
HAL Id: hal-00189563
https://hal.science/hal-00189563v1

Submitted on 21 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Execution of AADL Models via a Translation
into Synchronous Programs

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond, Xavier Nicollin, David
Lesens

To cite this version:
Erwan Jahier, Nicolas Halbwachs, Pascal Raymond, Xavier Nicollin, David Lesens. Virtual Execution
of AADL Models via a Translation into Synchronous Programs. EMSOFT 2007, Oct 2007, Salzburg,
Austria. pp.134 - 143, �10.1145/1289927.1289951�. �hal-00189563�

https://hal.science/hal-00189563v1
https://hal.archives-ouvertes.fr

Virtual Execution of AADL Models
via a Translation into Synchronous Programs ∗

Erwan Jahier, Nicolas Halbwachs
Pascal Raymond, Xavier Nicollin

CNRS - Verimag, Grenoble, France
first_name.last_name@imag.fr

David Lesens
Astrium Space Transportation

Les Mureaux, France
david.lesens@astrium.eads.net

ABSTRACT
Architecture description languages are used to describe both
the hardware and software architecture of an application, at
system-level. The basic software components are intended
to be developed independently, and then deployed on the
described architecture. This separate development of the
architecture and of the software raises the problem of early
validation of the integrated system.

In this paper, we propose to solve this problem by translat-
ing the architecture into an executable model, which can be
simulated and validated together with the software compo-
nents. More specifically, we consider the case where the ar-
chitecture is described in the AADL language, and the soft-
ware components are developed in some synchronous lan-
guage like Scade or Lustre. We show how the architecture
can be automatically translated into a non-deterministic
synchronous model, to which the actual software component
can be integrated. The result is an executable integrated
synchronous model, which can be validated with tools avail-
able for synchronous programs. The approach is illustrated
on an industrial case study extracted from an actual spatial
system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms
Design, Languages, Verification

Keywords
Simulation, Formal Verification, Architecture Description
Language, Synchronous Languages

∗This work was partially supported by the European Com-
mission under the Integrated Project Assert, IST 004033

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

1. INTRODUCTION
Synchronous languages [15, 11, 3] are well-suited to pro-

gram embedded software, as long as centralized, sequential
code is targeted. The use of synchronous designs is for in-
stance used by Astrium Space Transportation for the most
critical space software. However, complex systems often
need to be implemented on more complex architectures —
e.g., multi-processors —, and executed according to more
complex execution schemes — e.g., involving multitasking
which generally limit the use of pure synchronous designs to
the simplest or the most critical software. Methods for au-
tomatic translation of synchronous languages for those more
complex targets have been proposed [6, 5, 24].

More classical approaches consist in programming sepa-
rately software components using synchronous languages,
and deploying them on the target architecture using classical
design methods for asynchronous systems. In this case, the
problem of validating the whole system is crucial: as a mat-
ter of fact, the execution of the software on the target archi-
tecture is generally asynchronous, maybe non-deterministic,
and as a consequence, this phase of the design is the most
error-prone.

Of course, the validation can be performed by testing
the implementation. However, this will result in late error
detection. Moreover, testing an asynchronous implementa-
tion is difficult: non-determinism can make the tests non-
reproducible, the test coverage is difficult to define and to
measure, and the observation of the system under test can
modify its behavior. This is why it is useful to validate such
a system on an early, realistic model.

The ASSERT project. ASSERT is a European project
devoted to the safe model-driven design of embedded sys-
tems, with aerospace systems as main application domain.
In the ASSERT process, several approaches — including
synchronous programming with Scade — are possible to de-
velop software components, and the target architecture is
described in the AADL [8, 23] architecture description lan-
guage. In the proposed methodology, models of the system
under design should exist all along the design process, for
validation purposes. As a consequence, one must be able to
model software components deployed on an architecture de-
scribed in AADL. When software components are described
in a synchronous language, it is natural to model the whole
system in the synchronous framework: this framework is
well-known to be able to describe asynchrony as well [20],
and synchronous modeling of asynchronous behaviors has

been proposed several times [1, 2, 10, 9, 18, 12, 14].

From AADL to synchronous programs. This is why,
in the present paper, we propose a tool that takes as inputs
(1) an architecture described in AADL, and (2) an imple-
mentation of software component in Scade or Lustre; the
tool generates an executable model of the behavior of the
software deployed on the architecture. Such a model is us-
able for early simulation, but also for formal verification,
using tools available for Scade and Lustre.

Outline. The paper is organized as follows. The first two
sections are partly borrowed from [14]. Section 2 recalls the
bases of synchronous paradigm, and Section 3 explains how
it can be used to describe asynchronous behaviors. The con-
sidered fragment of AADL is presented in Section 4, and Sec-
tion 5 describes how it can be translated into a synchronous
program. Section 6 presents a case study, adapted from a
real aerospace system. Section 7 presents how the resulting
synchronous program can be simulated and formally verified.
Section 8 briefly presents the freely available prototype.

2. THE SYNCHRONOUS PARADIGM
In this section, we recall the only necessary features about

synchronous programming which are of interest for our mod-
eling activity. Externally, a synchronous program behaves
as a sequence of atomic steps, which can be periodic or spo-
radic, according to the way the program is activated. To
perform one step of the program, the environment has to
provide its current inputs; the step itself consists in com-
puting the current outputs, as a function of the current in-
puts and the current internal state of the program (which
generally has remanent variables encoding this state), and
in updating the state for the next step.

The specific feature of synchronous programs is the way
internal components behave with each other: when several
components are composed in synchronous parallelism, one
step of the whole composition consists of a “simultaneous”
step of all the components, which can communicate with
each other during the execution of the step. This execution
is guaranteed to be deterministic, a very important prop-
erty of synchronous programs, since it makes much easier
the understanding of programs, as well as their testing and
verification.

To be more precise, and following the presentation of [12],
a synchronous component is a straightforward generalization
of synchronous circuits (Mealy machines) to work with ar-
bitrary data-types: such a machine has a memory (a state),
and a combinational part, computing the output and the
next state as a function of the current input and the current
state. For instance, Figure 1.a pictures a machine with two
inputs, x and y, one output z, and one state variable s. One
can define a step of the machine by the functions, say fo and
fs, respectively giving the output and the next state from
the current inputs and the current state:

z = fo(x, y, s) , s′ = fs(x, y, s)

The behavior of the machine is the following: it starts in
some initial state s0. In a given state s, it deterministically
reacts to an input valuation (x, y) by returning the output
z = fo(x, y, s) and by updating its state into s′ = fs(x, y, s)
for the next reaction.

(b)

s′
1

z1

z2

s′
2

s1

x1

x2

s2

f

g

(a)

f
x
y z

s s′

Figure 1: Synchronous machines and their composi-
tion

Those machines can be composed in parallel, with possi-
ble “plugging” of one’s outputs into the other’s inputs (Fig-
ure 1.b), as long as those wirings don’t introduce any com-
binational loop. Such a composition is shown by Figure 1.b,
where the variables are defined by

z1 = fo(x1, z2, s1) , z2 = go(x2, z1, s2)

s′1 = fs(x1, z2, s1) , s′2 = gs(x2, z1, s2)

and where either the results of fo(x1, z2, s1) should not de-
pend on z2, or the results of go(x2, z1, s2) should not depend
on z1, to avoid combinational loops.

To conclude this section, let us give two very simple ex-
amples of synchronous machines that we will use later. The
first one is a single “delay” machine (the “pre” operator of
Lustre): the machine δ receives an input i of some type τ ,
and returns its input delayed by 1 step; it has a state variable
s of type τ and is defined by

fo(i, s) = s , fs(i, s) = i

Our second example is a sampler β(b), with an input i of
type τ and a Boolean input b, which returns the value of i
when b is true, or its previous output when b is false (it would
be written “current(i when b)” in Lustre). It is defined by

fo(i, s) = fs(i, s) = if b then i else s

3. EXPRESSING ASYNCHRONY IN THE
SYNCHRONOUS FRAMEWORK

Basically, the difference between synchrony and asyn-
chrony is that, in the synchronous model, each significant
“event” is precisely dated with respect to other events and
with respect to the sequence of steps. As soon as synchrony
is released, the date of some events becomes unknown, or
not precisely known, meaning that the temporal behavior
becomes non-deterministic.

According to our presentation of the synchronous
paradigm, to express asynchrony, we need, on one hand,
that components don’t necessarily participate in all steps,
and on the other hand, to express non-determinism (which
is on purpose forbidden in synchronous languages!).

3.1 Sporadic activation

P

b

x
z

Figure 2: Activation condition

All synchronous languages propose some ways of prevent-
ing a component from reacting (the “suspend” statement of
Esterel, or the “clock” mechanism of Lustre and Signal).
However, we don’t want to bother about “absent” values
or signals, induced by those notions. In Scade, the notion
of “activation condition” allows a node to be activated spo-
radically, its output and state keeping their previous values
when the activation condition is false; therefore, an addi-
tional memory is implicitly requested to record the previous
output. More precisely, if P is a synchronous machine, with
input i, output o, and state s, defined by the functions fo

and fs, the conditional activation of P by b, noted P J b,
takes a new Boolean input b, its state is a pair (s, o−), and
its output and state functions f ′o and f ′s are as follows:

f ′o((i, b), (s, o
−)) =

o− if b = 0
fo(i, s) if b = 1

f ′s((i, b), (s, o
−)) =

(s, o−) if b = 0
(fs(i, s), fo(i, s)) if b = 1

Graphically, we shall note PJb with the activation condition
as a black arrow input on top of the machine it controls, as
in Figure 2.

3.2 Non-determinism
We will classically model non-determinism by means of

additional inputs — often called “oracles” — to the model.
Those oracles will be used to control non-deterministic
choices. This way of expressing non-determinism has some
advantages over built-in non-deterministic constructs of
many specification languages:

• On one hand, the non-determinism is clearly local-
ized and controlled: one can replay the same execution
twice, just by providing the same oracles;

• On the other hand, the non-determinism can be re-
duced, by imposing some constraints on oracles. We
will make an intensive use of this feature, in particular
to express known scheduling constraints.

3.3 General principles
By combining sporadic activation and oracle-driven non-

determinism, we can express any non-synchronous composi-
tion of synchronous processes. The general construction is
the following (see Figure 3): the processes are all sporad-
ically activated according to activation conditions emitted
by a global scheduler. The scheduler is non-deterministic: it
receives one Boolean oracle for each condition it has to elab-
orate. But it can restrict this complete non-determinism by
enforcing constraints among the conditions it actually emits
towards the processes.

For instance, in the example of Figure 3, the scheduler
could prevent the processes from being activated simultane-

CQCP

P Q

Sched.
ΩP

ΩQ

Figure 3: Modeling non-synchronous executions

Ωp

P β

cpCP [m, M]

Figure 4: Modeling a non-instantaneous task

ously, by setting

CP = ΩP , CQ = ΩQ ∧ ¬CP

This would simulate two asynchronous processes, commu-
nicating through a shared memory: since, when P is not
activated, its outputs keep their last values, then Q gets
those last written values just as it would read them in a
shared memory.

More complex communication mechanisms can be mod-
eled as communication processes, which may need their own
activation conditions: for instance, we will have to model
tasks taking more than one synchronous step. In general,
minimum m and maximum M execution times are known
for such a task. In our synchronous setting, we will just
express that the outputs of the task are available at least
m steps, and at most M steps after its activation, assum-
ing time is counted as number of steps. This is done using
the sampler defined at the end of Section 2, triggered by a
condition (cp in Figure 4) non deterministically true once
in the interval [m, M]. That can be done by a straightfor-
ward operator taking an additional oracle as input (Ωp in
Figure 4).

The modeling of a new composition mechanism then con-
sists in expressing constraints on activation conditions, to
be inserted in the scheduler. Since this task is quite difficult
and error-prone, it is of course better to get the model by
translation from a higher-level language. This is what we
shall do from a significant fragment of AADL.

4. THE AADL LANGUAGE AND THE
CONSIDERED SUBSET

4.1 Generalities
AADL components are made of a so-called component

type, and each type is optionally associated with one (or
several) component implementation(s). A component type is
made of a functional interface plus various typed attributes

that are called properties. An implementation inherits inter-
face and properties from its corresponding component type.
It also declares the sub-components it is made of, as well
as the connections between them. Connections are made
through the sub-components input and output ports. Ports
can convey data, events (control), or both.

An AADL model is made of a hierarchic assembly of soft-
ware and hardware component types and implementations.
The top-level component is a system. A system is made
of several devices and processors; each processor can run
several processes; each process can run several threads; and
each thread can run several sub-programs. Leaves of an
AADL model are therefore either subprograms, or compo-
nent types.

4.2 The supported AADL subset
Here, we describe the fragment of AADL taken into ac-

count by our translation. We also briefly explain how the
supported features will be translated in the synchronous
model. More details are given in the next section.

Since our goal is to model behaviors, most aspects con-
cerning hardware and non-functional properties will be ig-
nored.

4.2.1 System
A system is the top-level component of the AADL model,

mixing hardware and software components. A system is
translated into a synchronous machine which abstracts away
the bindings between software and hardware components,
and only reflects the functional behavior of the whole sys-
tem.

4.2.2 Execution platform components

Devices. Device components are used to interface the
AADL model with its environment. Therefore, devices are
not translated as the other components: their inputs are
considered as system outputs, and their outputs as system
inputs. For simulation and verification purposes, behavioral
models of devices can be provided by the user.

Processors. Processor components are an abstraction
of hardware and software responsible for executing and
scheduling processes. Basically, each processor will have its
own physical clock, which is the base time of the compo-
nents running on the processor. The Clock_period prop-
erty, that declares the processor internal clock rate, is used
in our translation to model the relations between the pro-
cessors clocks (cf Section 5.1).

Memory. Memory components are used to specify the
amount and the kind of memory that is available to other
components. We assume that enough memory is available
and thus ignore everything that is related to such compo-
nents.

Buses. Bus components are used to exchange data be-
tween hardware components. Detailed models of specific
buses can be provided (see, e.g., [10]). In our prototype
tool, we just consider buses as usual connections.

4.2.3 Software components

Processes. Process components are an abstraction
of software responsible for scheduling and for executing
threads. Processes are scheduled the same way as peri-
odic threads (see below), the main difference being that
threads (executed by a process) can share a common mem-
ory whereas processes (executed by a processor) cannot.

Threads. Thread components are an abstraction of
software responsible for scheduling and for executing sub-
programs. When several threads run under the same pro-
cess, the sharing of the process is managed by a runtime
scheduler. The dispatch_protocol property is used to spec-
ify the activation of a thread:

• periodic means that the thread must be activated ac-
cording to the specified period;

• aperiodic means that the thread is activated via one
of the other components output port, called an event
port;

• a sporadic thread is a mixture between aperiodic

and periodic: it can be activated either by events, or
periodically;

• background threads are always active, but have the
lowest priority.

The property compute_exec_time specifies a minimum
and maximum execution time for the thread to execute
its task. For thread implementations, execution times re-
sult from the compute_exec_time associated to their sub-
programs. Those bounds on execution time will be used to
define the availability of outputs (cf. Figure 4).

Sub-programs. A thread can be made of a sequence of
sub-program components, that represent elementary pieces
of code that processes inputs to produce outputs. Only
their interfaces are given in the AADL model; sub-program
implementations ought to be provided in some host lan-
guage. For our purpose, we require sub-programs to be given
in a synchronous language (Scade or Lustre). Moreover,
sub-programs must be provided with a compute_exec_time

property in order to simulate accurately the time their com-
putations take.

Data. Data components are not associated to syn-
chronous machines, but to data types. The data type map-
ping is not handled by the tool, except for the base types
bool, int, and floats; this mapping must be done by users
or a third-party tool (such a tool is developed within the
ASSERT project).

4.2.4 Other concepts
AADL defines a concept of operational mode, that is ig-

nored in the current version of the tool. A concept of Flow is
also introduced to allow users to declare the existence of log-
ical flows of information between a sequence of components.
Flows are used to perform various non-functional analysis.
Therefore they are ignored in our translation too.

5. TRANSLATING AADL

System, process, thread, and subprogram components
will be translated into synchronous machines which in-
puts/outputs are made of the component input/output
ports. For component implementations, the synchronous
machines wirings result from the component inner connec-
tions. The synchronous machines will also have as additional
inputs:

• an activation condition;

• a termination condition (for delaying outputs);

• the activation and termination conditions of their sub-
machines.

5.1 Processors and physical parallelism
As said before, each processor has its own clock. There-

fore, a processor is translated into a machine with an acti-
vation condition ck corresponding to its clock. This clock
will define the local notion of time of the subcomponents
— processes, threads and subprograms — running on the
processor. For instance, thread periods will be counted with
respect to that clock.

One can consider those processors clocks to be com-
pletely unrelated, meaning that processors are completely
asynchronous. This solution leads to a maximal non-
determinism, but can be considered as unrealistic. In gen-
eral, in the design of real-time distributed applications, some
assumptions are made about the relative speeds of the pro-
cessors. We illustrate below how such an assumption may be
expressed in our modeling, and we consider a very common
case, called quasi-synchrony.

Very often, people are using several processors of the same
kind, and thus, running with internal clocks with the same
period. Having the same period introduces strong relation-
ship between the clocks, that must be taken into account in
order to produce realistic simulations.

Simulating same-period clocks requires to take into ac-
count time drift: perfect distributed clocks are difficult to
obtain (e.g., [17]), thus a period of T generally means T ± ε,
with ε � T . As a consequence some (unbounded) time drift
may occur when observing two clocks with the “same” pe-
riod. Modeling realistic time drift is rather complex, and
a common solution is to over-approximate it with simple,
local relations between the occurrences of the clocks. An
example of such a relation, known as quasi-synchrony, was
formalized by [5]. It formalizes that several clocks “are al-
most the same”.

Quasi-synchronous composition. A set of clocks is
said to be quasi-synchronous if, between two successive ac-
tivations of any clock, each other clock is activated at most
twice.

Such an interleaving is illustrated in Figure 5. The figure
pictures the timing diagram of two quasi-synchronous clocks
ck1 and ck2. The “relative advance” of ck1 over ck2 (a1)
and of ck2 over ck1 (a2) are represented for clarifying the
principle: whenever c1 (resp. c2) is true, a2 (resp. a1) is
reset; meanwhile, if c2 (resp. c1) is false, a1 (resp. a2)
is incremented. Since, in the example, a1 and a2 are both
bounded by 2, the clocks are (so far) quasi-synchronous.

The important property of quasi-synchronous composition
of processes is that each process is guaranteed to miss at
most one sample of the other’s output in a row. Hence,

0 0 1 0 0 0 0 1 0 0 10

1 1 0 0 0 0 1 0 1 0 00

ck2

ck1

a1

a2

Figure 5: Quasi-synchronous clocks

term

cpu

trig

β

[m,M]

Figure 6: Model of a software component

programs that are designed to be robust to clock drift (if
they read programs output in registers for example) have
the same behavior with quasi-synchronous or synchronous
clocks.

In [14], we gave a non-deterministic synchronous machine
producing a pair of quasi-synchronous clocks. It can be eas-
ily generalized to several clocks. Our translation tool uses
such generators for simulating processor clocks. Such a sim-
ulation allows, in particular, AADL systems robustness to
be checked.

Quasy-synchronous extensions. For the time being,
only quasi-synchronous clocks are handled. However, the
principle can be easily extended to clocks with more complex
relationships. For instance, if the period of a clock c is known
to be twice the period of a clock c′, then clock drift can
be abstracted by stating that c is activated at most once
between two activations of c′, and c′ at most three times
between two activations of c.

To conclude this section, let us emphasize the fact that
quasi-synchrony is somehow a coarse approximation of the
relations between same-period clocks. For instance, quasi-
synchrony allows one clock to appear twice more often than
the other. Therefore, the observed periods may actually be
some T for the fast one, and 2T for the slow one. This may
be a problem when the processor clocks are used to count
real-time and to time-stamp external events: the time-stamp
of the same external event will be t0 + d on one processor,
and t0 + 2d on the other. For systems where real-time de-
lays matter, a more accurate modeling of clock relations is
necessary.

5.2 Threads and concurrency
In addition to its inputs and outputs specified in its AADL

interface, each software component translation — process,
thread or subprogram — must be provided with a triggering
condition trig, which determines when the component must
be started, and an activity condition cpu, which expresses
that the component owns the processor and can run. It
returns a Boolean output term indicating when it terminates
(Figure 6).

It is easy to define a generic synchronous machine gener-
ating a periodic condition, which is true every T steps (cf

Appendix B). Note that those machines are deterministic.
They will be used to define the trig conditions of periodic
processes and threads.

Several processes or threads that run on the same proces-
sor have to share the CPU. This sharing is managed by a
runtime scheduler, which has to be modeled. In the current
version of our tool, a simple rate-monotonic scheduler [19]
is assumed. The scheduler computes an activity condition
cpu for each process and thread of the processor (cf. Ap-
pendix B). This activity condition is used as a local clock to
count the component execution time, since a component ex-
ecutes only when it owns the processor. To compute activity
conditions, the scheduler must know whether a component
needs the processor. This condition, needs, is computed by
a two states synchronous machine set by the trig condition
of the component, and reset by its term condition.

Figure 7 shows a non-deterministic transition system rep-
resenting the behavior of a scheduled thread. Its internal
state toggles from needs=0 to needs=1 when the input trig
occurs. At the same instant, an internal counter x is reset.
Once in this active state, the internal counter x is incre-
mented whenever the input cpu occurs. The thread toggles
back to needs=0, non-deterministically, provided that the
counter x is within the computation bounds [m, M]. This
transition also outputs the term signal.

needs=0 needs=1

m ≤ x ≤M? term

trig ? x := 0
cpu? x := x + 1

Figure 7: The possible thread states

5.3 Subprograms and sequentiality
Finally, when a thread is made of several subprograms,

they must be activated in sequence. Subprograms inherit
the activity condition of their parent thread. The first one
is triggered by the triggering condition of the parent thread,
while each other subprograms is triggered by the termination
condition of the previous one in the sequence (Figure 8).

trig

term term

trig

Figure 8: Sequencing subprograms

6. THE PFS CASE STUDY
The PFS (“Proximity Flight Safety”) case study was pro-

posed by Astrium Space Transportation, and concerns an
equipment of the “Automated Transfer Vehicle” (ATV) in
charge of supplying the International Space Station (ISS).
The role of the PFS is to ensure the safety of the approach
of the ATV to the ISS: when anything goes wrong, the PFS
is in charge of performing a “collision avoidance maneuver”
(CAM), i.e., to safely move the ATV apart from the ISS, and
to orient it towards the sun, waiting for new instructions.

slow-thread

sp1 sp2

fast-thread

MSU1 MSU2

Figure 9: The PFS architecture

Here, we don’t consider the actual system, but a version
which has been complexified to illustrate more aspects of
the AADL translation.

6.1 The PFS functions and architecture
The CAM is performed by two redundant units, called

“Monitoring and Safing Units” (MSU), running on two com-
puters. At each instant, one of them is the master, but can
resign this role if it detects its own failure, in which case the
other MSU becomes the master. However, the master may
not change when a CAM is in progress. Once an MSU has
given up its mastership, it never recovers.
Each MSU:

• detects anomalies, which can be failures of the main
computer, abnormal state of the bus, erroneous posi-
tion or speed of the ATV, “red button” pressed from
inside the ISS;

• detects its own failures, which can involve a master
change;

• is able to perform a CAM.

The whole system is supposed to tolerate at most three
faults: the two ones which raise a CAM, and a fault of one
MSU. As a consequence, one doesn’t have to consider the
case of two faulty MSUs.

In the version of the PFS used for this paper, each MSU
is made of three tasks to be run periodically.

• One high priority task that lasts between 30 and 40ms,
and that should be activated every 100ms. This task
is modeled by an AADL thread named fast-thread.

• Two low priority periodic tasks, of period 500ms: one
that lasts between 1 and 100ms, and one that last
between 1 and 150ms. Since those two tasks need
to be executed in sequence, each one is modeled as
an AADL subprogram. Those subprograms, sp1 and
sp2, are themselves contained in a thread named slow-

thread of period 500 ms.

Figure 9 pictures the PFS components architecture. Note
that since there is only one process per processor, no dis-
tinction is made between processors and processes.

QS
ck1

ck2

MSU1

T
tF

fast-threadcpuF
Sch

cpuS

T
tS

sp1 sp2

slow-thread slow-thread

sp2sp1

T
tS

cpuS

Sch
cpuF fast-thread

tF
T

MSU2

Figure 10: The synchronous model of the PFS

6.2 The synchronous model of the PFS
The translation of the AADL architecture produces a syn-

chronous model pictured in Figure 10.
A generator of quasi-synchronous clocks, noted QS, pro-

duces the clocks ck1 and ck2 of the two processors. Inside
each processor model, generators of periodic clocks are used
to trigger the models of the fast thread (tF, period 100ms)
and of the first subprogram of the slow thread (tS,period
500ms).

A model of the runtime scheduler computes the activation
conditions cpuF and cpuS of the threads, corresponding to
their allocation of the processor, and giving priority to the
fast thread. Inside the thread models, each software compo-
nent is provided with a delay operator, delaying its outputs
according to the bounds on its execution time, those de-
lays being counted in terms of ticks of the thread activation
condition.

Finally, the second subprogram of the slow thread is trig-
gered by the termination of the first subprogram. Notice
that in Figure 10, the oracles needed by non deterministic
operators (QS, Sch, and all the delay elements) are omitted
for simplicity. We did not represent either the computation
of the “need” condition of each thread, which should be fed
back to the scheduler Sch.

6.3 A simulation of the executable model
To illustrate better the PFS model, let us detail the be-

havior of its control variables along some steps of simulation.
Figure 11 pictures 12 cycles of the MSU1 scheduling (The

behavior of MSU2 being similar). Each cycle of this simula-
tion is assumed to take 10ms.

The clock ck1 is the processor clock, generated to be quasi-
synchronous with the clock of the other processor. Hence,
that sequence of 12 synchronous cycles actually corresponds
to a simulation of 80ms of the processor life, since ck1 is
true 8 times.

The condition needsF (resp. cpuF) expresses that the fast
thread needs (resp. has) the processor. needsF is computed

1 3 4 5 6 7 8 9 10 11 122

needs-sp2

cpu-sp1

needs-sp1

cpuF

needsF

ck1

cpu-sp2

Figure 11: A timing diagram illustrating the
scheduling of the MSU1 sub-components

according to the automata shown in Figure 7. Its raising
edge corresponds to a trigger provided by a deterministic
counter (tF in Figure 10). This trigger occurs each 100ms
(fast thread period), i.e., once every 10 ticks of ck1. Since
fast-thread has the highest priority, it gets the CPU as
soon as it needs it, thus, the control variable cpuF is sim-
ply the conjunction of needsF and ck1. cpuF is used as an
activation condition for the synchronous program executed
by the fast-thread. From the synchronous program point
of view, the outputs are computed instantaneously; but as
explained in Section 5, the output values of this task are
delayed in order to simulate the execution time of the task,
which can be 3 or 4 cycles (3 in the example of Figure 11)
where cpuF is true. The falling edge of cpuF corresponds to
the term event.

Conditions needs-sp1 and cpu-sp1 play a similar role to
activate the sp1 task, and release its output. Note that
at instant 6, fast-thread preempts the CPU to sp1, and
gives it back at instant 11. At instant 12, needs-sp1 be-

come false, because cpu-sp1 has been true 4 times in this
sequence, which is correct since the AADL model specifies
its execution can last between 1 and 10 cycles. At instant
12, since sp1 has finished, sp2 needs the CPU. It gets it im-
mediately, since the CPU is not required by more priority
tasks. Therefore, both needs-sp2 and cpu-sp2 become true.

7. USING THE EXECUTABLE MODEL
Given a description of the architecture in AADL and syn-

chronous program for software components, we are able
to obtain automatically a model of the whole system in
Scade/Lustre. This model enjoys all the advantages of a
synchronous model: it is executable, its properties can be
expressed by means of synchronous observers, and it can be
validated using existing tools. Concerning our case study,
the obtained model was used for simulation and formal ver-
ification.

Simulation. The testing tool Lurette [16, 22] was used to
extensively simulate the model. Lurette allows the environ-
ment to be specified, and uses this specification to generate
realistic input sequences, which are provided to the model.
Moreover, the simulation can be monitored by writing syn-
chronous observers [13] of the (safety) properties of interest.
The tool can then drive, in a completely automatic way, an
arbitrary number of arbitrary long simulations, restricted to
realistic input scenarios, and while checking that the speci-
fied properties are satisfied.

Formal verification. We also used the model-checker
Lesar [21] to verify properties on the model of the PFS. For
instance, we considered the property that, in presence of at
most two faults, at each instant, one and only one MSU
is the master. This property was first successfully proved
on a purely synchronous model. On the generated model,
it was disproved: as a matter of fact, because of the non-
synchronous execution of the two processors, the property
cannot be ensured: when the master resigns its role, the
other MSU cannot take the mastership instantly. However,
because of the quasi-synchrony assumption, it was possible
to prove the actual, weaker property: when MSU1 resigns its
role of master, then within at most two steps of the clock
ck1, MSU2 takes the mastership.

8. THE PROTOTYPE
The ideas presented in the article have been implemented

into a prototype named aadl2sync. This prototype is freely
available on the tool page of the Synchron’s group web site1.
It has been developed under the scope of the ASSERT IST
project.
aadl2sync can generate Lustre or Scade code. Given a set

of textual AADL files2 containing a top level system foo, it
generates 5 files:

• foo_scheduler.lus that contains the scheduler driv-
ing all the additional inputs (quasi-synchronous clocks,

1http://www-verimag.imag.fr/∼synchron
2Actually, aadl2sync takes as input aaxl files, which
are the xml counterparts of textual aadl files and that
can be obtained with the eclipse plugin of OSATE
(http://la.sei.cmu.edu/aadl-wiki)

activate condition, etc.) introduced during the trans-
lation.

• foo_components.lus that contains the translation in
Lustre of all AADL components present in the model.

• fillme_foo_nodes.lus that contains the interface of
nodes corresponding to leaves in the AADL model.
The bodies of such nodes — in Lustre or Scade —
must be provided by the user.

• fillme_foo_const.lus that contains various con-
stants that needs to be defined, such as the components
initial values, i.e., the values they ought to output at
the first cycle (values that are used to provide default
values in activation conditions).

• fillme_foo_types.lus that contains the Lustre type
definitions of Data type components. This translation
is not automated by aadl2sync, except for base types.

Those last 3 files, which are prefixed by fillme_, need to
be filled in and renamed without the prefix. More details on
the produced Lustre files, the supported AADL subset, etc.,
are provided in the aadl2sync Reference Manual [7].

Launched on the 4 AADL files containing the PFS case
study, that are made of 1500 lines of code, aadl2sync pro-
duces 500 lines of Lustre for the scheduler, plus 1800 lines
of Lustre code for the 4 other files. The main node has 10
inputs and 10 outputs, some of them being arrays. If we
count the input/output number with arrays expanded, we
have 48 inputs and 119 outputs. Therefore, one important
and difficult task that have to be done by the user is to de-
scribe the set of possible inputs, in particular in order to
initialize correctly the PFS.

9. CONCLUSION
In this paper, we presented an effective use of the syn-

chronous modeling of asynchronous systems, to produce au-
tomatically a usable model of synchronous software deployed
on an architecture. We chose to start from a description of
the architecture in the AADL language, but the same ap-
proach could obviously be applied to other architecture de-
scription languages. A side effect of this translation is to
provide a precise and executable semantics to the language.
The obtained model can be used for early simulation and
verification of systems. Since the proposed tool is based on
existing popular formalisms (AADL and Scade), we think
that it is likely to take place in a real model-driven process.

We consider that this work illustrates once again some
advantages of using the synchronous framework:

• Intermediate situations between pure synchrony and
pure asynchrony can be accurately modelled

• Several time scales can be used, which are inherited
through the hierarchy of components: the time of sub-
programs is a sub-scale of the time of threads, which
is a sub-scale of the time of processors.

• Synchronous code can be seamlessly embedded in the
model of the architecture

The introduction of oracles is not the only way of mod-
elling non-determinism, but it has the advantage of making

http://www-verimag.imag.fr/~synchron
http://la.sei.cmu.edu/aadl-wiki

the simulations reproducible, the behavior being determin-
istic as a function of inputs and oracles.

Coming back rapidly to related works, the same approach
was used in many proposals for using synchronous languages
— and especially the Signal language — for modeling non
synchronous systems and developing system level design
methodology: for instance, the ARINC avionic platform
was modelled in Signal [10], and the Sildex tool was ex-
tended in the framework of the European projects Sacres
and SafeAir [1, 2], resulting in the system-level tool box
RT-Builder (see http://www.tni-software.com/). How-
ever, this common approach was never connected to a stan-
dard Architecture Description Language like AADL. On
the other hand, the way we combine, in the same model,
several so-called Models of Computation and Communica-
tion (MOCCs) — distributed, asynchronous or quasi syn-
chronous composition, multitasking, synchrony — is simi-
lar to the approach proposed for long in environments like
Ptolemy [4].

As short term further work, we plan to support additional
AADL features. Indeed, we have implemented first the nec-
essary features to be able to handle the PFS case study.
However, some other notions will soon be useful and should
be straightforward to translate into a synchronous/dataflow
setting. For instance, the notion of event, which lets one de-
scribe event-triggered architecture, are quite easy to define
in terms of activation condition. Moreover, all the compo-
nent properties that are related to time delays (data trans-
mission on buses, or data reading/writing on memory com-
ponent, etc.) should be easy to handle in a similar manner as
we model the execution time of sub-programs and threads.
Our scheduler can also be enriched with locking mechanisms
for reading and writing shared memory.

10. REFERENCES

[1] P. Baufreton. SACRES: A step ahead in the
development of critical avionics applications. In F.W.
Vaandrager and J.H. van Schuppen, editors, Hybrid
Systems: Computation and Control: Second
International Workshop, HSCC’99. LNCS 1569,
Springer-Verlag, 1999.

[2] P. Baufreton. Visual notations based on synchronous
languages for dynamic validation of gals systems. In
CCCT’04 Computing, Communications and Control
Technologies, Austin (Texas), August 2004.

[3] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1), January 2003.

[4] J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschmitt. Ptolemy: A mixed-paradigm
simulation/prototyping platform in c++. In C++ At
Work Conference, Santa Clara, CA, 1991.

[5] P. Caspi, C. Mazuet, and N. Reynaud Paligot. About
the design of distributed control systems, the
quasi-synchronous approach. In SAFECOMP’01.
LNCS 2187, 2001.

[6] P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal
design of distributed control systems with Lustre. In
Proc. Safecomp’99, volume 1698 of Lecture Notes in
Computer Science. Springer Verlag, September 1999.

[7] P. Raymond E. Jahier, N. Halbwachs. The
AADL2sync User Guide, 4 2007.

[8] P. H. Feiler, D. P. Gluch, J. J. Hudak, and B. A.
Lewis. Embedded system architecture analysis using
SAE AADL. Technical note cmu/sei-2004-tn-005,
Carnegie Mellon University, 2004.

[9] A. Gamatié and T. Gautier. The signal approach to
the design of system architectures. In 10th IEEE
Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2003), pages 80–88,
Huntsville (Alabama), April 2003.

[10] A. Gamatié and T. Gautier. Synchronous modeling of
avionics applications using the signal language. In 9th
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’2003), pages 144–151,
Toronto, May 2003.

[11] N. Halbwachs. Synchronous programming of reactive
systems. Kluwer Academic Pub., 1993.

[12] N. Halbwachs and S. Baghdadi. Synchronous modeling
of asynchronous systems. In EMSOFT’02. LNCS 2491,
Springer Verlag, October 2002.

[13] N. Halbwachs, F. Lagnier, and P. Raymond.
Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and
G. Scollo, editors, Third Int. Conf. on Algebraic
Methodology and Software Technology, AMAST’93,
Twente, June 1993. Workshops in Computing,
Springer Verlag.

[14] N. Halbwachs and L. Mandel. Simulation and
verification of asynchronous systems by means of a
synchronous model. In Sixth International Conference
on Application of Concurrency to System Design,
ACSD 2006, Turku, Finland, June 2006.

[15] Another look at real-time programming. Special
Section of the Proceedings of the IEEE, 79(9),
September 1991.

[16] E. Jahier, P. Raymond, and P. Baufreton. Case studies
with Lurette V2. International Journal on Software
Tools for Technology Transfer (STTT), Special Section
on Leveraging Applications of Formal Methods, 2006.

[17] H. Kopetz. The time-triggered architecture. In
ISORC’98, Kyoto, Japan, April 1998.

[18] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann.
Polychrony for system design. Journal for Circuits,
Systems and Computers, Special Issue on Application
Specific Hardware Design, April 2003.

[19] C. L. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
JACM, 20(1):46–61, 1973.

[20] R. Milner. On relating synchrony and asynchrony.
Technical Report CSR-75-80, Computer Science
Dept., Edimburgh Univ., 1981.

[21] C. Ratel, N. Halbwachs, and P. Raymond.
Programming and verifying critical systems by means
of the synchronous data-flow programming language
lustre. In ACM-SIGSOFT’91 Conference on Software
for Critical Systems, New Orleans, December 1991.

[22] P. Raymond, D. Weber, X. Nicollin, and
N. Halbwachs. Automatic testing of reactive systems.
In 19th IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[23] SAE. Architecture Analysis & Design Language
(AADL). AS5506, Version 1.0, SAE Aerospace,
November 2004.

[24] N. Scaife and P. Caspi. Integrating model-based
design and preemptive scheduling in mixed time- and
event-triggered systems. In Euromicro conference on
Real-Time Systems (ECRTS’04), Catania, Italy, June
2004.

APPENDIX
A. A QUASI-SYNCHRONOUS CLOCK

FILTER IN LUSTRE
We give below a Lustre V4 implementation of the quasi-

synchronous clock generator/acceptor discussed in Sec-
tion 5.1. We first define intermediary nodes. com-

pute_advance computes the relative advance of ck1 w.r.t.
ck2. ba_fill creates an array of size n filled with x. ba_none
checks if all elements of the array are false.

node compute_advance(ck1, ck2 : bool)

returns (c : int);

var pc : int;

let
pc = 0 -> pre c;

c = if ck2 then 0 -- reset the advance of ck1

else if ck1 then pc + 1 --

ck1 got ahead of 1 tick

else pc;

tel

node ba_fill(const n: int; x : bool)

returns (t: bool^n);

let
t = x^n;

tel

node ba_none(const n : int; I : bool^n)

returns (ok : bool);

var Nor : bool^n;

let
Nor = [not I[0]] | (Nor[0..n-2] and not I[1..n-1]);

ok = Nor[n-1];

tel

QS is main node of the quasi-synchronous scheduler for
processors with the same clock rate. It is paramaterized by:

• n is the number of clocks to generate;

• d is the maximal authorized clock drift, i.e., the max-
imum number of ticks authorized for the other clocks
between 2 ticks of each clock;

• alea is an array of random values (n clock candidate
values);

• select is the same alea, except for clocks that are d ticks
late, that are forced to false.

node QS(const n:int; const d:int; alea:bool^n)

returns (select:bool^n);

var
advance_max_is_reached, problems : bool^n^n;

filter : bool^n;

advance, padvance : int^n^n;

let
advance_max_is_reached = padvance >= d^n^n;
-- there is a problem if the max advance is reached

-- and no tick occurs

problems = advance_max_is_reached and not alea^n;
-- we force the tick for clocks that would be

-- more than d ticks late

filter = ba_none(n^n, problems);

select = alea and filter;

advance = compute_advance(ba_fill(n^n, select),

select^n);

padvance = 0^n^n -> pre advance;

tel

That program can be used to perform formal verification
(e.g., model-checking) of the corresponding AADL model.
In order to be able to perform simulations, the only thing
that remains to be done is to generate arrays of random
values.

B. PERIODIC THREADS SCHEDULING
Here are 2 Lustre programs corresponding to the descrip-

tion of Section 5.2. For both nodes, the input qs_ck comes
from the node QS above.

A periodic clock generator

node clock_of_period(period :int; qs_ck:bool)

returns (activate_clock : bool);

let
pcpt = period -> pre cpt;

cpt = if activate_clock then period else

if qs_ck then (pcpt - 1) else pcpt;

activate_clock = true -> (pcpt = 1) and qs_ck;

tel

A rate-monotonic scheduler for 3 threads that eventually
need the cpu.

node rms_3(

qs_ck : bool; needs1, needs2, needs3 : bool)

returns (cpu1, cpu2, cpu3 : bool);

let
cpu1 = qs_ck and needs1;

cpu2 = qs_ck and needs2 and not cpu1;

cpu3 = qs_ck and needs3 and not cpu1 and not cpu2;

tel

	Introduction
	The synchronous paradigm
	Expressing asynchrony in the synchronous framework
	Sporadic activation
	Non-determinism
	General principles

	The AADL language and the considered subset
	Generalities
	The supported AADL subset
	System
	Execution platform components
	Software components
	Other concepts

	Translating AADL
	Processors and physical parallelism
	Threads and concurrency
	Subprograms and sequentiality

	The PFS case study
	The PFS functions and architecture
	The synchronous model of the PFS
	A simulation of the executable model

	Using the executable Model
	The prototype
	Conclusion
	References
	A quasi-synchronous clock filter in Lustre
	Periodic threads scheduling

