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An Evaluation of the TRIPS Computer System

Abstract

The TRIPS processor is designed to demonstrate a wide-issue large window microarchitecture while toler-
ating emerging technology scaling challenges such as increasing wire delaysand power consumption. TRIPS
employs a new instruction set architecture (ISA) called Explicit Data Graph Execution (EDGE) which rene-
gotiates the boundary between hardware and software. EDGE ISAs use a block-atomic execution model in
which blocks consist of dataflow instructions. This model preserves sequential memory semantics, enabling
the system to expose high levels of instruction-level concurrency without a parallel programming model. Each
TRIPS processor may execute up to 16 instructions per cycle from a windowof 1024 instructions, using a dis-
tributed microarchitecture with small tiles that communicate via control and data networks. While many
aspects of TRIPS have appeared elsewhere, this paper performs a detailed ISA and performance analysis
to explore how well the hardware and software exploit the EDGE ISA. Compared to conventional ISAs, the
block-atomic model increases concurrency at a cost of more instructions executed, and replaces register and
memory accesses with more efficient direct instruction-to-instruction communication. We compare perfor-
mance, using cycles counts, to commercial processors. On simple benchmarks, TRIPS outperforms the Core
2 by 40% and a factor of 3 on compiled code and hand-optimized code, respectively. On SPEC CPU2000,
an Intel Core 2 outperforms TRIPS compiled code in most cases, althoughTRIPS roughly matches the per-
formance of a Pentium 4. The lessons learned from the prototype point to several ISA, microarchitecture, and
compiler adjustments that address the weaknesses of the current system.

1 Introduction

Growing on-chip wire delays, coupled with complexity and power limitations, have placed severe constraints

on the issue-width scaling of conventional superscalar architectures. Because of these trends, major micro-

processor vendors have abandoned architectures for single-threadperformance and turned to the promise of

multiple cores per chip. While many applications can exploit multicore systems, this approach places sub-

stantial burdens on programmers to parallelize their codes. Despite these trends, Amdahl’s law dictates that

single-thread performance will remain key to the future success of computersystems [7].

In response to semiconductor scaling trends, we designed a new architecture and microarchitecture in-

tended to extend single-thread performance scaling beyond the capabilities of superscalar architectures. The

TRIPS system represents the first instantiated prototype of theses research efforts. As a part of this work, we

designed a new class of instruction set architectures (ISAs), called Explicit Data Graph Execution (EDGE),

which renegotiate the boundary between hardware and software. EDGEISAs contain a block-atomic ex-

ecution model in which blocks consist of dataflow instructions. This model preserves sequential memory

semantics, thus enabling a system that can expose greater instruction level concurrency without requiring

explicit software parallelization. We constructed a custom 170 million transistor ASIC, a hybrid-dataflow

instruction set (TRIPS ISA), TRIPS system circuit boards, a runtime system, performance evaluation tools,

and a robust compiler that optimizes and translates C and Fortran programs to the TRIPS ISA. The TRIPS
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microarchitecture is physically distributed into tiles connected in a nearest-neighbor fashion via microarchi-

tecture networks (micronetworks). The distributed processing cores issue up to 16 instructions per cycle from

an instruction window of up to 1024 instructions. The combination of the EDGE ISA and the TRIPS dis-

tributed microarchitecture is designed to exploit concurrency and reducethe influence of long wire delays by

exposing the spatial nature of the microarchitecture to the compiler for optimization.

The details of the TRIPS architecture, microarchitecture, and compiler appearin prior publications. This

paper describes a detailed performance analysis that explores how wellthe TRIPS compiler and hardware

meets its goals of exploiting concurrency, hiding latency, and distributing control. Using the TRIPS hard-

ware and detailed microarchitectural simulators to gather detailed statistics not available from the hardware,

we compare the EDGE ISA, microarchitecture, and performance to modern processors using hand optimized

and compiled benchmarks. We find that the EDGE ISA incurs a substantial overhead in total number of

instructions fetched and executed, relative to conventional RISC architectures like the PowerPC, because of

extensive predication and instruction overheads required by the dataflow model.

Our microarchitecture analysis shows that TRIPS can keep much of the instruction window full; compiled

code shows an average of 450 total instructions in flight (887 peak for best benchmark) and hand optimized

code shows an average of 630 (1013 peak). While much higher than conventional processors, the number of

instructions in flight is less than the maximum of 1024 because the compiler does notcompletely fill blocks

and the hardware experiences pipeline stalls and flushes due to I-cache misses, branch mispredictions, and

load dependence mispredictions. A strength of the EDGE ISA and distributed control is that TRIPS requires

less than half as many register and memory accesses as the PowerPC because it converts these into direct

producer/consumer communications. Furthermore, the communicating instructions are usually on the same

tile or an adjacent tile, which makes them power efficient and minimizes latency.

We compare the performance of TRIPS to the Intel Core 2, Pentium III, and Pentium 4 using hardware per-

formance counters on compiled and hand-optimized programs. On the EEMBC suite, the Core 2 outperforms

TRIPS compiled code by 30%. On SPEC-2000, TRIPS compiled code achievesonly half the performance of

the Core 2 on integer benchmarks but matches the performance of the Core2 on floating point benchmarks.

We find that TRIPS outperforms the Core 2 by an average factor of 3 measured in cycles on hand-optimized

benchmarks and that the Core 2 outperforms the Pentium 3 and Pentium 4 by an additional factor of 2.

These experiments suggest that TRIPS-like processors have the capability to achieve substantial perfor-

mance improvements over conventional microprocessors by exploiting concurrency. However, realizing this

performance potential relies on the compiler to better expose concurrency and create large blocks of TRIPS

instructions, as well as microarchitectural innovations in control distribution andbranch prediction.

2



2 The TRIPS Processor Architecture

The foundations of the TRIPS ISA and microarchitecture were published in 2001 [14]. Between 2001 and

2004, we refined the architecture to a point where it could be realized in a silicon prototype and began to

implement the TRIPS compiler. The TRIPS chip taped out in August 2006 and was shown to be fully func-

tional (no known bugs) in the lab in February 2007. The TRIPS prototype isimplemented in a 130nm ASIC

technology and contains 170 million transistors. The simplest TRIPS system consists of four TRIPS chips,

each with 2GB of local DRAM, connected to a motherboard. While the system is designed to be scalable to

eight motherboards (64 processors), this paper examines a single TRIPSprocessor.

EDGE ISA: TRIPS implements the Explicit Data Graph Execution (EDGE) ISA [1], which was conceived

with the goal of high-performance, single-threaded, concurrent, anddistributed execution in which the mi-

croarchitecture maps compiler-generated dataflow graphs to a parallel execution substrate. Two defining fea-

tures of an EDGE ISA are block-atomic execution [12] and direct instructioncommunication within a block,

together enabling efficient hybrid dataflow execution. The TRIPS ISA aggregates up to 128 instructions into

a single block that obeys ablock-atomicexecution model where each block is logically fetched, executed, and

committed as a single entity. This amortizes the per-instruction bookkeeping over a large number of instruc-

tions and reduces branch predictions and register accesses. Furthermore, this model reduces the frequency of

control decisions, providing the additional latency tolerance to make distributed execution practical. Blocks

communicate through the register file and memory. Within a block,direct instruction communicationdeliv-

ers results from producer instructions to consumer instructions in dataflow fashion. Direct communication

supports distributed execution within a block by eliminating accesses to a shared register file.

Figure 1 shows an example of a sequence of RISC code and the corresponding TRIPS EDGE code. The

read and write instructions at the beginning and end of the TRIPS code encode the values that are injected

from the register file into the dataflow instruction block (R0, R1) as well as the value that is ejected from the

block (W0). Instruction operands within the block, such as$t2, are passed directly from producer to con-

sumer without an intervening register file. Because the instructions encode their targets, rather than a register

in a common register file, a 32-bit instruction encoding has room for at most two targets. When more targets

are required, such as the value read in instruction R0, the program needsamove instruction (I0) to replicate

the value flowing in the dataflow graph. The TRIPS code also shows that branch and non-branch instructions

can be predicated. To enable the hardware to detect block completion, the execution model requires that all

block outputs (register writes and stores) be produced regardless of the predicated path within the block. The

null instruction produces a token that when passed through thest (store) indicates that the store output has

been produced, but does not modify memory. In our experiments, we do notclassify these dataflow execution
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Figure 1: RISC code with its corresponding TRIPS EDGE code and dataflow graph

helper instructions as useful instructions when comparing to conventional ISAs. The dataflow graph at the

right shows graphically the effective encoding of the instructions in the EDGE binary.

TRIPS Processor Microarchitecture: Because the goals of the TRIPS microarchitecture include scala-

bility and distributed execution, it has no global wires, reuses a small set of components on routed networks,

and can be extended to a wider-issue implementation without source recompilation orISA changes. Figure 2

shows the tile-level block diagram and a die photo. Each TRIPS chip contains two processors and a secondary

memory system, each inter-connected by one or more micronetworks. This paper analyzes the performance of

a single TRIPS processor and its distributed microarchitecture on single-threaded codes. Here we summarize

the basics of the architecture and a more detailed discussion of the microarchitecture can be found in [18].

Each of the processor cores uses five types of tiles: one global control tile (GT), 16 execution tiles (ET),

four register tiles (RT), four data tiles (DT), and five instruction tiles (IT). The tiles communicate using six

micronetworks that implement distributed control and data protocols. The main micronetwork is the operand

network (OPN), which replaces a bypass network in a conventional superscalar processor. The OPN is a

two-dimensional, wormhole-routed, 5x5 mesh network that delivers one 64-bit operand per link per cycle [6].

The other networks implement distributed instruction fetch, dispatch, I-cacherefill, and completion/commit.

TRIPS fetches and executes each TRIPS block,en masse. The GT sends a block address to the ITs which

deliver the computation instructions of the block to the reservation stations in the 16 execution tiles (ETs),

8 per tile as specified by the compiler; the ITs also deliver the register read/write instructions to reservation

stations in the RTs. The RTs read values from the global register file and send them to the ETs, starting the

dataflow execution. The GT instigates the commit protocol once each of the DTsand RTs receive all of the

block outputs; the commit protocol updates the data caches and register file with the speculative state of the

block. The GT uses its next block predictor (branch predictor) to begin executing the next block while previ-
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(a) Block diagram (b) Die photo

Figure 2: TRIPS prototype

ous blocks are still executing. The TRIPS prototype can simultaneously execute up to eight 128-instruction

blocks (one non-speculative, seven speculative) for an aggregateinstruction window size of 1024 instructions.

At 130 nm, each TRIPS processor occupies approximately 92mm
2 of a total chip area of 330mm

2. If

scaled down to 65 nm, a TRIPS core would be approximately 23mm
2, similar to the 29mm

2 of a Core 2 pro-

cessor. A direct comparison is difficult because TRIPS is implemented with ASIC technology and lacks all of

the hardware required to support an operating system. Nonetheless, TRIPS has a greater density of arithmetic

units in a similar area and an architecture that enables greater issue width andinstruction window scaling.

TRIPS Compiler: TRIPS has a fully functional compiler that can compile all of the C and Fortran

SPEC2000 benchmarks [2, 11]. Using a machine-independent intermediate representation (IR), the com-

piler performs conventional optimizations such as inlining, unrolling, common subexpression elimination,

scalar replacement, and some TRIPS-specific optimizations such as tree-height reduction to expose paral-

lelism. With the renegotiation of the boundary between software and hardware, the compiler must perform

two additional tasks compared with conventional compilers: block formation and instruction placement. The

compiler aggregates basic blocks into larger, optimized TRIPS blocks using predication, tail duplication, and

loop optimizations [11]. This process is similar to hyperblock formation, but TRIPS blocks have additional

constraints that simplify the hardware [21]. The compiler exploits dataflow predication in the ISA to fuse code

from multiple control paths into the same TRIPS block [22]. The compiler also determines which tile of the

grid each instruction will dynamically execute when it is fetched and its operands are ready. This placement

algorithm seeks to expose concurrency and minimize communication overheads (distance and contention) be-
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Processor Memory Proc/Mem L1 Cache L2 Cache Memory
System Speed Speed Speed Ratio Capacity (D/I) Capacity Capacity

TRIPS 366 MHz 200 MHz 1.83 32 KB / 80 KB 1 MB 2 GB
Core 2 1600 MHz 800 MHz 2.00 32 KB / 32 KB 2 MB 2 GB
Pentium 4 3600 MHz 533 MHz 6.75 16 KB / 12 Kµ ops 2 MB 2 GB
Pentium III 450 MHz 100 MHz 4.50 16 KB / 16 KB 512 KB 256 MB

Table 1: Reference platforms

tween dependent instructions [2]. Placement optimizes performance without restricting functional portability

as an EDGE binary can be run on different hardware topologies (numberof tiles) without recompilation.

3 Evaluation Methodology

We evaluate the EDGE ISA and the TRIPS microarchitecture and compare its performance with conventional

architectures using the on-board performance counters in the TRIPS hardware and in commercial platforms.

We also use TRIPS simulators and a PowerPC simulator to gain deeper insights inSections 4 and 5. All

performance measurements in Section 6 are from the actual hardware.

TRIPS Prototype System: A TRIPS chip consists of two processors that share a 1 MB L2 static NUCA [9]

cache and 2 GB of DDR Memory, but we use only one processor in all experiments. Each processor has a

private 32 KB L1 data cache and a private 80 KB L1 instruction cache. The processor and memory speeds

can be adjusted using a phased-lock loop (PLL); all of the experiments run the processor core at 366 MHz

and the DRAM with 100/200 MHz DDR clocks. TRIPS system calls interrupt program execution, halt the

processor, and are proxied to an off-chip commercial processor running Linux. Because the TRIPS cycle

counters increment only when the processor is not halted, the program performance measurements ignore the

time to process system calls. The tools we use to measure cycles in the commercialsystems also exclude

operating system execution time, thus providing a fair comparison.

Simulators: We use a functional TRIPS simulator and a low-level microarchitecture simulatorto gather

statistics not available from the hardware [24]. A Power PC functional simulator [17] produces statistics that

measure loads, stores, and register accesses fromgcccompiled PowerPC–AIX binaries.

Reference Platforms: We compare performance of the TRIPS prototype to three reference platforms from

the Intel x86 product family (Pentium III, Pentium 4, and Core 2) using the PAPI software package to access

the Intel processors’ hardware counters [15]. Because each machine is implemented in a different process

technology, we use cycle counts as the relative performance measure. Table 1 shows the platform configura-

tions including processor and DDR DRAM clock speed and the memory hierarchy capacities. Cycle count is

an imperfect metric because some architectures, particularly the Pentium 4, emphasize clock rate over cycle

count. However, we expect that the TRIPS microarchitecture, with its partitioned design and no global wires,

could be implemented in a clock rate equivalent to the Core 2, given a custom design and the same process
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Suite # of Benchmarks Characteristics

Kernels 4 transpose (ct), convolution (conv), vector-add (vadd), matrix multiply(matrix)
VersaBench 3 of 10 bit and stream (fmradio, 802.11a, 8b10b)
EEMBC 30 of 30 Embedded benchmarks
Simple 15 Hand optimized versions of Kernels, VersaBench, and 8 EEMBC benchmarks
SPEC 2000 Int 10 of 12 All but gap and C++ benchmarks
SPEC 2000 FP 8 of 14 All but ammp, sixtrack, and 4 Fortran 90 benchmarks

Table 2: Benchmark suites

technology. Another pitfall with this comparison is that the relatively slow clock rate of TRIPS may make

memory accesses less expensive relative to high clock-rate processors. To account for this, we under-clocked

the Core 2 from 1.8 GHz to 1.6 GHz to equalize the processor/memory speed ratio toTRIPS. However, a

slower clock has little effect on the measured applications because they are largely L2 cache resident.

Benchmarks: Table 2 shows the benchmark suites used, from simple kernels to complex uniprocessor

workloads. We compiled these applications with the TRIPS C and Fortran compiler [21], and hand optimized

the compiler-generated IR to study the performance potential of TRIPS. We extensively hand optimized four

scientific kernels on TRIPS: matrix transpose (ct), convolution (conv), vector add (vadd), and matrix multiply

(matrix). In addition, we hand placedmatrix andvadd to achieve high performance. We hand optimized 3

stream and bit operation benchmarks from the VersaBench suite [16] and8 medium-sized benchmarks from

30 EEMBC benchmarks [4]. The most complex benchmarks come from SPEC2000 and include 10 integer

and 8 floating-point benchmarks [23]. Three SPEC programs that temporarily fail to build correctly with our

toolchain are omitted, but will be included in a final version of this paper. SimPoint regions are used to select

appropriate simulation points for a detailed evaluation of the SPEC benchmarks [20].

4 ISA Evaluation

This section examines how well the compiled and hand-optimized programs map into theISA and charac-

terizes block size, instruction overheads, and code size. We compare compiled and hand-optimized TRIPS

programs to programs compiled for a RISC ISA (PowerPC) processor to quantify the relative overheads of the

EDGE ISA. We also present the means of the EEMBC, SPEC INT, and SPECFP suites to show the impact

of the application characteristics. All of the data in this section was gathered through simulation because of

the nature of the statistics needed.

4.1 TRIPS Block Size and Composition

A key parameter in specifying a block-atomic EDGE ISA is the block size. Earlyexperience demonstrated

that creating programs with average block sizes of 20+ instructions was not difficult with standard compiler

transformations, and that larger blocks would lead to a larger instruction window, better amortize block over-

heads, and have the potential for better performance. We chose a maximumblock size of 128 instructions as
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Figure 3: TRIPS block size and composition for compiled (C) and hand-optimized (H) benchmarks

an aggressive compiler target, to stress the software system to form larger blocks.

Figure 3 weighs each block’s size by execution frequency to show the average block size, and breaks out the

number of arithmetic instructions, memory instructions, branch/jump/call/return instructions, test instructions

(used for branches and predication), andmove instructions (used to fan out intermediate operands). The figure

does not include the register read/write instructions since they reside in the block header and are not part of

the 128 instructions.Fetched Not Executedinstructions were fetched speculatively but never executed, either

because they did not receive a matching predicate, or because they did not receive all of their operands due

to predicated instructions earlier in the block’s dataflow graph.Executed Not Usedinstructions were fetched

and executed speculatively but whose values were not used due to predication later in the dependence graph.

For some programs, such asa2time, the number of mispredicated instructions accounts for half the to-

tal instructions within a block.A2timecontains several nestedif/then/else statements; to minimize

the number of blocks executed, the compiler produces code that speculatively executes both thethen and

else clauses simultaneously within one block and inserts a predicate computation to select the correct out-

puts. Nonetheless, this aggressive predication can improve system performance because it eliminate branch

mispredictions and enables the implementation of a pipeline with higher front-end fetchbandwidth.

The remainder of the instruction types, tests, control flow, memory, and arithmetic, are required for cor-

rect execution. The number of useful instructions (excludingmove and mispredicated instructions) varies.

Some programs with complex control have only 10 instructions per block while others with more regular

control have as many as 80 instructions per block. To implement dataflow execution in a block, the EDGE

ISA requiresmove instructions. First, since a TRIPS instruction has a fixed width, it can target atmost two

consumers. The compiler must therefore insertmove instructions to fanout values consumed by more than

two instructions. Second, predicate merge points, corresponding tophi merge nodes in the dataflow graph,
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Figure 4: TRIPS instructions normalized to PowerPC for compiled (C) and hand-optimized (H) benchmarks

sometimes require predicatedmove instructions. The result is thatmove instructions account for nearly 20%

of all instructions in a block, more than anticipated at the start of the design.

Compiled code has an average block size of 64 instructions, but with high variance, ranging from 30 to over

110 instructions. Hand optimizations to improve performance further increase block size. For example, the

hand-optimized versions ofospfandct have blocks two and three times larger than their respective compiled

versions. These increases are often driven by instruction optimizations thatdecrease block size followed by

opportunities to merge adjacent smaller blocks or by increasing unrolling factors to fill blocks. In summary,

both the hand-optimized and compiled code utilize the aggressive 128-instructionblock size to achieve aver-

age block sizes ranging from 20 to 128. To expose concurrency and aggressively speculate, the ISA overheads

includemove instructions and useless instructions, which are a significant fraction of the in-flight instructions.

4.2 TRIPS ISA versus PowerPC

To quantify the differences between an EDGE ISA and a popular RISC ISA, we compare to the PowerPC. Fig-

ure 4 shows fetched instruction counts on TRIPS normalized to PowerPC. Because of limitations in the current

PowerPC infrastructure, the following graphs includes the mean of only 8 of the 18 SPEC benchmarks (5 INT

and 3 FP). To compare expressive power of the compute instructions, the TRIPS instructions do not include

register read/write instructions that appear in the block header, norNOPs in underfull blocks. For both TRIPS

and PowerPC, the instruction count omits incorrectly fetched instructions due tobranch mis-predictions.

Not surprisingly, the number of useful instructions executed on TRIPS andPowerPC are similar because

the TRIPS ISA is composed of RISC-style instructions. On compiled code, TRIPStends to execute more

instructions due to prototype simplifications, which introduce inefficiencies in constant generation and sign

extension unrelated to its execution model. For hand-optimized benchmarks, TRIPS executes fewer instruc-
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Figure 5: Storage accesses normalized to PowerPC for compiled (C) and hand-optimized (H) benchmarks

tions because its larger register set (128 registers) eliminates store/load pairsand because more aggressive

unrolling exposes more opportunities for instruction reduction. The number of fetched but mis-predicated

instructions varies across the benchmarks, depending on the degree of predication. Overall, TRIPS may need

to fetch as many as 2–6 times more instructions than the PowerPC, due to aggressive predication.

4.3 Register and Memory Access

TRIPS inter-block communication is through registers and memory while intra-blockcommunication is di-

rect between instructions, reducing the number of accesses to registers and memory. The TRIPS prototype

has a total of 128 registers spanning four register banks (32 registersper bank); each bank has only one read

and one write port. The larger register file benefits the memory system as fewer register fills and spills are

required. Eliminating store/load pairs ultimately improves performance as communicationthrough registers

is faster than communication through memory [13]. Compared to a conventional architecture, TRIPS replaces

memory instructions for less expensive register reads and writes, and replaces register reads and writes for

less expensive direct communication between producing and consuming instructions.

The left bar stack of each pair in Figure 5 shows the number of loads and stores on TRIPS normalized to the

total number of loads and stores on the PowerPC. On average, TRIPS executes about half as many memory

instructions as the PowerPC and as few as 15%, due to the bigger register fileand direct communication.

Several of the hand-optimized benchmarks have significantly fewer memory accesses than the compiled ver-

sions because they register allocate fields in structures and small arrays, whereas the compiler currently does

not register allocate these. The right bar stack shows the number of registerfile reads, writes, and operand

network communications on TRIPS normalized to the total number of register file reads and writes on the

PowerPC. Because of direct operand communication, TRIPS requires only 10–20% of the register accesses
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needed on the PowerPC. The top bar of the stack shows that the relative number of operands transmitted

through direct communication far exceeds the number of register reads and writes on TRIPS.

Comparing each hand-optimized benchmark to its compiled counterpart on average, there are fewer regis-

ter accesses, OPN communications, and memory accesses. The hand-optimizedversion aggressively register

allocates more memory accesses by using programmer knowledge about pointer aliasing. It also has fewer in-

structions because it removes instructions with aggressive peephole optimizations and eliminates unnecessary

sign extensions. On average, the sum of register reads, writes, and direct communication is about the same as

the number of PowerPC register reads and writes. On some benchmarks, specifically SPEC INT, the tempo-

rary communication is large because of the distribution of predicates and communication of useless values by

mis-predicated instructions. Figure 4 shows that the SPEC INT benchmarks fetch approximately half useless

instructions, which leads to much more communication than on the PowerPC. In a conventional architecture,

the register file broadcasts an instruction’s result to other instructions. In TRIPS, fanout may require a tree of

move instructions, which increase the number of copies of the original operand that are communicated.

4.4 Code Size

The TRIPS ISA increases dynamic code size over a PowerPC significantly. Each block has 128 32-bit in-

structions, a 128-bit header, 32 22-bit read instructions, and 32 six-bit write instructions. The compiler inserts

NOPs when a block has fewer than 32 reads or writes or fewer than 128 instructions.NOPs consume space in

the level-one I-cache but are not executed. We compared the dynamic code of TRIPS to the PowerPC by com-

puting the number of unique instructions that are fetched during execution. The dynamic code size of TRIPS

averages about 6 times larger than the PowerPC, but with a wide variance.The number of unique useful

instructions for TRIPS is about 2 and 3 times that of the PowerPC, indicating thatinstruction replication due

to TRIPS block optimizations accounts for about half of the code bloat. Themove instructions and the block

header (including useful register read and write instructions) account for about 30% of the total instructions.

The TRIPS prototype compresses underfull instruction blocks in memory and in the L2 cache down to

32, 64, or 96 instructions, depending on block capacity, which reduces the expansion factor over PowerPC

to a factor of 4. Block compression in the instruction cache may unduly slow downinstruction fetch or re-

quire more complex instruction routing from the instruction cache banks to the executiontiles. Experiments

generally show a low instruction cache miss rate on small and medium sized benchmarks, but some SPEC

benchmarks have miss rates in the range of 15–25%, indicating that instructioncache pressure is a serious

problem for real applications. Fortunately, partitioned architectures, such as TRIPS, that bank the instruction

cache can be easily designed with larger overall instruction caches to mitigate this type of cache pressure.
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Figure 6: Average number of in-flight Instructions for compiled (C) and hand-optimized (H) benchmarks

5 Microarchitecture Evaluation

The primary goal of the TRIPS microarchitecture is to support a large instruction window with a partitioned

design. One important aspect is the fraction of the instruction that is full, which depends on the TRIPS block

predictor. Another aspect is the bandwidth of the partitioned memory system and the usage of the operand

network. This section explores these unique aspects using detailed statistics gathered from simulation.

5.1 Filling a 1K Instruction Window

Each TRIPS block contains up to 128 instructions and the hardware can execute up to eight blocks concur-

rently so the maximum dynamic instruction window size, with full blocks and accurate speculation size, is

1024 instructions. Figure 6 shows the average number of TRIPS instructionsin the window across a variety

of hand and compiled benchmarks. This metric multiplies the average number of blocks in-flight (speculative

and non-speculative) and the average number of instructions per block. Compiled codes, produce an average

of 450 total instructions of which 200 are useful. The hand-optimized programs with larger blocks achieve a

mean of 630 total instructions, more than 380 of which are useful. Compared with issue windows of 64 and 80

on modern superscalar processors, TRIPS exposes more concurrency, but at the cost of more communication.

In addition to predication, the principal speculation mechanisms in TRIPS are the store-load dependence

predictor and the next-block predictor. When the load/store queue detectsthat a speculatively issued load has

executed incorrectly, it flushes the block pipeline and enters the load into the dependence predictor’s simple

partitioned load-wait table in the data tile. For the SPEC benchmarks, the predictor is effective in part because

the compiler reduces the number of loads and stores (as discussed in Section 4.3), resulting in fewer than one

block flush per 2000 useful instructions, without overly constraining speculative load issue.

The TRIPS next-block predictor selects the next block to be fetched [18]. It consists of a 5 KB local/global
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Figure 7:Prediction breakdown for Alpha 21264-like branch predictor on basic blocks (A), TRIPS block predictor on
basic blocks (B), TRIPS block predictor on hyperblocks (H) and improved TRIPS block predictor on hyperblocks (I)
normalized to total predictions made for basic blocks

tournament exit predictor that predicts which exit branch will be taken from the TRIPS block (one of up to

eight) and a 5 KB multi-component target predictor that predicts the target address of this exit branch. Fig-

ure 7 shows the correct/misprediction breakdown for four different configurations: the first bar (A) shows the

breakdown for an Alpha 21264-like conventional tournament branch predictor predicting TRIPS-compiled

basic block code, the second bar (B) shows the TRIPS block predictor predicting basic block code, the third

bar (H) shows the TRIPS prototype block predictor predicting hyperblock code,and the final bar (I) shows

a “lessons learned” TRIPS block predictor that could be used in future designs constructed by scaling up the

target predictor component to 9 KB. Each bar is normalized to the total number ofpredictions made for basic

block code. The average MPKI (Mispredictions Per 1000 Instructions, omittingmove and mispredicated in-

structions) observed for these four configurations on SPEC INT are 14.9, 14.8, 8.5 and 6.9 respectively. SPEC

FP applications have an MPKI of 0.9, 1.3, 1.1 and 0.8 respectively.

Predicting TRIPS blocks rather than basic blocks can improve accuracy, because hard-to-predict branches

are converted to predicates, and can degrade accuracy, because predication can obscure correlated branches in

the history. Although the prototype predictor (H) has a higher misprediction rate than a conventional predictor

(A), it has a lower MPKI because it makes fewer predictions (70% fewer on SPEC INT and 40% fewer on

SPEC FP). The improved TRIPS predictorI, reduces SPEC INT MPKI by 19% and SPEC FP MPKI by 27%.

More sophisticated multi-component long-history predictors [8, 19] could be used to improve the TRIPS

predictor, as well as improving the efficiency of the exit encoding. Additionally, increasing the size of the

currently small branch target buffer, call target buffer, and historywill improve accuracy. Lower prediction

accuracy has a significant effect on the utilization of the instruction window and, as discussed in Sections 5.3

and 6, has a strong correlation with performance. More aggressive next-block predictors would dramatically

improve prediction accuracy, but may still fall short of modern branch prediction accuracies.
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5.2 Feeds and Speeds

In this section, we explore the performance of the banked memory system and operand network, two defining

features of the distributed TRIPS implementation. For the memory system, we developed kernels that saturate

the bandwidth of each of the banks, providing insight into the types of optimizations required for memory-

bound programs. For the operand network, we measure traffic load to determine how well the compiler’s

placement algorithm minimizes the distance between communicating instructions.

Memory System: The TRIPS prototype employs an address-partitioned memory system that divides the

L1 data cache into four 8-KB, single-ported data banks and the L2 cacheinto sixteen 64-KB, single-ported

memory banks. The table in Figure 8 shows the achieved memory bandwidth on the hardware at a core speed

of 366 MHz for a hand-optimized vector add (vadd) kernel. With careful instruction placement,vaddcan

attain nearly 100% of the core’s peak of four memory operations per cycle (10.5 GB/sec), indicating effective

use of the partitioned L1 data cache. By adjusting the vector size ofvadd, we constructed a microbenchmark

with an access pattern to maximize the consumption of the L2 cache and main memory bandwidth. This

program nearly reached the theoretical peak of the L2 and a majority of themain memory bandwidth provided

by the dual DDR memory controllers. While the benchmark achieves only 57.8% of the maximum interface

bandwidth, the vast majority of the loss is due to the memory controller protocol and not to the TRIPS design

itself. Similar techniques and principles were used to hand-optimize dense matrixkernels [3] and lessons

learned from these case studies were used to improve the compiler’s instruction placement algorithms.

Operand Network: The Operand Network (OPN) connects the TRIPS processor tiles and transmits

operands between execution tiles (ETs), the register file (RTs), and the data cache (DTs) [6]. The TRIPS

compiler’s instruction placer takes as input the tile topology and the dependencies between the instructions in

each block. It optimizes the instruction placement to exploit concurrency andminimize the distance between

dependent instructions along the program’s critical path. The graph in Figure 8 displays the breakdown of

the hop count for OPN traffic. On average, ET–ET operand traffic dominates the OPN and about half of the

operands are bypassed locally within an ET resulting in an average operandhop count of 0.9. While an ideal

instruction placement would use local bypassing for all operand communication (0 hops), the inherent trade-

off between locality and concurrency combined with limited instruction storage pertile demands that many

communicating instructions reside on different tiles. The ET–DT and ET–RT traffic typically requires more

hops (and thus longer level-1 cache latency) because the DTs and RTs liealong the edge of the ET array.

For example,vaddstreams data from its L1 caches, yielding high ET–DT traffic, whilematrix primarily uses

data in its register file, yielding greater ET–RT traffic. These two microbenchmarks illustrate how the OPN

supports highly divergent traffic patterns. We show the results of one SPEC benchmark,gcc, and the mean of

14



L1 D-Cache L2 to L1 Memory
to Processor to L2

Peak Ops/ 4 - 8byte 3.2 - 16 byte 1 - 64 byte
cycle requests requests request
Peak BW 10.9 17.5 5.6
(GBytes/sec)
Achieved BW 10.5 17.2 3.2
(GBytes/sec)
% of Peak 96.5% 98.5% 57.8%
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Figure 8: TRIPS bandwidths at 366MHz and operand network (OPN) profile with average hops per packet
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Figure 9: IPC on compiled (C) and hand-optimized (H) benchmarks

the EEMBC benchmarks to demonstrate that the load on the OPN is similar between these suites.

5.3 ILP Evaluation

The TRIPS prototype can execute up to 16 instructions per cycle, but can only sustain 16 IPC under ideal

conditions: 8 blocks full of executed instructions, perfect next-block prediction, and no instruction stalls due

to long-latency instructions. Actual IPC on the hardware is limited to 1/8 of the block size. Since the average

block size of our hand-optimized benchmarks is 80 instructions, we could theoretically achieve at most an

average IPC of 10 on them. Figure 9 shows the sustained IPC that TRIPS achieves across the benchmarks.

While some applications are intrinsically serial (e.g.,routelookup, which traverses a tree data structure se-

rially), others reach 6 to 10 IPC, showing that the processor can take advantage of the greater ILP of these

programs. The hand codes have an IPC 50% greater on average than their compiled counterparts, mostly due

to better block optimization. The SPEC benchmarks have lower IPC, both because they have smaller average
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Figure 10: IPC for TRIPS and an ideal EDGE machine, numbers shown areIPC for SPEC benchmarks for
an ideal machine with a 128K instruction window

block sizes, and more flushes due to branch mispredictions and i-cache misses.

To understand the theoretical ILP capability of EDGE architectures, we conducted a limit study using an

idealized EDGE machine with perfect prediction, perfect predication, perfect caches, infinite execution re-

sources, and a zero-cycle delay between tiles. It, like TRIPS, has a window size of 1K instructions and a dis-

patch and fetch cost that only allows a new block to be started once every eight cycles. Figure 10 shows that on

average this ideal machine only outperforms the prototype by roughly a factor of 2.5, indicating only moderate

room for improvement due to low inherent application ILP, the dispatch cost, and limited window size. Simu-

lating this ideal machine with a zero-cycle dispatch cost increases the IPC on average by a factor of five. How-

ever, eliminating only the dispatch delay on TRIPS improves performance by only 10%, which indicates that

dispatch is not the primary bottleneck on the hardware. We also annotate the top of the SPEC bars with the IPC

for the ideal machine with a window of 128K instructions and a dispatch cost ofzero cycles. The SPEC bench-

marks have a wide range of available ILP, with most benchmarks around 50 IPC but some FP benchmarks hav-

ing IPCs in the hundreds. The simple benchmarks have a similar range of IPCs with several such as802.11a

and8b10bthat are inherently serial and do not exceed 15; others such asvaddandfmradioare concurrent but

are resource limited on the hardware resulting in IPCs of 1000 and 500 respectively on the ideal machine with

a 128K window. This study reveals that while the hardware has room to improve, the amount of ILP currently

available to TRIPS is limited and that larger window machines have the potential to further exploit ILP.

6 TRIPS Performance versus Commercial Platforms

This section compares TRIPS to conventional processors using hand-optimizedbenchmarks to show the po-

tential of TRIPS and compiled benchmarks to show the current state of the compiler. TRIPS code is compared
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Figure 11: Speedup of simple benchmarks relative to Core 2-gcc.

to benchmarks compiled with both the GNU C compiler (gcc) as well as the native compiler(icc) on the ref-

erence machines. Data in this section is obtained from hardware performance counters.

Simple Benchmarks: Figure 11 shows cycle counts for TRIPS hand-optimized code, TRIPS compiled

code, icc-compiled code for the Intel Core 2, and gcc-compiled code for theIntel Core 2, Pentium 4, and

Pentium III, normalized to the Core 2 using gcc. The TRIPS compiler achieves anaverage 1.5x speedup over

the Core 2, but does not perform as well on three of the benchmarks. Benchmarks with smaller speedups like

rspeedare sequential algorithms that do not benefit from increased execution bandwidth or deep speculation.

The benchmarks that show the largest speedups, such asmatrix and8b10b, typically have substantial par-

allelism exposed by the large window on TRIPS. The TRIPS hand-assembled code always outperforms the

Core 2, with an average 2.9x speedup.

The performance differences between TRIPS compiled code and TRIPS hand-assembled code are primarily

due to more aggressive block formation, unrolling, and scalar replacement. Forexample,8b10bbenefits from

unrolling the innermost loop of the kernel to create a full 128-instruction block and from register allocating a

small lookup table. Infmradio, the hand-optimized code fuses loops that operate on the same vector, anduses

profile information to exclude infrequently taken paths through the kernel.

To completely remove the influence of the compiler and show the ability of TRIPS to exploit a large

number of functional units, we compare a TRIPS hand-optimized matrix multiply [3] to the state-of-the-art

hand-optimized assembly versions of GotoBLAS Streaming Matrix Multiply Librarieson Intel platforms [5].

The following are the best published results from library implementations for conventional platforms, which

differ from the experimental numbers from compilation found in Figure 11. The performance across plat-

forms, measured in terms of FLOPS Per Cycle (FPC), ranges from 1.87 FPCon the Pentium 4 to 3.58 FPC on

the Core 2 using SSE. The TRIPS application is able to achieve 5.20 FPC without the benefit of SSE, which

is 40% greater than the best optimized code on the Core 2.

SPEC CPU2000: Figure 12 compares the performance of the SPEC2000 benchmarks on TRIPS with
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Figure 12: Speedup of SPEC benchmarks relative to Core 2-gcc.

the reference platforms. For consistency with our simulated results, we report performance over a SimPoint

region, but we see similar results on the full applications. On the Intel platformswe use both icc and gcc, to

identify the effect of platform-specific optimizations. The quality of scalar optimization in gcc is more similar

to the TRIPS compiler than icc, since the TRIPS compiler is an academic research compiler that targets

multiple architectures. Consequently, we normalized performance to the Core 2 using the gcc compiler.

TRIPS performance is much lower on the SPEC benchmarks than on the simple benchmarks shown in

Figure 11. While floating point performance is on par with Core 2-gcc (Core2-icc achieves a speedup of 1.6

over TRIPS), integer performance is less than half that of the Core 2. Table 3 shows several events that have

a large effect on performance: conditional branch mispredictions, call-return mispredictions, I-cache misses,

and load flushes for TRIPS, normalized to events per 1000 useful TRIPS instructions. Also shown are the

branch mispredictions and I-cache misses for the Core 2, normalized to the same 1000 TRIPS instruction-

baseline, which makes possible a cross-ISA comparison. The two rightmost columns capture the effective

reduction in instruction window size due to the pipeline flushes discussed above.The second column from

the right provides an estimate of the number of useful instructions that would bein the window if flushes and

I-cache misses did not occur. The rightmost column shows the measured average useful TRIPS instructions

in the window, first shown in Figure 6.

Several of the SPECINT benchmarks have frequent I-cache misses,such ascrafty, perlbmk, twolf, andvor-

tex. These benchmarks are known to stress the instruction cache, and the block-based ISA exacerbates the miss

rate because of both the TRIPS code expansion and the compiler’s inability to fill the fixed-size 128-instruction

blocks.Crafty, perlbmk, andvortexalso have an unusually high number of call/return mispredictions, due to

an insufficiently tuned call and branch target buffer in TRIPS. All of these factors reduce the utilization of

the instruction window; for example,perlbmkhas only an average of 52 useful instructions in flight, out of a

possible 155 based on the average block size. While the TRIPS call/return flushes and I-cache misses cause

18



Per 1000 useful TRIPS instructions
Core 2 TRIPS TRIPS Core 2 TRIPS TRIPS Average Average

cond. br. cond. br. call/ret I-cache I-cache load useful block useful insts
misses misses misses misses misses flushes size * 8 in flight

bzip2 5.5 4.0 0 0 0 0.02 183.5 140.3
crafty 5.9 5.5 3.5 2.55 15.8 0.48 154.0 72.5
gcc 0.2 0.2 0.1 0 0.3 0.01 283.8 271.8
gzip 6.2 3.1 1.4 0 0 0.06 176.9 117.1
mcf 23.9 9.1 0.8 0 0 0.19 113.0 69.8
parser 6.0 2.6 1.8 0 1.1 0.12 118.7 90.3
perlbmk 2.5 1.2 11.1 0.01 3.2 0.22 122.4 52.6
twolf 13.9 4.9 2.1 0 9.2 0.57 182.7 114.6
vortex 0.4 0.6 3.2 0.48 8.1 0.44 155.3 137.6
vpr 13.8 4.3 0.9 0 0 0.06 176.8 —

applu 0.2 1.3 0 0 0 0.14 216.8 178.9
apsi 0 0.7 0 0.2 3.3 0.16 383.0 107.4
art 0.5 0 0 0 0 0.01 218.3 212.6
equake 0.3 0.6 0 0 0 0.04 218.8 190.7
mesa 2.2 2.8 0.2 0.01 7.9 0.08 192.8 112.9
mgrid 0.1 0.1 0 0 0 0.01 469.1 455.2
swim 0 0 0 0.01 0 0 644.2 624.7
wupwise 0 0 0 0.01 0 0 202.5 167.9

Table 3: TRIPS performance counter data for the SPEC benchmarks.

serious performance losses, branch mispredictions are competitive with the Core 2 and load dependence mis-

predictions are infrequent. The benchmarks that are most able to keep many useful instructions in the window

compare best to Core 2, such asart, mgrid, andswim. These benchmarks are well known to be good targets

for extracting parallelism, and show good performance with little compiler or microarchitectural tuning.

7 Lessons Learned

The prototyping effort’s goals were twofold: to determine the viability of EDGEtechnology and to learn the

right way to build an EDGE-based machine. While this effort was successful in answering some of the high-

level questions about EDGE designs, it did provide significant insight about how to (and how not to) build an

EDGE processor. This design and evaluation effort taught the following specific lessons about how this class

of architectures should be built:

EDGE ISA: Prototyping has demonstrated that EDGE ISAs can support power-efficient, large-window,

out-of-order execution with less complexity than an equivalent superscalarprocessor. However, the TRIPS

ISA had several significant weaknesses. Most serious was the limited fanout of themove instructions, which

results in far too many overhead instructions for high-fanout operations. The ISA needs support for limited

broadcasts of high-fanout operands. In addition, the binary overhead of the TRIPS ISA is too large. The

128-byte block header, with the read and write instructions, adds too much per-block overhead. Future EDGE

ISAs should shrink the block header to no more than 32 bytes, and must support variable-sized blocks in the

L1 I-cache to reduce the NOP bloat, despite the resultant increase in microarchitectural complexity.

Compilation: The TRIPS compiler and prototype has shown that correct EDGE code can be generated,

even for complex integer applications. The hand optimizations that proved effective are largely mechani-
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cal, indicating that a production EDGE compiler could achieve much of that improvement. Because of the

instruction-level block constraints, we determined that structural optimizations,such as loop unrolling and

hyperblock formation, should occur in the back end after code generation. In general, the ISA model faces

several difficult compilation challenges, the most significant of which is forming large blocks in control-

intensive code. The major challenge is frequent function calls that cut blocks too early; inlining cannot solve

this problem because it occurs well before block formation, typically in the front end. A second critical prob-

lem is allocating as many variables in registers as possible; the best hand-generated code replaced store-load

pairs with a intra-block temporary communications, producing tighter code and higher performance. Effective

interprocedural alias analysis is required to discover sufficient opportunities for this optimization.

Microarchitecture: The TRIPS prototype demonstrates that a microarchitecture with distributed protocols

is feasible, and the fully functional first silicon indicates that tiled architectures benefit from increased de-

sign and validation productivity. A positive result was that, in general, the distributed block control protocols

(fetch, dispatch, commit, flush) are not on the critical path. However, a number of artifacts in the microar-

chitecture resulted in significant performance losses. Most important wastraffic on the operand network,

which averaged just under one hop per operand. That amount of communication resulted in both significant

OPN contention and communication cycles on the critical path. Spreading a block’s instructions among all

execution tiles caused too much intra-block communication. Follow-on microarchitectures must re-map in-

structions, in coordination with the compiler, so that most instruction-to-instruction communication occurs on

the same tile. The second most important lesson was that performance losses due to the evaluation of predicate

arcs was occasionally high, since arcs that could have been predicted as branches are deferred until execution.

Future EDGE microarchitectures must support predicate prediction to evaluatethe most predictable predicate

arcs earlier in the pipeline. Third, the primary memory system must be distributed amongall of the execu-

tion tiles; the cache and register bandwidth along one edge of the execution array was insufficient for many

bandwidth-intensive codes. Finally, a minor design flaw in the prototype wasmaking the call/return predictors

too small, which should be enlarged in future microarchitectures. Improvementsin branch and dependence

predictors will also result in higher performance for all microarchitectures, including EDGE designs.

8 Conclusions

At its inception, the TRIPS design and prototyping effort tried to answer the following high-level questions:

(1) whether an effective distributed, EDGE-based processor could be built using a tiled approach, (2) whether

EDGE ISAs form a manageable compiler target, and (3) whether an EDGE-based processor can support

improved general-purpose, single-threaded performance. This evaluation shows that the TRIPS ISA and mi-

croarchitecture are in fact feasible to build, resulting in a tiled design that exploitsout-of-order execution over
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a window of many hundreds of instructions. Despite the inter-tile routing latencies, the combination of the

large window, dynamic issue, and highly concurrent memory system permits TRIPS to sustain up to 10 IPC,

showing average of 3x speedup over a Core 2 processor across a diverse set of hand-optimized kernels.

For small, regular codes, the TRIPS compiler is able to generate codes that run in fewer cycles than state-of-

the-art industrial designs, indicating that high-quality, compiler-generated EDGE code is feasible to produce.

Even though the compiled code performs less well than the hand-generated code, the experience of converting

compiled code into hand-optimized code indicates that most of that performance gap can be eliminated by

mechanical transformations in an aggressive optimizing compiler.

However, the compiled cycle counts on major benchmarks, such as SPECINTand SPECFP, are not com-

petitive with industrial designs, despite the greater computational resources present in TRIPS. On com-

piled SPEC2000 benchmarks, the TRIPS prototype achieves 60% of the performance of a Core 2 running

SPEC2000 compiled at full optimization with gcc. While coming within 50% of an industry leader using a

system built by fewer than twenty people is a significant technical achievement, it does not indicate that this

model can substantively outperform the current industrial designs on large, complex applications. Even if this

level of performance is increased moderately, the gains are likely too small to justify a switch to a new class

of ISAs for high-end commercial systems. These limitations are due partially to inefficiencies in the ISA and

microarchitecture, but may also result from a fundamental mismatch between certain program features and

EDGE ISAs. For example, benchmarks with many indirect jumps, or unusually complex call graphs with

many small functions, may be difficult to build into large blocks without a code size explosion.

The prototyping effort was intended to learn the lessons necessary to build the best possible EDGE-based

designs. Support for variable-sized blocks, partial broadcast of operands, predicate prediction, a more dis-

tributed/scalable memory system, smaller block headers, and alternate mappings of instructions to tiles all

emerged as important and necessary features of future EDGE-based designs. In addition, since not all codes

have high concurrency, future EDGE-based microarchitectures must allow adaptive granularity, providing

more efficient small configurations when larger configurations provide little performance benefit [10]. Cur-

rently, we project that these improvements will not enable large speedups of EDGE designs over high-end

commodity systems, although they will result in large gains over the TRIPS prototype. We believe that these

designs will show the most benefit over industrial designs in the five-to-ten watt space, and may be sufficiently

faster in that space to justify adoption.
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[8] D. Jiménez. Piecewise Linear Branch Prediction. InInternational Symposium on Computer Architecture, pages

382–393, June 2005.
[9] C. Kim, D. Burger, and S. W. Keckler. An Adaptive Non-Uniform Cache Structure for Wire-Dominated On-Chip

Caches. InInternational Conference on Architectural Support for Programming Languages and Operating
Systems, pages 211–222, October 2002.

[10] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,D. Gulati, S. W. Keckler, and D. Burger. Composable
Lightweight Processors. InInternational Symposium on Microarchitecture, pages 381–294, December 2007.

[11] B. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging Head and Tail Duplication for Convergent
Hyperblock Formation. InInternational Symposium on Microarchitecture, pages 65–76, December 2006.

[12] S. Melvin and Y. Patt. Enhancing Instruction Scheduling With a Block-Structured ISA.International Journal on
Parallel Processing, 23(3):221–243, June 1995.

[13] A. Moshovos and G. S. Sohi. Speculative Memory Cloakingand Bypassing.International Journal of Parallel
Programming, 27(6):427–456, December 1999.

[14] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A Design Space Evaluation of Grid Processor
Architectures. InInternational Symposium on Microarchitecture, pages 40–51, December 2001.

[15] PAPI: Performance Application Programming Interface. http://icl.cs.utk.edu/papi.
[16] R. M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. Versatility and VersaBench: A New Metric and a

Benchmark Suite for Flexible Architectures. Technical Report TM-646, Laboratory for Computer Science,
Massachusetts Institute of Technology, June 2004.

[17] K. Sankaralingam, R. Nagarajan, S. Keckler, and D. Burger. SimpleScalar Simulation of the PowerPC Instruction
Set Architecture. Technical Report TR-00-04, Department of Computer Sciences, The University of Texas at
Austin, February 2001.

[18] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S. Govindan, P. Gratz, D. Gulati,
H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,S. Sharif, P. Shivakumar, S. W. Keckler, and
D. Burger. Distributed Microarchitectural Protocols in the TRIPS Prototype Processor. InInternational Symposium
on Microarchitecture, pages 480–491, December 2006.

[19] A. Seznec and P. Michaud. A Case for (Partially) TAgged GEometric History Length Branch Prediction.Journal
of Instruction-Level Parallelism, Vol. 8, February 2006.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications. InInternational Conference on Parallel Architectures and Compilation
Techniques, pages 3–14, September 2001.

[21] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K. S. McKinley, and J. Burrill. Compiling for
EDGE Architectures. InInternational Symposium on Code Generation and Optimization, pages 185–195, March
2006.

[22] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald,D. Burger, S. W. Keckler, and K. S. McKinley.
Dataflow Predication. InInternational Symposium on Microarchitecture, pages 89–102, December 2006.

[23] http://www.spec.org.
[24] B. Yoder, J. Burrill, R. McDonald, K. Bush, K. Coons, M. Gebhart, M. Govindan, B. Maher, R. Nagarajan, B. Ro-

batmili, K. Sankaralingam, S. Sharif, A. Smith, D. Burger, S. W. Keckler, and K. S. McKinley. Software Infras-
tructure and Tools for the TRIPS Prototype. InWorkshop on Modeling, Benchmarking and Simulation, June 2007.

22


