorithm. We can measure this goodness
in different ways:

• Wrapper Being in a supervised classification setting,
we can use a classification-based score, e.g. accuracy.
That is, we evaluate the learned model or network B by
measuring how well it performs when used on unseen
instances. Usually, a holdout validation set is used to
compute this score.

• Filter A local score metric is considered as quality
measure of a network structure B given the training
data Q(B,D). The quality measure can be based on
a Bayesian approach, minimum description length, in-
formation theory, etc.

Usually, the wrapper approach will lead to classifiers with
higher accuracy. However, it has the disadvantage of forcing
us to keep some instances for testing, which slows down the
process due to the validation process, and leads to overfit-
ting with respect to the validation set. The latter is usu-
ally amended by using a r-folds cross-validation instead of a
holdout test set.
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But then the process becomes even slower as a conse-
quence of r models having to be trained and validated to
assess the goodness of each individual. Because of those
drawbacks and due to the fact that we need to score a large
number of individuals—and hence networks—we have de-
cided to evaluate solutions by using the filter approach.

More concretely we use the Akaike Information Criterion
(AIC) [1], a metric grounded in information theory and com-
monly used for model selection when learning Bayesian net-
works.

AIC scores a network B with respect to a dataset D

QAIC(B,D) = LL(B,D)−K

where the first term accounts for the log-likelihood of the
data D given the network B, and K is a penalty term which
accounts for the number of parameters needed to specify B.
The denser the network the greater the penalty

LL(B,D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk

Nij

K =

n∑
i=1

(ri − 1)qi

Computation of AIC only requires to count frequencies
from the data set.3 As other scoring functions, AIC has
the property of being additively decomposable. That is, the
score of the whole network can be decomposed into the sum
of the scores of the individual nodes, given their parents.
For example, the network in figure 1 (b) leads to

QAIC(B) = QAIC(C)
+ QAIC(C → X1 ← X2)
+ QAIC(C → X2)
+ QAIC(C → X3 ← X1)
+ QAIC(C → X4 ← X1)

Decomposability is a very interesting property when, as
in our case, we must visit and evaluate different networks.
This is because we can memoize, e.g. using a cache, the lo-
cal score for previously visited node families. Later, when
a network must be evaluated, we may decompose it into
local scores, and retrieve those previously evaluated. There-
fore only those node families not visited previously are actu-
ally scored by counting frequencies from the data set. And
of course, they are added immediately to our memoization
structure.

To sum up, the evaluation or fitness of an individual I =
((a0, k0), (a1, k1), . . . , (an−1, kn−1)), for a given dataset D is
computed as

f(I) = QAIC(gKDB(I,D),D).

In this paper our goal is to maximize f(·), and we make
use of a memoization structure or cache in order to optimise
statistics computation during network scoring.

3n is the number of variables; ri is the number of states
for variable Xi; πi is the parents set of Xi in B; qi is the
number of configurations of πi, i.e., qi =

∏
Xj∈πi

rj ; Nijk

is the number of instances in D in which Xi takes its k-th
value and πi takes as value its j − th configuration; and Nij

is the number of instances in D in which πi takes as value
its j-th configuration, i.e., Nij =

∑ri
k=1 Nijk.

4.3 Search algorithm
We have adopted an estimation of distribution approach

[19]. That is, we want to learn the probability distribution
of good node permutations augmented with the number of
parents for each one.

Unfortunately, such a joint distribution becomes unman-
ageable even for a modest number of nodes. At least, unless
we adopt a compact representation i.e., another Bayesian
network.

We can maintain tractability easily if we try to learn a
simplified version of this distribution instead. Clearly, what
matters more is the absolute ordering of nodes. Hence, we
can try to learn the marginal distribution of node times num-
ber of parents pairs for each position in the permutation.

The node histogram-based sampling algorithm (NHBSA)
has proven to perform very well on absolute permutation
scenarios [26]. We can easily adapt it to learn the marginal
distribution augmented with parent numbers.

NHBSA starts by generating a large population of ran-
dom permutations uniformly, since the distribution is still
unknown. Once those permutations have been generated
and evaluated, a node histogram matrix is created. This
data structure is simply a representation of the marginal
frequencies at each position. Therefore, the node histogram
model uses the most simple type of Bayesian network, a uni-
variate model where no dependence relations are allowed,
taking a similar form to UMDA [21].

As an example, suppose that we have generated the fol-
lowing population of size 3

{((0, 0), (1, 1), (2, 1)), ((1, 0), (2, 0), (0, 1)), ((0, 0), (1, 0), (2, 1))}

The corresponding node histogram matrix is what follows.
Rows are indexed by position numbers in the permutation
(pi, i = 0, 1, 2), whereas columns correspond to pairs ordered
lexicographically

⎛
⎝

0:(0,0) 1:(0,1) 2:(1,0) 3:(1,1) 4:(2,0) 5:(2,1)

p0 2 0 1 0 0 0
p1 0 0 1 1 1 0
p2 0 1 0 0 0 2

⎞
⎠

Hence, a value 2 in row 2 column 5 — counting begins at
0 — indicates that the population contains 2 elements which
have the pair (2, 1) in the last position of their permutations.

Once the matrix is built, random permutations are sam-
pled from it using algorithm 3. This simply builds valid
permutations filling in the positions in a random order, so
that no bias is introduced. For each position, the corre-
sponding row in the matrix — restricted to elements in the
current candidate list (nhbsa[i, ·]↓CL) — is used during the
sampling.

So, elements have a probability to be inserted into the
string equal to their relative frequency stored in the matrix.
After sampling a pair, all the elements in CL containing the
sampled position (attribute) are removed from CL.

Usually the matrix taken for sampling is the node his-
togram matrix plus a uniform matrix with all positions filled
with a bias term. This term is introduced so that ele-
ments which have not appeared in the population are given
a chance to appear.
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Algorithm 3 NHBSA permutation string sampling

1: function sample nhbsa(nhbsa)
2: nr ← nrows(nhbsa) � nr = n(um vars)

3: nc← ncols(nhbsa) � nc = nr · k̂
4: p← random permutation([0, 1, . . . , nr − 1])
5: CL← {0, 1, . . . , nc− 1} � CL: candidate list
6: s← array[0..nr − 1]
7: for j = 0 to nr − 1 do do
8: i← p[j]
9: r ← sample(nhbsa[i, ·]↓CL)
10: (ar, kr)← the pair corresponding to r
11: s[i]← (ar,min(kr, j))
12: CL← CL− {r′ | ar = a′

r}
13: end for
14: return s
15: end function

Such an approach has the same purpose as the Laplace
smoothing employed in standard UMDA, and helps to avoid
premature convergence.

Once a new permutation is generated using sample nhbsa,
the population is updated using a random-selection steady
state scheme. That is, the new permutation is compared
against a randomly selected element from the population.
If its fitness is higher, it replaces the corresponding element
in the population, and the matrix nhbsa is updated accord-
ingly. Given a large population size and enough iterations,
the matrix estimates the distribution of good orderings ac-
curately.

4.4 Further Improvements
We have considered two main improvements to the previ-

ously described algorithm:

• Sampling with template In order to approximate the
joint distribution better than simply using the margi-
nal one, we have also introduced a method presented
in [26], which we only sketch here. Although abso-
lute ordering is what matters most, it is reasonable
to expect relationships among nodes. We can model
those relations by selecting a template individual from
the population. Then, new individuals are created by
copying certain parts of the template, whereas others
are created by using algorithm 3.

• Enhanced population initialization Plain NHBSA sam-
ples such a population at random. However, we think
that good solutions might be close to those found by
the greedy version of KDB. Hence, random sampling
might slow down convergence. We have adopted a so-
lution taken from scatter search [20]. Instead of sam-
pling initial permutations from a uniform distribution,
we use a GRASP algorithm [10] we have created for
the occasion. This algorithm can be used to create a
diverse and at the same time good initial population,
so that the target distribution is found faster.

The idea consists on using the permutation created by the
greedy version of KDB as a reference. Positions in new per-
mutations are filled by sampling at random the correspond-
ing element in the reference permutation, plus those ele-
ments window positions away. It is easy to see that window
controls diversity.

By running this GRASP method a few tens of times for
different window values and taking the fittest elements as
initial population, we have found out that good solutions are
found much faster. This is not surprising, as it is one of the
basic elements of scatter search. Note that such a GRASP
is also a metaheuristic on its own.

5. EXPERIMENTAL EVALUATION
Finally, we describe the experiments carried out to as-

sess the validity of our approach. First we enumerate the
datasets and algorithms used for our comparisons. Then,
we outline the experiment setting and we discuss on the ob-
tained results.

5.1 Test suite
We have employed 10 well-known datasets downloaded

from the UCI repository [2], which are aimed at classifi-
cation problems. For those datasets containing numerical
variables, an entropy-based supervised discretization pro-
cess has been applied [9]. As reported in [11] even if a dis-
cretization method produces different results for a particular
dataset, this does not really have an effect when Bayesian
network classifiers are being compared over several datasets.
Thus, the only fairness criteria in this respect is to apply
the same discretization method throughout the whole ex-
periment. Table 1 displays these datasets and their main
characteristics.

Table 1: Datasets—number of predictive variables
(n), number of class labels (c), and number of in-
stances (t)

Dataset n c t
Anneal 38 6 898
Balance 4 3 625

Glass 9 7 214
Ionosphere 34 2 351

Mfeat 6 10 2000
Pen 16 10 10992

Segment 19 7 2310
Sonar 60 2 208

Tic-tac-toe 9 2 958
Vehicle 18 4 846

Regarding classifiers, the following algorithms have been
considered:

• Bayesian network classifiers

– Näıve Bayes (NB) [8]

– Greedy KDB (KDB) [25]

– Tree-augmented näıve Bayes (TAN) [12]

– Averaging one-dependence est. (AODE) [27]

– AODE weighted version (wAODE) [15]

• Flexible KDB approach: our NHBSA algorithm (NH)

• Other flexible approaches for learning Bayesian net-
work classifiers: the Tabu search procedure and the
genetic algorithm implemented in the Weka data min-
ing suite [3, 14]

• Decision trees: C4.5 [24]
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For those methods requiring input parameters, standard
values have been selected. Thus, the maximum number of
parents has been set to 4 in K2, while k = 2 has been used
for KDB. Note that k = 1 gives rise to a TAN structure.
For NHBSA we have set k̂ = 10.

5.2 Experiments and results
All the experiments have been done by using the Weka

data mining suite [14]. We have used the algorithms avail-
able therein and coded our own proposal using Weka’s API.
Besides, we have also implemented the greedy version of
KDB which, despite being a classical method, is not included
in this framework.

In all the cases we have used 10-fold cross-validation, so
we report the averaged accuracy over the ten test folds. For
the sake of fairness, a maximum amount of available CPU
time has been set for all the algorithms: 300 s.

There is another key point in our experiments. By earlier
experimentation we realised that the three flexible classifiers
and obviously C4.5 are rather unstable. That is, results for
different folds suffer from significant variations in accuracy.
A typical way to overcome this issue is to use bagging, a
statistical re-sample and combine technique, first proposed
by Breiman [4]. However, bagging can degrade the per-
formance of stable predictors, so we only apply it to the
aforementioned four algorithms.

Table 2 shows the averaged accuracy results. The last
row displays the averaged values over the ten datasets. We
have highlighted in bold face the results for the three flexible
approaches.

5.3 Analysis
We base our study in the application of statistical analyses

for multiple classifiers and multiple datasets [6] by using the
software provided as companion in [13].

First, a Friedman test is carried out, which reports a sig-
nificant statistical difference between the tested algorithms:
p-value 1.730732779314792E-9. Table 3 shows the ranking
that results from running a Friedman test for all the algo-
rithms present in our study. Our proposal is the ranked first,
followed by the other two flexible approaches.

Table 3: Average rankings of the algorithms

Algorithm Ranking
NH 1.20
GA 2.50

Tabu 3.67
wAO 4.85
KDB 6.15

AODE 6.30
TAN 6.40
C4.5 6.75
K2 7.85
NB 9.30

Then, the process chooses the NH algorithm as a con-
trol reference and performs a post-hoc Holm test, which re-
jects any statistical difference between NH, wAODE, GA
and Tabu (α=0.05). Table 4 shows the obtained p-values
for Holm’s test. Both, the original ones and adjusted p-
values—which take into account that multiple tests have
been conducted—are shown.

Holm’s procedure rejects those hypotheses that have a p-
value ≤ 0.025 (≤ 0.001428 when using adjusted p-values).
These have been labeled with a ∗ in the table.

Table 4: Post-hoc Holm’s test with adjusted p-
values

Algorithm Unadjusted p pHolm

NB 2.200809E − 9∗ 1.980728E − 8∗

K2 9.045124E − 7∗ 7.236099E − 6∗

C4.5 4.150346E − 5∗ 2.905242E − 4∗

TAN 1.228067E − 4∗ 7.368403E − 4∗

AODE 1.654860E − 4∗ 8.274303E − 4∗

KDB 2.563639E − 4∗ 0.001025∗

wAO 0.007024∗ 0.021072
Tabu 0.064838 0.129676
GA 0.336998 0.336998

From the test results we can conclude that our algorithm
beats non-flexible methods, except for wAODE—when us-
ing adjusted p-values. We would like to remark here that:
(1) wAODE is a tuned algorithm—i.e. our flexible algorithm
performs better than its non-tuned version, AODE. (2) From
the non-adjusted p-value results, it seems that the inclusion
of more datasets in the comparison would likely yield statis-
tical differences between our method and wAODE.

Regarding the other two flexible classifiers, performance
is equivalent in our current experiments. However, we think
our proposal will improve its performance if tests were per-
formed giving more running time, whereas the others might
stall. We base this conjecture on the fact that Weka’s GA
and Tabu algorithms are seeded with really sparse networks,
i.e. number of edges equal to number of vars, k � 1. We al-
low our model to set up to 10 parents, though. To sum up,
more experiments with more datasets and different param-
eter settings are needed in order to obtain stronger conclu-
sions.

6. CONCLUSIONS
We have proposed an estimation of distribution method

to address the limitations of KDB. Our approach not only
performs a metaheuristic search over the space of node per-
mutations, but also tries to set k on a node per node basis.

We feel the latter feature is essential to realize the original
KDB goal of being able to explore a wide range of networks.
Otherwise, for large values of k networks become too com-
plex to be practical since all nodes are greedily assigned an
equal number k of parents.

A deeper experimentation would be desirable to confirm
the fact that NHBSA has competitive performance against
other greedy and metaheuristic approaches.

We also look forward to study the effect of generating ini-
tial populations using GRASP versus random permutations
drawn from uniform distributions, and running NHBSAwith
or without templates.
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Table 2: Method error rate on 10-fold cross-validation

NB KDB TAN K2 Tabu GA NH AODE wAO C4.5
Anneal 96.66 99.11 98.00 98.33 99.16 99.38 99.34 98.33 98.89 98.78
Balance 70.72 70.88 71.04 60.80 75.18 73.37 75.59 69.60 69.92 70.72

Glass 74.30 75.70 75.70 75.23 80.01 81.12 83.19 76.64 78.04 75.23
Ionosphere 90.60 92.31 93.16 92.59 94.19 94.23 94.45 92.59 93.16 91.45

Mfeat 69.40 71.65 70.20 69.85 73.24 72.89 74.67 70.35 70.85 71.90
Pen 87.90 97.24 96.45 95.49 97.95 97.94 98.33 97.84 98.36 90.61

Segment 91.52 94.76 95.54 95.46 92.69 97.10 98.01 95.58 96.75 95.24
Sonar 85.58 78.37 85.10 77.40 86.03 87.01 87.11 86.06 87.02 85.58

Tic-tac-toe 69.62 80.06 76.72 83.82 89.88 90.47 94.03 73.07 72.65 92.80
Vehicle 62.65 74.94 73.76 72.93 77.92 78.07 78.21 73.05 73.64 72.81
mean 79.90 83.50 83.57 83.24 86.63 87.16 88.29 83.31 83.93 84.51
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