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ABSTRACT
Tiling is a crucial loop transformation for generating highperfor-
mance code on modern architectures. Efficient generation ofmulti-
level tiled code is essential for maximizing data reuse in systems
with deep memory hierarchies. Tiled loops with parametric tile
sizes (not compile-time constants) facilitate runtime feedback and
dynamic optimizations used in iterative compilation and automatic
tuning. Previous parametric multi-level tiling approaches have been
restricted to perfectly nested loops, where all assignmentstate-
ments are contained inside the innermost loop of a loop nest.Pre-
vious solutions to tiling for imperfect loop nests have onlyhandled
fixed tile sizes. In this paper, we present an approach to paramet-
ric multi-level tiling of imperfectly nested loops. The tiling tech-
nique generates loops that iterate over full rectangular tiles, making
them amenable to compiler optimizations such as register tiling.
Experimental results using a number of computational benchmarks
demonstrate the effectiveness of the developed tiling approach.

Categories and Subject Descriptors:D.3.4 [Programming Lan-
guages]: Processors — Compilers, Optimization

General Terms: Algorithms, Design, Performance

Keywords: Parametric tiling, Imperfectly nested loops

1. INTRODUCTION
Tiling is a crucial transformation for achieving high performance,

especially for systems with deep multi-level memory hierarchies. It
is a well-known technique for improving data locality and register
reuse. Tiling has received a lot of attention in the compilercommu-
nity [9, 14, 20, 33, 35–37, 44]. However, the majority of workonly
addresses tiling of perfectly nested loops. With perfectlynested
loops, tiling is possible when a band of loops is fully permutable.
The condition for permutability of a band of loops is that allcorre-
spondingly permuted dependence vectors must have non-negative
elements.
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The reasoning about legality of tiling of imperfectly nested loops
requires a more general dependence model than dependence vec-
tors. The earliest works to develop approaches to tiling imperfectly
nested loops [3, 27–29] effectively mapped the instances ofstate-
ments of an imperfectly nested loop (of possibly different nesting
depths in the input code) into a common embedding iteration space
and then performed tiling in the framework of the common embed-
ding space. There are a number of ways of embedding with signif-
icantly varying performance impact; we are not aware of any work
that has developed effective heuristics for this problem. An ef-
fective approach for tiling of imperfectly nested loops wasrecently
developed in the Pluto polyhedral transformation framework [8].

All of these works generate tiled code where the tile sizes are
fixed. Since the performance of tiled code varies greatly with the
choice of tile sizes, it is preferable to specify the tile sizes as run-
time parameters in the code. In such cases,parametric tilingrefers
to the generation of tiled code where tile loops are runtime parame-
ters. For example, such an approach would enable empirical search
for tile sizes.

The importance of parametric tiling is exemplified by the highly
successful ATLAS [41, 42] system for empirical tuning of BLAS
kernels. ATLAS uses parametrically tiled BLAS kernels thatare
repeatedly executed on the target architecture for different problem
sizes using an empirical search strategy that varies the tile sizes.
But the ATLAS system can only tune BLAS kernels. Further, it
was manually engineered by experts with insights into tiling for
optimization of BLAS kernels. There has been much recent interest
in developing generalized tuning systems that can similarly tune
and optimize codes input by users or library developers [5, 11, 39,
43]. An efficient parametric tiling tool is extremely valuable for
generating input tiled codes for such empirical tuning systems.

An innovative scheme for efficient parametric tiling of arbitrary
polyhedral statement domains for affine computations was devel-
oped by Renganarayana et al. [34] and extended to efficientlygen-
erate multi-level parametric tiled code [25]. However, this work
is only applicable to perfect loop nests. While the powerfultiling
approach of Pluto [8] can handle arbitrarily nested loops for affine
computations, it can only generate tiled code with fixed tilesizes.

In this paper we develop an effective approach to parametric
multi-level tiling of imperfectly nested affine loops. The key to the
approach described in this paper is the exploitation of the power
and effectiveness of the algorithm by Quilleré et al. [6, 7, 32] for
generating imperfectly nested code to scan unions of polyhedra,
using input scattering functions (affine schedules for the different



statements) satisfying a generalized tiling condition, along with the
development of a bounds-based approach to generation of paramet-
ric tiles by post-processing the abstract syntax tree (AST)of the
loop structure generated by the CLooG code generator.

The paper is structured as follows. Section 2 discusses various
previous efforts on tiling. Section 3 explains the key ideasbehind
our approach. A detailed discussion of the algorithm is presented in
Section 4. Section 5 provides experimental results and conclusions
are presented in Section 6.

2. RELATED WORK
Several previous efforts have addressed the tiling of loopsin-

volving arbitrary polyhedral statement domains. Before presenting
our approach, we provide some background information aboutthe
current state of the art.

2.1 Code Generation for Polyhedral Models
There has been significant progress over the last two decadesin

the development of powerful compiler frameworks for dependence
analysis and transformation of regular programs (programswith
with affine loop bounds and array access functions) [4, 8, 15,17,
26, 31], using a polyhedral abstraction of statement domains and
data dependences. However, until recently very little attention was
given to code generation, although it has a significant impact on the
effectiveness of the resulting code (we use the term “code genera-
tion” for the process of transforming a polyhedral representation of
computations back into loop structures). Recent advances in code
generation [6, 7, 32] have made polyhedral approaches very pow-
erful for transforming affine loop-based code. CLooG [6, 7, 13] is
a powerful state-of-the-art code generator that is widely used. The
code generation algorithm used in CLooG [6,7] is based on theone
developed by Quilleré, Rajopadhye and Wilde [32] (abbreviated
hereafter as QRW). The key idea of the QRW algorithm is to recur-
sively generate a sequence of loop nests scanning several unions of
polyhedra by separating them into disjoint polyhedra and generat-
ing the corresponding loops from the outermost to the innermost
levels.

2.2 Parametric Tiling of Perfect Loop Nests
Recent work from Colorado State University [19,25,34,40] has

addressed parametric multi-level tiling of perfect loop nests using
the polyhedral model. The tiled code generator TLOG [40] gener-
ates parametric single-level tiled code for perfect loop nests. The
TLOG algorithm decouples the problem of generating tiled code
into two sub-problems: 1) scanning the tile origins, and 2) scan-
ning the points within a tile. A novel technique is used to scan the
tile origins by generating a polyhedron (parameterized by tile sizes)
that includes all tile origins, followed by scanning of the polyhe-
dron using CLooG [34]. A similar approach to decomposing the
problem of tiled code generation into the above mentioned sub-
problems and scanning of the tile origins using polyhedral tech-
niques was earlier proposed by Goumas et al. [16]. However, the
approach of Goumas et al. only handles fixed tile sizes. TLOG
performs rectangular tiling, and hence requires that the input pro-
gram, if not originally rectangularly tileable, be transformed to
make it rectangularly tileable. Empirical evaluation of TLOG on
several benchmarks demonstrates that the code generation algo-
rithm is very efficient and that the quality of the code generated is
very good [34]. Kim et al. [25] generalized the TLOG algorithm to
develop HiTLOG [19] that can generate multi-level parametric tiled
code for perfectly nested loops. A significant benefit of HiTLOG is
that the cost of code generation for multi-level tiling is the same as
the cost of single-level tiled code generation. Jimenez et al. [22,23]

addressed parametric tiled code generation for non-rectangular it-
eration spaces. The code generated using that approach can suffer
from significant code expansion, but involves low overhead to scan
through the full tiles in the code.

2.3 Non-parametric Tiling of Imperfect Loop
Nests

Ahmed et al. [2, 3] were among the first to propose an approach
for tiling imperfectly nested loops. Their approach first determines
an affine embedding for each statement into a “product space”of
the iteration domains of each loop. The embedding is then opti-
mized for locality by using another transformation matrix to achieve
permutability of the dimensions. The embedding function and the
transformation are chosen to minimize reuse distances, based on a
heuristic. The effect of the embedding function is to createa sin-
gle perfectly nested loop (albeit of a much larger dimensionthan
finally needed), with guards created for each statement to ensure
correct execution. Post-processing to hoist and/or eliminate guards
is needed in order to create efficient final code. Lim et al. [29]
used an affine partitioning framework for tiling; the framework was
built on an affine partitioning algorithm they proposed earlier for
minimizing synchronization and maximizing parallelism [27, 28].
Recently, Chen et al. [12] have developed a script-based composi-
tional framework for transformations. The system can be used to
tile imperfectly nested loops. The framework requires tilesizes to
be specified constants. Some specialized works [10, 38, 45] exist
for tiling a restricted class of imperfectly nested loops. Parametric
tiling is not considered in any of these works.

Bondhugula et al. developed Pluto [8, 30], a system for tiling
arbitrary collections of imperfectly nested affine loops. Pluto finds
tiling hyperplanes that are targeted at data locality optimization for
sequential execution and communication minimization for parallel
execution. The tiling is performed using a generalization of the va-
lidity condition for tiling that was originally presented for perfectly
nested loops by Irigoin and Triolet [21]. Pluto also requires tile
sizes to be fixed for code generation.

Kim and Rajopadhye [24] recently developed a non-polyhedral
approach to parametric tiling of loop nests. The approach has poly-
nomial time complexity and is practically efficient. However, the
presentation of the work indicates that some manual steps have to
be used to properly handle scenarios where issues of tiling validity
arise.

3. OVERVIEW OF APPROACH
We begin by discussing the approach to generation of parametric

full tiles in the context of perfectly nested loops. We then discuss
the conditions under which imperfectly nested loops can be tiled,
followed by a sketch of our approach to separation of tiles for im-
perfectly nested loops.

3.1 Parametric Tiling for a Single Statement
Domain

To facilitate the presentation of the algorithm for tiling imper-
fectly nested loops, we first explain how the approach works in the
simpler context of a single statement domain. Consider the simple
2D perfectly nested loop shown in Figure 1(a). The perfect loop
nest contains an inner loopj whose bounds are arbitrary functions
of the outer loop variablei. Consider a non-rectangular iteration
space shown in Figure 1(e), corresponding to the perfect loop nest
in this example. Since loopi is outermost, strip mining or tiling this
loop is straightforward (i.e., to partition the loopi’s iteration space
into smaller blocks whose size is determined by the tile sizeparam-
eterTi). Figure 1(e) shows the partitioning of the iteration space



for ( i=lbi ; i<=ubi; i+=sti )
for ( j= lbj ( i ); j<=ubj(i ); j+=stj )

S(i , j );

(a) Original perfect loop nest

/∗ full tiles i ∗/
for ( it =lbi ; it <=ubi−(Ti−sti); it +=Ti) {

/∗ code tiled along dimensions i and j∗/
// ... omitted ...

}
/∗ epilog i ∗/
for ( i= it ; i<=ubi; i+=sti )

for ( j= lbj ( i ); j<=ubj(i ); j+=stj )
S(i , j );

(b) After tiling loop i

for it {
[compute lbv ,ubv]
if ( lbv<=ubv) {

[prolog j ]
[ full tiles j ]
[ epilog j ]

} else
[ untiled j ]

}
[ epilog i ]

(c) After tiling loopsi andj

/∗ full tiles i ∗/
for ( it = lbi ; it <=ubi−(Ti−sti); it +=Ti) {

/∗ compute lbv ,ubv∗/
lbv=MIN_INT; ubv=MAX_INT;
for ( i= it ; i<=it+(Ti−sti ); i+=sti ) {
lbv=max(lbv, lbj ( i )); ubv=min(ubv,ubj(i ));

}
if ( lbv<=ubv) {

/∗ prolog j ∗/
for ( i= it ; i<=it+(Ti−sti ); i+=sti )

for ( j=lbj ( i ); j<=lbv−stj; j+=stj )
S( i , j );

/∗ full tiles j ∗/
for ( jt =lbv; jt <=ubv−(Tj−stj);jt+=Tj)

for ( i= it ; i<=it+(Ti−sti ); i+=sti )
for ( j= jt ; j<=jt+(Tj−stj ); j+=stj )

S(i , j );
/∗ epilog j ∗/
for ( i= it ; i<=it+(Ti−sti ); i+=sti )

for ( j= jt ; j<=ubj(i ); j+=stj )
S( i , j );

} else
/∗ untiled j ∗/
for ( i= it ; i<=it+(Ti−sti ); i+=sti )

for ( j=lbj ( i ); j<=ubj(i ); j+=stj )
S( i , j );

}
/∗ epilog i ∗/
for ( i= it ; i<=ubi; i+=sti )

for ( j= lbj ( i ); j<=ubj(i ); j+=stj )
S(i , j );

(d) Detailed parametric tiled code

j

Iteration space

i
Ti

(e) Iteration space (tiled along dimensioni)

j

Full tiles

Epilog

Prolog
Tj

Prolog
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(f) Iteration space (tiled along dimensionsi andj)

Figure 1: Parametric tiling of a perfectly nested loop

along dimensioni. Figure 1(b) shows the corresponding code struc-
ture, with a first segment covering as many “full” tiling segments
alongi as possible (dependent on the parametric tile sizeTi). The
outer loop in the tiled code is the inter-tile loop that enumerates
all tile origins. Following the full-tile segment is an epilog sec-
tion that covers the remainder of iterations (to be executeduntiled).
The loop enumerates the points within the last incomplete group of
outer loop iterations that did not fit in a completei-tile of sizeTi.

For each tiling segment alongi, full tiles alongj are identified.
For ease of explanation, we show a simple “explicit scanning” ap-
proach to finding the start and end of full tiles, but as discussed
later, the actual implementation identifies tile boundaries directly
from affine loop bounds by evaluating the bound functions at corner
points of the outer tile extents. The approach is also applicable to
general loops with arbitrary non-affine and non-convex bounds, by
using explicit scanning. The essential idea is that the largest value
for thej-lower bound (lbv) is determined over the entire range of
an i-tile and it represents the earliest possiblej value for the start
of a full ij-tile. In a similar fashion, by evaluating the upper-bound
expressions of thej loop, the highest possiblej value (ubv) for the
end of a fullij-tile is found. If lbv is greater thanubv, no full tiles
exist over thisi-tile range. In Figure 1(f), this is the case for the last
full i-tile segment. For the firsti-tile segment in the iteration space
(the second vertical band in the figure, the first band being outside
the polyhedral iteration space),lbv is equal toubv. For the next
two i-tile segments, we have some full tiles, while the following
i-tile segment hasubv greater thanlbv but by a lesser amount than
the tile size alongj.

The structure of the tiled code is shown in abstracted pseudo-
code in Figure 1(c), and with explicit detail in Figure 1(d).At
each level of nesting, for a tile range determined by the outer tiling
loops, thelbv andubv values are computed. Ifubv is less thanlbv,
an untiled version of the code is used. Iflbv is less than or equal to
ubv, the executed code has three parts: a prolog forj values up to
lbv−stj (wherestj is the loop stride in thej dimension), an epilog
for j values greater than or equal tojt (wherejt is the inter-tile loop
iterator in thej dimension), and a full-tile segment in between the
prolog and epilog, to coverj values between the bounds. The code
for the full-tile segment is generated using a recursive procedure
that traverses the levels of nesting.

3.2 Tiling of Multi-Statement Domains
The iteration-space view of legality of tiling for a single state-

ment domain is expressed as follows: a hyperplaneH is valid for
tiling if Hdi ≥ 0 for all dependence vectorsdi [21]. This con-
dition states that all dependences are either along the tiling hyper-
plane or enter it from the same side. For a collection of poly-
hedral domains corresponding to a multi-statement program(from
imperfectly nested loops), the generalization of the abovecondi-
tion is: a set of affine-by-statement functionsφ (corresponding to
each statement in the program) represents a valid tiling hyperplane
if φt(~t) − φs(~s) ≥ 0 for each pair of dependences(~s,~t) [8]. The
affine-by-statement functionφ maps each instance of each state-
ment to a point in a dimension of a target iteration space. A set of
linearly independentφ functions maps each instance of each state-
ment into a point in the multi-dimensional target space. If eachφ



for ( i=lbi ; i<=ubi; i+=sti ) {
for ( j1=lbj1 ( i ); j1<=ubj1(i ); j1+=stj1 )

S1(i , j1 );
for ( j2=lbj2 ( i ); j2<=ubj2(i ); j2+=stj2 )

S2(i , j2 );
}

(a) Original imperfect loop nest

Epilog j2

S2b

Full tiles j2

S2a

S1b

S2b

Prolog j2

S1a Epilog j1

Tj

j

Full tiles j1

Prolog j1

i
T

Prolog j1

Ti

(b) One full tile segment alongi dimension

for it {
[compute lbv1,ubv1]
if ( lbv1<=ubv1) {

[prolog j1 ]
[ full tiles j1 ]
[compute lbv2,ubv2]
if (lbv2<=ubv2) {

[ epilog j1 + prolog j2 ]
[ full tiles j2 ]
[ epilog j2 ]

} else
[ epilog j1 + untiled j2 ]

} else {
[compute lbv2,ubv2]
if (lbv2<=ubv2) {

[ untiled j1 + prolog j2 ]
[ full tiles j2 ]
[ epilog j2 ]

} else
[ untiled j1 + untiled j2 ]

}
}
[ epilog i ]

(c) Parametric tiled code

/∗ full tiles i ∗/
for ( it =lbi ; it <=ubi−(Ti−sti); it +=Ti) {

// ... omitted ...
if (lbv1<=ubv1) {

// ... omitted ...
if (lbv2<=ubv2) {

/∗ [epilog j1 + prolog j2] ∗/
for ( i= it ; i<=it+(Ti−sti ); i+=sti ) {

for ( j1=j1t ; j1<=ubj1(i ); j1+=stj1 )
S1(i , j1 );

for ( j2=lbj2 ( i ); j2<=lbv2−stj2;j2+=stj2 )
S2(i , j2 );

}
// ... omitted ...

} else
// ... omitted ...

} else {
// ... omitted ...
if (lbv2<=ubv2) {

// ... omitted ...
} else

/∗ [ untiled j1 + untiled j2] ∗/
for ( i= it ; i<=it+(Ti−sti ); i+=sti ) {

for ( j1=lbj1 ( i ); j1<=ubj1(i ); j1+=stj1 )
S1(i , j1 );

for ( j2=lbj2 ( i ); j2<=ubj2(i ); j2+=stj2 )
S2(i , j2 );

}
}

}
/∗ epilog i ∗/
// ... omitted ...

(d) Partially detailed parametric tiled code

Figure 2: Parametric tiling of an imperfectly nested loop

function satisfies the above generalized tiling condition,the multi-
statement program can be rectangularly tiled in the transformed tar-
get iteration space. If only a (contiguous) subset of theφ functions
satisfies the generalized tiling condition, tiles can be formed using
families of hyperplanes from that subset.

Efficient code generation for multi-statement domains was asig-
nificant challenge until the development of the QRW algorithm. Its
refinement and implementation in CLooG is now widely used for
generating code for multi-statement domains. The Pluto system
uses CLooG for generating tiled code for imperfectly nestedloop
programs. However, Pluto cannot generate parametric tiledcode.
The key idea behind our new approach to parametric tiling of im-
perfect loop-nests is to combine the power of the QRW algorithm
(for sorting and separating polyhedra corresponding to multiple-
statement domains) with a bounds-based approach to separating
tiles, using the AST structure generated by the QRW algorithm for
non-tiled imperfectly nested loop code generation.

As elaborated later in the next section, first an input program
is transformed to a target domain using scattering functions that
satisfy the above generalized tiling condition. For this purpose, we
simply use scattering functions generated by the Pluto system, but
any set of schedules that satisfy the generalized tiling condition can
be used instead. The imperfectly nested loop structure generated
by use of the QRW algorithm is scanned to generate the tiled code
structure as described in the next sub-section.

3.3 Separation of Tiles for Overlapping State-
ment Domains

We use a simple imperfectly nested loop example shown in Fig-
ure 2(a) to illustrate the approach to tile separation. The imper-

fectly nested loopi considered in this example contains two in-
ner loops with loop bounds that are functions of loop iterator i
and other global parameters such as tile sizes and input problem
sizes. The QRW algorithm generates efficient (non-tiled) loop code
for multi-statement polyhedral domains arising from imperfectly
nested loops. Where feasible, the sorting of polyhedra within the
QRW algorithm enables separation of statements in the point-wise
(non-tiled) code. The key tiling question for this two-statement ex-
ample is: if the two statementsS1 andS2 have been separated out
in the point-wise code by the QRW algorithm, under what condi-
tions can we also separate out tiles corresponding to these two state-
ments? Our approach to addressing this question is to use lower and
upper bound values for the two statements (computed in a similar
manner to the perfect-nest example shown earlier), and exploit the
fact that all dependences are lexicographically non-negative in all
the tiling dimensions (due to satisfaction of the generalized tiling
condition).

Consider the example shown in Figure 2(a) as an imperfectly
nested loop structure generated by the QRW algorithm. Figure 2(b)
depicts the corresponding statement domains ofS1 andS2 within
one full tile segment along thei dimension. Sincelbv1 is less than
or equal toubv1, we have a separable set of tiles forS1, and since
lbv2 is less than or equal toubv2, there are also separable tiles
for S2. The epilog ofS1 and prolog ofS2 need to be combined
and interleaved to ensure satisfaction of any dependences between
S1 to S2 or vice versa. The staircase-like dependences between
statement instancesS1a, S1b, S2a andS2b shown in Figure 2(b)
exemplify the need for combining and interleaving the epilog of S1

and the prolog ofS2. The pseudocode in Figure 2(c) shows the
different possible cases to be considered and the code correspond-



for ( t=0;t<=T−1;t++) {
for ( i=1; i<=N−2;i++)

B[i ]=(A[i −1]+A[i]+A[i+1])/3; /∗ S1 ∗/
for ( i=1; i<=N−2;i++)

A[i]=B[i ]; /∗ S2 ∗/
}

(a) Original code

S1 : (t′, i′) = (t, 2 ∗ t + i)

S2 : (t′, i′) = (t, 2 ∗ t + i + 1)

(b) Affine transformation (skewing)

for ( t=0;t<=T−1;t++) {
B[1]=(A[1+1]+A[1]+A[1−1])/3;
for ( i=2∗t+2;i<=2∗t+N−2;i++) {

B[−2∗t+i]=(A[1+−2∗t+i]+A[−2∗t+i]
+A[−2∗t+i−1])/3;

A[−2∗t+i−1]=B[−2∗t+i−1];
}
A[N−2]=B[N−2];

}

(c) Skewed code

for ( t=0;t<=T−1;t++) {
for ( i=2∗t+1;i<=2∗t+1;i++)

B[1]=(A[1+1]+A[1]+A[1−1])/3;
for ( i=2∗t+2;i<=2∗t+N−2;i++) {

B[−2∗t+i]=(A[1+−2∗t+i]+A[−2∗t+i]
+A[−2∗t+i−1])/3;

A[−2∗t+i−1]=B[−2∗t+i−1];
}
for ( i=2∗t+N−1;i<=2∗t+N−1;i++)

A[N−2]=B[N−2];
}

(d) Skewed code with one-time loops

Figure 3: Example of pre-processing: 1D Jacobi code

ing to the four combinations. Details of some of the combinedand
interleaved loops can be seen in Figure 2(d).

4. PARAMETRIC TILING ALGORITHM
In this section, we present details of the approach to paramet-

ric multi-level tiling. Given a sequence of arbitrarily nested affine
loops, tiling involves five steps:

1. Pre-processing: Extraction of statement polyhedra, andgen-
eration of a valid affine schedule where a band of the schedul-
ing functions satisfies the generalized tiling condition;

2. Use of the QRW algorithm to scan the statement polyhedra
and to generate tileable loop code, with preservation of com-
plete embedding information;

3. Parsing of the loop code to build rectangularly tileable loop
ASTs;

4. Recursive traversal of the ASTs for parametric tiling;
5. Conversion of the parametrically tiled loop ASTs into target

code.

4.1 Pre-processing and AST Generation
The tiling algorithm takes as input a sequence of arbitrarily nested

loops with loop bounds and array access expressions that areaffine
functions of outer loop variables and program parameters. First, the
imperfect loop nest is made rectangularly tileable, using suitable
transformations such as skewing. The required transformations are
captured in the form of scattering functions (or affine scheduling
functions) provided to CLooG. While any suitable scheduling func-
tions that satisfy the generalized tiling condition (described in Sec-
tion 3.2) may be used, for our experiments described later, we have
used the scattering functions generated by Pluto [8].

The second step in the tiling procedure is the generation of aloop
code for the imperfectly nested loop structure by application of the
QRW polyhedral scanning algorithm. We use an adaptation of the
implementation of the QRW algorithm in CLooG to ensure that all
embedding information for all statements is explicitly preserved in
the generated loop code. Normally, CLooG generates optimized
imperfectly nested code structures where each statement isonly
enclosed by as many loops as its inherent dimensionality. Thus, if
a multi-statement domain corresponding to a 2D statement and a
3D statement were scanned, the output code would be imperfectly
nested, with only two surrounding loops for the 2D statementand
three surrounding loops for the 3D statement. However, thisopti-
mized code structure loses the embedding information for the 2D
statement within the 3D embedded domain. But this embedding
information is essential for our approach to separation of multi-
statement tiles. We have therefore adapted the CLooG code gener-
ator to explicitly generate redundant "one-trip-count" loops so that

all statements have as many surrounding loops as the dimensional-
ity of the embedding target space, thereby explicitly preserving the
embedding of all statements. As we discuss later, a post-processing
step after tiling removes these redundant one-iteration loops in the
final generated code.

Figure 3 illustrates the pre-processing steps and the effect of the
adaptation of CLooG to create redundant loops for explicit rep-
resentation of complete embedding information for all statement
domains. Figure 3(a) shows the code for 1D Jacobi stencil com-
putation. It is not tileable due to data dependences with nega-
tive components. Skewing can be used to eliminate these back-
ward dependences and make rectangular tiling valid. Figure3(b)
shows the affine transformation generated by Pluto, used to en-
able rectangular tiling. Figure 3(c) shows the output code after
the transformation is processed using CLooG. We observe there
is a doubly nested loop along with two “peeled” 1D statements
B[1]=(A[1+1]+A[1]+A[1-1])/3 and A[N-2]=B[N-2] . The output from
the adapted version of CLooG to explicitly preserve the embedding
information for these two 1D loops in the 2D embedding domainis
shown in Figure 3(d).

The output code of the adapted CLooG is then parsed into loop
ASTs, which become the input of the transformation module that
implements the tiling algorithm described in the followingsub-
section.

4.2 Tiled Loop Generation Algorithm
We first present the tiling algorithm for single-level tiling. The

algorithm (Figure 4) has a tail-recursive structure. It takes as input
a sequence of arbitrarily nested loops and returns a sequence of
transformed loops that scan the tiled iteration space.

As broadly discussed earlier in Section 3, the algorithm performs
adepth-first traversalof the input ASTs (i.e., dimension by dimen-
sion), to decompose each loop AST node into a sequence of loops:
a prolog loop, a full-tile loop, and an epilog loop.

The algorithm for generating inter-tile and intra-tile loops is pro-
vided in Figure 5. In the pre-processed 1D Jacobi code shown in
Figure 3(d) for example, the inter-tile loop of the outermost loop
t is for (tt=0; tt<=T-1-(Tt-1); tt+=Tt), and its intra-tile loop isfor (t=tt;
t<=tt+(Tt-1); t+=1), wherett andTt are the inter-tile loop iterator
and the tile size parameter corresponding to loopt, respectively.

It is possible that a tiled statement polyhedron has no full tiles
along a dimension. Hence, at each dimension of the iterationspace,
we need to find the start and end points of possible full tiles for the
tile ranges determined by the outer tiling loops. In programs con-
taining affine loop nests, the determination of the start andend of
full tiles can be done statically as illustrated in Figure 6.We utilize
the fact that the boundary values of the full tiles of the outer dimen-
sions are already known and that the loop bounds corresponding to



T ILE : Generate parametric tiled loops (main procedure).

Input: Input ASTs:(T1, . . . ,Tn)
Output: Transformed ASTs

ReturnAUXT ILE ((T1, . . . , Tn), (), (), ())

AUXT ILE : Generate parametric tiled loops (auxiliary tail-recursive procedure).

Input: Input ASTs:(TI1 , . . . ,TIp
); Outer loops:(L1, . . . ,Lq); Transformed ASTs:(TT1

, . . . , TTr
); Partially transformed ASTs:(TP1

, . . . , TPs
)

Output: Transformed ASTs

1. Termination condition (base case):
If the input AST list is empty, constructL ← (TP1

, . . . , TPs
) enclosed with intra-tile loopsLintratile1

, . . . ,Lintratileq
that were obtained

from GET I NTRA(Li) for 1 6 i 6 q. Then return(TT1
, . . . , TTr

,L).

2. Handling of non-loop statement:
If TI1 is a not a loop, then returnAUXT ILE ((TI2, . . . , TIp

), (L1, . . . ,Lq), (TT1
, . . . ,TTr

), (TP1
, . . . ,TPs

, TI1)).

3. Generation of full-tile-start and full-tile-end statements:
Generate an assignment statementSlbv ← lbv = Elb; to determine the start of full tiles, and an assignment statementSubv ← ubv = Eub; to
determine the end of full tiles, where(Elb, Eub)← F IND L BVUBV(TI1 , (L1, . . . ,Lq)).

4. Generation of prolog loop:
ConstructL ← a copy of loopTI1 with its upper bound expression being replaced withlbv − st, wherest is the loop stride ofTI1 . Then
generateLprolog ← (TP1

, . . . , TPs
,L) enclosed with intra-tile loopsLintratile1

, . . . ,Lintratileq
that were obtained fromGET I NTRA(Li)

for 1 6 i 6 q.

5. Generation of full-tile loop and its children:
Recurse to the next dimension to get the transformed child ASTs(T ′

C1
, . . . ,T ′

Cm
)← AUXT ILE ((TC1

, . . . ,TCn
), (L1, . . . ,Lq, TI1), (), ()),

whereTC1
, . . . ,TCn

are the child ASTs ofTI1 . ConstructL ← a copy of loopTI1 with lbv and ubv as its lower and upper bounds
(respectively). Then generateLfulltile ← (T ′

C1
, . . . ,T ′

Cm
) enclosed withLintertile that were obtained fromGET I NTER(L).

6. Generation of epilog loop:
GenerateLepilog ← a copy of loopTI1 with its lower bound expression being replaced withit whereit is the iterator ofLintertile. Note
thatLepilog is only partially transformedsince at this point it has not been enclosed with the intra-tile loops ofL1, . . . ,Lq .

7. Optimization for no opening-boundary tiles:
If the lower bound expression ofTI1 is free of any loop iterators ofL1, . . . ,Lq , then return
AUXT ILE ((TI2, . . . ,TIp

), (L1, . . . ,Lq), (TT1
, . . . ,TTr

,Lprolog,Lfulltile), (Lepilog)).

8. Generation of if-there-are-full-tiles condition and statement blocks for the true/false branches:
Generate an if-statementSif ← if (lbv 6 ubv) { Tt1 ; . . . ; Ttv ; } else { Tf1

; . . . ;Tfw
; }, where:

(Tt1 , . . . , Ttv )← AUXT ILE ((TI2, . . . ,TIp
), (L1, . . . ,Lq), (Lprolog,Lfulltile), (Lepilog)) and

(Tf1
, . . . ,Tfw

)← AUXT ILE ((TI2, . . . ,TIp
), (L1, . . . ,Lq), (), (TP1

, . . . ,TPs
,TI1 )).

9. Ordering of the generated statements:
Return(TT1

, . . . ,TTr
,Slbv,Subv,Sif ).

Figure 4: Parametric tiling algorithm

the dimension are affine functions of the loop iterators of the outer
dimensions. As an example, the start and end of full tiles in the sec-
ond inner loop of the pre-processed 1D Jacobi code (Figure 3(d))
are2*(tt+(Tt-1))+2 and2*(tt)+N-2 respectively, wherett is the inter-
tile loop iterator of the outer loopt andTt is the corresponding tile
size variable. A lower bound can have multiple affine expressions
contained in a max function (or a min function in case of upper
bound). In such a case, we process each expression independently.

The tail-recursive procedure begins with the following input: (1)
a list of input ASTs at the same nesting level that need to be tiled,
(2) a sequence of outer loops ordered from outermost to innermost,
(3) all preceding ASTs (at the same nesting depth) that have pre-
viously been transformed, and (4) all preceding ASTs that have
not been fully transformed (described in details later). The output
of the recursive procedure is a sequence of transformed loops that
scan a set of tiles whose union covers all points in the iteration
space corresponding to all given loop nests, for the ranges of the
outer tiles. In the algorithm, for a given loop at one dimension, the
start and end of possible full tiles (lbv andubv respectively) are
statically computed in Step 3. The two bounds are subsequently
used to split the given loop into prolog, full-tile loop, andepilog
(in Steps 4, 5 and 6 respectively). The prolog spans over the loop
iteration points up tolbv − st (wherest is the stride of the loop).

The full-tile loop covers the points inside all full tiles betweenlbv
andubv. The epilog enumerates the remaining iteration points.

The runtime check generated in Step 8 detects the presence of
full tiles. If lbv is less than or equal toubv, then full tiles can
possibly exist and therefore a full-tile loop (preceded by aprolog
and succeeded by an epilog) will be executed; otherwise, an untiled
version of the loop is used. Two tail-recursive calls are made to pro-
duce a tiled version and an untiled version of the given loop.Each
generated loop version then becomes a separate statement block
of the constructed if-statement. Applying the tiling algorithm to a
simple 2D loop nest that containsn inner loops will yield a tiled
code with a total of2n possible tile cases. For instance, the 2D
imperfect loop nest shown in Figure 2 has two inner loops and its
tiled code contains four different tile cases. The last stepof the
tiling algorithm (Step 9) places the generated if-statement after the
two assignment statements used to computelbv andubv.

When the lower bound expression of a loop has no references
to the outer loop iterators, the value oflbv will always be constant
and identical to the original lower bound. So,lbv computation be-
comes unnecessary. This also implies that the tiled iteration space
has no opening boundary tiles (i.e., no prolog). Consequently, the
if-conditional statement need not be produced sincelbv is always
less than or equal toubv and the loop iteration space can always



GET I NTER : Build an inter-tile loop.
GET I NTRA : Build an intra-tile loop.

Input: Input loop AST:T
Output: Inter-tile loop ofT (for GET I NTER); Intra-tile loop ofT (for
GET I NTRA )

1. Generate an inter-tile loop iteratorit and a tile size parameterTi.

2. Lintertile ← for (it=lb; it6ub-(Ti-st); it+=Ti)
Lintratile ← for (i=it; i6it+Ti-st; i+=st)
where i, lb, ub, st are the iterator, the lower bound, the upper
bound and the stride of loopT (respectively).

3. ReturnLintertile for GET I NTER.
ReturnLintratile for GET I NTRA .

Figure 5: Generation of inter-tile loop and intra-tile loop

F IND L BVUBV: Find the lower and upper bounds of full-tile loop.

Input: Input loop AST:T ; Outer loops:(L1, . . . ,Ln)
Output: Start and end points of possible full tiles in loopT

1. Elb ← a copy of the lower bound expression ofT
For each outer loop iteratori in the affine expressionElb:

Let L be the outer loop inL1, . . . ,Ln that has an iterator
i. If the coefficient ofi is positive, then substitutei with
the upper bound of the inter-tile loop ofL. Otherwise, sub-
stitutei with the lower bound of the inter-tile loop ofL.

2. Eub ← a copy of the upper bound expression ofT
For each outer loop iteratori in the affine expressionEub:

Let L be the outer loop inL1, . . . ,Ln that has an iterator
i. If the coefficient ofi is positive, then substitutei with
the lower bound of the inter-tile loop ofL. Otherwise, sub-
stitutei with the upper bound of the inter-tile loop ofL.

3. Return(Elb, Eub).

Figure 6: Static determination of the start and end of full tiles

be partitioned into full and partial tiles using a full-tileloop and
an epilog (Step 7). Similarly in the case of a loop with an upper
bound that is free of outer loop iterators,ubv computation is not
needed; but, the epilog still needs to be generated for enumerating
the iteration points that have not been executed by the full-tile loop.

The tail-recursive tiling procedure takes two auxiliary parame-
ters: transformed ASTs and partially transformed ASTs, both used
to accumulate the tiling result. A transformed AST is one that is
already enclosed with intra-tile loops that correspond to the outer
loops. A partially transformed AST means that its enclosurewith
the intra-tile loops of the outer loops is deferred to the next few re-
cursions when there are no more ASTs at the current nesting level
(Step 1), or when the prolog of the succeeding loop gets formed
(Step 4). Such a deferred enclosure enables the combining and in-
terleaving of all contiguous prolog, epilog and untiled loop, to en-
sure that any data dependences across distinct statement domains
are not violated.

4.3 Enhancements to the Core Algorithm
We now address a number of enhancements to the core algorithm

that are implemented in the tiled loop generator.

4.3.1 Multi-Level Tiling
A multi-level tiled loop is a loop nest where tiling is applied

multiple times to create different levels of hierarchical tiles, with
each lower-level tile nested in the one above. Multi-level tiling is
important for exploiting data locality in deep memory hierarchies.

GET I NTER : Build an outermost-level inter-tile loop.
GET I NNERI NTER I NTRA : Build inner-level inter-tile loops and an
intra-tile loop.
GET I NTRA : Build an intra-tile loop corresponding to the outermost-
level inter-tile loop.

Input: Input loop AST:T ; Number of levels of tiling:n.
Output: Outermost-level inter-tile loop ofT (for GET I NTER); All
inner-level inter-tile loops and intra-tile loop ofT (for GET I NNER-
I NTER I NTRA ); Intra-tile loop that corresponds to the outermost-level
inter-tile loop ofT (for GET I NTRA )

1. Generate inter-tile loop iteratorsit1 , . . . , itn and tile size pa-
rametersT1i

, . . . , Tni
.

2. Lintertilen
← for (itn =lb; itn6ub-(Tni

-st); itn+=Tni
)

Lintertilen−1
← for (itn−1

=itn ; itn−1
6itn +Tni

-T(n−1)i
;

itn−1
+=T(n−1)i

)
. . .

Lintertile1
← for (it1=it2 ; it16it2+T2i

-T1i
; it1+=T1i

)
Lintratile ← for (i=it1 ; i6it1+T1i

-st; i+=st)
L′

intratile
← for (i=itn ; i6itn +Tni

-st; i+=st)
wherei, lb, ub, st are the iterator, the lower bound, the upper
bound and the stride of loopT (respectively).

3. ReturnLintertilen
for GET I NTER.

Return (Lintertilen−1
, . . . ,Lintertile1

,Lintratile) for
GET I NNERI NTER I NTRA .
ReturnL′

intratile
for GET I NTRA .

Figure 7: Generation of multi-level inter-tile loops and intra-
tile loops

We use the algorithm depicted in Figure 7 to generate multi-level
inter-tile loops and intra-tile loop for a given loop AST. Tiling a
loop nest usingn levels of tiling requires generation ofn groups of
inter-tile loops and one group of intra-tile loops. The group of inter-
tile loops at the outermost level (leveln) enumerate the origins of
the largest tiles, and the successive groups of inter-tile loops (at
levelsn − 1 to 1) traverse the origins of the smaller nested tiles.
The innermost intra-tile loops visit all points inside eachsmallest
tile. The multi-level loop tiling assumes that the outer-level tile
sizes are a multiple of the inner-level tile sizes.

The core algorithm described in Figure 4 generates efficientpara-
metric single-level tiled code by subdividing each statement poly-
hedron into partial and full tiles. Since the tiling loops that iterate
over full tiles can be known at compile time, the main tiling al-
gorithm can be extended to generate multi-level tiled code.From
the implementation perspective, the multi-level tiling extension in-
volves adding a new input parametern to the recursive tiling pro-
cedure that describes the number of tiling levels, and modifying the
procedure calls to GETINTER and GETINTRA to include the num-
ber of tiling levels. A modification on the terminating step (Step 1)
of the core algorithm is also required. This step generates the intra-
tile loops of the outer loops, and then uses the loops to enclose the
partially transformed ASTs. We modify this step using the follow-
ing condition. If the partially transformed ASTs contain noloops,
then we currently are at the deepest nesting level, meaning that
the enclosing tiling loops iterate over full tiles. Hence, instead of
generating intra-tile loops, we use GETINNERINTERINTRA to gen-
eraten− 1 sets of inter-tile loops starting from leveln− 1 to level
one, and another set of intra-tile loops at the innermost level. On
the other hand, if the outer tiling loops do not enumerate full tiles,
we only generate intra-tile loops that correspond to the outermost-
level inter-tile loops (using GETINTRA).

Figure 8 presents an example of generation of a multi-level tiled
code. The generated two-level tiled code corresponds to thesimple
2D perfect loop nest example shown previously in Figure 1(a). In



/∗ full tiles i ∗/
for ( it2 =lbi ; it2 <=ubi−(T2i−sti); it2+=T2i) {

/∗ compute lbv ,ubv∗/
// ... omitted ...
if ( lbv<=ubv) {

/∗ prolog j ∗/
for ( i= it2 ; i<=it2+(T2i−sti ); i+=sti )

for ( j=lbj ( i ); j<=lbv−stj; j+=stj )
S(i , j );

/∗ full tiles j ∗/
for ( jt2 =lbv; jt2 <=ubv−(T2j−stj);jt2+=T2j)

for ( it1 =it2 ; it1 <=it2+(T2i−T1i);it1+=T1i)
for ( jt1 =jt2 ; jt1 <=jt2+(T2j−T1j);jt1+=T1j)

for ( i=it1 ; i<=it1+(T1i−sti ); i+=sti )
for ( j= jt1 ; j<=jt1+(T1j−stj ); j+=stj )

S(i , j );
/∗ epilog j ∗/
for ( i= it2 ; i<=it2+(T2i−sti ); i+=sti )

for ( j=jt2 ; j<=ubj(i ); j+=stj )
S(i , j );

} else
/∗ untiled j ∗/
for ( i= it2 ; i<=it2+(T2i−sti ); i+=sti )

for ( j=lbj ( i ); j<=ubj(i ); j+=stj )
S(i , j );

}
/∗ epilog i ∗/
// ... omitted ...

Figure 8: Parametric two-level tiled code for the perfectly
nested loop from Figure 1(a)

the figure, we observe that the outermost inter-tile loops now use
level-two loop iterators (it2 and jt2 ) and level-two tile size vari-
ables (T2i

andT2j
). The full-tile loop ofj is tiled along bothi and

j dimensions for two levels of tiling; whereas the prolog, theepilog
and the untiled loop ofj are strip-mined alongi dimension for only
one level of tiling (i.e., there is no inter-tile loopit1 ).

4.3.2 Optimizing Boundary Tiles
The multi-level tiling approach discussed so far does not opti-

mize the partial/boundary tiles. This may result in lower perfor-
mance as the total area of all boundary tiles can generally bevery
large especially when large tile sizes are used at the outermost level
of tiling. Thus, it is important to optimize the boundary tiles to
achieve high-performance tiled code. After loops that enumerate
points inside boundary tiles are completely generated in Steps 1
and 4 of the core algorithm, we can further tile the boundary tiles
by recursively calling the multi-level tiling procedure with a tile
size that is used at the next lower level of tiling (i.e.,n − 1). In
this way, all newly formed boundary tiles can be recursivelytiled
and refined into smaller full and partial tiles. To identify at com-
pile time if the loop formed in the terminating step (Step 1) is a
boundary-tile loop (not enumerating full tiles), the same checking
condition used in the multi-level tiling extension is applied. Fig-
ure 9 shows an example of an iteration domain recursively tiled for
three levels of tiling. From the figure we can clearly see the dif-
ference in terms of the non-tiled area, between using and notusing
boundary tile optimization.

4.3.3 Optimizing One-Time Loops
As mentioned earlier, loops running exactly once are explicitly

inserted into the input ASTs for the tiled loop generation. Gen-
erating tiled code for loop structures that contain one-time loops
using the tiling algorithm will of course generate correct results.

However, we can substantially reduce the code generation time by
always keeping one-time loops completely untiled. The truecase
of the if-condition used to check the presence of full tiles need not
be evaluated and generated because the start and end of full tiles
are always the same for one-time loops. Furthermore, the iterator
variable of one-time loop is never actually used inside the scope
of the loop body since its value has already been propagated prop-
erly by CLooG. This is exemplified in the pre-processed 1D Jacobi
code shown previously in Figure 3(d). Consequently, later removal
of one-time loops is always safe. As a post-processing aftertiling,
these dummy one-time loops get removed from the final tiled code
to make it efficient.

5. EXPERIMENTAL EVALUATION
In this section, we discuss experiments carried out to assess the

effectiveness of the developed tiling approach, which has been im-
plemented in a code generation tool, PrimeTile. More details about
PrimeTile can be found in [1,18]. Comparisons are made with two
state-of-the-art tiled-code generators, Pluto [30] and HiTLOG [19]
(through one of the reviews for this paper, we became aware of
another tiled-code generator [24] that has very recently been devel-
oped, but that system was unavailable to perform a comparison).
PrimeTile is more general and powerful than both of these com-
pared systems: 1) Pluto can only generate code with fixed tilesizes
for imperfectly nested loops, while PrimeTile generates parametric
tiled code, suitable for direct use in generalized versionsof auto-
tuning systems such as ATLAS; 2) HiTLOG can generate paramet-
ric tiled code only for perfectly nested affine loops, while PrimeTile
generates parametrically tiled code for arbitrary imperfectly nested
affine codes. The primary comparisons are with Pluto (version
0.4.1), since it can generate tiled code for imperfectly nested loops.
For the special case of perfectly nested loops, PrimeTile was com-
pared with both Pluto and HiTLOG.

Eight benchmarks were used, including linear algebra kernels
and stencil computations, as listed in Table 1. Three of the bench-
marks have perfectly nested loops, and the other five have imper-
fectly nested loops. As pointed out earlier, due to data dependences,
skewing and other transformations may be needed to make rectan-
gular tiling legal; the need for such skewing transformation is indi-
cated in the fourth column. The fifth column displays the maximum
loop-nest depth for each benchmark. The last column describes the
input sizes used for the experiments. In order to perform a fair
comparison of PrimeTile, Pluto and HiTLOG, we made use of a
convenient feature of the Pluto system – by running Pluto without
the --tile option, which causes Pluto to simply transform the
code without tiling, but using exactly the same hyperplanes(scat-
tering functions) that would have been used to generate tiled code if
the--tile option had been used. This ensures that any transfor-
mation (such as skewing) needed for legality of rectangulartiling
of the loops is performed. Intermediate CLooG files generated by
Pluto were used as inputs for HiTLOG and PrimeTile, ensuringthat
all three systems performed tiling on an identically pre-processed
version of the input code.

All experiments were run on a multicore Intel Xeon workstation
with dual quad-core E5462 Xeon processors (8 cores total) running
at 2.8 GHz (1600 MHz FSB), 32 KB L1 cache, 12 MB of L2 cache
(6 MB shared per core pair), 16 GB of DDR2 FBDIMM RAM, run-
ning Linux kernel version 2.6.25 (x86-64). We used version 4.2.4
of g++ (GCC) with -O3 optimization flag to compile the generated
tiled codes.
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Figure 9: Iteration space tiled for three levels of tiling; w/o boundary tile optimization (left) and w/ boundary tile optimization (right)

Name Description Imperfect Require Max. loop Input problem
nest skewing depth sizes

LU LU factorization Yes No 3 N = 2500
2D FDTD 2D Finite Difference Time Domain method Yes Yes 3 T = 2000, N = 2000
1D Jacobi 1D Jacobi method Yes Yes 2 T = 2000, N = 6 × 106

Cholesky Cholesky factorization Yes No 3 N = 5000
TriSolver Triangular solver Yes No 3 N = 3000

Seidel 3D Gauss Seidel No Yes 3 T = 2000, N = 2000
DSYRK Symmetric rankk update No No 3 N = 3000
DTRMM Triangular matrix multiplication No No 3 N = 3000

Table 1: Benchmarks used in the experiments

1 level of tiling 2 levels of tiling 3 levels of tiling 4 levels of tiling
Pluto Prime- Prime- Pluto Prime- Prime- Pluto Prime- Prime- Pluto Prime- Prime-

Tile(f) Tile(n) Tile(f) Tile(n) +script Tile(f) Tile(n) +script Tile(f) Tile(n)
LU 0.03 0.27 0.27 0.20 0.48 0.28 - 1.59 0.28 - 6.88 0.29

2D FDTD 0.25 0.56 0.56 3.02 1.84 0.57 - 9.24 0.58 - 63.66 0.59
1D Jacobi 0.03 0.28 0.30 0.06 0.37 0.29 0.31 0.68 0.30 3.87 1.62 0.30
Cholesky 0.07 0.37 0.37 0.74 0.82 0.39 13.74 2.79 0.42 - 11.21 0.45
TriSolver 0.08 0.31 0.32 1.77 0.52 0.32 - 1.28 0.34 - 3.77 0.37

Table 2: Tiled code generation times (in seconds): imperfectly nested loops

1 level of tiling 2 levels of tiling 3 levels of tiling 4 levels of tiling
Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi-

Tile(f) Tile(n) TLOG Tile(f) Tile(n) TLOG +script Tile(f) Tile(n) TLOG +script Tile(f) Tile(n) TLOG
Seidel 0.02 0.32 0.32 0.09 0.06 0.85 0.33 0.09 9.57 4.10 0.34 0.10 - 221.01 0.35 0.10

DSYRK 0.02 0.26 0.26 0.12 0.05 0.34 0.26 0.11 2.63 0.69 0.27 0.11 - 1.81 0.28 0.10
DTRMM 0.02 0.26 0.26 0.11 0.10 0.38 0.26 0.09 28.42 0.85 0.27 0.09 - 2.49 0.28 0.09

Table 3: Tiled code generation times (in seconds): perfectly nested loops

5.1 Efficiency of Code Generation
This section evaluates the efficiency of the code generationpro-

cess with the developed tiling tool. We show how well each tiling
method scales with respect to the number of tiling levels in the gen-
erated code. Two tiled versions are generated using PrimeTile. One
version (labeled “PrimeTile(f)”) is a tiled code in which bound-
ary tiles are also fully recursively tiled (using smaller tile sizes).
The other version (labeled “PrimeTile(n)”) represents a tiled code
in which boundary tiles are not tiled at all. The time taken for
code generation for the five imperfectly nested benchmarks and the
three perfectly nested benchmarks are given in Table 2 and Table 3,
respectively. With PrimeTile and Pluto, the time taken to gener-
ate code increases with the number of levels of tiling, whilethe
time taken by HiTLOG remains almost the same for increasing lev-
els of tiling. The time taken to generate the PrimeTile(n) version
increases insignificantly for increasing levels of tiling.However,

there is a performance tradeoff compared to the PrimeTile(f) ver-
sion as illustrated later in the section. PrimeTile is implemented
with the ability to control the depth of tiling recursion forthe bound-
ary tiles. Hence, versions can be generated that vary in the level of
tiling performed for the boundary tiles, in between the extremes
corresponding to PrimeTile(n) and PrimeTile(f).

The Pluto system only performs multi-level tiling for up to two
levels. In our experiments, we used a script that extends Pluto
for additional levels of tiling. Pluto supplies the code generator
(CLooG) with higher dimensional iteration domains using tile shape
constraints (using the approach of Ancourt and Irigoin [4])and du-
plicated scattering functions for the tile space. We manually ana-
lyzed the CLooG input file generated by Pluto for each benchmark
to create a script to parse the CLooG input file and modify the ex-
tracted domains and scattering functions with additional tiling di-
mensions using the same method that Pluto uses.



LU 2D FDTD 1D Jacobi Cholesky TriSolver Seidel DSYRK DTRMM
Pluto 12.3 68.0 26.8 40.7 30.5 108.6 36.7 38.7

PrimeTile(n) 11.5 74.4 26.5 40.5 30.9 87.1 24.3 34.6
PrimeTile(f) 11.0 70.3 26.3 38.4 29.3 86.5 23.0 33.1

HiTLOG - - - - - 89.1 22.9 34.1
Pluto(unroll-jam) 8.5 61.3 22.1 38.4 30.5 77.0 15.1 27.5
PrimeTile(unroll) 8.0 54.5 18.9 28.9 18.4 75.1 11.5 17.9
PrimeTile(regtile) 6.2 58.6 13.5 25.0 16.7 76.6 16.2 21.9
HiTLOG(unroll) - - - - - 78.5 11.4 19.7
HiTLOG(regtile) - - - - - 77.8 16.3 23.9

Table 4: Best execution times (in seconds)

Pluto fails to generate tiled code for more than four levels of
tiling (because of overflow errors in calls to a polyhedral library
within CLooG). PrimeTile successfully generates tiled code for any
number of levels of tiling (we tried up to 8 levels). Except for the
case of single-level tiling, PrimeTile is generally fasterthan Pluto.
PrimeTile is implemented in Python, and hence is inherentlyslower
than the C-based code generator executables in Pluto and HiTLOG.

5.2 Performance of Generated Tiled Code
In this section, we assess the efficiency of the tiled code gen-

erated by PrimeTile. We generated tiled code using one levelof
tiling and two levels of tiling for various tile sizes. For one-level
tiling, the considered tile sizes are2n for n ranging from 1 to 10.
For two-level tiling, the outer tile sizes (T2) are 128, 256, 512, 768,
and 1024, and the inner tile sizes (T1) range from 2 toT2/2. We
used square tiles just for ease of experimentation. We generated
tiled code using the three tiled code generators and measured the
execution time for all combinations of tile sizes, to selectthe best-
performing tile sizes. Table 4 lists the best execution times of the
tiled codes generated by the three systems.

We further optimized the best-performing tiled code to assess
the benefits of separating full tiles. For tiled code generated by
PrimeTile and HiTLOG, we performed an additional level of tiling
on the best tiled code – unroll the full tiles at the innermostlevel,
and apply scalar replacement optimization to improve locality at
the register level. We tried all possible combinations of register tile
sizes with values of 1, 2 and 4. In Table 4, we show the the best exe-
cution times of the tiled codes enhanced using unrolling andscalar
replacement for PrimeTile and HiTLOG (rows corresponding to
tiling methods with suffix “(regtile)”). Pluto provides a loop unroll-
jam facility that is controlled using the--ufactor=<factor>
optimization flag. We used unroll factors ranging from 1 to 10to
generate unroll-jammed code from Pluto. However, Pluto does not
apply scalar replacement optimization. Hence, for a fair compari-
son with Pluto, we also present the performance results of register
tiled code without scalar replacement for PrimeTile and HiTLOG
(rows corresponding to tiling methods with suffix “(unroll)”). Ad-
ditional details, such as the best tile sizes and best unrollfactors
corresponding to the optimized cases reported in Table 4, are avail-
able in another report [18].

For imperfectly nested loops, the performance of the tiled code
generated by Pluto is comparable to that generated by PrimeTile.
For perfectly nested loops, the performance results demonstrate
that the parametric multi-level tiled codes generated by PrimeTile
and HiTLOG consistently outperform the fixed multi-level tiled
code from Pluto. The results also indicate that the execution times
of the tiled codes generated by PrimeTile and HiTLOG are very
comparable.

Due to the loop unrolling and scalar replacement optimizations,
the register tiled code performs significantly better than the code
that is tiled only for different levels of caches. The best unroll-

jammed code from Pluto consistently performs worse compared to
the unrolled code from PrimeTile or HiTLOG. The unrolled and
register tiled versions from PrimeTile and HiTLOG exhibit compa-
rable performance.

6. CONCLUSIONS
Tiled loops with parameterized tile sizes (not compile-time con-

stants) facilitate runtime feedback and dynamic optimizations used
in iterative compilation and automatic tuning. Previous paramet-
ric multi-level tiling approaches were restricted to perfectly nested
loops, while previous solutions to tiling for imperfect loop nests
only handled fixed tile sizes. This paper describes an effective ap-
proach to parametric multi-level tiling of imperfectly nested affine
loops. The key idea behind the algorithm is the use of a bounds-
based approach to multi-statement tile separation by analysis of the
AST generated by Quilleré et al.’s polyhedra scanning algorithm,
in conjunction with schedules that satisfy a generalized tiling con-
dition for multi-statement domains. Separation of partialtiles from
full tiles is also achieved, thereby enabling optimizations such as
register tiling. The effectiveness of the tiling approach has been
demonstrated through experimental evaluation using a number of
computational benchmarks.

The PrimeTile software and the modified version of CLooG are
available at [1].
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