
HAL Id: inria-00637218
https://inria.hal.science/inria-00637218v1

Submitted on 31 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-Pass Periodic Register Allocation to Minimise
Loop Unrolling Degree

Mounira Bachir, Sid Touati, Albert Cohen

To cite this version:
Mounira Bachir, Sid Touati, Albert Cohen. Post-Pass Periodic Register Allocation to Min-
imise Loop Unrolling Degree. LCTES ’08, Jun 2008, Tucson, United States. pp.141-149,
�10.1145/1375657.1375677�. �inria-00637218�

https://inria.hal.science/inria-00637218v1
https://hal.archives-ouvertes.fr

Post-Pass Periodic Register Allocation to Minimise Loop Unrolling
Degree

Mounira BACHIR, Sid-Ahmed-Ali TOUATI, Albert COHEN

April 10, 2009

Abstract

This paper solves an open problem regarding loop unrolling after periodic register allocation. Although software
pipelining is a powerful technique to extract fine-grain parallelism, it generates reuse circuits spanning multiple
loop iterations. These circuits require periodic registerallocation, which in turn yield a code generation challenge,
generally addressed through: (1) hardware support — rotating register files — deemed too expensive for embedded
processors, (2) insertion of registermoves with a high risk of reducing the computation throughput — initiation
interval (II) — of software pipelining, and (3) post-pass loop unrollingthat does not compromise throughput but
often leads to unpractical code growth. The latter approachrelies on the proof that MAXLIVE registers are sufficient
for periodic register allocation [2, 3, 5]; yet the only heuristic to control the amount of post-pass loop unrolling does
not achieve this bound and leads to undesired register spills [4, 7].

We propose a periodic register allocation technique allowing a software-only code generation that does not trade
the optimality of theII for compactness of the generated code. Our idea is based on using the remaining registers:
callingRarch the number of architectural registers of the target processor, then the number of remaining registers that
can be used for minimising the unrolling degree is equal toRarch−MAXLIVE.

We provide a complete formalisation of the problem and algorithm, followed by extensive experiments. We
achieve practical loop unrolling degrees in most cases — with no increase of theII — while state-of-the-art tech-
niques would either induce register spilling, degrade theII or lead to unacceptable code growth.

keywords Periodic Register Allocation, Software Pipelining, Loop Unrolling, Embedded Code Optimisation

1 Introduction

Our focus is on the exploitation of instruction-level parallelism (ILP) in embedded VLIW processors [13]. Increased
ILP translates into higher register pressure and stresses the register allocation phase(s) and the design of the register
files. In the case of software-pipelined loops, variables can stay alive across more than one kernel iteration, which is
challenging for code generation. The classical software solution that does not alter the computation throughput consists
in unrolling the loop a posteriori [4, 13]. We investigate ways to keep the size of the generated code compatible with
embedded constraints without compromising the throughputbenefits of software pipelining. Namely, we want to
minimise the unrolling degree resulting from periodic register allocation of a software-pipelined loop,without altering
the initiation interval(II).

Lam introducedmaximal variable extension[4, 13] to minimally unroll a software pipelined kernel for asoftware-
only solution to code generation. Having MAXLIVE variable simultaneously alive [12], maximal variable expansion
requires at least MAXLIVE registers to generate the code. Unfortunately, maximal variable expansion does not provide
any guarantee on the final number of registers: this limitation has been highlighted in [1, 3]. That is, it is possible
to allocate more than MAXLIVE registers, and there is no known precise upper bound. In practice, it means that
maximal variable expansion may generate spill code even if MAXLIVE is below the number of architectural registers
of the target processor. This means maximal variable expansion is not a robust solution to post-pass periodic register
allocation.

1

On the other hand, formal guarantees have been achieved using a graph-theoretical framework calledthe meeting
graph [1]. Given a software-pipelined loop, meeting graphs guarantee a periodic register allocation with exactly
MAXLIVE registers. The same framework provides multiple ways to generate code achieving this lower bound.

1. If the target processor contains rotating register files,loop unrolling is not required. However, such hardware
support may find its place in high performance processors (Intel’s Itanium) but never made its way to embedded
processors.

2. Alternatively, loop unrolling can be avoided thanks to periodic register renaming in software. This is achieved
through the insertion ofmove operations. However, inserting those operations may decrease the computation
throughput, i.e., increase the initiation interval (II). This cost often nullifies the benefits of software pipelining
itself.

3. The only remaining choice is to unroll the loop up to the least common multiple of the weights (total distance)
of the reuse circuits. The resulting unrolling degree is often unacceptable and may reach absurd levels.

To make things worse, practical applications of software pipelining require a pre-pass of schedule-independent
periodic register allocation, or face an uncontrolled impact on MAXLIVE. We thus need to resort another graph
theoretical framework calledreuse graphs[2]. Reuse graphs are used inside a framework called SIRA. This frame-
work generalises previous research result on periodic register allocation [1, 3] by considering both scheduled and
unscheduled loops. As a result, reuse graphs can be used bothfor a pre-pass periodic register allocation to control the
aggressiveness of scheduling algorithms, or as a post-passperiodic register allocation to generate code.

Reuse graphs have another usefulness. Indeed, they are usedto compute thesufficient unrollingdegree that we
should apply to the loop so that it is always possible to allocate exactlyRmin = MAXLIVE registers, independently
of the actual scheduling[2]. The drawback of this allocation is that the unrolling factor is equal to the least common
multiple of the weight of all reuse circuits. This paper presents a new method to reduce the loop unrolling degree
without altering theII. The heart of our method is based on the following observation. Let Rarch be the number of
available architectural registers in the processor; when aperiodic register allocation is performed, we may allocate
Rmin = MAXLIVE ≤ Rarch registers. Hence it remainsR = Rarch− Rmin free registers. Our goal is to exploit these
remaining registers to minimise the loop unrolling degreeα. That is, our loop compaction method is basedon using
extra free registers if they existto reduce the unrolling degree, without adding extramove operations, and without
altering theII of the software pipelined schedule.

This paper is organised as follows. Section 2 presents the most relevant related work. Section 3 is a brief in-
troduction to reuse graphs describing how to perform periodic register allocation. Section 4 formalises the problem
of minimisng the loop unrolling degree, then describes a solution. Section 5 details our main algorithms. Section 6
presents extensive experimental results, showing that ouroptimal solution is fast and efficient in practice. Finally,we
summarise our results and discuss some perspectives.

2 Related Work

We review the main issues and approaches to code generation for periodic register allocation.

2.1 Rotating Register File

A rotating register file(RRF) [6] is a hardware mechanism to prevent successive lifetime intervals from being assigned
to the same physical registers. Consider the following example:

LOOP
a[i + 2] = b[i] + 1
b[i + 2] = a[i] + 2

ENDLOOP

2

In this example, variablea[i] spans three iterations (defined in iterationi− 2 and used in iterationi). Hence, at least3
physical registers are needed to carry simultaneouslya[i], a[i+1] anda[i+2]. A rotating register fileR automatically
performs themove operation at each iteration.R acts as a FIFO buffer. The major advantage is that instructions in
the generated code see all live values of a given variable through a single operand, avoiding explicit register copying.
BelowR[k] denotes a register with offsetk from R.

Iterationi Iterationi + 2
R = b[i] + 1 R[+2] = b[i] + 1
b[i + 2] = R[−2] + 2 b[i + 2] = R + 2

Using a RRF avoids increasing code size due to loop unrolling, or to decrease the computation throughput due to
the insertion ofmove operations.

2.2 Move Operations

This method is also calleddregister renaming. Considering the previous example, we use3 registers to allocatea[i]
and performmove operations at the end of each iteration [10, 11]:a[i] in registerR1, a[i + 1] in registerR2 and
a[i + 2] in registerR3. Then we usemove operations to shift registers across the register file at every iteration:

LOOP
R3 = b[i] + 1
b[i + 2] = R1 + 2
R1 = R2
R2 = R3

ENDLOOP

However, it is easy to see that if variablev spansd iterations, we have to insertd − 1 extramove operationsat
each iteration. In addition, this may increase theII and may require rescheduling the code if thesemove operations
do not fit into the kernel. This is generally unacceptable as it negates most of the benefits of software pipelining.

2.3 Loop Unrolling

Another method,loop unrolling, is more suitable for embedded processors. The loop body itself is bigger but no
extra operations are executed in comparison with the original code. Lam designed a general loop unrolling scheme
calledmodulo variable expansion[4]. In fact, the major criterion of this method is to minimize the loop unrolling
degree because the size of the i-WARP processor is low [4]. the modulo variable expansionmethod guarantees the
minimal unrolling degree to enable code generation after a given periodic register allocation. This unrolling degree is
obtained by dividing the length of the longest live range (maxv LTv) by the number of cycles of the kernelmaxv LTv

II
.

In practice, many works propose a simple way to implement a generalized form of modulo expansion [9]. However,
this method does not guarantee a register allocation with MAXLIVE registers [1, 3], and in general it may lead to
unnecessary spills breaking the benefits of software pipelining. A concrete example of this limitation can be found in
[7].

Several algorithms have been proposed to achieve an allocation with a minimum number of registers equal to
MAXLIVE [2, 3, 5]. The algorithm of Eisenbeis et al.[5] achieves this bound, thanks to a dedicated graph repre-
sentation called themeeting graph. This graph describes how to find a periodic register allocation with MAXLIVE
registers if we sufficiently unroll the pipelined loop. Theyproceed by decomposing the meeting graph into elementary
circuits labelled with their weights (wi), in which each circuit correspond to a reuse pattern. The drawback is that the
unrolling factorα is associated with the least common multiple of the(wi), and that it is difficult to extract a circuit
decomposition that minimisesα. Another relevant approach based onreuse graphsis described in the next section.

3 Reuse Graphs

The literature brought many fundamental results on periodic register allocation for software pipelining using loop
unrolling. For instance, the methods [1, 3, 4, 13] can be usedfor such purpose onalready scheduled(software

3

pipelined) loops. If periodic register allocation should be done before software pipelining (for any reason), then such
methods cannot be applied. Nevertheless, pre-pass periodic register allocation is critical to control aggressiveness
of software pipelining algorithms, keeping register pressure (MAXLIVE) within acceptable levels. Many ad-hoc
heuristics are used in production compilers for this purpose, yet there exists a graph theoretical framework called
SIRA [2] designed to perform periodic register allocationeither before or after software pipelining. In this article,
we rely on this general theoretical framework as a register allocator, because we want to be able to optimise the loop
unrolling degree either before or after software pipelining.

The problem with SIRA is that it sometimes induces huge loop unrolling factors, reducing its practical applicability.
Our work improves SIRA byadding a post-pass of loop unrolling minimisation. This section is an overview on the
main results of the SIRA framework [2].

Figure 1 (a) is an illustration of a data dependence graph (DDG) of an innermost loop devoted to a software
pipelining schedule. The nodes (loop statements) writing into a register are in bold circle. The flow data dependences
through registers are in bold arcs. The nodes that are not in bold circles are the set of statements that do not write
into registers (such as nodes 6 and 11). Each arc is labelled by a pair of values representing the latency of the
dependence (in processor clock cycle) and the distance of the dependence (in terms of loop iterations). Doing a
periodic register allocation for this loop means to decide how to share the available registers between the set of loop
operations (statements instances). The difficulty here resides in the fact that the variables lifetime intervals become
periodic when considering software pipelining[3].

Figure 1 (b) is an illustration of a reuse graph associated tothe loop. The set of nodes in the reuse graph is the
set of nodes writing into a register: here, nodes 6 and 11 are excluded because they do not require registers. Each arc
in the reuse graph represent areuse arc. It models the register sharing between statements. A reusearc e = (u, v)
with a labelµuv

∈ N means that the operationu of iteration i and the operationv of iterationsi + µuv
shares the

same destination register. That is, the lifetime interval of the variableu of iterationi is necessarily before the lifetime
interval of the variablev of iterationi + µuv

.
Reuse graphs have many formal proved characteristics making them a good formal solution for periodic register

allocation [2, 8]. First, a reuse graph is composed of a set ofelementary and disjoint circuits, calledreuse circuits.
Second, each node writing into a register belongs to one and only one reuse circuit. Third, the weights of reuse graphs
describe precisely the number of allocated registers and the unrolling degree. Let us give more details on this last
important property. Let beµi =

∑

e ∈ Ci be the weight of a reuse circuitCi (it is the sum of all theµ labels of
its arcs). Let{C1, · · · , Ck} be the set of reuse circuits. Let beR =

∑

i µi the total sum of all the labels, and let be
α = lcm(µ1, · · · , µk) the least common multiple of the reuse circuits weights. Then, given a loop DDG and valid
reuse graph associated with it, the following assertion is proved correct [2, 8]: if the loop is unrolledα times, then the
reuse graph describes a periodic register allocation with exactlyR =

∑

i µi registers. For instance, the reuse graph of
Figure 1 (b) has four reuse circuits:C1 = {1, 2}, C2 = {7}, C3 = {3, 4, 5} andC4 = {8, 9, 10}. Each reuse circuit
Ci has a weightµi: µ1 = µ1,2 + µ2,1, µ2 = µ7,7. µ3 = µ4,3 + µ3,5 + µ5,4 andµ4 = µ9,8 + µ8,10 + µ10,9. If the loop
is unrolledα = lcm(µ1, µ2, µ3, µ4) times, then we can build a periodic register allocation withR =

∑

i µi registers.
Note that the problem of building a valid reuse graph with

∑

i µ ≤ Rarch has been solved in[2, 8]. Thanks to
reuse graphs, we are able to formally guarantee the number ofallocated registers with a sufficient unrolling degree.
This periodic register allocation can be done after software pipelining (without altering theII), or before software
pipelining (without altering the critical cycle if possible). We recall that we can avoid loop unrolling in the presence
of a hardware rotating register file: unfortunately, embedded VLIW processors do not have such architectural support.
We can however insertmove operations to simulate a rotating register file. Such extramove operations may alter the
II. So, in the absence of hardware support, the unique formal solution for periodic register allocation with exactly
MAXLIVE registers without altering theII seems to be proposed by the SIRA framework. The problem with SIRA
is that it provides a satisfactory solution from the computer science perspective, but the solution is not satisfactoryin
practice. This is because the unrolling degreeα computed by SIRA may be large yielding to considerable code size
expansion. In this paper, we propose a post-pass optimisation method that minimises the unrolling degree to its lowest
possible value. The following section is devoted to this important problem.

4

1

72

3 4 9 8

101165

2

1

3 4

5

9 8

10

(1, 1)

(1,0) (1,0)

(2,1) (2,1)

(2,0) (2,0)

(2,0)

(1,0) (1,0)

(2,0) (2,0)
(2,0)

(2,0)(2,0)

(a) DDG Example

(b) Reuse Graph Example

µ

µ

µµµ

µ

µ1,2

9,8

8,10
10,95,4

4,3

µ
3,5

2,1

7

µ7,7

Figure 1: Reuse Graphs

4 Loop Unrolling Problem

The fact that the unrolling factorα may theoretically be high would happen only if we actually want to allocate the
variables on this minimal number of registersRmin =

∑

C µ(C) with the computed reuse scheme. However, there may
be other reuse schemes for the same number of registers, or there may remain some registers after the register allocation
step in the architecture that we can useR = Rarch− Rmin (Rarch is the number of architectural registers). In that case,
we develop a method using these remaining registers in orderto reduce this unrolling factor. This method is applied
after the periodic register allocation step performed by the framework SIRA. This post-pass minimisation consists in
adding some registers between the remaining registers to each reuse circuit in order to minimise the least common
multiple denotedα∗. This idea is described inLCM-MIN Problemdetailed in the next section. Figure 2 illustrates the
global steps for minimising loop unrolling degree. As can beseen, our method performs after a conventional periodic
register allocation.

4.1 LCM-MIN Problem

TheLCM-MIN Problemcan be formally modelled as follow:

5

Figure 2: Loop Unrolling Minimisation

Problem 1 (LCM-MIN) . LetR ∈ N be the number of remaining registers. Letµ1, . . . , µk ∈ N be the weights of the
reuse circuits. Compute the added registersr1, . . . , rk ∈ N such that:

1.
∑k

i=1
ri ≤ R

2. lcm(µ1 + r1, . . . , µk + rk) is minimal.

Before stating our solution for Problem 1, we propose to find asolution for a sub-problem that we callLCM-
Problem. The solution of this sub-problem constitutes the basis of the solution of Problem 1.LCM-Problemproposes
to find for a fixed loop unrolling degreeβ, the different added registersr1, . . . , rk among the remaining registersR to
the different reuse circuits such as:

∑k

i=1
ri ≤ R and lcm(µ1 + r1, . . . , µk + rk) = β. A formal description is given

in the next section.

4.2 LCM Problem

We formulate theLCM Problemas follow:

Problem 2 (LCM Problem). LetR ∈ N be the number of remaining registers. Letµ1, . . . , µk ∈ N be the weights of
the reuse circuits. Given a positive integerβ, compute the different added registersr1, . . . , rk ∈ N such that:

1.
∑k

i=1
ri ≤ R

2. lcm(µ1 + r1, . . . , µk + rk) = β.

Before describing our solution forLCM Problem, we state Lemma 1 and Theorem 1 that we need to use afterwards.
We prove only Theorem 1 because the proof of Lemma 1 seems obvious.

Lemma 1. Let assume that we find a list of the added registersr1, . . . , rk among the remaining registersR with
a minimal number of registers (

∑k

i=1
ri is minimal). Let assume that this minimal list of the added registers sat-

isfies the second condition of Problem 2 (lcm(µ1 + r1, . . . , µk + rk) = β). If the first condition is not fulfilled
(
∑k

i=1
ri minimal > R) thenLCM Problemcannot be resolved.

6

Theorem 1. Let β be a positive integer andDβ be the set of its divisors. Letµ1, . . . , µk ∈ N be the weights of the
reuse circuits. If we find a list of the added registersr1, . . . , rk ∈ N for Problem 2, thus we have the following results:

1. β = lcm(µ1 + r1, . . . , µk + rk) ⇒ ∀i = 1, k : β ≥ µi

2. β = lcm(µ1 + r1, . . . , µk + rk) ⇒ ∀i = 1, k :
∃di, ri = di − µi with di ∈ Dβ ∧ di ≥ µi.

Proof. The first issue can be proved as follows:

β = lcm(µ1 + r1, . . . , µk + rk) ⇒ ∀i = 1, k β ≥ µi + ri (1)

From (1) we have:
∀i = 1, k : β ≥ µi + ri ⇒ ∀i = 1, k : β − µi ≥ ri (2)

From (2) we have:
∀i = 1, k : β ≥ µi because∀i = 1, k : ri ≥ 0 (eachri ∈ N)
The first issue is proved.
The second issue can be proved by using the definition of the least common multiple of a set of positive integers.

Hence, we have:
β = lcm(µ1 + r1, . . . , µk + rk)

⇒ ∀i = 1, k : µi + ri is a divisor ofβ (3)

From (3) we have:
∀i = 1, k : µi + ri is a divisor ofβ

⇒ ∀ i = 1, k : ∃ di ∈ Dβ | µi + ri = di (4)

From (4) we find:

{

∀ i = 1, k : ri ≥ 0
∃ di ∈ Dβ | µi + ri = di

⇒

∀ i = 1, k

∃ di ∈ Dβ :
ri = di − µi

with di ≥ µi

The second issue of Theorem 1 is proved.

After proving the Theorem 1 and by using Lemma 1, we describe our solution forLCM Problemin the next section.

4.3 Solution for LCM Problem

Proposition 1. Letβ be a positive integer andDβ be the set of its divisors. LetR be the number of remaining register.
Let µ1, . . . , µk ∈ N be the weights of the reuse circuits. A minimal list of the added registers (r1, . . . , rk ∈ N with
∑k

i=1
ri is minimal) can be found by adding to each reuse circuitµi a minimal valueri such asri = di − µi with

di = min{d ∈ Dβ | d ≥ µi}. Hence, we have the following issues:

1. β = lcm(µ1 + r1, . . . , µk + rk) ∧
∑k

i=1
ri ≤ R ⇒ we find one solution for Problem 2;

2. β = lcm(µ1 + r1, . . . , µk + rk) ∧
∑k

i=1
ri > R ⇒ Problem 2 cannot be resolve.

Proof. In Theorem 1, we have proved that:
β = lcm(µ1 + r1, . . . , µk + rk) ⇒

∀ i = 1, k ∃ di ∈ Dβ | ri = di − µi ∧ di ≥ µi (5)

From (5) we have:
ri is minimal ⇒ di is the smallest divisor ofβ ≥ µi (6)

7

Algorithm 1 LCM Problem
Require: k the number of reuse circuits, the different weights of reusecircuitsµi, the remaining registerR andβ

Ensure: the different added registersr1, . . . , rk with
P

k

i=1
ri minimal if it exists and a booleansuccess

sum← 0 {initialisation}
success← true {defines if we find the different added registers or not}
i← 1 {represents the number of reuse circuit}
calculate the different divisors ofβ
while i ≤ k ∧ success do

di ← DIV NEAR(β, µi) {DIV NEAR returns the smallest divisors ofβ greater or equal toµi}
ri ← di − µi

sum← sum + ri

if sum > R then
success← false

else
i + +

end if
end while

From (6) a minimal list of the added registersr1, . . . , rk with
∑k

i=1
ri is minimal can be found as follows:

∀i = 1, k : ri is minimal ⇒ ∀i = 1, k : ri = di − µi ∧ di = min{d ∈ Dβ | d ≥ µi}
According to Lemma 1,if we find a list of the added registers (the different values ofri) among the remaining

registers such as
∑k

i=1
ri is minimal ≤ R then these different values ofri can be a solution forLCM Problem.

Otherwise, if
∑k

i=1
ri is minimal > R then we are sure that there are no solution for Problem 2.

Figure 3 represents a graphical solution forLCM Problem. For the fluidity of the reading, we assume that the
different weights and the different divisors ofβ are sorted on the same axis in an ascending order.

Figure 3: Graphical solution for the LCM Problem

Algorithm 1 implements our proposition forLCM Problem. In this algorithm, we minimise the least common
multiple of k integers (the different weights of reuse circuitsµi) using the remaining registersR. It checks ifβ can
become the new loop unrolling degree. This algorithms finds out the list of added registers among the remaining
registersR between the reuse circuits (the different values ofri ∀i = 1, k), if such list of added registers exists. It
returns also a booleansuccess which takes the following values:

success =

{

true if
∑k

i=1
ri ≤ R

false otherwise

The solution ofLCM Problemconstitutes the basis of a solution forLCM-MIN Problemexplained in the next
section.

5 Solution for LCM-MIN Problem

For the resolution ofLCM-MIN Problemwe have to use the solution of theLCM Problemand the result of Theorem 1.

8

According to Theorem 1, the research spaceS for α∗ (the solution ofLCM-MIN Problem) is bounded.
{

∀ i = 1, k α∗ ≥ µi (From Th 1)
α∗ ≤ α (our objective)

⇒ max
1≤i≤k

µi ≤ α∗ ≤ α

In addition,α∗ is a multiple of eachµi + ri with 0 ≤ ri ≤ R. If we assume thatµk = max1≤i≤k µi thenα∗ is a
multiple ofµk + rk with 0 ≤ rk ≤ R. Furthermore, the research spaceS can be stated as follows:

S = {β ∈ N | β is multiple of(µk + rk) ∀rk = 0, R ∧ µk ≤ β ≤ α}
After describing the setS of all possible value ofα∗. The minimalα∗ the solution for Problem 1 is defined as

follow:
α∗ = min{β ∈ S|∃(r1, . . . , rk) ∈ N

k ∧ lcm(µ1 + r1, . . . , µk + rk) = β ∧
∑k

i=1
ri ≤ R}

Figure 4 portrays all values of the setS. An arrow between two nodes means that the value in the first node is less
than the value of the second node:a → b ⇒ a < b. The valueµk represents the value of the reuse circuit numberk. By
assumption, it is also the greatest value of all reuse circuits.α is the initial loop unrolling value. Each node is a potential
solution (β) which can be considered as the minimal loop unrolling degree. A dashed node can not be a potential
candidate because its value is greater thanα. Let τ = α div µk be the number of total lines. Each line describes a set
of multiples. For example, the linej describes a set of multiplesSj = {β|∃rk, 0 ≤ rk ≤ R, β = j×(µk+rk)∧β ≤ α}

Figure 4: The set S of all possibles values

In order to computeα∗, our solution consists in checking if each node ofS can be a solution forLCM Problem: at
last we are sure that the minimum of all these values is the minimal loop unrolling degree.

Despite traversing all the nodes ofS, we describe in Figure 5 an efficient way to find the minimalα∗. We proceed
line by line. In each line, we apply Algorithm 1 to each node until the value of the predicatesuccess returned by
Algorithm 1 istrue or until we arrive at the last line whenβ = α. If the valueβ of the nodei of the linej verifies the
predicate (success = true), then we have two cases:

1. If the value of this node is less than the value of the first node of the next line then we are sure that this value is
optimal (α∗ = β). This is because all the remaining nodes are greater thanβ (by construction of the setS).

2. Else we have found a new value of unrolling degree less thanthe originalα. We note this new valueα′ and
we try once again to optimise it until we find the optimal (the first case). The set of research becomes smaller
(S′ = {β ∈ N|∀rk = 0..R : β is multiple of(µk + rk) ∧ (j + 1) × µk ≤ β ≤ α′})

Algorithm 2 implements our solution forLCM-MIN Problem. This latter minimises the loop unrolling degreeα

which is the least common multiple ofk reuse circuits whose weights areµ1, . . . , µk. Our method is based on using

9

Figure 5: How to Traverse the Set S

the remaining registersR. This algorithm computesα∗ the minimal value of loop unrolling degree and the minimal
list r1, . . . , rk of the added registers to the different reuse circuits.

Fig 6 illustrates a concrete example. We want to minimise theinitial loop unrolling degree generated by the
following reuse circuits:µ1 = 3, µ2 = 4, µ3 = 5, µ4 = 7, µ5 = 8. The loop unrolling degreeα is their least common
multiple (α = 840). In this configuration we assume that we have32 registers in the machine. So hence we haveR = 5
remaining registers. The new loop unrolling degree (minimal least common multiple) found thanks to our method is
α∗ = 8. The minimal number of registers added to each reuse circuits arer1 = 1, r2 = 0, r3 = 3, r4 = 1, r5 = 0.
The ratioratio = α

α∗
= 105 and the execution time is about41 micro second.

Figure 6: Example of Loop Unrolling Minimisation

6 Experimental Results

To study the efficiency of our approach, we developed a tool togenerate many thousands of random data dependence
graphs (DDG) containing multiple hundreds of reuse circuits. We then integrated the results into a backend optimiser,
considering real DDG of classical benchmarks. We use both random DDG and real DDG to investigate the efficiency
of our solution. We detail these tools and the experimental results in the following sections.

6.1 Results on Randomly Generated DDG

At first, our software generatesk the number of distinct reuse circuits and their weights (µ1, . . . , µk). Afterwards, we
calculate the number of remaining registersR = Rarch−

∑k
i=1

µi and the loop unrolling degreeα = lcm(µ1, . . . , µk).
Finally, we apply our method for minimisingα.

We did extensive random generations on many configurations:we varied the number of available registersRarch

from 4 to 256, and we considered many thousands of random graphs containing multiple hundreds of reuse circuits.

10

Each reuse circuit can be arbitrarily large. That is, our experiments are done on random data dependence graphs with
unbounded number of nodes (as large as someone wants). Only the number of reuse circuits is bounded.

Figure 7 is a 2-D plot representing the code size compaction ratio obtained thanks to our method. The code size
compaction is counted as the ratio between the initial unrolling degree and the minimised one (ratio = α

α∗
). The

X-axis is the number of available hardware registers (goingfrom 4 to 256), the Y-axis is the code compaction ratio. As
can be seen, our method allows to have a code size reduction going from 1 to more than 10000! In addition, we note
also in Figure 7 that the ratio is very important when theRarch is greater. For example, the ratio of some minimisation
exceeds 10000 whenRarch = 256.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

 R
at

io
=

(I
ni

tia
l U

nr
ol

l)/
(F

in
al

 U
nr

ol
l)

Hardware Registers

Loop Unrolling Optimization

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 50 100 150 200 250 300

T
im

e
(M

ic
ro

S
)

Hardware Registers

Speed of Loop Unrolling Minimization

Figure 7: Loop Unrolling Minimisation Experiments

Furthermore, our method is very fast. Figure 7 plots the speed of our method on a dual-core 2 GHz Linux PC,
ranging from 1 micro-second to 10 seconds. This speed is satisfactory for optimising compilers devoted to embedded
systems (not to interactive compilers like gcc or icc). We remark also the speed of extremely rare minimisation (when
Rarch = 256) can reach 1000 seconds.

We show in Figure 8, the harmonic mean for all the code compaction ratios in each configuration. These very high
numbers confirm that our approach significantly decreases the initial loop unrolling degree.

6.2 Results on Concrete DDG

Initially, each periodic register allocation in our backend compilation framework implies loop unrolling with a factor
α depending on reuse circuits weights. In a new version of our backend, we integrate our loop unrolling minimisation
method as a post-pass of the periodic register allocation.

At first, we have applied our code optimisation method (periodic register allocation followed by unroll factor
minimisation) on many DDG extracted from various real benchmarks, either from the embedded domain and from the
high performance computing domain: DSP-filters, Spec, Lin-ddot, Livermore, Whetstone, etc. The total number of
experimented DDG is 310, their sizes go from 2 nodes and 2 edges up to 360 nodes and 590 edges. Afterwards, we
have performed experiments on these DDG, depending on the considered number of registers. We considered three
configurations as follow:

1. machine with unbounded number of registers;

11

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250

R
at

io
: (

In
iti

al
 U

nr
ol

l)/
(F

in
al

 U
nr

ol
l)

Hardware Registers

Harmonic Mean{Ratio}

Figure 8: Statistics on Randomly Generated DDG

2. machine with bounded number of registers varied from 4 to 256;

3. machine with bounded number of registers varied from 4 to 256 with the optioncontinue (described later).

6.2.1 Machine with Unbounded Number of Registers

Theoretically, the best result for theLCM-MIN Problemis α∗ = µk the greatest value ofµi, ∀i = 1, k. Hence, we
aim with these experiments to calculate the mean of the addedregisters (

∑k

i=1
ri) required to obtainµk.

In order to interpret all the data resulted from the application of our method to all DDG, we decide to make some
statistics. Indeed, we have looked for arithmetic mean to represent the average of the added registers (AV Rar(

∑k

i=1
ri))

needed to obtainµk. Moreover, we calculate the harmonic mean of all the ratio (AV Rhar(
α
µk

)).
Our experiments show that using12.1544 additional registers in average are sufficient to obtain a minimal loop

unrolling degree withα∗ = µk. We note also that we have a high harmonic mean for the ratio (AV Rhar(
α
µk

) =
2.10023). That is, our loop unrolling minimisation pass is very efficient regarding code size compaction.

6.2.2 Machine with Bounded Number of Registers

We consider a machine with a bounded number of architecturalregistersRarch. We variedRarch from 4 to 256 and we
apply our code optimisation method on all DDG. Afterwards, we made statistics on the resulting data. For each config-
uration, we looked for an arithmetic mean to represent the average of number of added registers (AV Rar(

∑k

i=1
ri)).

Moreover, we calculate the harmonic mean of all the ratio described asAV Rhar(
α
α∗

). Finally, we also calculate
the arithmetic mean of the remaining registers (AV Rar(R)) after the register allocation step given by our backend
compilation framework.

Table 1 shows that our solution find the minimal in all configurations except whenRarch = 4. In average, a
small number of added registers are sufficient to have a minimal loop unrolling degree (α∗). For example: in the
configuration with32 registers, we find the minimal loop unrolling degree, if we add in average1.07806 registers

12

among9.72285 remaining registers. We note also that we have in many configuration, a high harmonic mean for the
ratio (AV Rhar(ratio)). For example, in the machine with256 registers,AV Rhar(ratio) = 2.72581.

Rarch AV Rar(
∑k

i=1
ri) AV Rhar(ratio) AV Rar(R)

4 0 1 0.293562
8 0.0151163 1.00729 0.818314
16 0.250158 1.10463 2.72361
32 1.07806 1.4149 9.72285
64 3.07058 1.96319 29.0559
128 14.0731 2.71566 79.6419
256 15.2288 2.72581 207.118

Table 1: Machine with Bounded Number of Registers

Figure 9 shows the initial loop unrolling degree and the finalloop unrolling degree of three benchmarks. We note
that the final loop unrolling degree is very small compared tothe initial loop unrolling degree.

Figure 10 shows the harmonic mean of the minimised (final) loop unrolling weighted by the number of nodes
of different DDG. We calculate this weighted harmonic mean on different configurations. We give a realistic VLIW
processor with an issue width of 4 instructions per cycle, where all the DDG are pipelined withII = MII =
max(MIIress, MIIdept). In all configurations, the average of the final unrolling degree of pipelined loops is below8,
a significant improvement over the initial unrolling degree. E.g., in the configuration whereRarch = 64, the minimised
loop unrolling is in average equal to7.78.

6.2.3 Machine with Bounded Number of Registers and Option continue

In these experiments we use optioncontinue of our backend. Without this option, our backend computes the first
periodic register allocation which verifies

∑

µi ≤ R (not necessarily minimal). If we use the optioncontinue,
our backend generates the periodic register allocation that minimises

∑

µi. In order to compare these two configura-
tions (Machine with Bounded Number of Registers versus Machine with Bounded Number of Registers using option
continue), we reproduce the statistics of the previous experiments using this additional option. The results are
described in Table 2.

Rarch AV Rar(
∑k

i=1
ri) AV Rhar(ratio) AV Rar(R)

4 0 1 0.33412
8 0.015841 1.00774 0.885657
16 0.253726 1.10477 2.79591
32 1.09681 1.42146 9.96854
64 3.25124 2.02749 31.1405
128 9.40373 2.28922 81.7739
256 15.1959 2.71729 207.394

Table 2: Machine with Bounded Registers with Optioncontinue

Comparing Table 1 and Table 2, notice that some configurations yield a better harmonic mean for the code com-
paction ratio with optioncontinue, whenRarch ≤ 64. Conversely, the ratio without optioncontinue is better
whenRarch ≥ 128. These strange results are side-effects of the reuse circuits generated by SIRA, which differ de-
pending on the number of architectural register. In addition, the complex mathematical structure of theLCM-MIN
Problemdoes not allow to say that, the number of remaining registersR, the lower the unrolling degree would be. I.e.,
increasing the number of remaining registers (by performing minimal periodic register allocation) does not necessarily
mean a maximal reduction of loop unrolling degree.

13

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35

 L
oo

p
U

nr
ol

lin
g

D
eg

re
e

II

lin-ddot_U_5.ddg

Initial Unroll
Final Unroll

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100 110 120 130

 L
oo

p
U

nr
ol

lin
g

D
eg

re
e

II

liv-loop23_U_4.ddg

Initial Unroll
Final Unroll

 2

 4

 6

 8

 10

 12

 14

 16

 40 50 60 70 80 90 100

 L
oo

p
U

nr
ol

lin
g

D
eg

re
e

II

van_Dongen_U_10.ddg

Initial Unroll
Final Unroll

Figure 9: Loop Unrolling Minimisation for Some Benchmarks

7 Conclusion

Contrary to maximal variable expansion [4, 13], periodic register allocation for software pipelined loops require ex-
actly MAXLIVE registers, as proven in [1, 2, 3]. In case of embedded VLIW processors, we cannot rely of rotating
register files. So, periodic register allocation implies either loop unrolling or inserting extramove operations. Inserting
extra operations is not a satisfactory solution for us, because it may alter theII. In this paper, we present a solution for
an open problem: how to minimise the loop unrolling degree associated with a given periodic register allocation? Our
loop unrolling degree minimisation is implemented as a post-pass of register allocation, and exploits the remaining
free registers. Our method guarantees that the final number of available registers is still belowRarch while resulting in
a minimal unroll degree.

14

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 50 100 150 200 250

Lo
op

 U
nr

ol
lin

g

Hardware Registers

Weighted Harmonic Mean{Final Unroll}

Figure 10: Weighted Harmonic Mean For Minimised Loop Unrolling Degree

We provide a formal setting for this problem, together with algorithms to solve it and with extensive experimental
evidence of the practicality of the approach. For instance,considering an embedded VLIW processor family such as
the ST2xx withRarch = 64 architectural registers, consuming3.07 remaining registers on average brings the unrolling
degree of pipelined loops below8, with smaller degrees for larger loops in general.

As a side-result of this work, we notice that the presence of rotating registers files is not really necessary, as loop
unrolling seems to be a satisfactory solution to generate code after periodic register allocation. Nevertheless, we
noticed that some loops still require high unrolling degrees even after our optimisation. Our future work is twofold:
(1) how to insertmove operations without altering theII while minimising the unroll degree, and (2) how to combine
loop unroll degree minimisation with periodic register allocation. The result might be that optimal exploitation of
remaining registers plus the insertion ofII-preservingmoves are not sufficient to bring the unrolling degree down to
acceptable levels for all loops. This would lead to an interesting limit study of software pipelining without hardware
support for rotating register files.

8 Acknowledgments

This work has been supported by the ANR MOPUCE project (ANR number 05-JCJC-0039).

References

[1] D. de Werra, C. Eisenbeis, S. Lelait, and B. Marmol. On a Graph-Theoretical Model for Cyclic Register Alloca-
tion. Discrete Applied Mathematics, 93(2-3):191–203, July 1999.

[2] S.A.A. Touati and C. Eisenbeis. Early Periodic RegisterAllocation on ILP Processors. Parallel Processing
Letters, Vol. 14, No. 2, June 2004. World Scientific.

[3] L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A Register Allocation Framework Based on Hierarchical
Cyclic Interval Graphs. In Proceedings of the International Conference on Compiler Construction (CC’02).
Lecture Notes in Computer Science, 641:176–191, 1992.

15

[4] M. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines, In Proceedings of
the SIGPLAN 88 Conference on Programming Language Design and Implementation, pages 318-328, Atlanta,
Georgia, June 22-24, 1988.

[5] C. Eisenbeis, S. Lelait and B. Marmol. The Meeting Graph:A New Model for Loop Cyclic Register Allocation.
in Proceedings of the IFIP WG 10.3 Working Conference on Parallel Architectures and Compilation Techniques,
PACT 95, pages 264-267, Limasol,Cyprus, June 1995. ACM Press.

[6] J.C. Dehnert, P.Y Hsu, and J.P. Bratt. Overlapped Loop Support in the Cydra 5. In proceedings of the Third
International Conference on Architectural Support for Programming Languages and Operating Systems, pages
26-38, Boston, Massachusetts, 1989.

[7] Sylvain Lelait. Contributionà l’Allocation de Registres dans les Boucles. PhD thesis, Université d’Orléans,
France, January 1996.

[8] S.A.A. Touati. Register Pressure in Instruction Level Parallelism. PhD thesis, Université de Versailles, France,
June 2002.

[9] B.D de Dinechin.A Unified Software Pipeline Construction Scheme For Modulo Scheduled Loops. Proceedings
of the 4th International Conference on Parallel Computing Technologies, pages 189-200, Yaroslavl, Russia,
August 7?9, 1997.

[10] R. Cytron and J. Ferrante. What’s in a Name? or the Value of Renaming for Parallelism Detection and Storage
Allocation, Proceedings of the 1987 International Conference on Parallel Processing, pages 19-27, Pennsylvanie,
August 1987.

[11] A. Nicolau, R. Potasman and H. Wang. Register Allocation, Renaming and Their Impact on Fine-Grain Paral-
lelism, Proceedings of the Fourth International Workshop on Languages and Compilers for Parallel Computing,
Santa Clara, California, August 1991.

[12] Richard A. Huff. Lifetime-Sensitive Modulo Scheduling, In Proceedings of the ACM SIGPLAN 93 Conference
on Programming Language Design and Implementation, pages 258-267, Albuquerque, New Mexico, June 23-25,
1993.

[13] J. A. Fisher, P. Faraboschi and C. Young. Embedded Computing: a VLIW Approach to Architecture, Compilers
and Tools, Book, Morgan Kaufmann Publishers, 2005

16

Algorithm 2 LCM-MIN Problem
Require: k number of reuse circuits, different weights of reuse circuitsµi, the remaining registerR and the loop unrolling degree

α

Ensure: the minimal loop unrolling degreeα∗ and a listr1, . . . , rk of added registers with
P

k

i=1
ri minimal

α∗ ← µk {minimal value of loop unrollingα∗}
if α = α∗ ∨R = 0 then

if R = 0 then
α∗ ← α {α cannot be minimised,no remaining registers}

end if
else

rk ← 0 {number of registers added to the reuse circuitµk}
β ← µk {value of the first node in the setS}
j ← 1 {line number j in the setS}
τ ← α div µk {total number of lines in the setS}
stop← false {stop = true if the minimal is found}
success← false {predicate returned by Algorithm 1}
while β ≤ α ∧ ⌉(stop) do

success ← LCM Problem(β,µi, R) {LCM Problem solved by Algorithm 1}
if ⌉(success) then

if rk < R then
rk + +

else
rk ← 0 {we go to the first node of the next line}
j + +

end if
β ← j × (µk + rk)
if β > α ∧ j < τ then

rk ← 0 {dashed node, we go to the first node of the next line}
j + +
β ← j × µk

end if
else

α∗ ← β

if α∗ ≤ (j + 1) × µk then
stop← true {we are sure thatα∗ is the minimal loop unrolling degree}

else
α← α∗ {we find a new value ofα to minimise}
τ ← α div µk

rk ← 0
j + +
β ← j × µk

end if
end if

end while
end if

17

