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In recent years, considerable research efforts have been directed to microarray tech-

nologies and their role in providing simultaneous information on expression profiles for

thousands of genes. These data, when subjected to clustering and classification proce-
dures, can assist in identifying patterns and providing insight on biological processes.

To understand the properties of complex gene expression datasets, graphical representa-

tions can be used. Intuitively, the data can be represented in terms of a bipartite graph,
with weighted edges corresponding to gene-sample node couples in the dataset. Bio-

logically meaningful subgraphs can be sought, but performance can be influenced both

by the search algorithm, and, by the graph weighting scheme and both merit rigorous
investigation. In this paper we focus on edge-weighting schemes for bipartite graph-

ical representation of gene expression. Two novel methods are presented: the first is
based on empirical evidence; the second on a geometric distribution. The schemes are

compared for several real datasets, assessing efficiency of performance based on four

essential properties: robustness to noise and missing values, discrimination, parameter
influence on scheme efficiency and reusability. Recommendations and limitations are

briefly discussed.
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1. Introduction

Clustering techniques are fundamental for the exploration of gene expression data,
[1–4]. Gene profiles are grouped into K subsets (clusters), with K not necessar-
ily known a priori, such that elements in the same subset are associated with one
another. The fundamental biological premise underlying these approaches is that
genes, which display similar expression patterns, are co-regulated and may share a
common function or contribute to a common pathway. Identification of patterns is
made more difficult by the fact that association (through similarity measures or ad-
herence to some co-regulation model) among a subset of genes may be determined
by a subset of samples giving rise to biclusters, [5]. Moreover, genes may belong
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to a number of biclusters, with varying degrees of membership, [6]. This, and the
fact that gene expression profiles often originate from very noisy experimental mea-
surements, makes computational solutions to the clustering problem difficult and
patterns difficult to interpret.

Graph theoretical modelling is proving a useful tool in the analysis of large com-
plex biological datasets. For instance, protein-protein interactions can be modelled
by undirected graphs, [7], where nodes represent proteins and an edge connects two
nodes if the proteins physically combine. Transcriptional factor binding sites can
be identified through the use of undirected weighted graphs, where weights of edges
capture the similarity between aligned nucleotides in an input set of promoters, [8].
Further, metabolic networks can be represented as bipartite graphs. In this case an
edge connects a reaction node to a compound node, representing either substrate
or product relationships, [9].

Gene expression can also be modelled using graphical techniques, where the
nodes represent genes and edges represent similarities in gene expression. In the
pioneering work of Sharan et al. [10] and Hartuv et al. [11], a probabilistic model
for edge weighting in gene expression was introduced. Here, the probabilistic weight
of an edge is derived from the similarity measure between the two gene vectors, and
reflects the probability that these two genes are ‘mates’ (i.e. belong in the same
cluster). Building on this work, Tanay et al. [4, 12], used a weighted bipartite graph
to model gene expression, where two node types are used to represent genes and
experimental properties and in this scheme, the weight of an edge, eij was designed
to incorporate the probabilities of a gene i having experimental property j. These are
powerful techniques, in that the sum of edge weights in a cluster denote its statistical
significance. Alternatively, weighting schemes for one-mode gene expression graphs
have been put forward by Carlon et al. [13] and Zhange et al. [14]. In this work,
edge weights were created using use an adjacency function. This function is based
on a similarity measure and assumes that connections between nodes approximate
a scale-free topology. Analysis of complex weighted networks was also considered in
[15], (not specifically gene-expression data) although the authors did not investigate
the weighting scheme itself.

Graphical clustering techniques involve identification of similar, (e.g densely
connected), subgraphs, where usual limitations (such as NP-completeness) apply. A
variety of evolutionary and heuristic algorithms can be used to find subgraphs and
include Genetic algorithms, [16], Simulated Annealing, [17], the MinCut algorithm,
[18], CLICK, [10] and Samba, [4]. These algorithms all rely on an objective function
to evaluate the sub-graphs found. Fundamentally, this function relies on the concept
of an edge weight and its derivation.

Substantial efforts have been devoted to the development of weighted graph-
based clustering methods for biological tasks, (see references above). However, it is
important to recognise the essential role a weighting scheme itself plays on cluster
determination, and thus to investigate the intrinsic nature of these schemes in iso-
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lation. To this end, we introduce and compare two new weighting schemes: (i) a
distribution-based method, (where edge weights are estimated from a pre-defined
probability distribution); (ii) an empirical-based method, (where edge weights are
determined by the experimental data). We also discuss performance measures for
these (and the Tanay) edge weighting schemes, and present a comparative validation
based on application to several real datasets.

2. Approach and Evaluation Framework

2.1. Gene Expression as a Bipartite Graph

Gene expression data is typically presented as a matrix, X, where rows (i = 1 . . . n)
correspond to gene vectors, gi = (xi1, xi2, . . . , xip), which record expression values
for gene i across p experiments. A bipartite graph is a triplet G = (>,⊥, E), where
> is the set of top nodes, ⊥ the set of bottom nodes, and E ⊆ > × ⊥ is the set
of edges, which links top and bottom nodes. > ∩ ⊥ = ∅, is a defining property of
bipartite graphs. We define a weighted bipartite graph to model gene expression
under a number of experiments as, G = (>,⊥, E,W ), where > corresponds to the
set of genes, |>| = n, ⊥ to the set of samples, |⊥| = p, E is the set of edges
between genes and samples, and W = (wij) where wij ∈ R denotes the weight
of the edge eij between ‘gene’ node i and ‘sample’ node j, (a sample refers to a
microarray experiment carried out on mRNA extracted from biological samples;
each microarray experiment is a column in the gene expression dataset). If every
gene sample couple is connected by an edge, (i.e. |E| = p × n), then the gene
expression network is said to be fully connected, otherwise it is partially connected.

As mentioned previously, essential properties of the dataset can be transformed
to bipartite graph properties by appropriate representation. However, care must be
taken not to lose important information in the transformation process. This allows
us to study the gene-sample inter-activity using the powerful tools and notions
provided for classical networks. Here, we are concerned with what constitutes an
(important) edge in the context of gene expression and how this edge is weighted.

2.2. Definition of Assessment Properties

It is important, both for the evaluation of any clustering technique and for its
reusability, that weighting schemes are validated independently of the subsequent
network analysis. A clustering technique should not be considered as a “black box”,
as each technique will find optimal clusters based on internal search criteria and
optimisation functions, both of which may differ considerably between approaches.
Assessment of a clustering technique’s core features is crucial to improve over-
all performance, and should be chosen to reflect the properties of the dataset to
be analysed. For a given graph-clustering technique, reliable results reflect a well-
designed weighting scheme, together with a reasonably robust and efficient search
algorithm, and both aspects are susceptible to refinement. Consequently, we pro-



July 13, 2009 9:45 WSPC/INSTRUCTION FILE ws-acs

4 G. Kerr, D. Perrin, H.J. Ruskin, and M. Crane

pose a graphical edge weighting assessment procedure for gene-sample networks,
based upon four properties, as detailed below.

2.2.1. Discrimination:

Ability of the method to “rate” highly those gene-sample couples which contribute
to a cluster. The range and distribution of edge weights establish how well a given
scheme distinguishes between relevant and irrelevant gene-sample couples.

2.2.2. Reusability:

Independence of the proposed scheme and the subsequent clustering technique. This
considers which specific properties of the proposed weighting scheme must be ac-
commodated by the subsequent clustering technique.

2.2.3. Robustness:

Ability of a given weighting scheme to deal with noise and missing values. This
involves investigation of distortion of weights caused by different levels of noise and
missing values.

2.2.4. Parameter Influence:

Any weighting scheme ideally requires minimal specification of input parameters.
We thus examined input parameter influence on discrimination and robustness, as
well as on the distribution of weights themselves.

2.3. Datasets

The three weighting schemes were tested on three datasets. (i) The Yeast Cell Cycle
Data, provided by [19], contains time-course expression profiles for more than 6000
genes, with 17 time points for each gene (taken at 10-min intervals) and covers nearly
two yeast cell cycles (160 min). The raw gene expression profiles were downloaded
from http://genomics.stanford.edu. (ii) A Lymphoma Dataset (downloaded
from supplementary web by [1], http://llmpp.nih.gov/lymphoma/index.shtml),
relates to an experiment to characterize gene expression in Diffuse Large B-cell lym-
phoma (DLBCL). The complete dataset contains expression levels for 4,026 genes
and 96 samples. Finally, (iii) Gefitinib Treated Kasumi Cell Line dataset. Here
Kasumi cells were treated with gefitinib or dimethyl sulfoxide (DMSO) control in
duplicate, for 6 hours and, in triplicate for 24 hours. This results in a dataset of
22283 genes and 10 samples [20], and is available from the MIT Broad Institute
website, (http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi).
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3. Edge Weighting Schemes

3.1. Tanay Scheme

This method is incorporated into the SAMBA clustering algorithm [4] and is avail-
able with the EXPANDER software suite [21], (which also offers a number of other
clustering options and is available from: http://www.cs.tau.ac.il/~rshamir/

expander/expander.html). As this software does not need to provide output on
the weight of each gene-sample couple in the dataset, completion of our analysis
required us to recode this scheme to allow access to the weight information during
the algorithmic process. The information for this scheme was taken from [4] and
[22].

Note that the bipartite representation of the data in the SAMBA algorithm,
which uses this weighting scheme, has node sets {genes} and {properties}. The
property set includesa nodes for properties of strong, moderate and weak induc-
tion/repression for each particular sample j. Thus |{properties}| = 6 × p, where
p = number of samples. A gene i is defined to be: weakly induced in sample vector
j if the expression value xij is ranked ≥ xweak Induced in j; moderately induced if it
is ranked ≥ xmoderate Induced in j; and strongly induced if it is ranked ≥ xstrong Induced

in j. Similarly it is: weakly repressed if it is ranked ≤ yweak repressed in j; moder-
ately repressed if it is ranked ≤ ymoderate repressed in j; and strongly repressed if it is
ranked ≤ ystrong repressed in j. These thresholds are arbitrarily chosen and are fixed for
all samples. For this analysis we used thresholds of 0.97, 0.90, 0.87, 0.03, 0.10, 0.13,
respectively for each of the values above.

Briefly, with this method let φ(i, j) be the probability that gene i has property j
(i.e. weakly/moderately/strongly induced/repressed in sample j. These ‘categories’
are not mutually exclusive, i.e. if a gene i is weakly induced with a high probability,
it may also be strongly induced, albeit with a smaller probability.), see [4, 22] for
more details on this calculation. The majority of gene sample couples will have
φ = 0. This probability is assigned as the weight of a given edge, eij , scaled with
the log-likelihood of obtaining that edge by chance. Thus each gene-sample couple
in the dataset has weight Eq.1:

wij = φ(i, j)× log Pc
Pi,j

+ (1− φ(i, j))× log 1− Pc
1− Pi,j

(1)

The probability Pi,j is the fraction of random bipartite graphs, with degree
sequence identical to G, that contain eij (and can be estimated using Monte-Carlo
methods). Pc is based on the assumption that an interesting edge occurs with a
constant probability > max(i,j)∈I×JPi,j . For this work a Pc value of 0.9 was used
[4].

aThis algorithm was designed to be applied to a compendium of data-sources, reflecting a set of

“properties”, not just gene expression data. For this analysis we are restricting it to gene expression
data
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3.2. Empirical-based Weighting

The empirical-based weighting scheme is data-driven in the sense that it is de-
termined from direct analysis of the dataset, i.e. based on observations obtained.
Fundamental to the method proposed here is that genes which, for a given sample,
have either high or low expression (equivalent to induction or repression) are more
likely to contribute to a function, or have a functional response, than for those for
which expression values remain unaffected. Affected genes can thus be extracted for
further analysis.

A high/low expression value for gene, i under sample j, is determined, relative
to other expression values in gene vector i, i.e. across rather than within samples.
The motivation for this is that, with microarray technology, direct comparison of
expression measures within arrays is problematic, because fluorescent intensities
are not the same across genes. The measured intensities are roughly proportional to
mRNA abundance but the proportionality factor is different for each gene. Specif-
ically, this means that between-sample, within-gene comparisons are appropriate,
but within-sample, between-gene comparisons are not straightforward [If, for exam-
ple, in sample j1, genes a and b, have measured expression of 100 and 200 respec-
tively. These observed data do not reflect the real relative abundance of mRNA for
these two genes - there could be more mRNA for gene a. If in a second sample, j2,
gene a has an expression measure of 200, we could conclude that the abundance of
mRNA for a in sample j2 is likely to be higher than that observed in sample j1,
[23].]

Under this weighting scheme, an edge eij exists when the ith gene shows “signif-
icant” induction or repression, relative to its mean level of expression, for sample j.
It makes use of Chebyshev’s inequality [24], as no distributional form of expression
values for each gene is assumed. Chebyshev’s inequality, for any real number κ > 0,
can be written:

Pr(|X − µ| ≥ κσ) ≤ 1
κ2

(2)

with random variable X, µ the expected value of X and σ2 the variance.
This scheme uses a two step process (Figure 1). The first step involves identifica-

tion of those expression values X = xij , (i = 1 . . . n, j = 1 . . . p), of interest which,
for a given sample j, are ≥ κσ from the mean expression of gene vector i. From Eq.
2, for example, the associated probability of an expression value ≥ 3.16σ from the
mean of gene i is less than 0.10. Expression values ≥ 3.16σ from the mean would
indicate a strong response of gene i to sample j. Note: this method assumes that
for the majority of samples, the expression of gene i will not be affected. If, on the
other hand, the aim of the experiment is to elicit an gene expression response across
the majority of samples, a baseline sample point could be used as an assumed mean
(e.g. use sample-point in the absence of stimulus).

Clearly, categories can be established to highlight those expression values which
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Fig. 1. Two-step process of empirical scheme. Step 1: A univariate analysis of each gene vector is

carried out to determine strength of response. Step 2: A univariate analysis of each sample vector
is performed and used to order gene response.

indicate a weak response, moderate response and strong response, where κ indicates
the threshold between categories. For example, expression values which are ≥ 2.58σ,
≥ 3.16σ and ≥ 4.47σ from µ fall into non-overlapping categories of weak, moder-
ate and strong respectively, (i.e. a gene-sample couple will not be categorised as
moderately and strongly responsive), corresponding to probabilities = 0.15, 0.10
and 0.05. In practice, these probabilities (reflecting the thresholds between cate-
gories) are chosen by a careful threshold estimation procedure (see Section 3.2.1),
and may change based on the dataset under consideration. Obviously the number
of categories can be extended for fine-grained response, while thresholds between
categories can also be adjusted. For this analysis, the categories weak, moderate
and strong, as defined above and in [4], were used. Thresholds chosen are discussed
further in Section 3.2.1.

In the second step, a univariate analysis of expression values within each sample
vector is carried out and used to order gene response. For each sample vector,
j, expression values xij which indicate strong response of the ith gene under j,
(as determined in step one) are selected. Similarly, genes which show moderate
and weak response under j can be identified. For each of the three “strength of
response” categories, a gene may be repressed or induced; (X−µ < 0, or X−µ > 0
respectively), giving six sub-categories in total. For each sub-category, Cs, s = 1 . . . 6
and for each sample variable, j = 1 . . . p, the empirical probability of xij ∈ Cs is
calculated as |xij ≥ xvj |/|Cs|, xvj ∈ Cs, i 6= v, (probability = 1 if |Cs| = 1), and
hence the edge weight, in the bipartite gene expression graph is obtained.

The weight is thus a direct reflection of obtaining a given expression level in an
induced/repressed response category for a particular sample. So, if many genes react
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strongly in the sample, the weight is smaller, while if only a few react strongly,
the weight will be larger. Note that, with this weighting scheme, a given sample
(experiment) may also have no reacting genes.

The weighted graph can be broken down into an independent subgraph for
each sub-category. Gene-sample edges in these different response groups may well
have similar weight “values” but are distinguished, in terms of absolute levels of
expression, by the category into which they fall.The reason for this approach is
that if the dataset was not categorised, a weak response and a strong response
gene-sample couple would have very different weights, with the consequence that
the strong response couple would dominate the analysis and obscure more subtle
patterns. Hence, the analysis does not depend directly on levels of expression but
rather on strength of response. Within a category, the weight can nevertheless be
interpreted directly in terms of the relative probability of gene-sample response.
Thus the higher the weight, the more confidence that a relationship exists between
gene and sample in that category.

3.2.1. Threshold Estimation

This scheme requires specification of number of categories and threshold val-
ues for each. To decide on thresholds between categories, graphs from real
datasets, G = (>,⊥, E) are compared to graphs from random datasets, GRand =
(>Rand,⊥Rand, ERand), for a range of thresholds, (Fig. 2). A random dataset of the
same dimension as the input dataset was created, where for each row (gene) i, ran-
dom numbers were selected from a Normal distribution of mean, µi Rand = µi Real,
and standard deviation, σi Rand = σi Real (since for a gene which does not respond
to any sample, expression would be relatively constant with no deviation from Nor-
mal). For each threshold choice in this analysis, 100 random datasets were created
to estimate cut-offs, with comparisons based on averaging over these.

A null model assumes each edge in the graph to be created with a probabil-
ity = (|ERand|/|>Rand|.|⊥Rand|), while an alternative assumes an edge was created
with probability = (|E|/|>|.|⊥|). The level at which the log of the ratio of these
two probabilities is maximised is taken to be optimal in terms of real effect ob-
served, (the log ratio is used as it is easily manipulated). Clearly, one criterion for
definition of maximum threshold is that at least one gene-sample couple must be
identified in the real and random graph. Thresholds are then tested in probability
increments of 0.02, to determine percentage inclusion of expression values. Once the
“strong response” threshold is found, moderate and weak response thresholds can
be established similarly.

3.3. Distribution-based Weighting

The motivation for the distribution-based scheme, proposed here, is that it is dif-
ficult, if not impossible, to give an absolute characterisation of an important gene-
sample couple. An absolute expression level, on its own, means very little, as noted
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Edges selected as 
strong response

Considered for  
moderate response

Fig. 2. Threshold Analysis of Lymphoma data. X-axis indicates the probability threshold 1
k2

, the

y-axis indicates the number of edges selected.

in Section 3.2. On the other hand, the study of the expression level of a given couple,
relative to that for other couples can provide interesting insight on functionality.
An ‘interesting couple’ is one where we can highlight a significant effect for a given
gene responding to a sample.

This implies an expression level, differing notably from the ‘average’ expression
observed for this gene across all samples, (and used by empirical-based approach).
This approach is adaptable, given that if the goal of the experiment is to identify
samples that elicit uniformly strong or weak responses from profiled genes across
all sample points, (as would be the case when a gene’s expression quickly reaches a
plateau following a perturbation and remains active for the subsequent duration of
the experiments) a baseline sample point could be used to quantify an ‘interesting
gene-sample couple rather than the average of the gene vector. An ‘interesting’
couple also implies some deviation from the effect this sample has on the whole set
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of genes: if a certain sample leads to over-expression of virtually all the genes, it
might be of limited interest to consider its effect on one gene, as this would not be
in any way unique.

The dataset is considered as a matrix, X, containing only positive valuesb, the
expression levels. Each gene vector is scaled to have a mean of 1, by dividing the
expression level, xij , by the row mean for gene i. Thus, genes i ∈ I with expression
value xij ≤ 1 are considered repressed and xij > 1 are considered induced in sample
j. For a given gene, we therefore obtain a series of positive values, of average 1, with
values x, s.t. 0 ≤ x < 1 when the gene is under-expressed in a certain sample, and
s.t. x > 1 for a gene over-expressed in the sample.

For each sample, in order to differentiate between genes that show specific
behaviour and those that react similarly to other genes, a geometric series,
(a, aR, aR2, aR3, . . .) is useful to create tightly defined categories for values close to
1 (= mean expression level for a gene across all samples, as above), and broader
categories as expression deviates further from this value. Such series are used be-
cause of the skewness of the data: many genes show very little response to a given
sample, having an expression value equal to 1. (Note, this property is not unique
to a geometric series; however a geometric series is sufficient for the purpose of
this analysis and can be manipulated easily.) Two series are used: one for values
greater than 1, and the other for values smaller than 1. A ratio R for each geomet-
ric series is calculated using Eq. 3, where Nc is the number of categories needed,
and Min and Max are, respectively, the smallest and largest value of the partial
set considered for the series. For the [1;∞) part of the dataset, Min = 1, and the
category boundaries are, therefore, 1, R, R2, etc., with R ≥ 1. For the [0; 1] part of
the dataset, Max = 1, and the category boundaries are, therefore, 1, 1

R , 1
R2 , etc.,

with R ≥ 1. For this part of the dataset, there can be a problem if Min = 0, since
R cannot be calculated in such cases. This is typically due to missing values. One
solution here is to use the average value of R, observed for samples where Min 6= 0,
ensuring that the distribution obtained is consistent with the data. Alternatively,
the smallest value larger than zero could be used to calculate R.

R =
(
Max

Min

)1/Nc

(3)

Once the categories have been created and populated by expression values of
the dataset, weights are assigned to gene-sample couples, depending on the size
of the category to which each couple belongs. As most optimization techniques
traditionally minimize a given objective function, we want to have negative weights
for “interesting” couples, and positive otherwise. To obtain size-dependent weights,

bSome microarray datasets are only made available after they are transformed into log space, (a
result of the normalisation process), thus leading to some negative values for low expression levels.

For such cases, the first step is to transform the data back from log-space, to deal exclusively with
positive values.
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the average population of all categories, S̄, is subtracted from the population of
that category to which the couple belongs, SC , (Eq. 4): hence gene-sample couples
in “small” categories are negatively weighted, while larger ones have positive values.
To avoid extreme weight values for datasets with very large number of genes, n,
weights are normalised by dividing by n.

wij =
SC − S̄
n

(4)

These weights should be interpreted as follows: the lower the weight wij of
edge eij , the more significantly the expression level of gene i deviates from what is
observed for the majority of genes for sample j.

4. Scheme evaluation

In this Section, we use the 4-point framework introduced in Section 2.2 to analyse
our two novel weighting schemes, and to compare them with the scheme introduced
by Tanay et al. [4].

4.1. Reusability

The empirical weighting scheme results in a partially connected graph for each sub-
category, since genes which do not show a significant change for a given sample
do not generate an edge (i.e. a partially connected graph consists of an edge and
non-edge set).

As genes which do show a significant change in expression generate an edge with
a positive weight, search criteria which maximize an objective function would be
biased towards having as many edges in a cluster as possible, (non-edges do not
have an associated negative weight to offset the positive weights of edges).

Subsequent clustering techniques do need to allow for this non-edge set, by
optimisation of the objective function excluding/weighting nodes not connected by
an edge. This scheme requires a dedicated algorithm for subsequent biclustering,
which maintains the lists of gene-sample couples in each category, (i.e. strongly
induced, moderately induced, etc.).

The distribution-based scheme is independent of subsequent clustering ap-
proaches, since it was designed without an explicit approach in mind. It is versatile
and can be used with most clustering techniques and with other types of large
datasets, biological or otherwise.

Likewise, the Tanay scheme is independent of the subsequent clustering tech-
nique, as it results in positive edges for interesting gene-sample couples and negative
edges for non-interesting gene-sample couples. Indeed, the scheme was specifically
designed for an additive scoring system, where the sum of the edge weights in a sub-
graph corresponds to its statistical significance, Eq. 1, (see [22] for more details).
This is a desirable property which greatly aids the complicated step of cluster val-
idation. This scheme has also been applied to a compendium of information (and
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not just to gene expression data) including data from transcription factor location
studies, sythenetic lethality studies and protein protein interactions, [12]. Each
experimental measurement was transformed into a probability of having that spe-
cific experimental property occurring (recall with the Tanay model, the bipartite
graph contains a gene node set and a set of experimental ‘properties). Although
the integration of hetergenous datasources is non-trivial, the Tanay scheme is a
powerful one, which exploits additional information that is not observable at the
transcription level alone.

4.2. Parameter influence

The distribution and empirical weighting schemes under consideration are controlled
by a single parameter and are, therefore, easily configurable while offering some
flexibility.

The distribution-based scheme is controlled by the number of categories, Nc.
The influence of this parameter is assessed through examination of the robustness
and discrimination achieved, as detailed below.

With respect to the empirical scheme the parameter that influences results is
κ, (Eq. 2), which determines thresholds between categories. Table 1 illustrates
the results of the threshold analysis for the Lymphoma dataset. The maximum
threshold for which any gene-sample couple was identified in the real dataset was
κ = 7.07 (probability ≤ 0.02, (Eq. 2)). Thresholds of κ = 5, 4.08, 3.58 and 3.162,
(i.e. probabilities ( 1

κ2 ) ≤ 0.04, 0.06, 0.08 and 0.10 respectively) were then tested.
The log ratio of the probabilities is maximised at κ = 4.08, and this was taken
to be the strong response threshold. Gene-sample couples which were identified
as strongly responding where then removed from the analysis. Next, values of
κ = 3.58, 3.162.88, 2.67, 2.5 and 2.35 where tested for the moderate response thresh-
old. The log ratio of the probability between real and random was maximised at
κ = 3.16, and this was set as the moderate response threshold. Gene-sample cou-
ples which were identified as moderately responding where then removed from the
analysis. Finally, values of κ = 2.88, 2.67, 2.5, 2.35, 2.23, 2.13, 2.04, 1.96 and 1.88
where tested for the weak response threshold. The log ratio of the probability, be-
tween real and random, was maximised at κ = 2.23, and this was set as the weak
response threshold. The rationale for choosing these threshold cut-offs is that the
distinction between real and random graphs is maximised at these points, while as-
signing a probability to each gene-sample couple in a category (e.g. the probability
of a gene-sample couple occurring by chance in the moderately responsive category
is < 0.08).

Table 2 provides results of threshold analysis for all three test datasets..
The main parameters affecting the Tanay weighting scheme are, again, thresh-

olds between categories, and Pc, (Eq. 1). This scheme adopts a ‘hard’ thresholding
approach, whereby thresholds between categories are arbitrarily chosen, based on
normalized ranked values within each sample and are not data dependent. For exam-
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Strong
κ 7.07 5 4.08 3.58 3.16
P 0.02 0.04 0.06 0.08 0.10

log( P (X=Edge)
Prand(X=Edge) ) undef undef 3.98 2.45 1.5

Moderate
κ 3.162 2.88 2.67 2.5 2.35
P 0.10 0.12 0.14 0.16 0.18

log( P (X=Edge)
Prand(X=Edge) ) 4.35 3.9 3.54 3.31 3.20

Weak
κ 2.23 2.13 2.04 1.96 1.88
P 0.20 0.22 0.24 0.26 0.28

log( P (X=Edge)
Prand(X=Edge) ) 0.063 0.035 0.019 0.002 -0.01

Table 1. Threshold Analysis , Lymphoma data. κ= the number of standard deviations from mean
(Eq. 2). P = 1

κ2 , is the probability that values are κσ from mean. The maximum log-ratio is taken

as the threshold between categories. The undef entries indicate where the log-ratio could not be

calculated due to division by zero, i.e. no edges were identified for the random graph.

Strong Moderate Weak
Lymphoma 4.08 3.162 2.23
Yeast Cell Cycle 3.16 2.88 2.23
Kasumi 2.77 2.58 2.23

Table 2. κ thresholds identified for each of the tested datasets.

ple, the top and bottom t% of normalized ranked values are selected as moderately
expressed, where t is an arbitrarily chosen input parameter. This ‘hard threshold-
ing’ has consequences for the deterioration of the scheme when noise and missing
values are added to the data. As the t is lowered, a higher percentage of edges will
be identified, even if none exist (i.e. as not data dependent, it will always select the
top t%). For an analysis of parameter Pc see [4].

4.3. Robustness

Noise and missing values were included in the dataset in the tests reported here
in order to mimic measurement error of different amounts. Noise was randomly
“added/subtracted” to each value in the dataset as a percentage (up to 10%) of
the original value. To replace data with missing values, up to 10% of expression
values from the original dataset were randomly selected and removedc Commonly,

cIn the absence of more specific knowledge of the distribution of missing values in datasets tested,

it was assumed distribution was close to random and hence that random selection of missing values
was a reasonable solution for the testing under consideration.
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missing values in the experimental gene expression matrix are replaced by zeroes or
by an average expression level of the gene, (“row average”). Such methods, however,
do not take into account the correlation structure of the data, and more sophisti-
cated options include methods of K-Nearest Neighbour (KNN) and Support Vector
Decomposition type, [25]. Missing value estimation methods have generated a con-
siderable literature in their own right, so to test our weighting schemes the common
practice of replacing missing values by the row mean was adopted. The missing
value estimation procedure chosen will, of course, affect the final form of the data.
For instance, replacement by the row mean will reduce the standard deviation of
each gene vector under consideration.

For this analysis, we defined “Average Absolute Variation” as the average differ-
ence in edge weights, compared to 0% noise/missing values and “Stable weights” to
be those for which the variation is less than the level of noise/missing values added.

The influence of noise and missing values are summarised respectively in Table
3 for the Lymphoma dataset. Results for other datasets, (not displayed here), are
consistent with these.

4.3.1. Empirical Weighting Scheme

The absolute variation in weights is extremely low for the empirical scheme since
the technique examines extreme values, i.e. values which appear in the tail of the
distributions of each gene variable. In addition, weights are not based directly on a
given expression value, but on that expression value relative to other values in the
category for a particular sample (Step 2 of scheme, see Fig. 1). The category is in
turn defined relative to expected value of the gene variable (Step 1 of scheme, see
Fig. 1). As “missing” values are replaced by the row mean, this does not greatly
affect extreme values. Equally, even noise added at 10% level of the original values
does not affect relative values, thus, perturbations in the data have small effect on
weights assigned.

Similar to results shown in Table 3, for the Kasumi dataset, average absolute
variation in edge weights is ∼ 0.26% for an added noise level of 10% (data not
shown), while denoting 10% of the dataset as missing values, gives average absolute
variation in values ∼ 0.3%, with stable weights accounting for around 99.5%. For the
Yeast Cell Cycle data, the corresponding values for 10% noise added were: ∼ 0.22%
(absolute variation) and ∼ 99.65% (stable weights); and for missing values at 10%
were: ∼ 0.15% (absolute variation) and ∼ 99.69% (stable weights).

4.3.2. Distribution-Based Weighting Scheme

The distribution-based weighting scheme is more generic, as it does not rely as much
on the underpinning biological information: as such, it is less robust to noise and
missing values, which alter the distribution of expression levels.

Influence on the weights used is “reasonable” for low noise perturbation. Specif-
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% Noise level 1.5 2.5 5 10

Distribution Based
% Average Absolute variation 3.10 4.90 9 15.80
% “stable” weights 83 84.5 89.1 88.6
Empirical Based
% Average Absolute variation 0.06 0.02 0.03 0.05
% “stable” weights 99.66 99.68 99.68 99.65
Tanay Scheme
% Average Absolute variation 2× 10−3 2× 10−3 2× 10−3 3× 10−3

% “stable” weights 99.98 99.99 99.99 99.99

%missing values 1.5 2.5 5 10
Distribution Scheme
% Average absolute variation 17.70 27.30 48.86 92.00
% of “stable” weights 37.40 33.40 32.50 30.20
Empirical Scheme
% Average absolute variation 0.04 0.04 0.09 0.16
% of “stable” weights 99.70 99.72 99.64 99.62
Tanay Scheme
% Average absolute variation 2× 10−3 3× 10−3 3× 10−3 6× 10−3

% of “stable” weights 99.98 99.99 99.99 99.99

Table 3. Influence of noise level and missing values on weights assigned (for 20 categories for
distribution based scheme). Stable weights refer to the percentage of weights for which the level

of variation is less than the level of perturbation added.

ically, the percentage of stable weights is a helpful indicator, given the nature of the
scheme: when a gene-sample couple falls into a new category due to added noise,
this changes the weights for all couples in the new category as well as all those in the
old one. The % stable weights value may, therefore, give more insight into scheme
robustness, rather than using only the average absolute variation of the weights,
(Table 3). Clearly, as the number of categories increases, each category interval de-
creases, and gene-sample couples are more likely to change categories, leading to a
smaller proportion of stable weights, Figure 3. Stable weights are re-defined based
on the level of deviation smaller than the added perturbation. For very low pertur-
bations, this rule becomes very difficult to satisfy, and creates the initial dip, which
can therefore be discarded. The proportion of stable weights can then be taken as
almost constant, (for a fixed number of categories).

With respect to missing values, the scheme is far less robust than the empirical
and Tanay schemes with respect to noise perturbations. However, it is important
to note that the sign of the remaining weights is not lost: a positive weight does
not become negative, (except for cases when more than half the values for a given
gene are missing; in those cases it would almost certainly be excluded from the
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Fig. 3. Influence of noise - Proportion of stable weights (%)
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Fig. 4. Influence of missing values - Proportion of stable weights (%)

dataset before the scheme is applied). What is partially lost is the degree of over-
expression, (or under-expression), rather than the knowledge that this change of
expression occurs. A representation of missing value influence, depending on the
number of categories, is given in Figure 4.

As noted previously, the results displayed correspond to untreated data, i.e.
where the mean replaces missing values, thus creating larger perturbations in the
weights. Future work might reasonably include tests of the effect of the various
correction techniques on scheme robustness.
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4.3.3. Tanay Scheme

Perturbations in the data have very little effect on weights derived with the Tanay
scheme, (similar results for all tested datasets, data not shown for Yeast and Kasumi
datasets). Slightly surprised by this result, missing values were tested up to a level
of 80%, but effects remained minimal (0.01%, average variations and 99.99% stable
weights). It may be the case that this scheme identifies ‘interesting’ gene-sample
couples, even if none exist, due to the ‘hard’ threshold nature of the scheme (Section
4.2). If 10% noise added to the dataset, thresholds still depend on ranking and
not mean level, thus approximately the same gene-sample couples are selected as
interesting as relative ranked position is not changed (i.e. if 10% random noise is
added to every value in the data, ranked positions remain relatively unaffected).
Missing values have little effect, as these are replaced by the mean, therefore more
extreme values are replaced with central values, but the same thresholds are used.

4.4. Discrimination

For this analysis, ‘random graph’ refers to graphs created from random datasets, as
described in Section 3.2.1.

4.4.1. Empirical Weighting Scheme

From the threshold analysis, described above, maximum discrimination between
empirical and random graphs is achieved. As expected, the largest number of gene-
sample couples falls in the weak response category. Discriminating between gene
responses depends on the category thresholds used. From Table 4, for strong and
moderate response, the probability of an edge existing between a gene and sample
node in the real graph is greater than that for the random graph, indicating that
significant structure is present. For a weak response, the ratio of probabilities is
smaller and it is less convincing that real differences exist. Nevertheless, an exami-
nation of the average degree of sample nodes in the real graphs indicates that the
average number of genes responding is higher than expected. For example, for the
weak repression sub-category, a sample node is, on average, connected to ∼ 3% of
gene nodes compared to ∼ 1.5% in the random graph, (d⊥/d>). The average degree
of a sample node in the real graph is also higher than expected, (> m/n⊥). This
suggests that, although the ratio of probabilities in weak response is not high, some
pattern structure is present and the method is capable of identifying indicative
gene-sample couples.

4.4.2. Distribution-Based Weighting Scheme

By construction, there are no “damaging” false-positives or false-negatives, at least
in theory. In practice, false-positive or false-negative edges may have weights very
close to zero, (either positive or negative depending on the number of categories).
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Repressed Induced
Weak Moderate. Strong. Weak. Moderate. Strong.

n> 2572 456 111 2829 719 304
n⊥ 63 26 28 81 53 54
m 4324 506 114 4939 822 316
d> 1.69 1.11 1.03 1.74 1.148 1.04
d⊥ 72.29 21.66 4.75 64.09 17.75 6.08
δ 0.0112 0.002 0.0003 0.0127 0.002 0.0008

n>rand 2774 8 5 2718 7 3
n⊥rand 87 7 5 87 7 3
mrand 4007 9 5 4020 8 4
d>rand 1.477 1 1 1.462 1 1
d⊥rand 46.57 1.28 1 45.875 1.14 1
δrand 1× 10−2 2× 10−5 1× 10−5 1× 10−2 2× 10−5 1× 10−5

Table 4. Categories for Lymphoma data, created by cut off thresholds 0.20 (weak induc-

tion/repression), 0.10 (moderate induction/repression), and 0.06 (strong induction/repression).
n> = the active set of genes (gene nodes with degree ≥ 1), n⊥ = active set of samples, m =

number of edges, d> = average degree of active set of genes, d⊥ = average degree of active set of

samples, δ = bipartite density (i.e the fraction of existing links with respect to possible ones.)

A significant change in expression patterns can not lead to a positive weight, while
negative weights are only obtained where there is a significant change. Since abso-
lute, (positive vs. negative), discrimination is guaranteed, the focus here is to assess
relative discrimination, i.e. distribution of weight values. Results, of the influence
of the number of categories, on this discrimination are displayed in Table 5.

The size of the categories reflects the biological significance of the gene-sample
couples in it. Additionally, size of each category is influenced by the number of
category available. Biological significance of the weights is a direct consequence of
the weighting process: the lower the weight wi,j of edge ei,j , the more significantly
the expression level of gene i deviates from what is observed for the majority of
genes for sample j (i.e. there will be less gene-sample couples in the category), Eq.
4. The scheme operates a preselection of potentially interesting gene-sample pairs.

A first observation, based on the proportion of negative weights, is that discrim-
ination is good: there are on average, just under 41,019 (∼ 11%) negative weights
(out of 386,496), implying that 11% of gene-sample couples in the dataset are of in-
terest. This value varies between 35,542 (30 categories) and 49,242 (10 categories),
with a standard deviation of ∼ 3908. The scheme selected 8.75% ± 0.21% gene-
sample couples from a random dataset, (Section 3.2.1), for Nc = 14. Discrimination
is satisfactory for any number of categories, (Nc), in the range tested, (Z-test,
p < 0.0001). Weights obtained with fewer categories appear more discriminatory
in general, although this is less evident at Nc = 10, which indicates that Nc < 10
would be ill-advised. With less than 10 categories, there is an artificial increase
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Distribution Weights
k ≤-6 [-6;-4] [-4;-2] [-2;0] [0;2] [2;4] ≥ 4

10 14977 10207 8779 15279 13337 12969 310948
12 7708 13206 10917 11324 11453 17783 314105
14 733 14252 14998 13327 14293 17606 311287
16 0 9778 16293 17884 14973 17616 309952
18 0 4723 19030 18740 18141 17629 308233
20 0 0 20095 20116 21275 20942 304068
22 0 0 17435 22792 23217 19002 304050
24 0 0 14050 24584 24329 24004 299529
26 0 0 11334 26286 26337 28134 294405
28 0 0 8325 28679 27582 32757 289153
30 0 0 4751 30791 29200 35930 285824

Table 5. Influence of the number of categories on discrimination for Lymphoma data: distribution
of weight values. Values in cells represent the number of gene-sample couples in various ranges

of extreme weights (i.e. very low or high weights), indicating that the biological
significance of the weights is lost. Given that Nc = 12 to 16 categories also cor-
responds to improved robustness (Section 4.3), using this range is recommended.
This recommendation also applies to other datasets, for which results obtained are
similar.

4.4.3. Tanay Scheme

From our analysis of this scheme (Table 6), we observed that (a) a smaller number of
total positive weights were identified, compared to those selected from correspond-
ing graphs generated from random dataset, (Section 3.2.1), and (b) the number of
positive weights in each category is roughly equivalent to random, (with the excep-
tion of Kasumi Moderate and Strongly repressed categories). Observations (a) and
(b) imply that the degree ‘sharing’ of gene-sample couples in the real dataset (i.e.
gene-sample couples having a positive edge in the weakly induced category, also
feature in the strongly induced category - categories are not mutually exclusive).
Since ‘hard’ thresholds between categories were used and arbitrarily chosen, the
order of the number of edges in each category is Strong < Moderate < Weak.
Note also that those gene-sample couples, evaluated as strongly reacting, will have
a magnified impact on any clustering procedure on the resulting graph, due to the
overlap between categories.

4.5. Discussion and Conclusion

From the investigations above, it is clear that interpretations of edge weights in
graphical gene expression schemes can differ considerably. Primarily, the empirical
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Datasets Lymphoma Yeast Cell Kasumi
% total edges 2.7 3.34 2.13

(2.9± 0.007) (4.3± 0.01) (3.6± 0.02)
Induced

% strong 1.2 1.1 0.8
(1.1± 0.009) (1.2± 0.02) (0.8± 0.004)

% moderate 3.2 4.1 1.0
(3.1± 0.01) (3.9± 0.03) (1.0± 0.005)

% weak 3.9 5.0 1.1
(3.9± 0.02) (4.8± 0.03) (1.1± 0.007)

Repressed
% strong 1.2 1.1 1.3

(1.1± 0.009) (1.2± 0.02) (1.4± 0.06)
% moderate 3.2 3.8 3.8

(3.1± 0.01) (3.9± 0.02) (3.4± 0.06)
% weak 4.0 4.7 4.7

(3.8± 0.01) (4.8± 0.03) (4.1± 0.12)

Table 6. Tanay scheme - percentage of total possible edges is taken as
|E|

n×p×6
whereas percentage

of edges in each category is taken with respect to total possible edges in that category i.e.
|E|
n×p ,

(n = number of genes, p = number of samples). Bracketed values represent results from random
graphs.

and Tanay weighting scheme result in positive weights for “interesting” gene-sample
couples, while the distribution technique leads to significant effects reflected in neg-
ative weights. If the optimisation technique uses a minimisation-based objective
function, the empirical and Tanay weights could simply be negated, (similarly for
distribution weights if a maximisation function is used). For both empirical and
distribution schemes presented, edge weights linking effected genes for a particular
sample j, are defined relative to other gene expression values for sample j. This
is an important corollary, as absolute level of gene expression is not directly ac-
counted for, only the fact that it does change, with the significance of this change
relative to the majority of genes. Relative evaluation is also an intrinsic feature of
the Tanay based scheme, as the initial probability φ(i, j), (Eq. 1) is based on ranks.
However, the selection of pre-determined hard thresholds between ranks has a large
effect on robustness and discrimination as it is not data-dependent. Conversely, the
issue of data dependent threshold estimation is addressed in the two novel schemes
presented, but is non-trivial as numerous thresholds need to be assessed, which is
computationally expensive.

The empirical-based scheme is more specific, in the sense that fewer gene-sample
couples are identified, compared to the distribution-based and Tanay scheme. For
example, for the Lymphoma dataset, the empirical based scheme extracts 11, 021
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gene-sample couples (∼ 3% at optimal threshold levels). The distribution-based
scheme extracts 43, 155 couples (∼ 11%) (for 12 categories), although 11, 324 of
these are close to 0 (and hence do not have a major impact on clustering), this still
leaves 31, 831 (∼ 8%), “interesting couples”. The Tanay scheme extracts ∼ 16%
for the same dataset.

The empirical-based method deteriorates slowly with perturbations in data,
hence for data known to contain many missing values and/or noise it may be a
better choice. Weights overall for the Tanay scheme seem little affected by noise
and missing values, which indicates that this scheme will assign high weights to
gene-sample couples, (even if none are present). If the sample size (i.e. the num-
ber of microarray experiments), for each gene is small, the performance of the
empirical-based scheme deteriorates with respect to its random graph comparison
basis, (difficult to estimate µ and σ of each gene variable) while the thresholds
between categories become increasingly difficult to identify. In this situation, the
distribution-based scheme would be the better choice.

Although the aim of this work was solely the presentation and investigation of
weighting schemes in isolation, comparison of clusters found from graphs, created
using the various weighting schemes presented, would inevitably provide a more
complete assessment of the weighting schemes. Throughout the assessment pre-
sented here, properties which would affect subsequent clustering where indicated.
For example, positive edge weights, created by the the empirical and Tanay weight-
ing scheme require a maxisation function, while negative weights, created by the
distribution based scheme, require a minimisation function. Also, as noted previ-
ously, the empirical scheme results in a set partially-connected graphs, while the
distributed and Tanay scheme results in a fully-connected graph. This has conse-
quences for the subsequent clustering procedure used to group the edge weights.
Therefore, its clear that the same clustering procedure cannot be universally ap-
plied to graphs resulting from all weighting schemes, and an analysis of clusters
produced by these schemes would also involve a detailed analysis of the clustering
procedure itself, to account for differences in these, and in the weighting scheme.
Such an analysis is outside the scope of this paper, although it is noted that this is
an important continuation of this work.

Using graphical techniques to extract meaningful information from biological
data is an intuitive and popular method. In this paper, we limited our investigation
to bipartite graphs as this representation captures essential properties of the gene
expression dataset and allows for the extraction of biclusters most suitablet for data
in this domain, [6].

An investigation into weighting of gene expression networks is long overdue.
In this paper we proposed and compared two weighting schemes applied to gene
expression bipartite graphs with a view to extracting meaningful biclusters from
the data. We also compared the properties of these novel schemes to the innovative
work of Tanay et al. [4, 12, 22]. The importance of assessing edge-weighting schemes
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was highlighted and we showed that edge weights must be considered independently
from the clustering procedure, since alternative edge weight derivation can lead to
different interpretations of the data. This type of assessment framework for weight-
ing is equally crucial in the context of other types of large dataset, biological or
other.

Further investigation on extraction of meaningful graphical relationships
through choice of edge-weighting schemes should include incorporation of infor-
mation from related sources, (such as protein interaction and promoter information
etc.), to refine weights and improve handling of missing values. Investigation of auto-
matic threshold estimation for category sub-divisions is also indicated. Comparison
of clusterings using various weighting procedures is a required next step.
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