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ABSTRACT
Multicell joint decoding has been proven to greatly enhance
the capacity of cellular systems in a range of regimes. How-
ever, the complexity of such a joint receiver makes it impos-
sible to implement in practice using current computational
capabilities. In this direction, this paper investigates the
capacity performance of reduced-complexity communication
schemes in order to evaluate their performance with respect
to the optimal multicell joint decoding scheme. More specif-
ically, two sub-optimal schemes are considered: 1) intra-
cell user orthogonalization combined with optimal multicell
joint decoding and 2) intra-cell user orthogonalization com-
bined with linear MMSE filtering and single-user decoding.
The employed cellular multiple-access channel model incor-
porates flat fading, path loss, distributed users and multiple
antennas at the Base Station, while both peak and average
transmit power constraints are taken into account. In this
context, it is shown that linear MMSE filtering combined
with multiple BS antennas and intra-cell orthogonalization
can still provide a considerable capacity enhancement. Fur-
thermore, FDMA is shown to be more efficient than TDMA
as an intra-cell orthogonalization technique.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network
Architecture and Design—Wireless communication; E.4 [Data]:
Coding and Information Theory—Formal models of commu-

nication

General Terms
Theory, Performance

Keywords
Multicell Decoding, Multi-antenna Systems, Sum-rate Ca-
pacity, MMSE filtering
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Since the seminal work of Wyner [1], Base Station (BS)
cooperation and multicell decoding have been studied ex-
tensively in a wide range of regimes. According to this
paradigm, the BSs are interconnected through broadband
error-free links to a central processor (hyper-receiver), which
jointly decodes the received signals. The hyper-receiver is
assumed to have perfect channel knowledge and infinite pro-
cessing capabilities. Multicell decoding models have gradu-
ally evolved by incorporating more realistic characteristics
of the wireless cellular channel, such as fading and path loss
[2, 3, 4], User Terminal (UT) distribution [5], clustering [6]
and multiple antennas [7]. In all the aforementioned studies,
it was established that multicell decoding effectively elimi-
nates the interference-limited behavior of the per-cell capac-
ity. Furthermore, in order to achieve the optimal capacity in
a cellular multiple-access channel, all the UTs have to trans-
mit simultaneously over the ensemble of the channel time-
frequency resources, while Successive Interference Cancella-
tion (SIC) is utilized at the joint processor [2] to recover the
individual user signals. However, the complexity of such a
receiver grows exponentially with the number of UTs which
are involved in the SIC process [8] and in addition, succes-
sive decoding techniques can introduce error propagation in
the decoding process.

In this direction, this paper investigates the capacity per-
formance of reduced-complexity communication schemes in
order to evaluate their performance with respect to the opti-
mal multicell joint decoding scheme. The complexity can be
reduced either by decreasing the number of UTs in the SIC
process or by using sub-optimal multiuser receivers, which
can still exploit the paradigm of BS cooperation. More
specifically, the number of UTs can be decreased by splitting
the intra-cell UTs into orthogonal groups using TDMA or
FDMA techniques [2, 4, 3]. Additionally, the computation-
ally expensive multicell joint decoder could be replaced by
the simpler approach of linear Minimum Mean Square Error
(MMSE) filtering, followed by single-UT decoding [8]. This
receiver is characterized by linear complexity in the num-
ber of users, or at least polynomial if one considers that the
computation of the MMSE filters, matrix-vector multiplica-
tions and subtraction are quadratic or cubic in the number
of users [8]. In this direction, we consider two sub-optimal
schemes: 1) intra-cell user orthogonalization combined with
multicell joint decoding and 2) intra-cell user orthogonaliza-
tion combined with linear MMSE filtering and single-user
decoding. Furthermore, we introduce a comprehensive cel-
lular multiple-access channel model, which includes flat fad-
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Figure 1: Linear cellular array with K = 4 UTs per

cell on a uniform grid.

ing, path loss, distributed UTs and multiple antennas at
the Base Station. A relevant investigation can be found in
[4], although therein a single multiple-antenna UT per cell
is considered in combination with single-cell linear MMSE
detectors or nonlinear MMSE SIC detectors. In our inves-
tigation, multiple UTs per cell with arbitrary number of
antennas per UT can transmit simultaneously, as long as
the total number of transmit antennas per cell matches the
number of receive antennas at the BS. Furthermore, a sin-
gle linear MMSE filter is applied across all the cooperating
cells, which aims at jointly maximizing the achieved Sig-
nal to Interference and Noise Ratio (SINR). In this context,
TDMA and FDMA are utilized as intra-cell orthogonaliza-
tion techniques, while both peak and average transmit power
constraints are taken into account.

2. CHANNEL MODEL
Assume that K UTs are spatially distributed in each cell

(with radius R as in Figure 1) of a linear cellular array com-
prising N BSs with nBS antennas per BS. Furthermore, we
assume that Channel State Information (CSI) is not avail-
able at the UT-side and thus input optimization through
iterative waterfilling is not possible. In the remainder of
the analysis we consider single-antenna UTs to simplify the
notations, although the model is straightforwardly extend-
able to UTs equipped with arbitrary number of antennas.
It should also be noted that perfect CSI is assumed to be
available at the receiver-side. In this context and consider-
ing an average power constraint P̄ per UT antenna, the op-
timal transmission strategy is non-orthogonal transmission
with power P̄ followed by optimal multicell joint decoding
[2]. In other words, the UTs transmit simultaneously on
the available bandwidth and SIC is employed at the cen-
tral multicell-decoding processor. Furhtermore, we consider
a receiver which performs linear MMSE filtering followed
by single-user decoding. The main limitation of the MMSE
receiver is that the number of UTs that can be filtered effec-
tively is limited by the rank of the channel matrix, namely
the number of receive antennas NnBS . Due to this fac-
tor, intra-cell orthogonalization techniques have to applied
amongst the system UTs, allowing only NnBS out of the
KN UTs to transmit over the same channel resources. In
this direction, TDMA and FDMA are considered as means
of dividing the system UTs into K/nBS orthogonal groups.
In addition, we introduce a further practical consideration,
namely a peak power constraint Pmax, by defining the Peak
to Average power Ratio PAR = Pmax/P̄ with PAR ≥ 1. In
practical cellular systems, the concept of peak power con-
straint can be justified based on the non-linearity of ampli-

fiers, air-interface standardization, interference regulations
and health regulations.

2.1 Optimal Transmission Strategy
Let us assume a large number of uniformly distributed

UTs and a channel model impaired by flat fading and path
loss. Adopting the optimal transmission strategy, the re-
ceived signal at BS n, at time index i, will be given by the
nBS × 1 vector:

y
n[i] =

N∑
j=1

K∑
k=1

ςjn
k g

jn
k [i]xj

k[i] + z
n[i], (1)

where xj
k[i] is the ith complex channel symbol transmit-

ted by the kth UT of the jth cell and g
jn
k is a nBS ×

1 Gaussian vector containing independent identically dis-
tributed (i.i.d.) complex circularly symmetric (c.c.s.) ele-
ments of unit variance, which represent the flat fading pro-
cesses experienced in the transmission path between the nBS

antennas of the nth BS and the kth UT in the jth cell.
The fading coefficients are assumed to have unit power, i.e.
E[gjn

k [i](gjn
k [i])†] = InBS

for all (n, j, k). The path-loss co-

efficients ςjn
k in the transmission path between the nth BS

and the kth UT in the jth cell are calculated according to

the power-law path loss model ςjn
k =

(
1 + djn

k

)−η/2
, where

djn
k is the distance between the nth BS and the kth UT in

the jth cell and η is the path-loss exponent. The nBS × 1
vector zn = [z1... znBS ]T contains i.i.d. c.c.s. random vari-
ables representing Additive White Gaussian Noise (AWGN)
with E[zn] = 0, E[zn(zn)†] = σ2I. Since there is no CSI
at the UT-side and PAR ≥ 1, all UTs transmit with a con-
stant power P , i.e. |xj

k[i]|2 = P for all (k, j, i), assuming
a flat fading environment. The model can be more com-
pactly expressed as a vector memoryless channel of the form
y = Hx + z, where y = [ȳ1... ȳN ]T with ȳn = (yn)T (c.f.
Eq.(1)) represents received signals by the multiple antennas
of all the BSs, x = [x1

1 . . . x1
Kx2

1 . . . . . . xN−1
K xN

1 . . . xN
K ]T

represents transmit signals by all the UTs of the cellular
system and z = [z̄1... z̄N ]T with z̄n = (zn)T (c.f. Eq.(1))
represents AWGN. The rectangular channel matrix H can
be written as H = (Σ ⊗ 1nBS

)� G, where Σ is a N ×KN
deterministic matrix, 1nBS

is a nBS × 1 vector of ones,
and G ∼ CN (0, INnBS

) is a complex Gaussian NnBS ×KN
matrix comprising the corresponding Rayleigh fading coef-
ficients. Furthermore, ⊗ and � denote the Kronecker and
Hadamard (element-wise) matrix product respectively. The
entries of the Σ matrix are defined by the variance profile

function ς
(
u, v

)
=

(
1 + d (u, v)

)−η/2
, where u ∈ (0, 1] and

v ∈ (0, K] are the normalized indices for the BSs and the
UTs respectively and d (u, v) denotes the distance between
BS u and user v.

2.2 Intra-cell Orthogonalization
Considering intra-cell orthogonalization, only NnBS out

of KN UTs transmit per channel use and thus the received
signal at BS n, at time index i, will be given by:

y
n[i] =

N∑
j=1

nBS∑
k=1

ςjn
k g

jn
k [i]xj

k[i] + z
n[i], (2)

or expressed as a vector memoryless channel of the form y =
Hoxo+z, where xo = [x1

1 . . . x1
nBS

x2
1 . . . . . . xN−1

nBS
xN

1 . . . xN
nBS

]T

represents transmit signals by a group of NnBS UTs. The
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square channel matrix Ho can be written as Ho = (Σo ⊗ 1nBS
)�

Go, where Σo is a N × NnBS deterministic matrix, 1nBS

is a nBS × 1 vector of ones, and Go ∼ CN (0, INnBS
) is a

complex Gaussian NnBS×NnBS matrix comprising the cor-
responding Rayleigh fading coefficients. The entries of the
ΣoÓ matrix are still defined by the variance profile function

ς
(
u, v

)
=

(
1 + d (u, v)

)−η/2
with the differentiation that

u ∈ (0, 1] and v ∈ (0, nBS ].

3. CAPACITY ANALYSIS

3.1 Optimal Joint Decoding
Considering the optimal transmission strategy combined

with optimal multicell joint decoding, the asymptotic per-
cell sum-rate capacity Copt for this model is given by [9]

Copt = lim
N→∞

1

N
E [I (x;y | H )]

= lim
N→∞

1

N
E

[
log det

(
IN + γ̄HH

†
)]

= lim
N→∞

nBSE

[
1

NnBS

NnBS∑
i=1

log

(
1 +

γ̂

K
λi

(
1

N
HH

†

))]

= nBS

∫ ∞

0

log

(
1 +

γ̂

K
x

)
dF 1

N
HH†(x)

= nBSV 1

N
HH†(γ̂/K) = KV 1

N
H†H

(γ̂/K), (3)

where γ̂ = KNγ̄ and γ̄ = P̄ /σ2 is the system- and UT-
transmit power normalized with the receiver noise power re-
spectively, λi (X) are the eigenvalues of matrix X and VX

is the Shannon transform [9] of a random square Hermi-
tian matrix X. For G ∼ CN (0, IN ), the empirical eigen-
value distribution of 1

N
G†G converges almost surely (a.s.)

to the nonrandom limiting eigenvalue distribution of the
Marcenko-Pastur law, whose Shannon transform with pa-
rameter δ is given by V 1

N
G†G

(δ) a.s.−→ VMP(δ, β) where β is

the ratio of the horizontal to the vertical dimension of the G

matrix [9, Example 2.14]. According to the Free Probability
approach in [3, 5], if Σ is a path loss dependent N × KN
deterministic matrix, the limiting eigenvalue distribution of
(1/N)H†H and its Shannon transform is approximated by
a scaled version of the Marcenko-Pastur law

V 1

N
H†H

(γ̂/K) � VMP (q(Σ)γ̂/K, K/nBS) (4)

where q(Σ) � ‖Σ‖2 /KN2 with ‖Σ‖ �
√

tr {Σ†Σ} being
the Frobenius norm of the Σ matrix. In the asymptotic case
q(Σ) is given by

lim
N→∞

q(Σ) =
1

K

∫ 1

0

∫ K

0

ς2(u, v)dudv. (5)

Since the variance profile function defines a rectangular block-
circulant matrix with 1×K blocks which is symmetric about
v = Ku, the matrix Σ is asymptotically row-regular [9, Def.
2.10] and thus the previous equation can be simplified to

lim
N→∞

q(Σ) =
1

K

∫ K

0

ς2(v)dv,∀u ∈ (0, 1]. (6)

In conclusion, the optimal per-cell sum-rate capacity can be
written as:

Copt = KVMP (q(Σ)γ̂/K, K/nBS) . (7)

If optimal joint decoding is combined with intracell orthog-
onalization, then following a similar derivation the per-cell
sum-rate capacity can be written as:

Corth
opt = nBSVMP (q(Σo)γ̃/nBS , 1) , (8)

where γ̃ = NnBSγ and γ is the group- and UT- transmit
power normalized with the receiver noise power respectively.
We do not use γ̄ for the normalized UT transmit power, since
its value depends on the orthogonalization technique and the
PAR. This dependence is described in detail later on in this
section. Now let us assume that the number of BS antennas
nBS is sufficiently large, so that even if K UTs are divided in
orthogonal groups of nBS UTs, there is still a large number
of UTs per group uniformly distributed across the coverage
area of each cell. In this case, it can be written that

lim
N→∞

q(Σo) =
1

nBS

∫ nBS

0

ς2(v)dv. (9)

3.2 Linear MMSE Receiver
Let us consider the suboptimal scenario, where intra-cell

orthogonalization is employed as the transmission strategy,
followed by linear MMSE filtering and single-UT decoding.
If SINRavg and mmseavg denote the average UT SINR and
MMSE after filtering, the achieved per-cell capacity can be
approximated by [9, Equation 1.9][8, 10, 11]:

Cmmse = nBS lim
N→∞

log (1 + SINRavg)

= nBS lim
N→∞

log
(
mmseavg

−1
)

= −nBS lim
N→∞

log

(
1

NnBS
E

[
tr

{(
INnBS

+ γHo
†
Ho

)−1
}])

= −nBS lim
N→∞

log

(
E

[
1

NnBS

NnBS∑
j=1

1

1 + γ̃
nBS

λj

(
1

N
Ho

†Ho

)
])

= −nBS log

(∫ ∞

0

1

1 + γ̃
nBS

x
f∞

1

N
Ho

†Ho

(x)dx

)

= −nBS log

(
η 1

N
Ho

†Ho

(
γ̃

nBS

))
, (10)

where γ̃ = NnBSγ and γ is the group- and UT- transmit
power normalized with the receiver noise power respectively
and ηX is the η-transform [9] of a random square Hermitian
matrix X. For G ∼ CN (0, IN ), the η-transform of the
Marcenko-Pastur ηMP (δ, β) law is given in [9, Example 2.10].
According to the Free Probability approach in [3, 5], the η-
transform of (1/N)Ho

†Ho can be written as:

η 1

N
Ho

†Ho

(
γ̃

nBS

)
� ηMP

(
q (Σo)

γ̃

nBS
, 1

)
(11)

and the MMSE capacity

Cmmse = −nBS log

(
ηMP

(
q (Σo)

γ̃

nBS
, 1

))
. (12)

3.3 TDMA versus FDMA
So far the treatment of intra-cell orthogonalization was

common for both TDMA and FDMA. However, there are a
number of distinct differences, which should be pointed out
before we proceed to the numerical results section. Firstly,
the assumption of flat fading is more valid for FDMA than
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Table 1: Practical parameters
Parameter Symbol Value/Range
Cell Radius R 0.1 − 3 Km

Reference Distance d0 1 m
Path Loss at ref. distance L0 34.5 dB

Path Loss Exponent η 3.5
UTs density K0 40 (UTs/Km)

UT Transmit Power PT 200 mW
Thermal Noise Density N0 −169 dBm/Hz
Channel Bandwidth B 5 MHz

TDMA systems due to the narrower subcarrier bands. Sec-
ondly, the capacity-achieving Gaussian input presumes code-
words, which are sufficiently long to experience all possible
realizations of the channel. Considering that each orthogo-
nal UT group is scheduled once every K/nBS channel uses,
there can be a considerable time delay between transmis-
sions, which is problematic for delay-sensitive applications.
Thirdly and most importantly, the TDMA transmit power
can get saturated due to the peak power constraint. More
specifically, as the number of orthogonal groups increases,
the transmission duration of each group decreases and thus
the UTs have to employ bursty transmission, namely short
duration and high power. However, the peak power con-
straint of each UT limits the maximum instantaneous power
which can be utilized and thus the TDMA transmit power
gets saturated. This problem does not apply in FDMA sys-
tems, since in this case the SNR gain originates in the fact
that narrower subcarrier bands are affected by lower noise
levels. To quantify this distinctive difference, the TDMA
transmit SNR can be written as

γ = γT =

{
P̄
σ2 · K

nBS
PAR ≥ K

nBS

P̄
σ2

· PAR PAR < K
nBS

, (13)

while the transmit FDMA SNR can be written as

γ = γF =
P̄

σ2
·

K

nBS
. (14)

4. NUMERICAL RESULTS
In order to produce meaningful results, the typical param-

eters of Table 1 will be considered for a real-world macro-
cellular scenario. In this context, assuming that the power
loss at the reference distance d0 is L0, the scaled variance
profile function is given by ς(d) =

√
L0(1 + d/d0)−η, where

d is the distance in meters between the considered UT and
BS. The values of L0 and η have been fitted to the path loss
model defined in the “Urban Macro” scenario of [12].

4.1 Capacity Simulations
In each figure of this section, there are five curves: 1) opti-

mal per-cell capacity (eq. (7)), 2) achievable per-cell capac-
ity with FDMA and optimal multicell joint decoding (eq.
(8) and (14)), 3) achievable per-cell capacity with TDMA
and optimal multicell joint decoding (eq. (8) and (13)), 4)
achievable per-cell capacity with FDMA and linear MMSE
filtering (eq. (12) and (14)), 5) achievable per-cell capacity
with TDMA and linear MMSE filtering (eq. (12) and (13)).
The analytical curves are verified by running Monte Carlo
simulations over 100 random realizations of the system and
by averaging the produced results. More specifically, for
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Figure 2: Per-cell capacity vs. cell radius R. Pa-

rameters: K = 20, nBS = 4, PAR = 2.

each system realization the Gaussian complex matrix G is
constructed by randomly generating Gaussian i.i.d. c.c.s.
fading coefficients with unit variance. Similarly, the vari-
ance profile matrix Σ is constructed by randomly placing
K UTs according to a uniform distribution in the coverage
range of each cell and by calculating the variance profile co-
efficients. After constructing the channel matrix H = Σ�G,
the optimal per-cell sum-rate capacity is calculated by [13]

Copt =
1

N
E

[
log det

(
INnBS

+ γHH
†

)]
. (15)

In addition, the intra-cell orthogonalization channel matrix
Ho is constructed by randomly selecting nBS out of the
K UTs of each cell and concatenating the corresponding
column vectors of H. The achievable per-cell sum-rate with
FDMA/TDMA and optimal multicell decoding is given by

Copt =
1

N
E

[
log det

(
INnBS

+ γHoHo
†

)]
, (16)

where γ = γF for FDMA and γ = γT for TDMA. Similarly,
the achievable per-cell sum-rate with FDMA/TDMA and
linear MMSE filtering is given by

Cmmse = −
1

N
E

[
NnBS∑

k=1

log

[(
INnBS

+ γHo
†
Ho

)−1
]

k,k

]
.

(17)

4.2 Achievable Sum-rate Results
Figure 2 depicts the per-cell capacity versus the cell radius

R for the five considered scenarios, while preserving a fixed
number of UTs per cell K. It should be noted that contin-
uous lines represent analytical plots, whereas circle points
represent simulation values. As Figure 2 illustrates, there is
a close agreement between analysis and simulation for the
considered range of values. Moreover, Figure 3 illustrates
the per-cell capacity for fixed cell radius and number of BS
antennas, while the number of UTs per cell increases. It is
shown that FDMA sum-rate increases while TDMA sum-
rate remains fixed with the number of UTs per cell due to
the peak power saturation. What is more, the complexity of
the multicell receiver does not increase with the number of
UTs per cell, since only NnBS out of KN are processed per
channel use for the sub-optimal schemes. Finally, Figure 4
depicts the per-cell capacity for fixed cell radius and UTs
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Figure 4: Per-cell capacity vs. number of BS anten-
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per cell, while the number of BS antennas increases. As it
can be seen, even with the suboptimal schemes an almost
linear scaling of the achieved sum-rate with the number of
BS antennas is observed.

5. CONCLUSION
In the context of multicell-decoding systems, the com-

plexity of the optimum multicell joint decoder scales with
the number of system UTs and becomes impractical even
for moderately sized cellular systems. In this paper, we
have investigated multiple-access techniques and multiuser
receivers, which can reduce the system complexity. In this
direction, we considered intra-cell orthogonalization as a
means of decoupling the multiuser receiver’s load from the
number of UTs. In addition, we investigated the perfor-
mance of the suboptimal but efficient linear MMSE filter-
ing, followed by single-user decoding. The main conclusion
of this study is that linear MMSE filtering combined with
multiple BS antennas and intra-cell orthogonalization can
provide a considerable capacity enhancement for an afford-
able complexity level. From a system-design point of view,
a capacity versus complexity trade-off can be achieved by
varying the number of BS antennas and as a result the size
of the UT group which has to be jointly filtered. Finally,

FDMA is more efficient than TDMA as an intra-cell orthog-
onalization technique, when the UT transmissions are peak-
power constrained.
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