o
[LEEDS
(. D BECKETT
UNIVERSITY
Citation:

Gebhart, M and Maher, B and Koons, C and Diammond, J and Grattz, P and Marino, MD
and Ranganathan, N and Behnam, R and Smith, A and Burril, J and Keckler, S and Burger,
D and McKinley, K (2009) "An evaluation of the TRIPS computer system." In: Proceedings of
the 14th international conference on Architectural support for programming languages and op-
erating systems. Association for Computing Machinery, 1 - 12. ISBN 978-1-60558-406-5 DOI:
https://doi.org/10.1145/1508244.1508246

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/1872/

Document Version:
Book Section (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/1872/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Conference: ASPLOS 2009
Title of the paper: An Evaluation of the TRIPS Computer System
Authors of the submitted paper:

Mark Gebhart
Bertrand A. Maher
Katherine E. Coons
Jeff Diamond

Paul Gratz

Mario Marino
Nitya Ranganathan
Behnam Robatmili
Aaron Smith

James Burrill
Stephen W. Keckler
Doug Burger
Kathryn S. McKinley

An Evaluation of the TRIPS Computer System
Abstract

The TRIPS processor is designed to demonstrate a wide-issue largawwinidroarchitecture while toler-
ating emerging technology scaling challenges such as increasing wire deldysower consumption. TRIPS
employs a new instruction set architecture (ISA) called Explicit Data Graygtition (EDGE) which rene-
gotiates the boundary between hardware and software. EDGE ISAs uUseladiomic execution model in
which blocks consist of dataflow instructions. This model preservesrggl memory semantics, enabling
the system to expose high levels of instruction-level concurrency withawdbgb programming model. Each
TRIPS processor may execute up to 16 instructions per cycle from a wifdd24 instructions, using a dis-
tributed microarchitecture with small tiles that communicate via control anth edeetworks. While many
aspects of TRIPS have appeared elsewhere, this paper perforntaikediéSA and performance analysis
to explore how well the hardware and software exploit the EDGE ISA. @mddo conventional ISAs, the
block-atomic model increases concurrency at a cost of more instrigcégacuted, and replaces register and
memory accesses with more efficient direct instruction-to-instruction cmmcation. We compare perfor-
mance, using cycles counts, to commercial processors. On simpihrbarks, TRIPS outperforms the Core
2 by 40% and a factor of 3 on compiled code and hand-optimized codeatdgely. On SPEC CPU2000,
an Intel Core 2 outperforms TRIPS compiled code in most cases, althidRFs roughly matches the per-
formance of a Pentium 4. The lessons learned from the prototype pointei@abEsA, microarchitecture, and
compiler adjustments that address the weaknesses of the curremhsyste

1 Introduction

Growing on-chip wire delays, coupled with complexity and power limitations, htaeed severe constraints
on the issue-width scaling of conventional superscalar architecturesugzof these trends, major micro-
processor vendors have abandoned architectures for single-flegadnance and turned to the promise of
multiple cores per chip. While many applications can exploit multicore systems, this applaees sub-
stantial burdens on programmers to parallelize their codes. Despite thedg, thendahl’s law dictates that
single-thread performance will remain key to the future success of comgygims [7].

In response to semiconductor scaling trends, we designed a new architaotli microarchitecture in-
tended to extend single-thread performance scaling beyond the capabiflgigseoscalar architectures. The
TRIPS system represents the first instantiated prototype of thesesctesarts. As a part of this work, we
designed a new class of instruction set architectures (ISAs), called Expdita Graph Execution (EDGE),
which renegotiate the boundary between hardware and software. ES&HEcontain a block-atomic ex-
ecution model in which blocks consist of dataflow instructions. This model preseequential memory
semantics, thus enabling a system that can expose greater instruction lemetrency without requiring
explicit software parallelization. We constructed a custom 170 million transisttC A& hybrid-dataflow
instruction set (TRIPS ISA), TRIPS system circuit boards, a runtime sygterformance evaluation tools,

and a robust compiler that optimizes and translates C and Fortran programesTRIPS ISA. The TRIPS

1

microarchitecture is physically distributed into tiles connected in a nearedthwifashion via microarchi-
tecture networks (micronetworks). The distributed processing comgs igsto 16 instructions per cycle from
an instruction window of up to 1024 instructions. The combination of the EDGE ISAtlz@ TRIPS dis-
tributed microarchitecture is designed to exploit concurrency and retadafluence of long wire delays by
exposing the spatial nature of the microarchitecture to the compiler for optimization

The details of the TRIPS architecture, microarchitecture, and compiler ajppe@aor publications. This
paper describes a detailed performance analysis that explores hoth&dRIPS compiler and hardware
meets its goals of exploiting concurrency, hiding latency, and distributing donfising the TRIPS hard-
ware and detailed microarchitectural simulators to gather detailed statisticgailabse from the hardware,
we compare the EDGE ISA, microarchitecture, and performance to moderegsars using hand optimized
and compiled benchmarks. We find that the EDGE ISA incurs a substantiddeacdin total number of
instructions fetched and executed, relative to conventional RISC archéedike the PowerPC, because of
extensive predication and instruction overheads required by the dataflow. mode

Our microarchitecture analysis shows that TRIPS can keep much of thectimtrwindow full; compiled
code shows an average of 450 total instructions in flight (887 peak &ttdemchmark) and hand optimized
code shows an average of 630 (1013 peak). While much higher thaard@mnal processors, the number of
instructions in flight is less than the maximum of 1024 because the compiler doesmpletely fill blocks
and the hardware experiences pipeline stalls and flushes due to I-cad®s,nticanch mispredictions, and
load dependence mispredictions. A strength of the EDGE ISA and distribatecbtis that TRIPS requires
less than half as many register and memory accesses as the PowerP litecamngerts these into direct
producer/consumer communications. Furthermore, the communicating instructonsually on the same
tile or an adjacent tile, which makes them power efficient and minimizes latency.

We compare the performance of TRIPS to the Intel Core 2, Pentium I, entiu 4 using hardware per-
formance counters on compiled and hand-optimized programs. On the EEMECtke Core 2 outperforms
TRIPS compiled code by 30%. On SPEC-2000, TRIPS compiled code acbigydsalf the performance of
the Core 2 on integer benchmarks but matches the performance of th@ Goriéoating point benchmarks.
We find that TRIPS outperforms the Core 2 by an average factor of 3ureshis cycles on hand-optimized
benchmarks and that the Core 2 outperforms the Pentium 3 and Pentium 4 ljiteonatfactor of 2.

These experiments suggest that TRIPS-like processors have theliapatachieve substantial perfor-
mance improvements over conventional microprocessors by exploiting cencuriHowever, realizing this
performance potential relies on the compiler to better expose concurredayreate large blocks of TRIPS

instructions, as well as microarchitectural innovations in control distributiorbesrtch prediction.

2 TheTRIPS Processor Architecture

The foundations of the TRIPS ISA and microarchitecture were publishe@(a p14]. Between 2001 and
2004, we refined the architecture to a point where it could be realized ilit@nsprototype and began to
implement the TRIPS compiler. The TRIPS chip taped out in August 2006 asdavn to be fully func-
tional (no known bugs) in the lab in February 2007. The TRIPS prototypegkemented in a 130nm ASIC
technology and contains 170 million transistors. The simplest TRIPS systesistoof four TRIPS chips,
each with 2GB of local DRAM, connected to a motherboard. While the systeesigrked to be scalable to
eight motherboards (64 processors), this paper examines a single pRIEGSsor.

EDGE ISA: TRIPS implements the Explicit Data Graph Execution (EDGE) ISA [1], which waseived
with the goal of high-performance, single-threaded, concurrentdestdbuted execution in which the mi-
croarchitecture maps compiler-generated dataflow graphs to a paratietieresubstrate. Two defining fea-
tures of an EDGE ISA are block-atomic execution [12] and direct instructbtonmunication within a block,
together enabling efficient hybrid dataflow execution. The TRIPS ISAeggdes up to 128 instructions into
a single block that obeystdock-atomicexecution model where each block is logically fetched, executed, and
committed as a single entity. This amortizes the per-instruction bookkeeping ovgealamber of instruc-
tions and reduces branch predictions and register accesses. Furtheéhisoredel reduces the frequency of
control decisions, providing the additional latency tolerance to make distrilextecution practical. Blocks
communicate through the register file and memory. Within a bldekgct instruction communicatiodeliv-
ers results from producer instructions to consumer instructions in datafidwofa Direct communication
supports distributed execution within a block by eliminating accesses to a shgigdrréle.

Figure 1 shows an example of a sequence of RISC code and the cowlexpd RIPS EDGE code. The
read and write instructions at the beginning and end of the TRIPS coddetive values that are injected
from the register file into the dataflow instruction block (RO, R1) as well asaheevhat is ejected from the
block (WO0). Instruction operands within the block, suchba®, are passed directly from producer to con-
sumer without an intervening register file. Because the instructions encadtathets, rather than a register
in a common register file, a 32-bit instruction encoding has room for at most tgetsa When more targets
are required, such as the value read in instruction RO, the program aeed® instruction (10) to replicate
the value flowing in the dataflow graph. The TRIPS code also shows thativand non-branch instructions
can be predicated. To enable the hardware to detect block completion, thaiemanodel requires that all
block outputs (register writes and stores) be produced regardless pfdtlicated path within the block. The
nul | instruction produces a token that when passed througétth{store) indicates that the store output has

been produced, but does not modify memory. In our experiments, we atasstfy these dataflow execution

3

RISC Code TRIPS EDGE Code Dataflow Graph

Labell: .bbegin blockl

1d %3, 4(%2) RO: read $t2, $92

blez %3, Label2 R1l: read $t4, $g4

1d %5, 8(%2) 10: mov $t3, $t2

addi %3, %3, %5 I1: ud $t5, 4(s$t2)

st %3, 4(%2) I2: U $t6, 8($t3)
Label2: I3: tlez $t7, $t5

addi %4, %4, #-1 I4: addi f<$t7> $t8, $t5, $t6
bgez %4, Labell I5: null_t<$t7> $t8

Label3: I6: st $t8, 4($t3)

I7: subi $t9, $t4, #1
I8: teqz $t10, $t9
I9: b_t<$t10> block3
I10:b f<$t10> blockl

WO: write $g4, $t9

.bend blockl

.bbegin block3 ...

Figure 1: RISC code with its corresponding TRIPS EDGE code and datgfiaph

helper instructions as useful instructions when comparing to conventional B dataflow graph at the
right shows graphically the effective encoding of the instructions in the EDi@ary.

TRIPS Processor Microarchitecture: Because the goals of the TRIPS microarchitecture include scala-
bility and distributed execution, it has no global wires, reuses a small setg@nents on routed networks,
and can be extended to a wider-issue implementation without source recompilatg® dranges. Figure 2
shows the tile-level block diagram and a die photo. Each TRIPS chip ceritedrprocessors and a secondary
memory system, each inter-connected by one or more micronetworks. Thispabezes the performance of
a single TRIPS processor and its distributed microarchitecture on singlediémnl codes. Here we summarize
the basics of the architecture and a more detailed discussion of the micraztoiitean be found in [18].

Each of the processor cores uses five types of tiles: one global ttleti@T), 16 execution tiles (ET),
four register tiles (RT), four data tiles (DT), and five instruction tiles (ITheTiles communicate using six
micronetworks that implement distributed control and data protocols. The maianmetevork is the operand
network (OPN), which replaces a bypass network in a conventionarseglar processor. The OPN is a
two-dimensional, wormhole-routed, 5x5 mesh network that delivers oret@perand per link per cycle [6].
The other networks implement distributed instruction fetch, dispatch, I-aafiieand completion/commit.

TRIPS fetches and executes each TRIPS bleoknasseThe GT sends a block address to the ITs which
deliver the computation instructions of the block to the reservation stations in the d#tiexetiles (ETs),

8 per tile as specified by the compiler; the ITs also deliver the register raalimstructions to reservation

stations in the RTs. The RTs read values from the global register file addisem to the ETs, starting the

dataflow execution. The GT instigates the commit protocol once each of th@mIRTs receive all of the

block outputs; the commit protocol updates the data caches and registeitild@speculative state of the

block. The GT uses its next block predictor (branch predictor) to beginwing the next block while previ-
4

TRIPS Level-2 Cache TRIPS Processor 0

4

[EB DR DRAM Controller
[E5] External Bus Interface
Chip to Chip Interface
Network Interconnect

<«—» OCN Interconnect

«-» C2C Interconnect
<«— OPN Interconnect

- -F-[-

(OCN) (OPN)
D:IA N m = J RIR|IR|R Processor Tiles Proesso 0 =
2 15 B Global Control Tile)
N M | M | N |4+] { El Register Tile
| D El Data Cache Tile
N M R M R N e d El Execution Tile
N M M N /|'< _P II' Instruction Cache Tile
> = B T 1 OCN Tiles
N M M N | 1 II' Network Tile
> > II' Memory Tile
N M M [N E|E|E|E DMA Controller
M M
M M
M M
N

TRIPS Processor 1
(OPN)

(a) Block diagram (b) Die photo
Figure 2: TRIPS prototype

ous blocks are still executing. The TRIPS prototype can simultaneouslytexep to eight 128-instruction
blocks (one non-speculative, seven speculative) for an aggriegatection window size of 1024 instructions.
At 130 nm, each TRIPS processor occupies approximateby,82 of a total chip area of 33@m?. If
scaled down to 65 nm, a TRIPS core would be approximately28, similar to the 29nm? of a Core 2 pro-
cessor. A direct comparison is difficult because TRIPS is implemented wit f&&&hnology and lacks all of
the hardware required to support an operating system. Nonethele$%S TR a greater density of arithmetic
units in a similar area and an architecture that enables greater issue widtis@adtion window scaling.
TRIPS Compiler: TRIPS has a fully functional compiler that can compile all of the C and Fortran
SPEC2000 benchmarks [2, 11]. Using a machine-independent intetmeeesentation (IR), the com-
piler performs conventional optimizations such as inlining, unrolling, common soéssipn elimination,
scalar replacement, and some TRIPS-specific optimizations such as traefeeigction to expose paral-
lelism. With the renegotiation of the boundary between software and hardihareompiler must perform
two additional tasks compared with conventional compilers: block formation anddétistiypplacement. The
compiler aggregates basic blocks into larger, optimized TRIPS blocks usidgation, tail duplication, and
loop optimizations [11]. This process is similar to hyperblock formation, but BRicks have additional
constraints that simplify the hardware [21]. The compiler exploits dataflodigagon in the ISA to fuse code
from multiple control paths into the same TRIPS block [22]. The compiler also deteswinieh tile of the
grid each instruction will dynamically execute when it is fetched and its opsrar&ready. This placement

algorithm seeks to expose concurrency and minimize communication overheaadsdd and contention) be-

5

Processor| Memory | Proc/Mem L1 Cache L2 Cache| Memory
System Speed Speed | Speed Ratio] Capacity (D/l) Capacity | Capacity

TRIPS 366 MHz | 200 MHz 1.83 32 KB /80 KB 1MB 2GB
Core 2 1600 MHz | 800 MHz 2.00 32KB/32KB 2MB 2GB
Pentium 4 | 3600 MHz | 533 MHz 6.75 16 KB /12 K ops 2MB 2GB
Pentium IIl | 450 MHz | 100 MHz 4.50 16 KB /16 KB 512 KB | 256 MB

Table 1: Reference platforms

tween dependent instructions [2]. Placement optimizes performance widsttitting functional portability

as an EDGE binary can be run on different hardware topologies (nuwfititrs) without recompilation.
3 Evaluation M ethodology

We evaluate the EDGE ISA and the TRIPS microarchitecture and comparefaapance with conventional
architectures using the on-board performance counters in the TR®dra and in commercial platforms.
We also use TRIPS simulators and a PowerPC simulator to gain deeper insi§dgstions 4 and 5. All
performance measurements in Section 6 are from the actual hardware.

TRIPSPrototype System: A TRIPS chip consists of two processors that share a 1 MB L2 static NW@CA [
cache and 2 GB of DDR Memory, but we use only one processor in all iexgets. Each processor has a
private 32 KB L1 data cache and a private 80 KB L1 instruction cache. Téweepsor and memory speeds
can be adjusted using a phased-lock loop (PLL); all of the experimenttheuprocessor core at 366 MHz
and the DRAM with 100/200 MHz DDR clocks. TRIPS system calls interrupgm@m execution, halt the
processor, and are proxied to an off-chip commercial processoingiinux. Because the TRIPS cycle
counters increment only when the processor is not halted, the progndionmpance measurements ignore the
time to process system calls. The tools we use to measure cycles in the comsysigals also exclude
operating system execution time, thus providing a fair comparison.

Simulators. We use a functional TRIPS simulator and a low-level microarchitecture simutatmather
statistics not available from the hardware [24]. A Power PC functional stonjla7] produces statistics that
measure loads, stores, and register accesseggtonompiled PowerPC-AIX binaries.

Reference Platforms: We compare performance of the TRIPS prototype to three referencerpiatfiiom
the Intel x86 product family (Pentium 1ll, Pentium 4, and Core 2) using thelRa&ftware package to access
the Intel processors’ hardware counters [15]. Because each meashimplemented in a different process
technology, we use cycle counts as the relative performance measbie.1Tshows the platform configura-
tions including processor and DDR DRAM clock speed and the memory higraaglacities. Cycle count is
an imperfect metric because some architectures, particularly the Pentium 4,séreptiack rate over cycle
count. However, we expect that the TRIPS microarchitecture, with its paeiidesign and no global wires,
could be implemented in a clock rate equivalent to the Core 2, given a custsigndand the same process

6

| Suite | # of Benchmarks] Characteristics |

Kernels 4 transpose (ct), convolution (conv), vector-add (vadd), matrix mul{iplgtrix)
VersaBench 30f10 bit and stream (fmradio, 802.11a, 8b10b)

EEMBC 30 of 30 Embedded benchmarks

Simple 15 Hand optimized versions of Kernels, VersaBench, and 8 EEMBC lreaudts
SPEC 2000 Int 100f 12 All but gap and C++ benchmarks

SPEC 2000 FP 8 of 14 All but ammp, sixtrack, and 4 Fortran 90 benchmarks

Table 2: Benchmark suites

technology. Another pitfall with this comparison is that the relatively slow cl@tk of TRIPS may make
memory accesses less expensive relative to high clock-rate procegsarsount for this, we under-clocked
the Core 2 from 1.8 GHz to 1.6 GHz to equalize the processor/memory speed raRiR&. However, a
slower clock has little effect on the measured applications because theygalg 122 cache resident.
Benchmarks: Table 2 shows the benchmark suites used, from simple kernels to compleragspor
workloads. We compiled these applications with the TRIPS C and Fortran compileaf@ilhand optimized
the compiler-generated IR to study the performance potential of TRIPSxi#estvely hand optimized four
scientific kernels on TRIPS: matrix transposg,(convolution €ony), vector add¥add, and matrix multiply
(matrix). In addition, we hand placemhatrix andvaddto achieve high performance. We hand optimized 3
stream and bit operation benchmarks from the VersaBench suite [1@ aradlium-sized benchmarks from
30 EEMBC benchmarks [4]. The most complex benchmarks come from SRBG2@ include 10 integer
and 8 floating-point benchmarks [23]. Three SPEC programs that teriipdadrto build correctly with our
toolchain are omitted, but will be included in a final version of this paper. SintlPegions are used to select

appropriate simulation points for a detailed evaluation of the SPEC benchm@tks [2
4 |SA Evaluation

This section examines how well the compiled and hand-optimized programs map in®Atlead charac-

terizes block size, instruction overheads, and code size. We compare commuiledrad-optimized TRIPS
programs to programs compiled for a RISC ISA (PowerPC) processoattifuthe relative overheads of the
EDGE ISA. We also present the means of the EEMBC, SPEC INT, and $#PESTiites to show the impact
of the application characteristics. All of the data in this section was gatherasgtihsdmulation because of

the nature of the statistics needed.
4.1 TRIPSBIlock Size and Composition

A key parameter in specifying a block-atomic EDGE ISA is the block size. Eagherience demonstrated
that creating programs with average block sizes of 20+ instructions wasfiimiltwith standard compiler
transformations, and that larger blocks would lead to a larger instruction wjrmiiter amortize block over-

heads, and have the potential for better performance. We chose a makiotknsize of 128 instructions as
7

g Bl Fetched Not Executed
= [0 Executed Not Used | _
= o1 s — W Moves
5 O Tests
£ = = W Control Flow
= Q0O - B |EE SRR R O Memory
S B Arithmetic
G 80l [l m Soi] (R B B0 RRRRREEE IR,
g = L1 L —| B =
E 60l - - N B R """" - ~ BN R BN B | SRR l imE
X~ | — |] . - . N |
R P | T e -
@ -] — §=| §=(ml N] L =
| = || -
o 20r----Ci Il = - - — - - S | R =
)] - | L] L]
o N ==
Y 0
3: Or O O O Or O 0T 0T Orx O OTxT 0T T T OxT O &\)OQOQ
o
4 O K $ Q > .) Q XL
F F ST & & @ & VL & QFF FES
> K S & & 3 Y Y & S & & ¢ L
¥ O &Q}o N Q0 A PN COIPN N '«\@Q \}g\& \%\Q N
© ¥ FE <
Q/%Q 2

Figure 3: TRIPS block size and composition for compiled (C) and hand-optimieloghchmarks

an aggressive compiler target, to stress the software system to form |argies.b

Figure 3 weighs each block’s size by execution frequency to show thagevblock size, and breaks out the
number of arithmetic instructions, memory instructions, branch/jump/call/return instructistissteuctions
(used for branches and predication), amd e instructions (used to fan out intermediate operands). The figure
does not include the register read/write instructions since they reside in ttieH#ader and are not part of
the 128 instructionsetched Not Executddstructions were fetched speculatively but never executed, either
because they did not receive a matching predicate, or because theyt dateive all of their operands due
to predicated instructions earlier in the block’s dataflow grdptecuted Not Useithstructions were fetched
and executed speculatively but whose values were not used due icgpicdlater in the dependence graph.

For some programs, such a8time the number of mispredicated instructions accounts for half the to-
tal instructions within a block.A2timecontains several nested / t hen/ el se statements; to minimize
the number of blocks executed, the compiler produces code that spedylaiieeutes both thehen and
el se clauses simultaneously within one block and inserts a predicate computation to seleutrétt out-
puts. Nonetheless, this aggressive predication can improve systermpanfe because it eliminate branch
mispredictions and enables the implementation of a pipeline with higher front-enchiatdiwvidth.

The remainder of the instruction types, tests, control flow, memory, and arithraegicequired for cor-
rect execution. The number of useful instructions (excludinge and mispredicated instructions) varies.
Some programs with complex control have only 10 instructions per block whilesotrigh more regular
control have as many as 80 instructions per block. To implement dataflowtmsreaua block, the EDGE
ISA requiresnove instructions. First, since a TRIPS instruction has a fixed width, it can targetstt two
consumers. The compiler must therefore ins@ve instructions to fanout values consumed by more than
two instructions. Second, predicate merge points, correspondiplyi tnerge nodes in the dataflow graph,

8

@ Fetched but not executed M
B Executed but not useful---------------f f---- -
[J Moves

W Useful

Instructions (Normalized to PowerPC

OT OT OT O OT OT OT OT OT OT O OT OT OT OT OT IS
S &
& NN Q $ Q 2 O O . o > &2 &
S & & O & € @& N S FE
> Y Q o S N G S S > & 9 e S
¥ & ° &° > & % N P QQ’O@ Qef/’\cge’q(oe
OS¢
QO AN
o
CLYR

Figure 4: TRIPS instructions normalized to PowerPC for compiled (C) and batigtized (H) benchmarks

sometimes require predicatedv e instructions. The result is thabve instructions account for nearly 20%
of all instructions in a block, more than anticipated at the start of the design.

Compiled code has an average block size of 64 instructions, but with high e&yi@mging from 30 to over
110 instructions. Hand optimizations to improve performance further incréask $ize. For example, the
hand-optimized versions alspfandct have blocks two and three times larger than their respective compiled
versions. These increases are often driven by instruction optimizationddtraase block size followed by
opportunities to merge adjacent smaller blocks or by increasing unrolling$actdill blocks. In summary,
both the hand-optimized and compiled code utilize the aggressive 128-instrhldansize to achieve aver-
age block sizes ranging from 20 to 128. To expose concurrencyggndssively speculate, the ISA overheads

includenove instructions and useless instructions, which are a significant fraction of flighbinstructions.
4.2 TRIPSISA versus Power PC

To quantify the differences between an EDGE ISA and a popular RIBOA8 compare to the PowerPC. Fig-
ure 4 shows fetched instruction counts on TRIPS normalized to PowerR@useof limitations in the current
PowerPC infrastructure, the following graphs includes the mean of orfiyh&d.8 SPEC benchmarks (5 INT
and 3 FP). To compare expressive power of the compute instructions, tiRSTRitructions do not include
register read/write instructions that appear in the block headeN®@®s in underfull blocks. For both TRIPS
and PowerPC, the instruction count omits incorrectly fetched instructions duwarioh mis-predictions.

Not surprisingly, the number of useful instructions executed on TRIPSPamerPC are similar because
the TRIPS ISA is composed of RISC-style instructions. On compiled code, TRIRES to execute more
instructions due to prototype simplifications, which introduce inefficiencies istaohgeneration and sign

extension unrelated to its execution model. For hand-optimized benchmarl®SERécutes fewer instruc-

2B - [0 Stores Committe@ ET_ET Operandg.
: Il Loads Executed [J Writes Committe
B Reads Fetched

Storage Accesses (Normalized to PowerP

SRS
¢ N & K & & A N O <O R &L &L &L
F & K & & @ @& &V P& F & &K
Q S R N > QO > & O
q;f,\ @Q o @00 {b& oé\ ES %Q’L P \&\ [& N OQ’O 0‘2’0 0“7’0 f
> O é& ({Q
< AP
& &£ &L
K o

Figure 5: Storage accesses normalized to PowerPC for compiled (C) ashaptimized (H) benchmarks

tions because its larger register set (128 registers) eliminates store/loadnmhipgcause more aggressive
unrolling exposes more opportunities for instruction reduction. The number dfeféétiout mis-predicated
instructions varies across the benchmarks, depending on the degregichton. Overall, TRIPS may need

to fetch as many as 2—6 times more instructions than the PowerPC, due to aggoesdication.
4.3 Register and Memory Access

TRIPS inter-block communication is through registers and memory while intra-glmtiknunication is di-
rect between instructions, reducing the number of accesses to regisiarsearory. The TRIPS prototype
has a total of 128 registers spanning four register banks (32 registeb&nk); each bank has only one read
and one write port. The larger register file benefits the memory system asriegigter fills and spills are
required. Eliminating store/load pairs ultimately improves performance as communittaboigh registers
is faster than communication through memory [13]. Compared to a conventional enatatel RIPS replaces
memory instructions for less expensive register reads and writes, andaepéagster reads and writes for
less expensive direct communication between producing and consumingiists.

The left bar stack of each pair in Figure 5 shows the number of loads amed sto TRIPS normalized to the
total number of loads and stores on the PowerPC. On average, TRIP8esxabout half as many memory
instructions as the PowerPC and as few as 15%, due to the bigger registardfiirect communication.
Several of the hand-optimized benchmarks have significantly fewer memoegses than the compiled ver-
sions because they register allocate fields in structures and small arheeysas the compiler currently does
not register allocate these. The right bar stack shows the number of rdigsteads, writes, and operand
network communications on TRIPS normalized to the total number of register fide sea writes on the

PowerPC. Because of direct operand communication, TRIPS requiyed®20% of the register accesses

10

needed on the PowerPC. The top bar of the stack shows that the relatnEenof operands transmitted
through direct communication far exceeds the number of register reads &esl ovr TRIPS.

Comparing each hand-optimized benchmark to its compiled counterpart olg@yvtrere are fewer regis-
ter accesses, OPN communications, and memory accesses. The hand-optrgsizedaggressively register
allocates more memory accesses by using programmer knowledge about gizisieg alt also has fewer in-
structions because it removes instructions with aggressive peephole optinszatibeliminates unnecessary
sign extensions. On average, the sum of register reads, writes, aostdlaimmunication is about the same as
the number of PowerPC register reads and writes. On some benchmaificaty SPEC INT, the tempo-
rary communication is large because of the distribution of predicates and conatiomicf useless values by
mis-predicated instructions. Figure 4 shows that the SPEC INT benchnedcksapproximately half useless
instructions, which leads to much more communication than on the PowerPC. In atonakarchitecture,
the register file broadcasts an instruction’s result to other instructions. IIRS,;Ranout may require a tree of

nove instructions, which increase the number of copies of the original operahdrfhaommunicated.
44 CodeSize

The TRIPS ISA increases dynamic code size over a PowerPC signific&#th block has 128 32-bit in-
structions, a 128-bit header, 32 22-bit read instructions, and 32 sixdkgtiwstructions. The compiler inserts
NOPs when a block has fewer than 32 reads or writes or fewer than 128 itietrsidNOPSs consume space in
the level-one I-cache but are not executed. We compared the dynamiofc®RIPS to the PowerPC by com-
puting the number of unigue instructions that are fetched during execution.yflaenit code size of TRIPS
averages about 6 times larger than the PowerPC, but with a wide varidheenumber of unique useful
instructions for TRIPS is about 2 and 3 times that of the PowerPC, indicating#tatction replication due
to TRIPS block optimizations accounts for about half of the code bloatnbie instructions and the block
header (including useful register read and write instructions) accouabbut 30% of the total instructions.
The TRIPS prototype compresses underfull instruction blocks in memory ane ib2tltache down to
32, 64, or 96 instructions, depending on block capacity, which redueesxjransion factor over PowerPC
to a factor of 4. Block compression in the instruction cache may unduly slow dwstruction fetch or re-
quire more complex instruction routing from the instruction cache banks to the exetil#sorExperiments
generally show a low instruction cache miss rate on small and medium sized bekshnd some SPEC
benchmarks have miss rates in the range of 15-25%, indicating that instroatibe pressure is a serious
problem for real applications. Fortunately, partitioned architecturef, &id RIPS, that bank the instruction

cache can be easily designed with larger overall instruction caches to mitigsatygoin of cache pressure.

11

1000 == s [O Fetched Not Executed| "~~~
B Executed Not Used

i 0

|

OH Moves
BOO -~ I I

Useful frrreee e

o
o
£
2
£
- '
s
% 600[- O 1 R T I i
£ [] I m
G _. I I I I .
oo S o s R) il ,, | B § BN N F EERE [Ff U EEEEEEI N SEERE N USRS N RS % ERRERN R [.-
Qo [l =
3 U
i] II I I = i . | Ill ||
=ooeds il S Etatalal ot 1 Tlet | 1] B
[} . |
> =
< =
0
OIVOIOIOIOIOIOIOIOIOIOIOIOIOT VOVLLOLLVLOLLVLOLLVLOLLVLOLOVLOLOVOLOLOLO
& SN Q s Q 2> Y . S
N & R N o & @ & o P& Q & N T A RE L XL AN S & R38R
> & & & & N YN S &Y &P SR E LS X F S O E L E
PUSIRC: S &L & & & C R RN @Q@Qé@ S N2 & &q‘,ﬁ@\@ @\\\@&@
¢ ® o’
SAAE
O <&
&Ko

Figure 6: Average number of in-flight Instructions for compiled (C) and hapitmized (H) benchmarks

5 Microarchitecture Evaluation

The primary goal of the TRIPS microarchitecture is to support a large oigiruwindow with a partitioned
design. One important aspect is the fraction of the instruction that is full, wigipkbritis on the TRIPS block
predictor. Another aspect is the bandwidth of the partitioned memory systdriharusage of the operand

network. This section explores these unique aspects using detailed statifitiesed from simulation.
5.1 Fillinga 1K Instruction Window

Each TRIPS block contains up to 128 instructions and the hardware cantexg to eight blocks concur-
rently so the maximum dynamic instruction window size, with full blocks and atewgeculation size, is
1024 instructions. Figure 6 shows the average number of TRIPS instruatitims window across a variety
of hand and compiled benchmarks. This metric multiplies the average number of bldtghtiispeculative
and non-speculative) and the average number of instructions per bloakpited codes, produce an average
of 450 total instructions of which 200 are useful. The hand-optimized progmwith larger blocks achieve a
mean of 630 total instructions, more than 380 of which are useful. Compared suithnsndows of 64 and 80
on modern superscalar processors, TRIPS exposes more conguipigrat the cost of more communication.

In addition to predication, the principal speculation mechanisms in TRIPS are theelaho dependence
predictor and the next-block predictor. When the load/store queue ditatesspeculatively issued load has
executed incorrectly, it flushes the block pipeline and enters the load intependence predictor’s simple
partitioned load-wait table in the data tile. For the SPEC benchmarks, thetpradieffective in part because
the compiler reduces the number of loads and stores (as discussed in SegticesdlBng in fewer than one
block flush per 2000 useful instructions, without overly constraininggipége load issue.

The TRIPS next-block predictor selects the next block to be fetched [fi&)nsists of a 5 KB local/global

12

100 —
[0 Correct-prediction:
Mispredictions

80 R A N R N R — 1

60 R Al - - - RN R

40} ---

ABHI ABHI ABHI ABHI ABHI ABHI ABHI BAMI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABH’\\I ABHQI
@ & Q \q;:* & s\,?e & &Qp
> € F S $§ &
e
<
S &

Figure 7:Prediction breakdown for Alpha 21264-like branch predicto basic blocks (A), TRIPS block predictor on

basic blocks (B), TRIPS block predictor on hyperblocks (HYl @anproved TRIPS block predictor on hyperblocks (1)
normalized to total predictions made for basic blocks

Normalized Breakdown of Predictions

20| -+

> o &

g S A
01/@ 2 Q’L‘Q ’erQ 'zS @Q’o N

A
& 5
& Y
& K

&g &‘\0 N

tournament exit predictor that predicts which exit branch will be takem fitee TRIPS block (one of up to
eight) and a 5 KB multi-component target predictor that predicts the targeesgidf this exit branch. Fig-
ure 7 shows the correct/misprediction breakdown for four differentigorations: the first barX) shows the
breakdown for an Alpha 21264-like conventional tournament branedigtor predicting TRIPS-compiled
basic block code, the second b&) 6hows the TRIPS block predictor predicting basic block code, the third
bar H) shows the TRIPS prototype block predictor predicting hyperblock cadeé the final barlj shows

a “lessons learned” TRIPS block predictor that could be used in fuesigds constructed by scaling up the
target predictor component to 9 KB. Each bar is normalized to the total numpegdittions made for basic
block code. The average MPKI (Mispredictions Per 1000 Instructions, omitiimge and mispredicated in-
structions) observed for these four configurations on SPEC INT are14.® 8.5 and 6.9 respectively. SPEC
FP applications have an MPKI of 0.9, 1.3, 1.1 and 0.8 respectively.

Predicting TRIPS blocks rather than basic blocks can improve accuragyube hard-to-predict branches
are converted to predicates, and can degrade accuracy, becagdisaton can obscure correlated branches in
the history. Although the prototype predictét)(has a higher misprediction rate than a conventional predictor
(A), it has a lower MPKI because it makes fewer predictions (70% fewerRECSINT and 40% fewer on
SPEC FP). The improved TRIPS predictpreduces SPEC INT MPKI by 19% and SPEC FP MPKI by 27%.
More sophisticated multi-component long-history predictors [8, 19] coulddeel tio improve the TRIPS
predictor, as well as improving the efficiency of the exit encoding. Additlpnimcreasing the size of the
currently small branch target buffer, call target buffer, and histaityimprove accuracy. Lower prediction
accuracy has a significant effect on the utilization of the instruction windalyasdiscussed in Sections 5.3
and 6, has a strong correlation with performance. More aggressitdloek predictors would dramatically

improve prediction accuracy, but may still fall short of modern branchiptied accuracies.

13

5.2 Feedsand Speeds

In this section, we explore the performance of the banked memory systenparahd network, two defining
features of the distributed TRIPS implementation. For the memory system, we del/képels that saturate
the bandwidth of each of the banks, providing insight into the types of optilbizarequired for memory-
bound programs. For the operand network, we measure traffic loaddaodee how well the compiler’s
placement algorithm minimizes the distance between communicating instructions.

Memory System: The TRIPS prototype employs an address-partitioned memory system thatsdikizl
L1 data cache into four 8-KB, single-ported data banks and the L2 dattheixteen 64-KB, single-ported
memory banks. The table in Figure 8 shows the achieved memory bandwidth omdivafeat a core speed
of 366 MHz for a hand-optimized vector addadd) kernel. With careful instruction placementiddcan
attain nearly 100% of the core’s peak of four memory operations per cy@lgé @B/sec), indicating effective
use of the partitioned L1 data cache. By adjusting the vector sizadtf we constructed a microbenchmark
with an access pattern to maximize the consumption of the L2 cache and main memomydbiand his
program nearly reached the theoretical peak of the L2 and a majority ofalrememory bandwidth provided
by the dual DDR memory controllers. While the benchmark achieves only 57 8 enaximum interface
bandwidth, the vast majority of the loss is due to the memory controller protodaiairto the TRIPS design
itself. Similar techniques and principles were used to hand-optimize dense kertnils [3] and lessons
learned from these case studies were used to improve the compiler’s instrdatiempnt algorithms.

Operand Network: The Operand Network (OPN) connects the TRIPS processor tiles amsinits
operands between execution tiles (ETs), the register file (RTs), and theakhe (DTs) [6]. The TRIPS
compiler’s instruction placer takes as input the tile topology and the dependémtieeen the instructions in
each block. It optimizes the instruction placement to exploit concurrencynémichize the distance between
dependent instructions along the program'’s critical path. The graph imeFgydisplays the breakdown of
the hop count for OPN traffic. On average, ET-ET operand trafficidates the OPN and about half of the
operands are bypassed locally within an ET resulting in an average ogeprmbunt of 0.9. While an ideal
instruction placement would use local bypassing for all operand communicattwpg), the inherent trade-
off between locality and concurrency combined with limited instruction storagélpetemands that many
communicating instructions reside on different tiles. The ET-DT and ET-Riicttgpically requires more
hops (and thus longer level-1 cache latency) because the DTs and Risrigethe edge of the ET array.
For exampleyaddstreams data from its L1 caches, yielding high ET-DT traffic, wimrix primarily uses
data in its register file, yielding greater ET-RT traffic. These two microbmacks illustrate how the OPN

supports highly divergent traffic patterns. We show the results of BfChenchmarlgcc and the mean of

14

80% [
70%
60%
L1 D-Cache| L2tolL1 Memory £ s
to Processor to L2 3
Peak Ops/ 4-8byte| 32-16byte| 1-64byte| 3 “*
cycle requests requests request| £ 30%
Peak BW 10.9 17.5 56| & 29
(GBytes/sec) (0%
Achieved BW 10.5 17.2 3.2
(GBytes/sec) 0%
% of Peak 96.5% 98.5% 57.8%
& =7
EEMBC-mean SPEC-gcc vadd-hand matrix-hand
(1.46 hops) (1.57 hops) (1.86 hops) (1.12 hops)
Benchmark Type

Figure 8: TRIPS bandwidths at 366MHz and operand network (OPi)igrvith average hops per packet

10
Ol B [0 Fetched Not Executeql |
I B Executed Not Used
gl I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . O Moves
W Useful
7 ,,, T
o) - |- I
O
O Sl """"""""" I B D
4" 1 D, - T T """" """ -H B e s
O o]] 0 I I Al [
30 Wl I N R =mlBol I I 155 0 BN TR
MO O 1 (' o ol O 1| |] | (PR
Hlm n la IR Lalala] | [l
Sl | In"I=jC ' ' BERRRRRRR =] |={eqRj=|=f= ’ 1"l
0
OIOIOIOIOIOIVOIOIVOIOIOVOIOIOVOIOIOVIOT 0O0O00LLLLLLLLLLOLOLOLOLOLOO
¢ D &R & & A PP & QFE DS SR &tk 0\(\\@% @
L LR/ @R PO ¢ &L s Q 1}(, @{}\ \fo 6\ \(Q"oe L
&SSO \\ Y@ & © » L \$$ L
FEIFTSTE PEE TIE ATRREE T
& Q/@Q/O("
GRER

Figure 9: IPC on compiled (C) and hand-optimized (H) benchmarl?s

the EEMBC benchmarks to demonstrate that the load on the OPN is similar betwsestiites.

5.3 ILP Evaluation

The TRIPS prototype can execute up to 16 instructions per cycle, butrdgarsastain 16 IPC under ideal
conditions: 8 blocks full of executed instructions, perfect next-blocHipt®n, and no instruction stalls due
to long-latency instructions. Actual IPC on the hardware is limited to 1/8 of theklsize. Since the average
block size of our hand-optimized benchmarks is 80 instructions, we couldetiwsily achieve at most an
average IPC of 10 on them. Figure 9 shows the sustained IPC that TRHR&es across the benchmarks.
While some applications are intrinsically serial (emgutelookup which traverses a tree data structure se-
rially), others reach 6 to 10 IPC, showing that the processor can talentdye of the greater ILP of these
programs. The hand codes have an IPC 50% greater on averagedhamthpiled counterparts, mostly due
to better block optimization. The SPEC benchmarks have lower IPC, both lectteyshave smaller average
15

70

W Ideal Machine - 0 Dispatch Cp|
60t n- bV [J Ideal Machine |
B Hardware
sof oo RN 192
SR | I E N amr oy a0
= 30l 111 L .« HERRRRR.Y 3L s [e oy
42 24 54 175
ol sea T el 100000 HIANRRRRANL] gl sae QR %2 KNug. .
12
8L TV
III|||.|||I|I iy . R
OTOTOITOTOTOTOTOTOTOTOTOTOTOTOITOT OO0 oo oLooLooLooLoLooLoLoLOLLOLLOLLOLO
¢ D N Q 2> N
LIRS & X PLR S S F RS R § & R - SN N o
SN 2 o\\'& Y O S P D FERD IS ES LS &
FE TS & ZE I EE § S I EFREOTT SEE oS R
N\
© N Q/O\QQ’O
£

Figure 10: IPC for TRIPS and an ideal EDGE machine, numbers showi®&réor SPEC benchmarks for
an ideal machine with a 128K instruction window

block sizes, and more flushes due to branch mispredictions and i-cache.misses

To understand the theoretical ILP capability of EDGE architectures, wdumted a limit study using an
idealized EDGE machine with perfect prediction, perfect predication, gtecBches, infinite execution re-
sources, and a zero-cycle delay between tiles. It, like TRIPS, has awvside of 1K instructions and a dis-
patch and fetch cost that only allows a new block to be started once aghtygcles. Figure 10 shows that on
average this ideal machine only outperforms the prototype by roughly a t£@db, indicating only moderate
room for improvement due to low inherent application ILP, the dispatch coedtjmited window size. Simu-
lating this ideal machine with a zero-cycle dispatch cost increases the IR@@yea by a factor of five. How-
ever, eliminating only the dispatch delay on TRIPS improves performancelpy0%, which indicates that
dispatch is not the primary bottleneck on the hardware. We also annotate thfe¢he SPEC bars with the IPC
for the ideal machine with a window of 128K instructions and a dispatch castrofcycles. The SPEC bench-
marks have a wide range of available ILP, with most benchmarks arouriBBuUt some FP benchmarks hav-
ing IPCs in the hundreds. The simple benchmarks have a similar range ®fCseveral such &802.11a
and8bl10bthat are inherently serial and do not exceed 15; others sugddamndfmradioare concurrent but
are resource limited on the hardware resulting in IPCs of 1000 and 50€ctesby on the ideal machine with
a 128K window. This study reveals that while the hardware has room to irapifte amount of ILP currently

available to TRIPS is limited and that larger window machines have the potentiathei exploit ILP.
6 TRIPS Performance versus Commercial Platforms

This section compares TRIPS to conventional processors using hand-optheizeltimarks to show the po-

tential of TRIPS and compiled benchmarks to show the current state of the com@l®S code is compared
16

W P3-gcc
[P4-gcc |
Wl Core2-icc
--|l TRIPS-Compiléeff-----
1 TRIPS-Han

Speedup over Core 2—-gcc (cycle:

Figure 11: Speedup of simple benchmarks relative to Core 2-gcc.

to benchmarks compiled with both the GNU C compiler (gcc) as well as the native colfigileon the ref-
erence machines. Data in this section is obtained from hardware perfamamaters.

Simple Benchmarks: Figure 11 shows cycle counts for TRIPS hand-optimized code, TRIR®ited
code, icc-compiled code for the Intel Core 2, and gcc-compiled code fdnteeCore 2, Pentium 4, and
Pentium IIl, normalized to the Core 2 using gcc. The TRIPS compiler achievessaage 1.5x speedup over
the Core 2, but does not perform as well on three of the benchmagkehBharks with smaller speedups like
rspeedare sequential algorithms that do not benefit from increased executidwlati or deep speculation.
The benchmarks that show the largest speedups, suestatix and 8b10h typically have substantial par-
allelism exposed by the large window on TRIPS. The TRIPS hand-assenddechtways outperforms the
Core 2, with an average 2.9x speedup.

The performance differences between TRIPS compiled code and TRRISdssembled code are primarily
due to more aggressive block formation, unrolling, and scalar replacemerxadople 8b10bbenefits from
unrolling the innermost loop of the kernel to create a full 128-instruction bladkieom register allocating a
small lookup table. Ifimradio, the hand-optimized code fuses loops that operate on the same vectosesnd
profile information to exclude infrequently taken paths through the kernel.

To completely remove the influence of the compiler and show the ability of TRIPSpioiea large
number of functional units, we compare a TRIPS hand-optimized matrix multiply [3] totdibe-of-the-art
hand-optimized assembly versions of GotoBLAS Streaming Matrix Multiply Libramelntel platforms [5].
The following are the best published results from library implementations farecional platforms, which
differ from the experimental numbers from compilation found in Figure 11. Téréopmance across plat-
forms, measured in terms of FLOPS Per Cycle (FPC), ranges from 1.88fB€ Pentium 4 to 3.58 FPC on
the Core 2 using SSE. The TRIPS application is able to achieve 5.20 FPC witbdgrikefit of SSE, which
is 40% greater than the best optimized code on the Core 2.

SPEC CPU2000: Figure 12 compares the performance of the SPEC2000 benchmarks &% Tith
17

B P3-gcc
0 P4-gcc
l Core2-icc
O TRIPS Compilef |

Speedup over Core2-gcc (cycle

SPEC INT SPEC FP
Figure 12: Speedup of SPEC benchmarks relative to Core 2-gcc.

the reference platforms. For consistency with our simulated results, wet pgrformance over a SimPoint
region, but we see similar results on the full applications. On the Intel platfaensse both icc and gcc, to
identify the effect of platform-specific optimizations. The quality of scalar op&tin in gcc is more similar
to the TRIPS compiler than icc, since the TRIPS compiler is an academic reseanglier that targets
multiple architectures. Consequently, we normalized performance to the Ceneg?tiie gcc compiler.

TRIPS performance is much lower on the SPEC benchmarks than on the simplaniz@ks shown in
Figure 11. While floating point performance is on par with Core 2-gcc (Qdoe achieves a speedup of 1.6
over TRIPS), integer performance is less than half that of the Corelite Bashows several events that have
a large effect on performance: conditional branch mispredictions, d¢alirrenispredictions, I-cache misses,
and load flushes for TRIPS, normalized to events per 1000 usefulS Ritructions. Also shown are the
branch mispredictions and I-cache misses for the Core 2, normalized tontlee1€90 TRIPS instruction-
baseline, which makes possible a cross-ISA comparison. The two rightmosircapture the effective
reduction in instruction window size due to the pipeline flushes discussed abbgesecond column from
the right provides an estimate of the number of useful instructions that woutdthe window if flushes and
I-cache misses did not occur. The rightmost column shows the measwedjawseful TRIPS instructions
in the window, first shown in Figure 6.

Several of the SPECINT benchmarks have frequent I-cache missdsasrafty, perlbmk twolf, andvor-
tex These benchmarks are known to stress the instruction cache, and thbasstkl SA exacerbates the miss
rate because of both the TRIPS code expansion and the compiler’s inabilitytte fixed-size 128-instruction
blocks. Crafty, perlbomk andvortexalso have an unusually high number of call/return mispredictions, due to
an insufficiently tuned call and branch target buffer in TRIPS. All of ¢hiztors reduce the utilization of
the instruction window; for exampl@erlbmkhas only an average of 52 useful instructions in flight, out of a

possible 155 based on the average block size. While the TRIPS call/retshedland I-cache misses cause

18

Per 1000 useful TRIPS instructions
Core 2 TRIPS | TRIPS || Core2 | TRIPS | TRIPS Average Average
cond. br. | cond. br. | call/ret || I-cache | I-cache| load useful block | useful insts
misses misses | misses | misses | misses | flushes size * 8 in flight

bzip2 55 4.0 0 0 0 0.02 183.5 140.3
crafty 5.9 55 35 2.55 15.8 0.48 154.0 72.5
gce 0.2 0.2 0.1 0 0.3 0.01 283.8 271.8
gzip 6.2 3.1 1.4 0 0 0.06 176.9 117.1
mcf 23.9 9.1 0.8 0 0 0.19 113.0 69.8
parser 6.0 2.6 1.8 0 1.1 0.12 118.7 90.3
perlbmk 25 12 11.1 0.01 3.2 0.22 122.4 52.6
twolf 13.9 4.9 2.1 0 9.2 0.57 182.7 114.6
vortex 0.4 0.6 3.2 0.48 8.1 0.44 155.3 137.6
vpr 13.8 4.3 0.9 0 0 0.06 176.8 —
applu 0.2 13 0 0 0 0.14 216.8 178.9
apsi 0 0.7 0 0.2 3.3 0.16 383.0 107.4
art 0.5 0 0 0 0 0.01 218.3 212.6
equake 0.3 0.6 0 0 0 0.04 218.8 190.7
mesa 2.2 2.8 0.2 0.01 7.9 0.08 192.8 112.9
magrid 0.1 0.1 0 0 0 0.01 469.1 455.2
swim 0 0 0 0.01 0 0 644.2 624.7
wupwise 0 0 0 0.01 0 0 2025 167.9

Table 3: TRIPS performance counter data for the SPEC benchmarks.

serious performance losses, branch mispredictions are competitive withrth@ @od load dependence mis-
predictions are infrequent. The benchmarks that are most able to keep s&dnlinstructions in the window
compare best to Core 2, suchas, mgrid, andswim These benchmarks are well known to be good targets

for extracting parallelism, and show good performance with little compiler or michitactural tuning.
7 LessonsLearned

The prototyping effort’s goals were twofold: to determine the viability of EDi@&hnology and to learn the
right way to build an EDGE-based machine. While this effort was suagedssinswering some of the high-
level questions about EDGE designs, it did provide significant insighiteimmw to (and how not to) build an
EDGE processor. This design and evaluation effort taught the followdagific lessons about how this class
of architectures should be built:

EDGE ISA: Prototyping has demonstrated that EDGE ISAs can support power-effitaege-window,
out-of-order execution with less complexity than an equivalent supergualeessor. However, the TRIPS
ISA had several significant weaknesses. Most serious was the limitedtfaf thenmove instructions, which
results in far too many overhead instructions for high-fanout operations.ISA needs support for limited
broadcasts of high-fanout operands. In addition, the binary ovérbethe TRIPS ISA is too large. The
128-byte block header, with the read and write instructions, adds too mudtqoéroverhead. Future EDGE
ISAs should shrink the block header to no more than 32 bytes, and mustrsugpable-sized blocks in the
L1 I-cache to reduce the NOP bloat, despite the resultant increase in rotuteatural complexity.

Compilation: The TRIPS compiler and prototype has shown that correct EDGE codeecganerated,

even for complex integer applications. The hand optimizations that provediedfece largely mechani-
19

cal, indicating that a production EDGE compiler could achieve much of that improterBenause of the
instruction-level block constraints, we determined that structural optimizatiueé, as loop unrolling and
hyperblock formation, should occur in the back end after code generdtiageneral, the ISA model faces
several difficult compilation challenges, the most significant of which is formingel#locks in control-
intensive code. The major challenge is frequent function calls that cutdtoo early; inlining cannot solve
this problem because it occurs well before block formation, typically in tietfend. A second critical prob-
lem is allocating as many variables in registers as possible; the best handtgdremde replaced store-load
pairs with a intra-block temporary communications, producing tighter code andrtpghformance. Effective
interprocedural alias analysis is required to discover sufficient agpities for this optimization.
Microarchitecture: The TRIPS prototype demonstrates that a microarchitecture with distributtedt pio
is feasible, and the fully functional first silicon indicates that tiled architestbenefit from increased de-
sign and validation productivity. A positive result was that, in general, thalliséd block control protocols
(fetch, dispatch, commit, flush) are not on the critical path. However, a nuailatifacts in the microar-
chitecture resulted in significant performance losses. Most importantraffis on the operand network,
which averaged just under one hop per operand. That amount of caratian resulted in both significant
OPN contention and communication cycles on the critical path. Spreading asloskuctions among all
execution tiles caused too much intra-block communication. Follow-on microarchésatnust re-map in-
structions, in coordination with the compiler, so that most instruction-to-instruction coroatiam occurs on
the same tile. The second most important lesson was that performance losse#e: evaluation of predicate
arcs was occasionally high, since arcs that could have been predidieaiehes are deferred until execution.
Future EDGE microarchitectures must support predicate prediction to eviieatest predictable predicate
arcs earlier in the pipeline. Third, the primary memory system must be distributed atiaighe execu-
tion tiles; the cache and register bandwidth along one edge of the executignias insufficient for many
bandwidth-intensive codes. Finally, a minor design flaw in the prototypewadking the call/return predictors
too small, which should be enlarged in future microarchitectures. Improvermebtanch and dependence

predictors will also result in higher performance for all microarchitectuireluding EDGE designs.
8 Conclusions

At its inception, the TRIPS design and prototyping effort tried to answerah@afing high-level questions:

(1) whether an effective distributed, EDGE-based processor ceubdift using a tiled approach, (2) whether
EDGE ISAs form a manageable compiler target, and (3) whether an ED&&thmocessor can support
improved general-purpose, single-threaded performance. Thisagiealgshows that the TRIPS ISA and mi-

croarchitecture are in fact feasible to build, resulting in a tiled design that expldisf-order execution over

20

a window of many hundreds of instructions. Despite the inter-tile routing laterttiesombination of the
large window, dynamic issue, and highly concurrent memory system permilSTia sustain up to 10 IPC,
showing average of 3x speedup over a Core 2 processor acragssedset of hand-optimized kernels.

For small, regular codes, the TRIPS compiler is able to generate codestlivafewer cycles than state-of-
the-art industrial designs, indicating that high-quality, compiler-generdiggE=code is feasible to produce.
Even though the compiled code performs less well than the hand-genevdiedite experience of converting
compiled code into hand-optimized code indicates that most of that performapoeag be eliminated by
mechanical transformations in an aggressive optimizing compiler.

However, the compiled cycle counts on major benchmarks, such as SPEQINSPECFP, are not com-
petitive with industrial designs, despite the greater computational resouregsnp in TRIPS. On com-
piled SPEC2000 benchmarks, the TRIPS prototype achieves 60% of tioenpence of a Core 2 running
SPEC2000 compiled at full optimization with gcc. While coming within 50% of an indusagide using a
system built by fewer than twenty people is a significant technical achieweihdoes not indicate that this
model can substantively outperform the current industrial designs @e, leomplex applications. Even if this
level of performance is increased moderately, the gains are likely too smaditify jai switch to a new class
of ISAs for high-end commercial systems. These limitations are due partiallyffwieecies in the ISA and
microarchitecture, but may also result from a fundamental mismatch betweegincprogram features and
EDGE ISAs. For example, benchmarks with many indirect jumps, or unusuathplea call graphs with
many small functions, may be difficult to build into large blocks without a code sigsion.

The prototyping effort was intended to learn the lessons necessariiddhmibest possible EDGE-based
designs. Support for variable-sized blocks, partial broadcaspefamds, predicate prediction, a more dis-
tributed/scalable memory system, smaller block headers, and alternate magdpimgisuctions to tiles all
emerged as important and necessary features of future EDGE-besigdsd In addition, since not all codes
have high concurrency, future EDGE-based microarchitectures must atlaptive granularity, providing
more efficient small configurations when larger configurations provide littitopeance benefit [10]. Cur-
rently, we project that these improvements will not enable large speedI3@E designs over high-end
commodity systems, although they will result in large gains over the TRIPS ppetoe believe that these
designs will show the most benefit over industrial designs in the five-to-é¢trspace, and may be sufficiently

faster in that space to justify adoption.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. Kahn, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the End of Silicohv@DGE Architectures. IEEE Computer
37(7):44-55, July 2004.

21

[2] K. Coons, X. Chen, S. Kushwaha, D. Burger, and K. McKinldySpatial Path Scheduling Algorithm for EDGE
Architectures. Innternational Conference on Architectural Support for ramming Languages and Operating
Systemgpages 129-140, October 2006.

[3] J. Diamond, B. Robatmili, S. W. Keckler, K. Goto, D. Burgand R. van de Geijn. High Performance Dense
Linear Algebra on Spatially Partitioned Processors. Symposium on Principles and Practice of Parallel
Programming pages 63—-72, February 2008.

[4] http://ww. eenbc. org.

[5] K. Goto and R. A. van de Geijn. Anatomy of High-Performandatrix Multiplication. ACM Transactions on
Mathematical Softwared4(12):4-29, May 2008.

[6] P. Gratz, K. Sankaralingam, H. Hanson, P. ShivakumaivBDonald, S. W. Keckler, and D. Burger. Imple-
mentation and Evaluation of a Dynamically Routed Proce€gmrand Network. Innternational Symposium on
Networks-on-Chippages 7-17, May 2007.

[7] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Er. IEEE Computer41(7):33-38, July 2008.

[8] D. Jiménez. Piecewise Linear Branch Prediction.Iiternational Symposium on Computer Architectyrages
382-393, June 2005.

[9] C. Kim, D. Burger, and S. W. Keckler. An Adaptive Non-Uaitm Cache Structure for Wire-Dominated On-Chip
Caches. Ininternational Conference on Architectural Support for framming Languages and Operating
Systemgpages 211-222, October 2002.

[10] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganatbaulati, S. W. Keckler, and D. Burger. Composable
Lightweight Processors. limternational Symposium on Microarchitectupages 381-294, December 2007.

[11] B. Maher, A. Smith, D. Burger, and K. S. McKinley. MergirHead and Tail Duplication for Convergent
Hyperblock Formation. Ihnternational Symposium on Microarchitectupgages 65—76, December 2006.

[12] S. Melvin and Y. Patt. Enhancing Instruction Schedylifvith a Block-Structured ISAInternational Journal on
Parallel Processing23(3):221-243, June 1995.

[13] A. Moshovos and G. S. Sohi. Speculative Memory Cloaking Bypassing.International Journal of Parallel
Programming 27(6):427—-456, December 1999.

[14] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.kkac A Design Space Evaluation of Grid Processor
Architectures. Innternational Symposium on Microarchitectupages 40-51, December 2001.

[15] PAPI: Performance Application Programming Interfabet p: / /i cl . cs. ut k. edu/ papi .

[16] R. M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. \atifity and VersaBench: A New Metric and a
Benchmark Suite for Flexible Architectures. Technical &¢&prM-646, Laboratory for Computer Science,
Massachusetts Institute of Technology, June 2004.

[17] K. Sankaralingam, R. Nagarajan, S. Keckler, and D. Bur§impleScalar Simulation of the PowerPC Instruction
Set Architecture. Technical Report TR-00-04, DepartménComputer Sciences, The University of Texas at
Austin, February 2001.

[18] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikd. Drolia, M. S. Govindan, P. Gratz, D. Gulati,
H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. SethumadhaSasharif, P. Shivakumar, S. W. Keckler, and
D. Burger. Distributed Microarchitectural Protocols iefRRIPS Prototype Processor.liernational Symposium
on Microarchitecture pages 480-491, December 2006.

[19] A. Seznec and P. Michaud. A Case for (Partially) TAggdeb@etric History Length Branch Predictiodournal
of Instruction-Level Parallelisivol. 8, February 2006.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic Blockribigtion Analysis to Find Periodic Behavior and
Simulation Points in Applications. Ihnternational Conference on Parallel Architectures andn@ilation
Techniquespages 3—-14, September 2001.

[21] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. YoderHnrger, K. S. McKinley, and J. Burrill. Compiling for
EDGE Architectures. Ihnternational Symposium on Code Generation and Optinomapages 185-195, March
2006.

[22] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDondl, Burger, S. W. Keckler, and K. S. McKinley.
Dataflow Predication. linternational Symposium on Microarchitectupages 89-102, December 2006.

[23] http://ww. spec. org.

[24] B. Yoder, J. Burrill, R. McDonald, K. Bush, K. Coons, MeBhart, M. Govindan, B. Maher, R. Nagarajan, B. Ro-
batmili, K. Sankaralingam, S. Sharif, A. Smith, D. Burger V& Keckler, and K. S. McKinley. Software Infras-
tructure and Tools for the TRIPS Prototype.Morkshop on Modeling, Benchmarking and Simulatihme 2007.

22

