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Abstract

We develop a fast algorithm to construct the robustness degradation function, which describes

quantitatively the relationship between the proportion of systems guaranteeing the robustness

requirement and the radius of the uncertainty set. This function can be applied to predict whether

a controller design based on an inexact mathematical model will perform satisfactorily when

implemented on the true system.

1 Introduction

In recent years, there has been growing interest in the development of probabilistic methods for

robustness analysis and design problems aimed at overcoming the computational complexity and the

conservatism issue of the deterministic worst-case framework [16, 17, 14, 12, 19, 2, 5, 4, 18, 8, 9,

6, 7, 21, 22, 15, 3]. In the deterministic worst-case framework, one is interested in knowing if the

robustness requirement is guaranteed for every value of the uncertainty. However, it should be borne

in mind that the uncertainty set may include worst cases which never happen in reality. Instead of

seeking the worst-case guarantee, it is sometimes “acceptable” that the robustness requirement is

satisfied for most of the cases. It has been demonstrated that the proportion of systems guaranteeing

the robustness requirement can be close to 1 even if the radii of the uncertainty set are much

larger than the worst-case deterministic robustness margin [2, 13, 4, 8, 18]. Therefore, it is of

practical importance to construct a function which describes quantitatively the relationship between

the proportion of systems guaranteeing the robustness requirement and the radius of the uncertainty
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set. Such a function can serve as a guide for control engineers in evaluating the robustness of a

control system once a controller design is completed. Such a function, referred to as a robustness

degradation function, has been proposed by a number of researchers [2, 8]. For example, Barmish,

Lagoa, and Tempo [2] have constructed a curve of the robustness margin amplification versus risk in

a probabilistic setting. In a similar spirit, Calafiore, Dabbene, and Tempo [8, 9] have constructed a

probability degradation function in the context of real and complex parametric uncertainty.

In this paper, allowing the robustness analysis to be performed in a distribution-free manner,

we introduce the concept of proportion and adopt the assumption from the classical robust control

framework that uncertainty is deterministic and bounded. It follows naturally that the robustness

of a system can be reasonably measured by the ratio of the volume (Lebesgue measure) of the

set of uncertainty guaranteeing the robustness requirement to the overall set of uncertainty [19].

Evaluation of such a measure of robustness requires generating samples with uniform distribution

over uncertainty sets such as a spectral normal ball or an lp ball. The difficulty of generating such

samples has been successfully resolved in [8, 9].

The conventional method for constructing the robustness function is to perform, independently,

a certain number of simulations for each value of the uncertainty radius and then plot the function.

Although such a curve can be applied to evaluate the robustness of the control system, it may be

computationally expensive. This is especially true when many cycles of controller synthesis and

robustness analysis are needed in the development of a high performance control system. Motivated

by this situation, we focus on the machinery that can make the construction of such a function

efficient. We have developed a sample reuse algorithm that allows the simulations to be conducted

in an iterative manner. The idea is to start simulation from the larger uncertainty set and save

appropriate evaluations of the robust requirement for the use of later simulations on the smaller

uncertainty set. In this way the total number of simulations can be reduced significantly as compared

to the conventional method.

In addition to deriving our sample reuse algorithm from the worst-case deterministic framework,

we show that the technique is also applicable when considering the random nature of the uncertainty.

In such cases, the worst-case properties of uniform distribution given in the pioneering work [5, 2, 1]

allow our algorithm to be applied to efficiently solve a wide variety of robustness analysis problems.

In particular, the radial truncation theory [2] can be applied to robustness analysis problems with

uncertainty bounding sets defined as spectral norm balls and lp balls.

The organization of the paper is as follows. Section 2 gives the problem formulation. Section 3

presents our sample reuse algorithm. Section 4 is the performance analysis of the algorithm. Section

5 applies the algorithm to examples. Section 6 shows the justification of the algorithm for the case

of random uncertainties. Section 7 is the conclusion. The proofs of the theorems are included as an

appendix.
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2 Problem formulation

We adopt the assumption, from the classical robust control framework, that the uncertainty is

deterministic and bounded. We formulate a general robustness analysis problem as follows.

Let P denote a robustness requirement. The definition of P can be a fairly complicated combi-

nation of the following:

• stability or D-stability;

• H∞ norm of the closed-loop transfer function;

• time specifications such as overshoot, rise time, settling time, and steady state error.

Let B(r) denote the set of uncertainties with size smaller than r. In applications, we are usually

dealing with uncertainty sets such as the following:

• lp ball Bp(r) := {∆ ∈ Rn : ||∆||p ≤ r} , where ||.|p denotes the lp norm and p = 1, 2, . . . ,∞. In

particular, B∞(r) denotes a box.

• Spectral norm ball Bσ(r) := {∆ ∈ ∆ : σ̄(∆) ≤ r}, where σ̄(∆) denotes the largest singular

value of ∆. The class of allowable perturbations is

∆ := {blockdiag[q1Ir1 , . . . , qsIrs ,∆1, . . . ,∆c]}, (1)

where qi ∈ F, i = 1, . . . , s are scalar parameters with multiplicity r1, . . . , rs and ∆i ∈

F
ni×mi , i = 1, . . . , c are possibly repeated full blocks. Here F is either the complex field

C or the real field R.

• Homogeneous star-shaped bounding set BH(r) := {r(∆−∆0) + ∆0 : ∆ ∈ Q} , where Q ⊂ Rn

and ∆0 ∈ Q (see [2] for a detailed illustration).

Throughout this paper, B(r) refers to any type of uncertainty set described above. Define a function

ℓ(.) such that, for any X,

ℓ(X) := min{r : X ∈ B(r)},

i.e., B(ℓ(X)) includes X exactly in the boundary. By such definition,

ℓ(X) = min

{
r :

X −∆0

r
+∆0 ∈ Q

}
,

ℓ(X) = σ̄(X),
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and

ℓ(X) = ||X||p

in the context of a homogeneous star-shaped bounding set, spectral norm ball, and lp ball, respec-

tively.

To allow the robustness analysis to be performed in a distribution-free manner, we introduce the

notion of proportion as follows. For any ∆ ∈ B(r) there is an associated system G(∆). We define

proportion as follows:

P(r) :=
vol({∆ ∈ B(r) : The associated system G(∆) guarantees P})

vol(B(r))

with

vol(S) :=

∫

q∈S
dq,

where the notion of dq is illustrated as follows:

• (I): If q = [xrs]n×m is a real matrix in Rn×m, then dq =
∏n

r=1

∏m
s=1 dxrs.

• (II): If q = [xrs + jyrs]n×m is a complex matrix in Cn×m, then dq =
∏n

r=1

∏m
s=1(dxrsdyrs).

• (III): If q ∈∆, i.e., q possesses a block structure defined by (1), then dq = (
∏s

i=1 dqi)(
∏c

i=1 d∆i),

where the notion of dqi and d∆i is defined by (I) and (II).

It follows that P(r) is a reasonable measure of the robustness of the system [8, 20]. In the worst-

case deterministic framework, we are interested only in knowing if P is guaranteed for every ∆.

However, one should bear in mind that the uncertainty set in our model may include worst cases

which never happen in reality. Thus, it would be “acceptable” in many applications if the robustness

requirement P is satisfied for most of the cases. Hence, due to the inaccuracy of the model, we should

also obtain the value of P(r) for uncertainty radius r which exceeds the deterministic robustness

margin.

Clearly, P(r) is deterministic in nature. However, we can resort to a probabilistic approach to

evaluate P(r). To see this, one needs to observe that a random variable with uniform distribution

over B(r), denoted by ∆u, guarantees that

Pr{∆u ∈ S} =
vol(S

⋂
B(r))

vol(B(r))

for any S, and thus

P(r) = Pr{The associated system G(∆u) guarantees P}.
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It follows that a Monte Carlo method can be employed to estimate P(r) based on independently

and identically distributed (i.i.d.) observations of ∆u.

It is interesting to know how the function P(r) degrades with respect to r when r increases from

a to b, where b, a ≥ 0. In a similar spirit, such a function has been proposed as a confidence

degradation function in [2] and as a probability degradation function in [8, 9]. In this paper, we

refer to the function P(.) as a robustness degradation function for the following reasons. First, we

introduce the confidence interval for assessing the accuracy of the estimate of P(r). To be useful,

every numerical method should be associated with an assessment for the accuracy of the estimate.

Monte Carlo simulation is no exception. To avoid confusion, we reserve the notion of “confidence”

for the purpose of interval estimation. Second, we introduce the concept of proportion for measuring

robustness, which has no probabilistic content. Third, P(r) is a robustness measure and is usually

decreasing with respect to r when P(r) is close to 1.

To construct such a function of practical importance, the conventional way is to grid the interval

[a, b] as a = ρ1 < ρ2 < · · · < ρl = b and estimate P(ρi) by conducting N i.i.d. sampling experiments

for each ρi. In total, we need Nl samples. In the next section we show that the number of experiments

can be significantly reduced.

3 Sample reuse algorithm

To improve efficiency, we shall make use of the following simple yet important observation.

Let q∗ be an observation of a random variable with uniform distribution over B(r∗) ⊇ B(r) such

that q∗ ∈ B(r). Then q∗ can also be viewed as an observation of a random variable with uniform

distribution over B(r).

In our algorithm, we flip the order of ρi by defining

ri = ρl+1−i

for i = 1, 2, . . . , l. Thus, the direction of simulation is backward. Our algorithm is described as

follows.

Sample Reuse Algorithm

• Input: Sample size N , confidence parameter δ ∈ (0, 1) and uncertainty radii ri, i = 1, 2, . . . , l.

• Output: Proportion estimate P̂i and the related confidence interval for i = 1, . . . , l. In the

following, mi1 denotes the number of sampling experiments conducted at ri, and mi2 denotes

the number of observations guaranteeing P during the mi1 sampling experiments.

• Step 1 (initialization). Let M = [mij ]l×2 be a zero matrix.

5



• Step 2 (backward iteration). For i = 1 to i = l do the following:

– Let r ← ri.

– While mi1 < N do the following:

∗ Generate uniform sample q from B(r). Evaluate the robustness requirement P for q.

∗ Let ms1 ← ms1 + 1 for any s such that r ≥ rs ≥ ℓ(q).

∗ If robustness requirement P is satisfied for q, then let ms2 ← ms2 + 1 for any s such

that r ≥ rs ≥ ℓ(q).

– Let P̂i ←
mi2

N
and construct the confidence interval of confidence level 100(1 − δ)%.

It follows that q can be viewed as an observation of a random variable with uniform distribution

over B(rj) if and only if r ≥ rj ≥ ℓ(q). Hence, if the robustness requirement P has been evaluated for

B(ri) at sample q, the result can be accepted without repeated evaluation of P for all B(rj) such that

r ≥ rj ≥ ℓ(q). Thus, sample reuse allows us to save both the sample generation and the evaluation

of P for the sample. It is also interesting to point out that the samples collected for each ri are i.i.d.

and thus the confidence interval can be rigorously constructed based on the evaluation of P for the

samples.

4 Sample reuse factor

Let ni be the number of simulations required at ri. Define sample reuse factor as follows:

Freuse :=
Nl

E [
∑l

i=1 ni]
,

where E(X) denotes the expectation of random variable X. Obviously, Freuse measures the im-

provement of efficiency upon the conventional method. We demonstrate that the improvement can

be significant in most applications.

Theorem 1 The sample reuse factor Freuse = l/l −
∑l

i=2

(
ri

ri−1

)d
, where d = n for lp ball Bp(r)

and homogeneous star-shaped bounding set BH(r); and

d =

s∑

i=1

κ(qi) +

c∑

j=1

κ(∆j)

for spectral norm ball Bσ(r) with κ(.) defined as

κ(X) :=

{
2mn if X is a variable in Cn×m

mn if X is a variable in Rn×m.
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See the appendix for proof. For illustration purposes, we choose ri = b− (b−a)(i−1)
l−1 for i = 1, 2, . . . , l.

By Theorem 1, Freuse = l/l −
∑l

i=2

(
1− 1

l−1

1−
a
b
−i+2

)d

. Figures 1 and 2 show that the improvement

over the conventional approach is significant when d is not large. These figures also reveal that the

sample reuse factor does not scale well with the uncertainty dimension. For example, when d > 160,

the efficiency gained from sample reuse techniques may not be attractive.
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Figure 1: Performance improvement (A : l = 200, b = 2a; B : l = 100, b = 2a; C : l = 100, a =

0; D : l = 20, b = 2a).
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Figure 2: Performance improvement (A : l = 200, b = 2a; B : l = 100, b = 2a; C : l = 100, a =

0; D : l = 20, b = 2a).

5 Illustrative examples

In this section we demonstrate through examples the power of the sample reuse algorithm in solving

a wide variety of complicated robustness analysis problems which are intractable in the classical

deterministic framework.
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First, we consider an example which has been studied in [11] by a deterministic approach. The

system is as shown in Figure 3.

P(s)C(s)

r +

_

e c

Figure 3: Uncertain system.

The compensator is C(s) = s+2
s+10 and the plant is P (s) = 800(1+0.1δ1)

s(s+4+0.2δ2)(s+6+0.3δ3)
with parametric

uncertainty ∆ = [δ1, δ2, δ3]
T. The nominal system is stable. The closed-loop roots of the nominal

system are

z1 = −15.9178, z2 = −1.8309, z3 = −1.1256 + 7.3234i, z4 = −1.1256 − 7.3234i.

The H∞ norm of the nominal closed-loop transfer function is ||T 0||∞ = 2.78. The peak value, rise

time, and settling time of step response of the nominal system are, respectively, P 0
peak = 1.47, t0r =

0.185, and t0s = 3.175. In all of the following examples, we take l = 100. To guarantee that the

absolute error of the estimate for the proportion is less than 0.01 with confidence level 99%, we

choose N = 26, 492 based on the well-known Chernoff bound (see [12, 19] for “sharper” bounds).

Since the Chernoff bound is conservative, we also performed a post-experimental evaluation of the

estimates by constructing confidence intervals with confidence level 99% based on Clopper–Pearson’s

method [10].

Figure 4 is the robustness degradation curve for robust stability over uncertainty set B∞(r) :=

{∆ : ||∆||∞ ≤ r}. It demonstrates that a significant enhancement of the robustness margin can be

achieved at the price of a small risk.

Figure 5 is the robustness degradation curve, with the robustness requirement P defined as

stability and H∞ norm < 170% ||T 0||∞, and the uncertainty set defined as the ellipsoid B2(r) :=

{∆ : ||∆||2 ≤ r}.

Figure 6 is the robustness degradation curve with the robustness requirement P defined as D-

stability with the domain of poles defined as: real part < −1.5, or it falls within one of the two disks

centered at z3 and z4 with radius 0.3. The uncertainty set is defined as the polytope

BH(r) :=

{
r∆+ (1− r)

∑4
i=1∆

i

4
: ∆ ∈ conv{∆1,∆2,∆3,∆4}

}
,

where “conv” denotes the convex hull of ∆i = [12 sin(
2i−1
3 π), 1

2 cos(
2i−1
3 π), −

√
3
2 ]T for i = 1, 2, 3 and
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Figure 4: Robustness degradation curve (reuse factor = 41).
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Figure 5: Robustness degradation curve (reuse factor = 43).
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∆4 = [0, 0, 1]T.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Uncertainty Radiu

Pr
op

ort
ion

Upper Confidence Limit 

Minimum Variance Variance
 Unbiased Estimate 

Lower Confidence Limit 

Figure 6: Robustness degradation curve (reuse factor = 49).

Figure 7 is the robustness degradation curve for the case where the uncertainty set is B∞(r) :=

{∆ : ||∆||∞ ≤ r}, the robustness requirement P is: stability, and rise time tr < 135% t0r = 0.25,

settling time ts < 110% t0s = 3.5, and overshoot Ppeak < 116% P 0
peak = 1.7.
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Figure 7: Robustness degradation curve (reuse factor = 38).

Finally, we consider the same example in [8] where the class of uncertainty is defined as

∆ := {blockdiag[q1I5, q2I5, ∆1]},

where ∆1 ∈ C4×4, and I5 denotes the identity matrix of 5 × 5. By Theorem 1, we have d = 34.

Figure 8 shows the robustness degradation curve. An improvement (of efficiency) about fivefold is

achieved by our algorithm.
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Figure 8: Robustness degradation curve (reuse factor = 5).

6 A probabilistic perspective

In sections 2 and 3, we have derived our sample reuse algorithm from the worst-case deterministic

framework. In this section, we show that the proposed algorithm is also applicable from the per-

spective of the random nature of uncertainty. In situations where we need to take into account the

random nature of uncertainty, the pioneering work of Barmish, Lagoa, Tempo, Bai, and Fu [2, 1]

allows our sample reuse algorithm to be applied to solve efficiently a wide variety of robustness

problems. The following theorem plays an important role.

Theorem 2 (see [2]) Suppose that uncertainty ∆ is a random variable with a density function f(∆)

which depends only on ℓ(∆) and is nonincreasing with respect to ℓ(∆). Then

Pr{The associated system G(∆) guarantees P | ∆ ∈ B(r)} ≥ inf
0≤ρ≤r

P(ρ).

Remark 1. A remarkable fact of Theorem 2 is that no assumption needs to be imposed on the

robustness requirement P. The assumption in Theorem 2 is roughly interpreted to mean that the

probability measure of the uncertainty is radially symmetrical with respect to the nominal value. In

many applications, small perturbations are more likely than large perturbations, and the uncertainty

is sufficiently unstructured so as to be treated equally likely in the surface of B(r) [2].

Remark 2. It should be noted that Theorem 2 applies to a homogeneous star-shaped bounding

set, lp ball, and spectral norm ball. We introduce in Theorem 2 a conditional probability based on

the following reason: It does not seem logical to treat the uncertainty as different bounded random

variables. For example, if the uncertainty possesses a certain distribution over B(r1), it would be a

contradiction that the uncertainty possesses another distribution over B(r2) for r2 > r1. In fact, if

the uncertainty is of random nature, then the associated distribution is unique.

Based on Theorem 2, we can apply the sample reuse algorithm to estimate P(r) for r ∈ [0, b],

from which we can construct the lower bounds for Pr{G(∆) guarantees
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P | ∆ ∈ B(r)}.

7 Conclusion

We develop a fast algorithm for computing the robustness degradation function which overcomes the

computational complexity and conservatism issue of the deterministic worst-case methods. We also

demonstrate that our algorithm can provide efficient solutions for a wide variety of robustness analysis

problems which are intractable by the deterministic worst-case methods. We derive our algorithm

from the worst-case deterministic framework and also show that the algorithm is applicable from a

probabilistic perspective.

A Proof of Theorem 1

The following lemma follows essentially from the definition of volume function vol(.).

Lemma 1 Let X = {∆ ∈ Cn×m : σ̄(∆) ≤ r} and Y = {∆ ∈ Cm×n : σ̄(∆) ≤ r}. Let Z = {∆ ∈

Rn×m : σ̄(∆) ≤ r} and W = {∆ ∈ Rm×n : σ̄(∆) ≤ r}. Then vol(X) = vol(Y ) and vol(Z) = vol(W ).

Lemma 2 Let m ≥ n. Define spectral norm ball BCσ (r) = {∆ ∈ Cn×m : σ̄(∆) ≤ r} and spectral

norm ball BRσ (r) = {∆ ∈ Rn×m : σ̄(∆) ≤ r}. Then vol(BCσ (r)) = vol(BCσ (1))r
d with d = 2mn and

vol(BRσ (r)) = vol(BRσ (1))r
d with d = mn.

Proof. By Theorem 1 of [8], we have

ΥC

vol(BCσ (r))

∫

r≥σ1>σ2>···>σn>0

n∏

i=1

σ
2(m−n)+1
i ×

∏

1≤i<k≤n

(σ2
i − σ2

k)
2 dσ1dσ2 · · · dσn = 1

with ΥC = 2nπmn
Qn

k=1
(n−k)!(m−k)! . Performing a change of variables with xi =

σi

r
for i = 1, . . . , n, we have

r2mnΥC

vol(BCσ (r))

∫

1≥x1>x2>···>xn>0

n∏

i=1

x
2(m−n)+1
i ×

∏

1≤i<k≤n

(x2i − x2k)
2 dx1dx2 · · · dxn = 1.

Thus

vol(BCσ (1)) = ΥC

∫

1≥x1>x2>···>xn>0

n∏

i=1

x
2(m−n)+1
i ×

∏

1≤i<k≤n

(x2i − x2k)
2 dx1dx2 · · · dxn,

and

vol(BCσ (r)) = vol(B(1)) r2mn.

Similarly, by Theorem 2 of [8], we can show that vol(BRσ (r)) = vol(BRσ (1))r
d with d = mn. ✷
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Lemma 3 vol(B(r)) = vol(B(1))rd where d = n for lp ball Bp(r) and homogeneous star-shaped

bounding set BH(r); and d =
∑s

i=1 κ(qi) +
∑c

j=1 κ(∆j) for spectral norm ball Bσ(r).

Proof. The truth is obvious for cases of an lp ball and homogeneous star-shaped bounding set. To

prove the lemma for the case of a spectral norm ball, we need to apply Lemmas 1 and 2. ✷

Lemma 4 For i = 1, . . . , l − 1,

E [ni+1] = N −

i∑

j=1

(
ri+1

rj

)d

E [ni] .

Proof. Let q1, q2, . . . , qnj be the samples generated on rj . For l = 1, . . . ,nj , define binomial random

variable X l
j,i+1 such that

X l
j,i+1 :=

{
1 if ql fall in B(ri+1),

0 otherwise.

By the rule of the sample reuse algorithm,

N = ni+1 +

i∑

j=1

nj∑

l=1

X l
j,i+1.

Thus for i = 1, . . . , l − 1,

E [ni+1] = N −

i∑

j=1

E

[
nj∑

l=1

X l
j,i+1

]
= N −

i∑

j=1

∑

n∈Ωnj

n∑

l=1

E
[
X l

j,i+1 | nj = n
]
Pr{nj = n},

where Ωnj
denotes the sample space of nj . Since ql is a random variable with uniform distribution

over B(ri), it follows from Lemma 3 that

E [X l
j,i+1 | nj = n] =

vol(B(ri+1))

vol(B(rj))
=

(
ri+1

rj

)d

.

Therefore,

E [ni+1] = N −

i∑

j=1

∑

n∈Ωnj

n

(
ri+1

rj

)d

Pr{nj = n}

= N −
i∑

j=1

(
ri+1

rj

)d ∑

n∈Ωnj

nPr{nj = n}

= N −

i∑

j=1

(
ri+1

rj

)d

E [ni] .

✷
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Lemma 5 For i = 2, · · · , l,

E [ni] = N −N

(
ri
ri−1

)d

.

Proof. We use induction. Obviously,

E [n1] = N.

By Lemma 4, we get

E [n2] = N −N

(
r2
r1

)d

.

Suppose it is true that

E [ni] = N −N

(
ri
ri−1

)d

.

Then

i∑

j=1

(
ri+1

rj

)d

E [nj ] =

i∑

j=1

(
ri+1

rj

)d
[
N −N

(
rj
rj−1

)d
]

=
i∑

j=1

[
N

(
ri+1

rj

)d

−N

(
ri+1

rj−1

)d
]

= N

(
ri+1

ri

)d

.

It follows from Lemma 4 that

E [ni+1] = N −

i∑

j=1

(
ri+1

rj

)d

E [nj ] = N −N

(
ri+1

ri

)d

.

The proof of Lemma 5 is thus completed by induction. ✷

Now we are in the position to prove Theorem 1. By Lemmas 4 and 5, we have

E

[
l∑

i=1

ni

]
= N +

l∑

i=2

[
N −N

(
ri
ri−1

)d
]
= Nl −N

l∑

i=2

[
1−

(
ri
ri−1

)d
]
.

Therefore,

Freuse =
Nl

E [
∑l

i=1 ni]
=

l

l −
∑l

i=2

(
ri

ri−1

)d

and thus the proof of Theorem 1 is completed.
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