
Enhancing Debugging of
Multiple Missing Control Errors in Reversible Logic

Jean Christoph Jung Stefan Frehse Robert Wille Rolf Drechsler

Institute for Computer Science
28359 Bremen, Germany

{jeanjung,sfrehse,rwille,drechsle}@informatik.uni-bremen.de

ABSTRACT

Researchers are looking for alternatives to overcome the up-
coming limits of conventional hardware technologies. Re-
versible logic thereby established itself as a promising di-
rection so that several methods for synthesis, verification,
and testing of reversible circuits have already been proposed.
However, also methods for debugging, i.e., to determine er-
ror candidates in case of a failed verification, are required
to complete the design flow. Even if first approaches have
already been proposed, debugging of reversible circuits still
is in the beginning. In this paper, we present an alterna-
tive method to automatically debug reversible circuits. We
thereby focus on missing control errors – an established error
model in the design of reversible circuits. A new notion of
an error candidate is proposed that relies on the observation
of a necessary condition for error locations in reversible cir-
cuits. Using this notion, a set of error candidates is obtained
that differs from the error candidates returned by previous
methods. Thus, combining the approaches enhances the
overall debugging flow. Experimental results demonstrate
that a higher accuracy is obtained in significantly shorter
run-time.

Categories and Subject Descriptors

B.6.3 [Hardware]: LOGIC DESIGN—Design Aids

General Terms

Design, Verification

Keywords

Debugging, Reversible Logic, Boolean Satisfiability (SAT)

1. INTRODUCTION
The exponential growth of transistor density in integrated

circuits (according to Moore’s Law) will reach its limits in
the future. When the size of single transistors reaches the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’10, May 16–18, 2010, Providence, Rhode Island, USA.
Copyright 2010 ACM 978-1-4503-0012-4/10/06 ...$10.00.

atomic scale, the continuously shrinking feature sizes of dig-
ital circuits are coming to an end. Moreover, the increasing
power dissipation of electronic devices is a major barrier
in the development of smaller and more powerful computer
chips already today. Because of this, researchers are looking
for post-CMOS technologies in hardware design.

Reversible logic [1–3] is one promising direction, which
has been intensely studied in the last decade. This logic en-
ables applications particularly in areas like quantum com-
putation [4] or low power design [5], but also in optical com-
puting [6], DNA computing [2], and nanotechnologies [7].
However, in comparison to conventional circuit design, re-
versible logic is subject to certain restrictions, e.g., fanout
and feedback are not allowed [4]. Thus, the well-developed
design flow for conventional circuits is not applicable for
reversible logic. As a result, new approaches e.g., for syn-
thesis [8,9], verification [10–12], and testing [13] of reversible
circuits, have been developed.

In this context, also debugging of reversible logic is of in-
terest. As in the design of other complex systems, ensuring
the correctness of the circuit is crucial. But, while verifica-
tion methods, e.g., based on simulation or formal techniques,
only prove or disprove the existence of errors, debugging
aims for directly locate them in the circuit. Since (man-
ual) debugging of circuits including a large number of gates
is a difficult task, a first automatic approach for reversible
circuits has been introduced in [14]. However, particularly
for circuits including multiple errors, this approach tends to
generate large sets of error candidates that still have to be
considered afterwards.

In this work, we propose an alternative debugging ap-
proach for multiple errors. We thereby focus on missing
control errors, i.e., errors arising from the deletion of con-
trol lines in the considered reversible gates. This is moti-
vated by the fact that removing control lines in reversible
gates is an appropriate way to reduce the cost of a circuit
(see e.g., [15]). Furthermore, missing control errors are an
established error model in the area of testing (see e.g., [13]).
Thus, such kinds of errors may often occur during the design
of reversible circuits.

Our approach exploits the observation that erroneous gates
in the circuit must be “activated” by the respective coun-
terexamples. Conversely, if a gate is not activated by any
counterexample, it can be removed from the set of gates to
be considered. A similar, simulation-based idea has already
been proposed in [16]. However, only single errors have been
addressed there, whereas here multiple errors are targeted.
Based on the observation, a new notion of error candidates

v1 v2 v′

1 v′

2

0 0 0 0
0 1 1 1
1 0 0 1
1 1 1 0

v1

v2

v′

1

v′

2

L

L

Figure 1: Reversible logic

is proposed. Afterwards, this notion is used to encode the
determination of error candidates as a hitting set problem.
Using this notion often error candidates different to the ones
obtained by the approach from [14] are obtained. Thus,
combining both approaches further improves the accuracy.

The rest of the paper is structured as follows: In Section 2,
we review the basic notions of reversible circuits and briefly
recapitulate debugging. Section 3 discusses the previous ap-
proach and provides the main motivation of our algorithm,
which is introduced in Section 4. How to combine the con-
sidered approaches is described in Section 5. Finally, Sec-
tion 6 gives experimental results obtained by the proposed
methods and Section 7 concludes the paper.

2. BACKGROUND

2.1 Reversible Logic
Reversible logic realizes bijective functions f : B

n → B
n

using reversible circuits. A reversible circuit G is a cascade
of reversible gates gi, i.e., G = g1g2 . . . gd. In this work,
we consider Multiple Control Toffoli gates, in the following
called Toffoli gate. A Toffoli gate over the set of lines L =
{1, . . . , n} has the form g(C, t), where C ⊂ L is the set of
control lines and t ∈ L\C is the target line. A single Toffoli
gate g(C, t) realizes the bijective function

(v1, · · · , vn) 7→ (v1, · · · , vt−1, vt ⊕
^

c∈C

vc, vt+1, · · · , vn).

That is, if all control line variables vc are assigned to 1,
the target line vt is inverted. Under this assignment the gate
is called activated. All other input values vk with k ∈ L\{t}
pass the gate unaltered. Note that the set of control lines
may be empty. In this case the target line is always inverted.
This gate is called NOT gate and represents a special case
of a Toffoli gate.

Example 1. Figure 1 shows a reversible circuit with two
Toffoli gates realizing the function given in the truth table.
The circuit is drawn in the standard notation (see e.g., [4])
and includes two Toffoli gates, i.e., d = 2.

In the following, we denote the sub-circuit g1g2 . . . gi by Gi.
Furthermore, if v ∈ B

n is an input vector, then G(v) denotes
the output of G on input v.

2.2 The Debugging Problem
In the design of reversible circuits, errors may be intro-

duced, e.g., during the synthesis or optimization.
The existence of errors can be detected by several veri-

fication methods [10–12]. Given a specification S and an

implementation G, verification methods prove their func-
tional equivalence or return a set T of counterexamples, i.e.,
a subset of the set {t ∈ B

n | S(t) 6= G(t)} of all input vec-
tors witnessing the difference between implementation and
specification.

If the implementation differs from the specification, the
source of the error is of interest. That is, the circuit has to
be debugged. The debugging problem is to find a set of gates
that are responsible for the erroneous behavior. Typically,
this is a manual and time-consuming task that motivates the
development of automatic approaches.

Since usually the number of errors in a circuit is not
known, existing debugging approaches for both reversible
and conventional circuits (e.g., [14,17]) apply an iterative ap-
proach to determine error candidates: Starting with k = 1,
k is iteratively increased until a set of k gates (an error can-
didate) is identified that explains the erroneous behavior.

2.3 Missing Control Error Model
In this work we consider the missing control error model.

Intuitively, missing control errors occur when control lines
of a Toffoli gate are removed. This kind of errors may be
introduced, e.g., by optimization approaches, since removing
control lines reduces the costs of a circuit [15]. Furthermore,
missing control errors are an established error model used in
testing of reversible circuits [13]. Formally, missing control
errors are defined as follows:

Definition 1. Let S be a specification and G be an erro-
neous circuit realization. The circuit G contains k missing
control errors, if there are k gates gm1

, . . . , gmk
that can be

replaced by gates g′

m1
, . . . , g′

mk
with additional control lines

such that the obtained circuit complies with the specifica-
tion S. Any set {gm1

, . . . , gmk
} that fulfills this condition is

called error location.

3. CORRECTION-BASED DEBUGGING
This section briefly reviews the correction-based debug-

ging approach [14]. Afterwards, we discuss its limitations,
which motivate our alternative approach.

3.1 Approach
In [14], a first approach for debugging reversible circuits

has been introduced (in the following denoted by correction-
based debugging). The basic idea of this approach is inspired
by debugging of conventional circuits as suggested in [17]:
For each available counterexample, a copy of the circuit is
created. The input of each copy is thereby constrained to
the values given by the counterexample, while the output is
constrained to the correct values. Furthermore, every gate
is enriched with an error correction logic.

More precisely, a switch with select input si is added at
the output of the target line (vt) for each gate gi as shown
in Figure 2. If si is assigned to 0, the gate works as usual,
i.e., v′

t = vt. Otherwise, an arbitrary value is injected to cor-
rect the (possibly) wrong behavior at this gate. The same
si-variables are used in all copies. Furthermore, the total
number of si-variables allowed to be assigned to 1 is lim-
ited to k. The problem of finding a set of gates that can be
corrected is translated to an instance of the Boolean satisfi-
ability (SAT) problem: If there is a valid assignment to all
signals for a given k, then each gate whose corresponding

... ...

...

L

si

vt

v
′

t

t
∈

T

S
(t

)

d
P

i=1

si = k

Figure 2: Correction-based Debugging [14]

t

0

0

1

0

G(t) S(t)

1

0

0

1

0

0

0

1

g1 g2 g3 g4 g5

L

L

L L L

Figure 3: Circuit with one missing control error

si-variable is assigned to 1 belongs to an possible error can-
didate. Otherwise, it has been proven that no error location
of size k exists. This instance can be solved using common
SAT solvers (e.g., [18]).

3.2 Limits
Correction-based debugging suffers from high run-times

for large circuits. This is mainly caused by the duplication
of the whole circuit for each counterexample, which signif-
icantly blows up the respective SAT formulation. On the
other hand, applying fewer counterexamples often leads to
decreased accuracy, i.e., a high number of error candidates
is obtained.

Besides that, in certain cases also the accuracy of the re-
sults is poor, in particular for multiple errors. For exam-
ple, correction-based debugging cannot distinguish between
neighboring gates that have the same target line. This is
illustrated in the following example.

Example 2. Consider the circuit G shown in Figure 3
(the dashed circle indicates the missing control line) and a
counterexample t = (0, 1, 0, 0). For k = 1, the correction-
based approach determines that the error can be corrected by
inserting an appropriate value at the bottom line. However,
it can not determine the concrete error positions, since a
correction can be inserted at any of the gates g3, g4, and g5,
respectively.

Furthermore, also error candidates are determined that
can be excluded by a simple observation.

Example 3. Reconsider the circuit G from Figure 3 and
T = {t} with t = (0, 1, 0, 0) and S(t) = (1, 0, 0, 0). Ob-
viously, t is a counterexample, since the output of G(t) =
(1, 0, 0, 1) differs with the specification. The correction-based
method yields (amongst others) the error candidate {g4}, be-
cause a the correction logic can insert a 1 at g4 that leads to
the correct output. However, the gate g4 can not be subject

to a missing control error, since adding control lines would
not lead to a different output on line 4.

These examples motivate further investigation of the de-
bugging problem for missing control errors. In particular,
the last observation can be exploited for a new debugging
approach. In the following section, this alternative is intro-
duced.

4. HITTING SET-BASED DEBUGGING
In this section, we propose a new debugging approach for

missing control errors. The general idea is based on the ob-
servation that – assuming the missing control error model –
an erroneous gate behaves very similar to the correct gate.
More precisely, a difference can only be observed when one
of the omitted control lines is assigned to 0 and the remain-
ing control lines are assigned to 1. Then, the erroneous gate
toggles the target line, while the correct one does not change
it. Thus, in order to show a missing control error, a coun-
terexample has to activate at least one erroneous gate. Our
debugging algorithm exploits this observation and tries to
identify k gates, such that every counterexample activates
at least one of them. This can be formulated as a hitting
set problem [19].

In the following the approach is described. At first, we
give a more detailed description of the underlying idea. Af-
terwards we propose an efficient way to solve the resulting
hitting set formulation.

4.1 Observation and Problem Formulation
At first, the basic observation is formulated in the follow-

ing lemma:

Lemma 1. Let G be a circuit with missing control errors
at k gates gm1

, . . . , gmk
and let t ∈ B

n be an input vector.
If t is a counterexample, then it activates at least one of the
gates gm1

, . . . , gmk
.

Proof. We prove this by contraposition: If t does not
activate any erroneous gate, then it is not a counterex-
ample. Let G′ be the circuit that is obtained by replac-
ing the erroneous gates gm1

, . . . , gmk
with the correct gates

g′

m1
, . . . , g′

mk
. Without loss of generality, we assume m1 <

m2 < . . . < mk. For all i with i < m1, it holds that
Gi(t) = G′

i(t), because Gi and G′

i are the same circuits.
By assumption, t does not activate gm1

, so it does not ac-
tivate g′

m1
. Thus, Gm1

(t) equals G′

m1
(t). We can continue

this argumentation until we reach the end of the circuit and
obtain that G(t) = G′(t). So t is not a counterexample.

Based on this lemma, a set S of gates can be excluded
from being an error location, if there is a counterexample
that does not activate any of the gates in S , since every
counterexample has to activate at least one gate of an error
location. We illustrate this insight using a small example.

Example 4. Assume an erroneous circuit with five gates
g1, . . . , g5 and four counterexamples T = {t1, . . . , t4}. Using
simulation, the activated gates can easily be computed for
each counterexample. Figure 4 shows a possible scenario. A
cross at position (ti, gj) indicates that ti activates gj. For
example, t3 activates g3, but does not activate g2. According
to Lemma 1, the set of gates {g3, g4} cannot be an error
location, since t4 activates neither g3 nor g4. On the other
hand, possible error locations are {g3, g4, g5} and {g1, g3}.

t1

t2

t3

t4

g1 g2 g3 g4 g5

× ×

× × ×

× ×

× ×

Figure 4: Scenario from Example 4

More formally, let T be a set of counterexamples. Then,
the set Gt of gates that are activated by counterexample
t ∈ T is defined by

Gt = {gi ∈ G | Gi−1(t) activates gi}. (1)

For example, in Figure 4 the set Gt2 is {g1, g2, g4}, because
t2 activates g1, g2 and g4. Lemma 1 can now be extended to
take a set of counterexamples into account (instead of only
one).

Lemma 2. Given an erroneous circuit G with error loca-
tion H := {gm1

, . . . , gmk
}, and a set of counterexamples T.

Then, for every counterexample t ∈ T it holds that

H ∩ Gt 6= ∅ (2)

Proof. Let t ∈ T be a counterexample. According to
Lemma 1 it activates at least one gate g∗ ∈ H . By definition
it is also g∗ ∈ Gt, thus Gt ∩ H 6= ∅.

Overall, Lemma 2 states a necessary condition for error lo-
cations. Therefore, all sets of gates that fulfill Equation (2)
can be regarded as error candidates. Based on this obser-
vation, the problem of finding error candidates can be for-
mulated as a hitting set problem [19]: Given m counterex-
amples t1, . . . , tm and their corresponding activated gates
Gt1 , . . . , Gtm

, the task is to determine a set H that shares
at least one element with each Gti

. Every solution to the
hitting set problem corresponds directly to an error candi-
date. In particular, if the hitting set problem has no solution
with cardinality k, it has been proven that the considered
circuit contains more than k missing control errors. This is
illustrated in the following example.

Example 5. Again, consider the example from Figure 4.
There is no singleton set H that “hits” an activated gate for
every counterexample, because

T

4

i=1
Gti

= ∅. Thus, no error
candidate with k = 1 exists.

4.2 Formulation as a SAT Instance
The hitting set problem is an NP-complete problem [19].

To determine all error candidates of size k in a naive way,
`

d

k

´

(i.e., O(dk)) checks have to be performed. To avoid this,
we propose a SAT-based formulation, i.e., we encode the hit-
ting set problem as an instance of Boolean satisfiability such
that the instance is satisfiable iff there is an error candidate
of size k. Moreover, all solutions of the SAT instance cor-
respond directly to error candidates. Passing the resulting
instance to a SAT solver, the underlying hitting set problem
can be solved very fast due to sophisticated techniques like
search space pruning (see e.g., [18]).

The respective instance is created as follows: For every
gate gi of the erroneous circuit, a Boolean variable si is

introduced. Assigning si to 1 means that the respective
gate gi is part of an error candidate. Accordingly, for every
counterexample t ∈ T, a clause

Ct =
_

gi∈Gt

si (3)

is added stating that for each set Gt at least one gate has
to be in the error candidate. Finally, the constraint

d
X

i=1

si = k (4)

ensures that the number of variables s1, . . . , sd assigned
to 1 is equal to k (i.e., exactly k gates gi are part of an error
candidate).

Example 6. The scenario shown in Figure 4 yields the
constraints Ct1 = s1 ∨ s3, Ct2 = s1 ∨ s2 ∨ s4, Ct3 = s3 ∨ s4,
and Ct4 = s1 ∨ s5 (according to Equation 3) as well as the
constraint s1 + · · · + s5 = k (according to Equation 4). A
satisfying assignment for k = 2 would be s1 = 1, s2 = 0,
s3 = 1, s4 = 0, and s5 = 0 from which the error candidate
{g1, g3} from above can be derived.

Note that the SAT formulation is very compact, since ev-
ery additional counterexample only leads to one additional
clause. Passing instances created in this way to the SAT
solver, the hitting set problem can be solved very fast even
for circuits containing tens of thousands gates and coun-
terexamples, respectively.

5. RELATION AND COMBINATION WITH

CORRECTION-BASED DEBUGGING
The notion of error candidates introduced in Section 4 dif-

fers from previous approaches. In the correction-based ap-
proach error candidates are defined as sets of gates that can
be replaced with other gates so that for each counterexam-
ple the correct output values result. In contrast, the method
proposed in the last section relies on the observation that ev-
ery counterexample activates at least one gate in the error
candidate.

Both definitions of error candidates are necessary condi-
tions of error locations, so both are reasonable notions for
debugging algorithms. In Section 3.2 it was already shown
that the correction-based approach yields error candidates
that can be excluded using the newly proposed method.
However, it is also the case that our approach yields er-
ror candidates that can be eliminated because no correction
can be found there. Furthermore, both approaches agree on
some error candidates that are not the error location, i.e.,
also their combination will not precisely locate the error. To
illustrate this we resume Example 3.

Example 7. Consider again the circuit G in Figure 3
with the counterexample t = (0, 1, 0, 0). A valid solution
of the hitting set-based approach for k = 1 is {g2}, since
Gt = {g1, g2, g5} and Gt ∩ {g2} 6= ∅. On the other hand,
applying the correction-based approach this error candidate
can be disproven to be an error location. In fact, no cor-
rection can be inserted at g2, because this would affect only
line 2, which has no influence on the erroneous line 4. The
only error candidate that is obtained by both approaches is
{g5}, the error location.

ECCB ECHSEL

Figure 5: Relation of the resulting error candidates
of both approaches

Overall, Example 3 and Example 7 show that both de-
bugging approaches lead to different results. Figure 5 illus-
trates the relationship between the sets of error candidates
obtained by the hitting set-based approach (ECHS) and the
correction-based approach (ECCB). Intersecting both re-
sults reduces the number of error candidates and thus leads
to a better approximation of the error location (EL).

To exploit the different notions of error candidates we pro-
pose to combine correction-based debugging with the pre-
sented method. Since both approaches are solved using a
translation to SAT, they can easily be combined by taking
the conjunction of the according CNF formulations. The
overhead of augmenting the correction-based method with
our approach is very small, since the cardinality constraint
in Equation (4) is shared and thus for every counterexample
only one clause needs to be added.

6. EXPERIMENTAL RESULTS
In this section, we empirically compare the hitting set-

based debugging (in the following abbreviated with HS)
and the correction-based debugging (CB). Then, we demon-
strate the benefit obtained by combining the two approaches
(CB+HS).

6.1 Setup
The evaluation is conducted as follows: By randomly re-

moving control lines from some gates, we inject three errors
into a set of circuits taken from RevLib [20]. Then, a set
of at most 10 000 counterexamples is generated using meth-
ods from [12]. The overall counterexample generation time
was less than five minutes for all circuits. Based on the set
of counterexamples, SAT instances according to Section 4.2
(for the hitting set formulation) and according to [14] (for
the correction-based formulation) are constructed. For CB,
circuit copies for five (randomly chosen) counterexamples
are created. The combination CB+HS is constructed by
the conjunction of the SAT instances for HS and CB. All
experiments were carried out on an Intel Xeon 3GHz with
4GB main memory running Linux. We used Minisat2 [18]
as SAT solving engine.

Since the designer typically does not know the correct
number of errors, we run the different debugging algorithms
for k = 1, k = 2, and k = 3, respectively. For k = 3
the injected error is an error candidate and was returned by
the respective approach (if no timeout occurs before). We
compare the methods with respect to three criteria: First,
the number of error candidates that are obtained before the
error is correctly identified should be as small as possible,
since the designer has to consider all of them in the worst
case. Second, it is important to refute wrong assumptions on

the number k of errors, i.e., the debugging approach should
exclude all error candidates of a size less than the size of
the error location. And third, of course all results should be
available as fast as possible.

6.2 Results
We report on the obtained results in Table 1 and Table 2,

respectively.
Consider first Table 1. The first columns list details of

the circuits, i.e., the name, the number of lines, and the
number of gates, respectively. Columns EC and Run Time
denote the number of error candidates and needed time, re-
spectively. A timeout (2000 seconds) is indicated by To. At
every timeout, the error cardinality where it occurs is pro-
vided. Note that error candidates may be delivered before
the timeout.

We observe that both CB and HS are not satisfying in
many cases since they either yield tens of thousands of error
candidates or timeout (and thus, may not pinpoint the de-
signer to the error location). However, HS does not abort as
often as CB. In particular, CB tends to timeout on large in-
stances – sometimes without delivering any candidate. This
confirms our discussion from Section 3.2. When considering
the combination CB+HS, it can be seen that the best of the
two approaches is conserved. Accuracy is increased signifi-
cantly, since for most of the instances the designer obtains
a feasible set of error candidates. Furthermore, while CB
fails to deliver any error candidate for large instances (e.g.,
urf2, urf4, and urf5), both HS and CB+HS are able to
correctly identify the error location. Only for the instances
mod1048576adder and testalu the results are not yet satis-
fying because the set of error candidates is too large to be
helpful for the designer.

Consider now Table 2. Here, the algorithms ability to re-
fute wrong assumptions on the number of erroneous gates is
documented. Since three errors are injected, the debugging
method should disprove k = 1 and k = 2. In the table,
we list the number of circuits for which the respective algo-
rithm can disprove the error cardinalities 1 and 2. We used
the same circuits as in Table 1. It can be seen that k = 1
can be disproven for the majority of the instances by all ap-
proaches – CB+HS even shows for 10 of the 11 instances
the non-existence of a single error. Both CB and HS can
refute k = 2 in less than half of the instances. In contrast,
the combination CB+HS excludes error candidates of size 2
in 9 of 11 cases. Thus, the combination outperforms the
single approaches also with respect to this criterion.

In summary, more accurate error candidates can be ob-
tained in significantly shorter run-time using the CB+HS
approach.

7. CONCLUSION
In this paper, we introduced an alternative method for de-

bugging of reversible circuits. For a dedicated error model,
namely missing control line errors, our method improves the
results of the previously proposed debugging approach [14].
The observation that error locations have to be activated by
every counterexample is thereby exploited. The resulting
a hitting set problem is encoded as a SAT instance, which
yields a very fast enumeration of the error candidates. Then,
we illustrated the differences of the presented approach as
well as the correction-based algorithm and proposed the
combination of both.

Table 1: Results for debugging circuits with three errors.
Circuit Characteristics Correction-based (CB) Hitting-Set based (HS) Combination (CB+HS)

Circuit n d EC Run time |T| EC Run Time EC Run Time
ham15 15 132 14 0.3 10000 9 048 21.9 14 4.9
hwb6 6 126 86 8.4 28 1 008 0.5 1 1.0
hwb7 7 289 2 228 161.8 32 1 865 3.4 11 7.9
hwb8 8 637 4 To.@k=3 82 203 480 To.@k=3 32 311.2
hwb9 9 1 544 4 To.@k=3 106 610 457.8 2 880.8
mod1048576adder 40 210 44 104 135.0 10000 22 157 25.9 22 157 61.8
sym9 148 10 210 220 440 To.@k=3 80 4 0.1 4 0.1
testalu 103 359 5 694 24.5 10000 12 335 To.@k=3 4 087 46.7
urf2 152 8 5 030 0 To.@k=1 153 1 18.1 1 14.2
urf4 187 11 32 004 0 To.@k=1 1201 1 166.9 1 165.9
urf5 158 9 10 276 0 To.@k=1 291 1 21.8 1 32.6

Table 2: Excluded error cardinalities for 11 circuits
k CB HS CB+HS
1 9 7 10
2 3 5 9

In the experiments, we empirically compared our algo-
rithm, the correction-based algorithm, and their combina-
tion. We showed that combining both approaches, improves
the efficiency and the accuracy. More precisely, the number
of error candidates is significantly decreased. Hence, the de-
signer is provided with better information about the error
location. Furthermore, results are obtained in significantly
shorter run-time.

8. ACKNOWLEDGMENT
This work was supported by the German Research Foun-

dation (DFG) (DR 287/20-1).

9. REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in
the computing process,” IBM J. Res. Dev., vol. 5, p.
183, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,”
IBM J. Res. Dev, vol. 17, no. 6, pp. 525–532, 1973.

[3] T. Toffoli, “Reversible computing,” in Automata,
Languages and Programming, W. de Bakker and J. van
Leeuwen, Eds. Springer, 1980, p. 632, technical
Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[4] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information. Cambridge Univ. Press, 2000.

[5] B. Desoete and A. D. Vos, “A reversible
carry-look-ahead adder using control gates,”
INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[6] R. Cuykendall and D. R. Andersen, “Reversible
optical computing circuits,” Optics Letters, vol. 12,
no. 7, pp. 542–544, 1987.

[7] R. C. Merkle, “Reversible electronic logic using
switches,” Nanotechnology, vol. 4, pp. 21–40, 1993.

[8] D. M. Miller, D. Maslov, and G. W. Dueck, “A
transformation based algorithm for reversible logic
synthesis,” in Design Automation Conf., 2003, pp.
318–323.

[9] R. Wille and R. Drechsler, “BDD-based Synthesis of
Reversible Logic for Large Functions,” in Design
Automation Conf., 2009, pp. 270–275.

[10] G. F. Viamontes, I. L. Markov, and J. P. Hayes,
“Checking equivalence of quantum circuits and states,”
in Int’l Conf. on CAD, 2007, pp. 69–74.

[11] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo, “An
xqdd-based verification method for quantum circuits,”
IEICE Transactions, vol. 91-A, no. 2, pp. 584–594,
2008.

[12] R. Wille, D. Große, D. M. Miller, and R. Drechsler,
“Equivalence checking of reversible circuits,” in Int’l
Symp. on Multi-Valued Logic, 2009.

[13] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A
family of logical fault models for reversible circuits,” in
Asian Test Symp., 2005, pp. 422–427.

[14] R. Wille, D. Große, S. Frehse, G. W. Dueck, and
R. Drechsler, “Debugging of Toffoli networks,” in
Design, Automation and Test in Europe, 2009, pp.
1284–1289.

[15] J. Zhong and J. Muzio, “Using crosspoint faults in
simplifying Toffoli networks,” in IEEE North-East
Workshop on Circuits and Systems, 2006, pp. 129–132.

[16] S. Frehse, R. Wille, and R. Drechsler, “Efficient
simulation-based debugging of reversible logic,” in Int’l
Symp. on Multi-Valued Logic, 2010.

[17] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas,
“Fault diagnosis and logic debugging using Boolean
satisfiability,” IEEE Trans. on CAD, vol. 24, no. 10,
pp. 1606–1621, 2005.

[18] N. Eén and N. Sörensson, “An extensible SAT solver,”
in SAT 2003, ser. LNCS, vol. 2919, 2004, pp. 502–518.

[19] R. M. Karp, “Reducibility among combinatorial
problems,” in Complexity of Computer Computations,
1972, pp. 85–103.

[20] R. Wille, D. Große, L. Teuber, G. W. Dueck, and
R. Drechsler, “RevLib: An online resource for
reversible functions and reversible circuits,” in Int’l
Symp. on Multi-Valued Logic, 2008, pp. 220–225,
RevLib is available at http://www.revlib.org.

