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Abstract

Abstract� An e�cient heuristic is presented for the problem of nding a minimum�size k�
connected spanning subgraph of an �undirected or directed� simple graph G � �V�E�� There
are four versions of the problem� and the approximation guarantees are as follows�

minimum�size k�node connected spanning subgraph of an undirected graph � � ���k��
minimum�size k�node connected spanning subgraph of a directed graph � � ���k��
minimum�size k�edge connected spanning subgraph of an undirected graph � � ����k� ����

and minimum�size k�edge connected spanning subgraph of a directed graph � � ���
p
k��

The heuristic is based on a subroutine for the degree�constrained subgraph �b�matching� prob�
lem� It is simple� deterministic� and runs in time O�kjEj��� The analyses of the heuristics for
minimum�size k�node connected spanning subgraphs hinge on theorems of Mader�

For undirected graphs and k � �� a �deterministic� parallelNC version of the heuristic nds
a ��node connected �or ��edge connected� spanning subgraph whose size is within a factor of
���� � �� of minimum� where � � � is a constant�

� Introduction

Given an undirected or directed simple graph G � �V�E�� an e�cient approximation algorithm� is
presented for the problem of �nding a k�connected �k � �� 	� 
� � � �� spanning subgraph G� � �V�E��
that has the minimum number of edges� Let n and m denote jV j and jEj� respectively� There are
four versions of the problem� depending on whether G is a graph �i�e�� an undirected graph� or a
digraph �i�e�� a directed graph�� and on whether the spanning subgraph G� is required to be k�node
connected or k�edge connected� All four versions of the problem are NP�hard� the two problems on
graphs are NP�hard for k � 	� and the two problems on digraphs are NP�hard for k � �� GJ ����
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�An ��approximation algorithm for a combinatorial optimization problem runs in polynomial time and delivers a
solution whose value is always within the factor � of the optimum value� The quantity � is called the approximation

guarantee of the algorithm�
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Previous results Results in this paper
Undirected Graphs Digraphs Undirected Graphs Digraphs

k�ECSS �� ���k� for k � � �K ��� ���� for k � � �KRY ��� � � ����k� ��� � � ���
p
k�

��
� for k � � �KR ��� � for k � � improves for k � � improves for k � �	

��
p
O�logn��k �Ka ���

k�NCSS ��� for k � � �GSS ��� ���� for k � � �KRY ��� � � ���k� � � ���k�
� for k � � � for k � � improves for k � � improves for k � �

Table �� A summary of previous � new approximation guarantees for minimum�size k�edge con�
nected spanning subgraphs �k�ECSS�� and minimum�size k�node connected spanning subgraphs
�k�NCSS��

��� Previous work

Results of Mader Ma ��� Ma �	� �also see Bo ���� imply that every minimal� k�edge connected
graph has at most kn edges� and every minimal k�node connected graph has at most kn edges�
Clearly� a k�connected �i�e�� k�node connected or k�edge connected� graph has at least kn�	 edges�
since each node has degree � k� Similarly� every k�connected digraph has at least kn arcs �directed
edges� since each node has outdegree � k� and results of Edmonds Ed �	� and Mader Ma ��� imply
that every minimal k�connected digraph has at most 	kn arcs� These facts immediately imply a 	�
approximation algorithm for all four versions of the problem� since there is an easy polynomial�time
algorithm to �nd a minimal k�edge connected �or k�node connected� spanning subgraph of a given
graph or digraph� For graphs� recent algorithmic work gives another easy and e�cient method for
�nding a k�connected spanning subgraph whose size �i�e�� number of edges� is at most kn� A k�edge
connected spanning subgraph �V�E�� is obtained by takingE� � F��F��� � ��Fk � where Fi �� � i �
k� is the edge set of a maximal �but otherwise arbitrary� spanning forest of �V�En�F�� � � ��Fi�����
see Th ��� NI �	�� and a k�node connected spanning subgraph �V�E�� is obtained similarly� but
now each Fi is a maximal scan��rst�search spanning forest� see NI �	� FIN �
� CKT �
��

In the approximate solution of NP�hard combinatorial optimization problems� it often turns
out that �nding a solution within a factor of two of optimum is almost trivial� but achieving
�asymptotically� better approximation guarantees needs a deeper understanding of the problem�
For example� consider the metric TSP� i�e�� the Traveling Salesman Problem with edge weights
satisfying the triangle inequality� Finding a solution whose value is within a factor of two of optimum
is trivial� The Christo�des heuristic Ch ��� broke the 	�approximation barrier by employing a
powerful idea� matching�

Given a graph� consider the problem of �nding a minimum�size 	�edge connected spanning sub�
graph �	�ECSS�� or a minimum�size 	�node connected spanning subgraph �	�NCSS�� Several recent
papers have focused on these two problems� Khuller � Vishkin KV ��� achieved the �rst signi��
cant advance by obtaining approximation guarantees of ��� and ���� for the minimum�size 	�ECSS
problem and the minimum�size 	�NCSS problem� Garg et al GSS �
� improved the approximation
guarantee of the latter problem to ���� These algorithms are based on depth��rst search �DFS��
and they do not imply e�cient parallel algorithms for the PRAM model� Subsequently� Chong �

�A graph H is called minimal with respect to a property P if H possesses P� but for every edge e in H� Hne does
not possess P�

	



Lam CL ��� CL ��� gave �deterministic�NC algorithms on the PRAM model with approximation
guarantees of ����� �� and ������ �� for the minimum�size 	�ECSS problem and the minimum�size
	�NCSS problem�

For graphs and the general minimum�size k�ECSS problem� �rst Karger Ka ��� used random�
ized rounding to improve the approximation guarantee �for k large w�r�t� logn� to ��

p
O�logn��k��

Karger�s algorithm is not deterministic but Las Vegas� Then Khuller � Raghavachari KR ��� im�
proved the approximation guarantee �for all k� from 	 to �roughly� ����� They left open the problem
of improving on the approximation guarantee of two for the minimum�size k�NCSS problem�

For digraphs and the problem of �nding a minimum�size ��connected �i�e�� strongly connected�
spanning subgraph� Khuller� Raghavachari and Young KRY ��� KRY ��� gave a �����approximation
algorithm� For digraphs and k � 	� there appears to have been no previous work on achieving ap�
proximation guarantees better than two�

��� An illustrative example

Here is an example illustrating the di�culty in improving on the 	�approximation guarantee for
the minimum�size k�connected spanning subgraph problem� Let the given graph G have n nodes�
where n is even� Suppose that the edge set of G� E�G�� is the union of the edge set of the complete
bipartite graph Kk��n�k� and the edge set Eopt of an n�node� k�regular� k�edge connected �or k�node
connected� graph� For example� for k � 	� E�G� is the union of E�K���n���� and the edge set of
a Hamiltonian cycle� A naive heuristic may return E�Kk��n�k�� which has size k�n � k�� roughly
two times jEoptj� A heuristic that signi�cantly improves on the 	�approximation guarantee must
somehow return many edges of Eopt�

��� Results in this paper

Heuristics and approximation guarantees� This paper �rst presents a simple heuristic for
�nding an approximately minimum�size k�NCSS of a given graph or digraph� An approximation
guarantee of ����k� is proved� A variant of the heuristic �nds a small�size k�ECSS of a given graph
or digraph� For graphs and the minimum�size k�ECSS problem� the approximation guarantee is
�� 	��k����� For digraphs and the minimum�size k�ECSS problem� the approximation guarantee
is �� ��

p
k�� Let G � �V�E� be the given graph� The heuristic has two steps� The �rst step �nds

a minimum�size subgraph �V�M� of minimum�degree k �or k � �� via a subroutine for the degree�
constrained subgraph �b�matching� problem� The second step adds an �inclusionwise� minimal
edge set F � EnM such that the resulting graph �V�M � F � is either k�node connected or k�edge
connected� as required� Heuristics of this type have been considered by other researchers� but we
were not aware of this when the preliminary version of this paper �Proc� IEEE FOCS���� appeared�
Subsequently� S� Khuller �personal communication� October ����� and T� Watanabe �personal
communication� October ����� informed that they had examined or implemented heuristics of this
type� One of the contributions of this paper is to re�ne the general heuristic to the four minimum�
size k�CSS problems discussed above� and to give nearly tight analyses of the four approximation
guarantees� The running time of the heuristic is O�kjEj��� and for graphs the running time improves
to O�k�jV j� � jEj����log jV j���� The analyses on graphs�digraphs of the minimum�size k�NCSS
heuristic are based on theorems of Mader Ma �	� Ma ���� In the context of augmenting the node
connectivity of graphs and digraphs� the �rst application of Mader�s theorems is due to Jord�an
Jo ��� Jo �
�� Two key lemmas in our analyses� namely� Lemmas 
�
 and 
���� are inspired by
similar results of Jord�an� namely� Jo ��� Lemma 
�
� and the following paragraph in Jo ��� and
Lemma 	�� and Corollary 	�� in Jo �
�� In the context of approximation algorithms for minimum�
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Figure �� Illustrating the 	�NCSS heuristic on a 	�node connected graph G � �V�E�� n � jV j is
even� and k � 	� Adapted from Garg� Santosh � Singla GSS �
� Figure ���
�a� A minimum�size 	�node connected spanning subgraph has n � � edges� and is indicated by
thick lines �the path v�� v�� � � � � vn and edges v�v� and e� � v�vn��
�b� The �rst step of the heuristic in Section 
�� �nds a minimum�sizeM � E such that every node
is incident to � �k � �� � � edges of M � The thick lines indicate M � it is a perfect matching� The
second step of the heuristic �nds an �inclusionwise� minimal edge set F � E such that �V�M � F �
is 	�node connected� F is indicated by dashed lines � the �key edge� e� is not chosen in F �
jM � F j � ���n� ��
�c� Another variant of the heuristic �rst �nds a minimum�size M � E such that every node is
incident to � k � 	 edges ofM � The thick lines indicateM �M is the path v�� v�� � � � � vn and edges
v�v�� vn��vn�� The second step of the heuristic �nds the edge set F � E indicated by dashed lines
� the �key edge� e� is not chosen in F � �V�M � F � is 	�node connected� and for every edge vw in
F � �V�M � F �nvw is not 	�node connected� jM � F j � ���n� 
�

size k�connected spanning subgraph problems� Chong � Lam CL ��� appear to be the �rst to use
matching�

For graphs� the heuristic �nds a 	�node connected or 	�edge connected spanning subgraph whose
size is within a factor of ��� of the minimum size� A parallel �deterministic� version gives a ��������
approximation NC algorithm� Similarly� a sequential linear�time version gives an approximation
guarantee of ���� � ���

Independently of this paper� and using di�erent methods� Chong and Lam CL ��b� have also
obtained a parallel �deterministic� ����� ���approximationNC algorithm for the minimum�size 	�
NCSS problem on graphs� Recently� Fernandes Fe ��� Theorem ���� showed that the minimum�size
	�ECSS problem on graphs is MAX SNP�hard�

Table � summarizes the approximation guarantees obtained in this paper for the four versions
of the problem� and compares these with the previous best approximation guarantees� Figure �
illustrates the working of the heuristic on an example�
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�a� �V�M � F � is 	�node connected� jF j � jV j � �

�V�M � F � is 	�edge connected� jF j � 	�jV j � ���
�b�

�c� A laminar family F covering F

Figure 	� An illustration of Lemma 
�
 �a corollary of Mader�s theorem� Theorem 
�	� and of
Theorem ��
� An n�node graph of minimum degree k � 	� �V�M�� is indicated by solid lines�
�a� The dotted lines indicate an �inclusionwise� minimal edge set F such that �V�M �F � is 	�node
connected� F has size n� �� for n � �� By Lemma 
�
� the maximum size of F over all possible M
is � n� ��
�b� The dotted lines indicate an �inclusionwise� minimal edge set F such that �V�M �F � is 	�edge
connected� F has size � 	�n� ���
� for n � �� By Theorem ��
� the maximum size of F over all
possible M is � 	�n� ���
�
�c� The dashed lines indicate a laminar family of tight node sets F covering the F �edges of the
	�edge connected graph in �b�� The proof of Theorem ��
 is based on examiningM � F and F �

�



Contributions to approximation algorithms for �uniform� network design� As dis�
cussed above� the subarea of network design with uniform edge costs and uniform connectivity
requirements has attracted a fair amount of recent interest in theoretical computer science� e�g��
the references cite ten papers from this subarea� as well as a survey paper K ���� This paper
takes up four central questions from this subarea� and settles them in the sense that reasonably
good approximation guarantees are derived based on a simple heuristic� �For the sake of referees
who may have to make an extrinsic comparison� we mention that this paper subsumes some of
the main results in eight of the recent papers cited in the references�� To achieve the approxi�
mation guarantees� the paper has to rely on some deep areas of graph theory and combinatorial
optimization�

Combinatorial contributions� The paper has two combinatorial results that may be of
independent interest� The �rst is Theorem 
�� that gives a new lower bound on the size of a k�edge
connected spanning subgraph� The proof relies on the Gallai�Edmonds decomposition theorem of
matching theory� Theorem 
�� is related to a result of R� P� Gupta� a bipartite graph of minimum
degree k has k edge�disjoint edge covers� Theorem 
�� implies some interesting results in matching
theory such as Petersen�s theorem �see Corollary 
����� and the following� �except for cycles of
odd length� every 	�edge connected graph has two edge�disjoint edge covers� �see Corollary 
��	��
The second combinatorial result of independent interest is Theorem ��
� This theorem gives an
asymptotically tight upper bound of kjV j��k � �� on the size of an �inclusionwise� minimal edge
set F such that �V�M � F � is a k�edge connected �simple� graph� where �V�M� is a graph of
minimum degree � k� The proof makes use of a laminar family of tight node sets that covers F �
The proof is long� and at several points� novel arguments have to be developed� Theorem ��
 is
related to a theorem of Mader on �critical cycles� in a k�node connected graph� see Theorem 
�	�
Apparently� Mader�s theorem has no analogue for k�edge connected graphs� for k � 	� this can be
seen from the example in Figure �� the example generalizes to all k � 	� However� there is one
implication of Mader�s theorem that is an analogue of Theorem ��
� If �V�M� is as above� and
F is an �inclusionwise� minimal edge set such that �V�M � F � is a k�node connected graph� then
jF j � jV j � � �see Lemma 
�
�� Both the bounds �kjV j��k � �� in Theorem ��
� and jV j � � in
Lemma 
�
� are tight up to an additive term of �k���� for all k � 	� Figure 	 has relevant examples
for k � 	� and these examples generalize for all k � 	� Although Theorem ��
 and Lemma 
�
 are
analogous� the two results seem to be focusing on two essentially di�erent combinatorial structures�
and neither result implies the other one�

Organization of the paper� The rest of the paper is organized as follows� Section 	 has
de�nitions and notation� Section 
 presents the heuristic for approximating a minimum�size k�node
connected spanning subgraph of a graph or a digraph� and separately analyzes the approximation
guarantees on graphs and digraphs� Section � describes and analyzes the heuristic for approximating
a minimum�size k�edge connected spanning subgraph of a graph or a digraph� Section � has
conclusions� including a discussion of the relationship to extremal graph theory�

� De�nitions and notation

For a subset S� of a set S� SnS� denotes the set fx � S � x �� S�g�
This paper considers �nite simple graphs and digraphs� i�e�� the graphs�digraphs have no loops

nor multiedges� �But� Propositions 
�� and 
��� do allow multiedges�� Let G � �V�E� be a graph
or a digraph� V �G� and E�G� stand for the node set and the edge set of G� By the size of G we
mean jE�G�j� First� suppose that G is a graph� An edge incident to nodes v and w is denoted
by vw� For a subset M of E and a node v� we use degM�v� to denote the number of edges of M
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incident to v� deg�v� denotes degE�v��
A node is said to be covered by an edge set M if the node is incident to at least one edge of

M � otherwise� the node is uncovered by M � An edge cover is a set of edges that covers all the
nodes� A matching of a graph G � �V�E� is an edge set M � E such that degM �v� � �� �v � V �
furthermore� if every node v � V has degM �v� � �� then M is called a perfect matching� A graph
G is called factor�critical if for every node v � V � there is a perfect matching in Gnv� see LP ����

An x	y path refers to a path whose end nodes are x and y� We call two paths openly disjoint
if every node common to both paths is an end node of both paths� Hence� two �distinct� openly
disjoint paths have no edges in common� and possibly� have no nodes in common� A set of k � 	
paths is called openly disjoint if the paths are pairwise openly disjoint� For a node set S � V �G��
�G�S� denotes the set of all edges in E�G� that have one end node in S and the other end node in
V �G�nS �when there is no danger of confusion� the notation is abbreviated to ��S��� ��S� is called
a cut� and by a k�cut we mean a cut that has exactly k edges�

A graph G � �V�E� is said to be k�edge connected if jV j � k � � and the deletion of any set
of � k edges leaves a connected graph� A graph G � �V�E� is said to be k�node connected if
jV j � k � �� and the deletion of any set of � k nodes leaves a connected graph�

Let G � �V�E� be a digraph� An arc �directed edge� with start node v and end node w is
denoted �v� w�� For M � E and a node v� degM�out�v� �degM�in�v�� denotes the number of arcs of
M with start node v �end node v�� For a node set S � V � �out�S� ��in�S�� denotes the set of arcs
with start nodes in S and end nodes in V nS �end nodes in S and start nodes in V nS�� The digraph
is called strongly connected ���connected� if for every �ordered� pair of nodes v�w� there exists a
directed path from v to w� The digraph is called k�edge connected if jV j � k � �� and the deletion
of any set of � k arcs leaves a strongly�connected digraph� The digraph is called k�node connected
if jV j � k � �� and the deletion of any set of � k nodes leaves a strongly�connected digraph�

An edge vw �arc �v� w�� of a k�node connected graph G �digraph G� is called critical w�r�t�
k�node connectivity if Gnvw �Gn�v� w�� is not k�node connected� Similarly� we have the notion of
critical edges �arcs� w�r�t� k�edge connectivity�

Let G � �V�E� be a graph� and let b � V 
 Z� assign a nonnegative integer bv to each node v �
V � The perfect b�matching �or perfect degree�constrained subgraph� problem is to �nd an edge set
M � E such that each node v has degM �v� � bv� The maximum b�matching �or maximum degree�
constrained subgraph� problem is to �nd a maximum�cardinalityM � E such that each node v has
degM�v� � bv� The b�matching problem can be solved in time O�jEj����log jV j����p��jEj� jEj��� see
GaTa ��� Section ��� �for our version of the problem� note that each edge has unit cost and unit
capacity� and each node v may be assumed to have � � bv � deg�v��� Also� see Ge ��� Section ��
�
and Ga ����

� A �� � �
k
��approximation algorithm for minimum�size k�node

connected spanning subgraphs

This section presents the heuristic for �nding an approximately minimum�size k�node connected
spanning subgraph �abbreviated k�NCSS�� and proves an approximation guarantee of � � ��k��
First� we focus on graphs� and then turn to digraphs� The analysis of the heuristic for graphs hinges
on a deep theorem of Mader Ma �	� Theorem ��� Given a graph G � �V�E�� a straightforward
application of Mader�s theorem shows that the number of edges in the k�NCSS returned by the
heuristic is at most

�jV j � �� �minfjM j � M � E and degM �v� � �k� ��� �v � V g�
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see Lemma 
�
 below� An approximation guarantee of ��	�k� on the heuristic follows� since the
number of edges in a k�node connected graph is at least kjV j�	� by the �degree lower bound�� see
Proposition 
��� Often� the key to proving improved approximation guarantees for �minimizing�
heuristics is a nontrivial lower bound on the value of every solution� We improve the approximation
guarantee from ��	�k� to ����k� by exploiting a new lower bound on the size of a k�edge connected
spanning subgraph� see Theorem 
���

The number of edges in a k�edge connected spanning subgraph of a graph G � �V�E�
is at least bjV j�	c�minfjM j � M � E and degM �v� � �k� ��� �v � V g�

The analysis of the heuristic for digraphs is similar� and hinges on another theorem of Mader
Ma ��� Theorem ��� which may be regarded as the generalization of Ma �	� Theorem �� to digraphs�
An approximation guarantee of �� ��k� is proved on the digraph heuristic by employing a simpler
version of Theorem 
��� namely Proposition 
��� to give a lower bound on the number of edges in
a solution�

Assume that the given graph or digraphG � �V�E� is k�node connected� otherwise� the heuristic
will detect this and report failure�

��� Undirected graphs

Let E� � E denote a minimum�cardinality edge�set such that the spanning subgraph �V�E�� is k�
edge connected� Note that every k�node connected spanning subgraph �V�E�� �such as the optimal
solution� is necessarily k�edge connected� and so has jE �j � jE�j�

The heuristic has two steps� The �rst �nds a minimum�size spanning subgraph �V�M��M � E�
whose minimum degree is �k � ��� i�e�� each node is incident to � �k� �� edges of M � Clearly�
jM j � jE�j� because �V�E�� has minimum degree k� i�e�� every node is incident to � k edges of
E�� To �nd M e�ciently� we use the algorithm for the maximum degree�constrained subgraph
�b�matching� problem� Our problem is�

minfjM j � degM �v� � �k � ��� �v � V� and M � Eg�

To see that this is a b�matching problem� consider the equivalent problem of �nding the complement
M of M w�r�t� E� where M � EnM �

maxfjM j � degM�v� � deg�v� � �� k� �v � V� and M � Eg�

The b�matching problem can be solved in time O�jEj����log jV j��� see GaTa ���� hence this running
time su�ces to �nd M �

The second step is equally simple� We �nd an �inclusionwise� minimal edge set F � EnM such
that M � F gives a k�node connected spanning subgraph� i�e�� �V�M � F � is k�node connected and
for each edge vw � F � �V�M � F �nvw is not k�node connected� Recall that an edge vw of a k�node
connected graph H is critical �w�r�t� k�node connectivity� if Hnvw is not k�node connected� The
next result characterizes critical edges�

Proposition ��� An edge vw of a k�node connected graph H is not critical i� there are at least
k � � openly disjoint v	w paths in H �including the path vw��

To �nd F e�ciently� we start with F � � and take the current subgraph to be G � �V�E�
�which is k�node connected�� We examine the edges of EnM in an arbitrary order� say� e�� e�� � � � � e�
�� � jEnM j�� For each edge ei � viwi� we attempt to �nd �k � �� openly disjoint vi	wi paths
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in the current subgraph� If we succeed� then we remove the edge ei from the current subgraph
�since ei is not critical�� otherwise� we retain ei in the current subgraph and add ei to F �since ei
is critical�� At termination� the current subgraph with edge set M � F is k�node connected� and
every edge vw � F is critical� The running time for the second step is O�kjEj���

The proof of the next lemma hinges on a theorem of Mader Ma �	� Theorem ��� For an English
translation of the proof of Mader�s theorem see Lemma I���� and Theorem I���� in Bo ����

Theorem ��� �Mader 	Ma 
�� Theorem ��� In a k�node connected graph� a cycle consisting
of critical edges must be incident to at least one node of degree k�

Lemma ��� jF j � jV j � ��

Proof� Consider the k�node connected subgraph returned by the heuristic� G� � �V�E ��� where
E� �M �F � Suppose that F contains a cycle C� Note that every edge in the cycle is critical� since
every edge in F is critical� Moreover� every node v incident to the cycle C has degree � �k� �� in
G�� because v is incident to two edges of C� as well as to at least �k� �� edges of M � E�nF � But
this contradicts Mader�s theorem� We conclude that F is acyclic� and so has � jV j � � edges� The
proof is done� �

Proposition �� Let G � �V�E� be a graph of node connectivity � k� The heuristic above �nds a
k�node connected spanning subgraph �V�E�� such that jE�j � ��� 	�k��jEoptj� where jEoptj denotes
the cardinality of an optimal solution� The running time is O�k�jV j� � jEj����log jV j����
Proof� The approximation guarantee follows because jEoptj � �kjV j�	�� so

jM j� jF j
jEoptj �

jM j
jEoptj �

jF j
jEoptj � � �

jV j
�kjV j�	� � � � 	�k��

We have already seen thatM can be found in time O�jEj����log jV j���� and F can be found in time
O�kjEj��� The running time of the second step can be improved to O�k�jV j�� as follows� we run a
linear�time preprocessing step to compute a sparse certi�cate eE of G for k�node connectivity� i�e��eE � E� j eEj � kjV j� and for all nodes v� w� �V� eE� has k openly disjoint v	w paths i� G has k
openly disjoint v	w paths� see NI �	� FIN �
� CKT �
�� We compute M as before� by running
the �rst step on G� To �nd the set F � EnM � we run the second step on eE �M rather than on
E� and for each edge viwi � eEnM � we attempt to �nd �k � �� openly disjoint vi	wi paths in the
current subgraph of �V� eE �M�� The second step runs in time O�kj eE �M j�� � O�k�jV j��� since
j eE �M j � O�kjV j�� �

To improve the approximation guarantee to � � ��k�� we present an improved lower bound
on jE�j� where E� denotes a minimum�cardinality edge set such that G� � �V�E�� is k�edge
connected� Suppose that E� contains a perfect matching P	 �so jP	j � n�	�� Then jE�j � �n�	� �
minfjM�j � M� � E� degM��v� � �k � ��� �v � V g� To see this� focus on the edge set M � �
E�nP	� Clearly� every node v � V is incident to at least �k� �� edges of M �� because degE��v� � k

and degP��v� � �� Since M� is a minimum�size edge set with degM��v� � �k� ��� �v � V � we have
jM�j � jM �j � jE�j � �n�	�� The next theorem generalizes this lower bound to the case when E�

has no perfect matching� The proof is given in the next subsection �Section 
�	�� after developing
some preliminaries�

Theorem ��� Let G� � �V�E�� be a graph of edge connectivity � k � �� and let n denote jV j� Let
M� � E� be a minimum�size edge set such that every node v � V is incident to � �k � �� edges of
M�� Then jE�j � jM�j� bn�	c�
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Theorem ��� Let G � �V�E� be a graph of node connectivity � k� The heuristic described above
�nds a k�node connected spanning subgraph �V�E�� such that jE �j � �� � ��k��jEoptj� where jEoptj
denotes the cardinality of an optimal solution� The running time is O�k�jV j� � jEj����log jV j����

Proof� The approximation guarantee of � � ��k� follows easily from Theorem 
��� using an
argument similar to Proposition 
��� We have E� � M � F � where jF j � �n � ��� Moreover�
since M is a minimum�size edge set with degM �v� � �k � ��� �v � V � Theorem 
�� implies that
jM j � jEoptj � bn�	c � jEoptj � �n� ���	� Hence�

jM j� jF j
jEoptj � jEoptj � �n� ���	 � �n� ��

jEoptj � � �
n�	

jEoptj � � � ��k��

where the last inequality uses the �degree lower bound�� jEoptj � kn�	�
The running time analysis is the same as that in Proposition 
��� �

��� A lower bound for the size of a k�connected spanning subgraph and Gupta�s
theorem on bipartite graphs

This subsection gives a proof of Theorem 
��� This theorem is used in the previous subsection to
prove an approximation guarantee of � � ��k� for a minimum�size k�NCSS� Theorem 
�� gives the
following new lower bound on the size of a k�ECSS�

Let G� � �V�E�� be a k�edge connected graph �k � ��� and let n denote jV j� Let
M� � E� be a minimum�size edge set such that every node v � V is incident to
� �k� �� edges of M�� Then jE�j � jM�j� bn�	c�

First� a theorem of R� P� Gupta on bipartite graphs is recalled� For the special case of bipartite
graphs� �a stronger form of� the lower bound in Theorem 
�� follows easily from Gupta�s theorem�
see Proposition 
��� This proposition is used in Section 
�� to prove an approximation guarantee
of � � ��k� for a minimum�size k�NCSS of a digraph� Gupta�s theorem does not apply to non�
bipartite graphs� The proof of Theorem 
�� �for arbitrary graphs� relies on the Gallai�Edmonds
decomposition theorem of matching theory� When the Gallai�Edmonds decomposition of the graph
is �nontrivial�� one can de�ne a bipartite graph B that partially represents the decomposition�
The proof of Theorem 
�� is completed by examining B� One way is to prove a variant of Gupta�s
theorem �see Proposition 
���� and then apply it to B� This is described below� Readers interested
in a detailed study of the proofs in this subsection may �nd it useful to review two results in
matching theory� namely� the Gallai�Edmonds decomposition theorem LP ��� Theorem 
�	���� and
the Hungarian method for bipartite matching LP ��� Lemma ��	�	��

Theorem ��
 �Gupta 	Gu �
�� Let B � �X � Y �E� be a bipartite graph with minimum degree
k� Then there exists a partition of the edge set of B� namely E� into k sets E�� E�� � � � � Ek such
that each node v � X � Y is incident to at least one edge from each set Ei� � � i � k�

For an elegant proof� see the solutions to Problems ����	 in L �
� Chapter ��� Also� see BM ���
Problem ������� The next result strengthens Theorem 
�� for bipartite graphs� The proof is via
Gupta�s theorem� Another brief proof follows from Proposition 
����

Proposition ��� Let B� � �X � Y �E�� be a bipartite graph with minimum degree � k� Let
M� � E� be a minimum�size edge set such that every node v � X � Y is incident to � k � � edges
of M�� Then jE�j � jM�j� �jX � Y j�	��
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Proof� Apply Gupta�s theorem to E�� and let E�� E�� � � � � Ek be the partition of E
�� Focus on

the set� say Ek� that has the maximum cardinality� Clearly� jEkj � jE�j�k � jX � Y j�	� Now�
consider M � � E�nEk� and observe that each node v � X � Y is incident to � �k� �� edges of M ��
because Gupta�s result shows that v is incident to some edge from each of the remaining �k � ��
sets E�� E�� � � � � Ek��� The proof is done since jE�j � �jX � Y j�	� � jM �j and jM �j � jM�j� �

Proposition 
�� does not generalize to nonbipartite graphs B�� even if we strengthen the con�
dition �B� has minimum degree � k� to �B� is k�edge connected�� For example� let k � 	� and
let B� � K�� the complete graph on three nodes� Then M� is a minimum edge cover of K�� and
has size two� But then jE�j � jM�j � � � jM�j � �jV j�	�� The generalization of Proposition 
��
fails because B� is a 	�edge connected� 	�regular graph such that for every edge cover M�� the
edge�complement of M� in B�� �V�E��M��� has an isolated node� so it does not have an edge
cover� For every even integer k � 	� there is an in�nite family of nonbipartite graphs such that
the generalization of Proposition 
�� fails� Take B� to be a k�edge connected� k�regular graph with
an odd number of nodes n� Then M� has size at least �� � �k � ��n��	� so �V�E��M�� has an
isolated node� and hence has size � n�	� It can be seen that the examples in this paragraph are
factor�critical graphs�

The next proposition may be regarded as a variant of Gupta�s theorem� Note that the bipartite
graph B in the next proposition may have minimum degree one� and B may have multiple copies
of an edge�

Proposition ��� Let B � �X � Y �E� be a bipartite �loopless� multigraph with node bipartition
X � Y � Let each node y � Y have deg�y� � k�and let B have a matching of size jX j� Then B has
an edge cover J such that each node y � Y is incident to exactly one edge of J� and each node
x � X is incident to either exactly one edge of J or at least �k � �� edges of EnJ�

Proof� See Figure 
�b� for an illustration� Let J	 be a matching of size jX j� The edge cover
J is constructed iteratively� starting with J � � J	 and J �� � �� Throughout� J � is a matching of
the current B� and at the end of the construction� J � � J �� is an edge cover of the original B that
satis�es the proposition�

If J ��J �� is an edge cover� i�e�� if J � is a perfect matching� then the proof is completed by taking
J � J � � J ��� Clearly� the degree requirements in the proposition hold� Otherwise� if J � � J �� is not
an edge cover� the size of J � �J �� is increased by one such that one more Y �node is covered and the
degree requirements in the proposition are maintained� Let v � Y be a node that is not covered by
J � � J ��� Let T be the node set of the maximal J ��alternating tree that contains v� That is� a node
w is in T i� there exists a J ��alternating path between v and w� �For a matching J �� recall that a
J ��alternating path means a path whose edges are alternately in J � and not in J ���
Claim� There is a node x � T �X with deg�x� � k � ��

To prove this claim� note that �i� jT � Y j � jT �X j� � �since each node y � T � Y except v is
incident to an edge of J ��� and �ii� for every node y � T � Y � every incident edge xy has the other
end node x in T �X �otherwise� x can be added to T � and so T is not maximal�� By assumption�
each node y � T � Y has deg�y� � k� hence� �i�� �ii�� and the pigeon�hole principle guarantee that
there is a node x � T �X with deg�x� 	 k� This proves the claim�

Let xz be the J ��edge incident to x� i�e�� x is matched to z by J �� This edge is �permanently�
added to the edge cover J by taking J �� � J �� � fxzg� The node z is deleted from B� Since x � T �
there exists a J ��alternating path between v and x �by de�nition of T �� Let this path be P �� The
matching J � is updated by switching alternate edges along P �� i�e�� J � is replaced by the symmetric
di�erence of J � and E�P ��� Note that the current B �with node z deleted� has a matching of size
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Figure 
� An illustration of the proofs of Theorem 
�� and Propositions 
��� 
����
�a� G � �V�E� is a 	�edge connected graph �k � 	�� and the Gallai�Edmonds decomposition is
given by A � A�G� � fa�� a�� a�� a
g� and D � D�G� � V �D���V �D���V �D���V �D
��V �D���
V �D��� The odd �factor�critical� components of GnA are D�� � � � � D��
�b� The bipartite multigraph B in the proofs of Propositions 
��� 
���� In Proposition 
���� B
is obtained from G by deleting the nodes in V n�A � D� and the edges in E�A�� and shrinking
D�� � � � � D� into single nodes� In B� note that deg�D��� � � � � deg�D�� � k � 	� and there is a match�
ing J � of size jAj � �� J � is indicated by dashed lines� J � � fa�D�� a�D�� a�D
� a
D�g�
In the construction of Proposition 
��� the �st iteration chooses� say v � D�� Then T �
fD�� a�� D�� a�� D�g� and x � a� � T �A has degree � k�� � 
� The edge a�D� is added to J ��� the
node D� is deleted� and in J �� a�D� is replaced by a�D�� Finally� J

� � fa�D�� a�D�� a�D�� a
D�g�
J �� � fa�D�� a�D
g� and J � J � � J �� is the required edge cover�
�c� In G� J maps to an edge set eJ � eJ is extended to the required edge cover P of G by adding a
perfect matching on the nodes of G not incident to eJ � P is indicated by dashed lines�
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jX j� namely J �� and has deg�y� � k� for all nodes y � V �B�nX � Therefore� the hypothesis of the
proposition continues to hold�

The above step is repeated till J � � J �� covers all nodes of B� Finally� J is taken to be J � � J ���
The construction guarantees that J satis�es the degree requirements in the proposition� �

Recall the Gallai�Edmonds decomposition theorem of matching theory� LP ��� Theorem 
�	����
For every graphH � there is a partition of V �H� into a set of �matching� noncritical nodes D�H� and
a set of �matching� critical nodes V nD�H� �i�e�� D�H� consists of all nodes that are left uncovered
by some maximummatching of H�� The partition is �trivial� if either H has a perfect matching� or
if H is factor�critical� in the �rst case� D�H� � �� and in the second case� D�H� � V �H�� Let A�H�
be the set of critical nodes of H that are adjacent to one or more noncritical nodes of H � Possibly�
A�H� is the empty set� When there is no danger of confusion� we use A and D instead of A�H�
and D�H�� Let def�H� denote the de�ciency of H � i�e�� the number of nodes that are not covered
by a maximum matching of H � �So� def�H� � jV �H�j � 	jP	j� where P	 is a maximum matching
of H �� The Gallai�Edmonds decomposition theorem shows that in the graph HnA� the noncritical
nodes D form q � jA�H�j�def�H� odd components D�� D�� � � � � Dq� i�e�� each Di �i � �� � � � � q� is a
connected component of HnA with V �Di� � D�H� and jV �Di�j odd� Moreover� every one of these
odd components Di is factor�critical�

The next result is a generalization of Proposition 
���

Proposition ���� Let G be a graph� and let D � D�G� and A � A�G� be the node sets in
the Gallai�Edmonds decomposition� Let q � jA�G�j � def�G�� and let D�� D�� � � � � Dq be the odd
components of GnA� If every Di gives a cut containing at least k edges� i�e�� if ��V �Di�� has size
� k for i � �� � � � � q� then G has an edge cover P such that each node in V �G�nA is incident to
exactly one edge of P � and each node in A is incident to either exactly one edge of P or at least
�k � �� edges of E�G�nP �

Proof� See Figure 
 for an illustration� The proof follows easily by applying Proposition 
�� to a
bipartite graph associated with the Gallai�Edmonds decomposition�

If def�G� � �� then the proof is done� take P to be a perfect matching of G� Otherwise�
def�G� 	 �� and so D �� �� Suppose that A � �� Then every component Di of G is factor�
critical� but this violates the condition on j��V �Di��j� Hence� A is nonempty� Clearly� every edge in
��V �Di�� �i � �� � � � � q� has one end node in A and the other in Di� Let GA�D� be the subgraph of
G induced by A�D� Let B � �X � Y �E��� X � A� be the bipartite �loopless� multigraph obtained
from GA � D� by deleting all edges with both end nodes in A and by shrinking the components
D�� D�� � � � � Dq of GA�D�nA to single nodes� The shrunk nodes are also calledD�� D�� � � � � Dq� and
so Y � fD�� D�� � � � � Dqg� B has � k edges incident to each of the shrunk nodes D�� D�� � � � � Dq�
since in G each of the cuts ��V �Di�� �i � �� � � � � q� has � k edges� Moreover� B has a matching of
size jX j � jAj� by the Gallai�Edmonds decomposition theorem� Therefore� B satis�es the conditions
in Proposition 
��� By the proposition� B has an edge cover J satisfying the degree requirements
in the proposition� note that each node Di � Y is incident to exactly one edge of J � Let eJ denote
a set edges of G that corresponds to J � i�e�� for each edge ahDi � J with ah � X � A� Di � Y �
there is an edge ahwi � eJ such that �in G� wi is a node in Di and wi is adjacent to ah� Let V � eJ�
be the set of nodes of G incident to edges in eJ � i�e�� V � eJ� � A � fwi � V �Di� � i � �� � � � � qg� By
the Gallai�Edmonds decomposition theorem� GnV � eJ� has a perfect matching eP � To see this� note
that each component of GnV � eJ� is either an even component of GnA or is obtained by deleting one
node from an odd �factor�critical� component of GnA� in either case� the component has a perfect
matching�
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Take P � eJ � eP � Clearly� P is an edge cover of G such that each node v � V nA is incident to
exactly one edge of P � Moreover� by Proposition 
��� every node in A is incident to either exactly
one edge of P or to � �k� �� edges of EnP � �

Proof� �Theorem ���� See Figure 
 for an illustration� We construct an appropriate edge set
P � such that jP �j � bn�	c and every node v � V is incident to � �k � �� edges of E�nP �� In
the statement of Theorem 
��� note that M� is a minimum�size edge set such that �V�M�� has
minimum degree �k � ��� Hence� jE�nP �j � jM�j� The theorem follows immediately from the
existence of the edge set P �� because jE�j � jE�nP �j� jP �j � jE�nP �j� bn�	c � jM�j� bn�	c�

If the size of a maximum matching of G� is � �n � ���	� i�e�� if G� has a matching that leaves
at most one node uncovered� then we take P � to be a maximum matching� �This handles the case
when G� is a factor�critical graph��

To handle the case when def�G�� � 	� we apply Proposition 
��� to G�� noting that G� satis�es
the conditions in the proposition� �Since G� is k�edge connected� deg�v� � k� �v � V � and every
node set S � V � � �� S �� V � has j��S�j � k�� We take P � to be the edge cover P guaranteed by
the proposition� Since P � is an edge cover of G�� jP �j � n�	� Moreover� �V�E�nP �� has minimum
degree � k � � by the proposition and the fact that G� has minimum degree � k� The theorem
follows� �

We mention two corollaries of Theorem 
���Proposition 
���� though these are not relevant to
the main theme of the paper�

Corollary ���� �Petersen�s Theorem� A ��regular graph without cut edges has a perfect match�
ing�

Proof� Let G� � �V�E�� be the graph� and let n � jV j� Clearly� n is even� and jE�j � 
n�	� The
key point is that every node set S of odd cardinality �i�e�� S  V and jSj odd� has j��S�j � 
 since
j��S�j is odd �since 
jSj � 	jE�S�j is odd� and is � 	� Suppose that G� has no perfect matching�
Then def�G�� 	 �� and so in the Gallai�Edmonds decomposition we have D�G�� �� �� moreover� G�

is not factor�critical �n is even� so A�G�� �� �� Applying Proposition 
��� with k � 
 shows that
G� has an edge cover P such that every node is incident to � �k � �� � 	 edges of M � E�nP �
Clearly� jP j � n�	� since P is an edge cover� and jM j � jE�nP j � n� since �V�M� has minimum
degree 	� Since jE�j � jP j� jM j � 
n�	� we have jP j � n�	 and jM j � n� Therefore� P is a perfect
matching of G�� �

Corollary ���� Let G � �V�E� be a 	�edge connected graph� G has two edge�disjoint edge covers
i� G is not a cycle of odd length�

Proof� If G is an odd�length cycle� then it does not have two edge�disjoint edge covers�
Suppose that G is not a cycle of odd length� If G has a perfect matching P � then clearly P

and EnP are edge�disjoint edge covers of G� Suppose that G is factor�critical and has a node v
with deg�v� � 
� Let w be a neighbour of v� Now Gnw has a perfect matching� say P	� Then
P � P	 � fvwg is an edge cover of G such that �V�EnP � has an edge cover� Otherwise� G is not
factor�critical and has no perfect matching� Then Proposition 
��� gives an edge cover P such that
EnP is an edge cover� �
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��� Minimum�size ��connected spanning subgraphs of undirected graphs	
a parallel ���� � ���approximation algorithm

This subsection focuses on the design of an e�cient parallel algorithm and a linear�time sequential
algorithm for the problem of �nding a minimum�size 	�node connected �	�edge connected� spanning
subgraph of a graph� Let � 	 � be a constant� independent of jV �G�j� A deterministic parallel
version of the main heuristic runs in NC and achieves an approximation guarantee of ���� � ���
whereas a randomizedNC version achieves an approximation guarantee of ���� A sequential linear�
time version of the main heuristic achieves an approximation guarantee of �������� The proof of the
��� approximation guarantee in this subsection again hinges on Mader�s theorem �Theorem 
�	��
but instead of employing the lower bound in Theorem 
��� we employ a nice lower bound result
due to Chong and Lam �Proposition 
�����

The heuristic for a minimum�size 	�NCSS described below can be used to �nd a ����approximation
of a minimum�size 	�ECSS� For this� we run a preprocessing step on the given graph G � �V�E��
which is assumed to be 	�edge connected� to partition the edge set into blocks �maximal 	�node
connected subgraphs�� Then separately for each block� we run our heuristic for a minimum�size
	�NCSS� For a block� the optimal 	�ECSS may not be 	�node connected� nevertheless� the lower
bound used by the 	�NCSS heuristic applies to 	�ECSS too� so the edge set found by our algorithm
will have size within ��� times the minimum size of a 	�ECSS�

Consider the problem of approximating a minimum�size 	�NCSS� Assume that the given graph
G � �V�E� is 	�node connected� The heuristic consists of two steps� The �rst �nds a minimum
edge cover M � E of G� i�e�� a minimum�cardinality edge set such that every node is incident to
at least one edge of M � One way of �nding M is to start with a maximum matching fM of G� and
then to add one edge incident to each node that is not matched by fM � Recall that def�G� denotes
the number of nodes not matched by a maximum matching of G� i�e�� def�G� � jV j � 	jfM j� Then
we have jM j � jfM j � def�G�� �It is easily seen that no edge cover of G has smaller cardinality
than jfM j � def�G��� The second step of the heuristic �nds an �inclusionwise� minimal edge set
F � EnM such that M � F gives a 	�NCSS� In other words� �V�M � F � is 	�node connected� but
for each edge vw � F � �V�M � F �nvw is not 	�node connected� Let E� denote M � F � and let
Eopt � E denote a minimum�cardinality edge set such that �V�Eopt� is 	�edge connected�

Lemma ���� jE�j � jM j� jF j � ���jV j� def�G�� ��

Proof� By Mader�s theorem �Theorem 
�	�� F is acyclic� so jF j � jV j � �� A minimum edge
cover M of G has size jM j � jfM j � def�G�� where fM is a maximum matching of G� Obviously�
jfM j � jV j�	� The result follows� �

The next result� due to Chong and Lam� gives a lower bound on the size of a 	�ECSS� Propo�
sition 
��� generalizes Chong and Lam�s lower bound to k�edge connected spanning subgraphs�
k � ��

Proposition ��� �Chong � Lam 	CL ��� Lemma ��� Let G � �V�E� be a graph of edge
connectivity � 	� and let jEoptj denote the minimum size of a 	�edge connected spanning subgraph�
Then jEoptj �max�jV j� def�G�� �� jV j��

Proposition ���� Let G � �V�E� be a graph of edge connectivity � k � �� and let jEoptj denote
the minimum size of a k�edge connected spanning subgraph� If G is not factor�critical� then jEoptj �
k

	
�jV j� def�G��� In general� jEoptj � k

	
max�jV j� def�G�� �� jV j��
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Proof� Suppose that G is not factor�critical and def�G� is � �� Then� by the Gallai�Edmonds
decomposition theorem of matching theory LP ��� Theorem 
�	���� there is a nonempty node set
A such that GnA has jAj� def�G� odd components �GnA may have some even components too��
Focus on an �odd or even� component Di of GnA� The number of edges of Eopt such that either
one or both end nodes are in Di is at least �jV �Di�j � ��k�	� because every node v � V �Di� is
incident to � k edges of Eopt� and moreover� ��V �Di�� has at least k edges of Eopt� Summing over
all components Di of GnA proves the proposition� �

Theorem ���� Let G � �V�E� be a graph of node �edge� connectivity � 	� Let � 	 � be a constant�
The heuristic described above �nds a 	�node connected �	�edge connected� spanning subgraph �V�E��
such that jE�j � ���jEoptj� where jEoptj denotes the minimum size of a 	�ECSS�

A randomized parallel version of the heuristic runs in RNC and achieves an approximation
guarantee of ���� A deterministic parallel version of the heuristic runs in NC and achieves an
approximation guarantee of ���� � ���

The sequential running time is O�
pjV jjEj�� A sequential linear�time version of the heuristic

achieves an approximation guarantee of ���� � ���

Proof� The approximation guarantee follows from Lemma 
��
 and Proposition 
���� since

jE�j
jEoptj �

���jV j� def�G�� �

max�jV j� def�G�� �� jV j� � � �
���jV j
jV j � ����

Consider the deterministic parallel version of the heuristic� Let fM denote a maximum matching
of G� For Step �� we �nd an approximately maximum matching in NC using the algorithm of
FGHP �
�� for a constant �� � � � � ���� the algorithm�nds a matchingM � with jM �j � ���	��jfMj
in parallel time O���
�log jV j��� using O����jV j�������� processors� We obtain an �inclusionwise�
minimal edge cover M of size � �� � 	��jfM j � def�G� by adding to M � one edge incident to
every node that is not matched by M �� For Step 	� we use a variant of the NC algorithm of
HKe� ��� KeR ���� see Algorithm 	 and Lemma 	 in Kelsen � Ramachandran KeR ���� Let G�

be a 	�node connected spanning subgraph of G such that E�G�� contains the minimal edge cover
M � Call an edge vw of G� essential if either vw is in M or G�nvw is not 	�node connected �i�e�� an
edge of G� is nonessential if it is not inM and it is not critical w�r�t� the 	�node connectivity of G���
Algorithm 	 of KeR ��� starts by taking the current subgraph G� to be G� and repeatedly �nds a
spanning tree T of G� that has the minimum number of nonessential edges� minimally augments T
to obtain a 	�node connected spanning subgraph G�� of G�� and then replaces the current subgraph
G� by G��� Finding the spanning tree T is easy� we compute a minimum spanning tree of G� where
the cost of each edge in M is taken to be ����� the cost of each remaining essential edge of G�

is zero� and the cost of each nonessential edge of G� is one� The parallel complexity of the whole
algorithm is in NC� see HKe� ��� KeR ���� Now� the approximation guarantee is ���� � ���

For the sequential linear�time version of the heuristic� note that a matching M � with jM �j �
��� 	��jfM j can be found in time O��jV j� jEj����� Moreover� in linear time� we can �nd a minimal
	�node connected spanning subgraph whose edge set contains the minimal edge cover M � E

obtained by adding edges to M �� see HKe� ���� �

��
 Directed graphs

The main heuristic extends to digraphs� The key tool in the analysis of the approximation guarantee
is another theorem of Mader� Ma ��� Theorem ��� Given a digraph G � �V�E� that is assumed to

��



have node connectivity at least k� the �rst step of the heuristic �nds an arc setM � E of minimum
cardinality such that for every node v� there are � �k � �� arcs of M going out of v and � �k � ��
arcs ofM coming into v� Clearly� jM j � jEoptj� where Eopt � E denotes a minimum�cardinality arc
set such that �V�Eopt� is k�node connected� The second step of the heuristic is as in Section 
���
we �nd an �inclusionwise� minimal arc set F � EnM such that M � F is the arc set of a k�node
connected spanning subgraph� The key point is that jF j � 	jV j � �� by Mader�s digraph theorem
�Theorem 
�����

Consider the �rst step in more detail� To �nd the arc setM � we transform the digraph problem
to a b�matching problem on the bipartite graph B�G� associated with G� For each node v � V �G��
there is a pair of nodes v�� v� in the bipartite graph B�G�� and for each arc �v� w� of G� there
is one edge v�w� in the bipartite graph� Our problem of �nding a minimum�cardinality M � E
with degM�in�v� � �k� ��� degM�out�v� � �k � ��� �v � V � corresponds to the problem of �nding a
minimum�cardinality edge set M � of the bipartite graph such that each node of the bipartite graph
is incident to � �k � �� edges of M �� As in Section 
��� this is a b�matching problem�

An alternating cycle of a digraph is a nonempty� even�length sequence of distinct arcs C �
e�� e�� � � � � e����� e��� � � �� such that �using indices modulo 	�� for each i � �� �� � � �� the arcs e�i
and e�i�� have the same start node� and the arcs e�i�� and e�i�� have the same end node� In other
words� the set of undirected edges corresponding to an alternating cycle C is a union of cycles�
and moreover� alternate occurrences of nodes have two C�arcs coming out or two C�arcs going in�
See Figure � for an illustration� For an alternating cycle C� a C�out node is a node having two
outgoing arcs of C� and a C�in node is a node having two incoming arcs of C� Recall that an arc e
of a k�node connected digraph H is called critical if Hne is not k�node connected� Here is Mader�s
theorem on the critical arcs of a k�node connected digraph� see Figure � for an illustration�

Theorem ���
 �Mader 	Ma ��� Theorem ��� In a k�node connected digraph� if there is an
alternating cycle C each of whose arcs is critical� then there is either a C�out node of outdegree k
or a C�in node of indegree k�

Fact ���� �Mader 	Ma ��� Lemma ��� Let H be a digraph� and let B�H� be the associated
bipartite graph� There is a cycle in B�H� i� there is an alternating cycle in H�

Remarks� Mader Ma ��� states the theorem for minimal k�node connected digraphs� but in fact�
his proof needs only the fact that every arc in the alternating cycle is critical� Now� consider a
digraph H	 that is obtained from an arbitrary strongly connected digraph by subdividing every arc
at least once �i�e�� an arc is replaced by � � new nodes and a directed path of � 	 arcs�� Note that
H	 contains no alternating cycle� Mader Ma ��� p� ���� shows that there exists a minimal k�node
connected digraph G such that H	 is contained in the subgraph of G induced by arcs whose start
nodes have outdegrees 	 k and whose end nodes have indegrees 	 k�

Lemma ���� Let F � EnM be the set of critical arcs found by the second step of the heuristic�
Then jF j � 	jV j � ��

Proof� Let G� � �V�E��� where E� �M � F � We claim that F contains no alternating cycle� By
way of contradiction� suppose that C � F is an alternating cycle� Observe that every C�out node
v has � �k � �� outgoing arcs of E�� since there are � �k � �� arcs of M outgoing from v� and
there are two arcs of C outgoing from v� Similarly� every C�in node has � �k � �� incoming arcs
of E�� This contradicts Mader�s digraph theorem� Hence� F contains no alternating cycle� Then
jF j � 	jV j � �� because the bipartite graph associated with �V� F � is acyclic� �

��



�a� Alternating cycle C�

Bipartite graph B�C��

Alternating cycle C�

Bipartite graph B�C��

�b�

v� v


v� v�

v�

v�

�c� An alternating cycle in a strongly connected digraph

Figure �� An illustration of an alternating cycle in a digraph� and of Mader�s theorem on critical
alternating cycles in a k�node connected digraph� see Theorem 
����
�a� An alternating cycle C�� and its bipartite graph B�C���
�b� Another alternating cycle C� � �v�� v��� �v�� v��� �v�� v
�� �v�� v
�� �v�� v��� �v�� v�� and its bipar�
tite graph B�C��� For an alternating cycle� the undirected version may not be a cycle� but the
bipartite graph has at least one cycle�
�c� An alternating cycle C of a ��connected �strongly connected� digraph is indicated by dashed
lines� Every C�out node has outdegree 	 k � �� and every C�in node has indegree 	 k � �� None
of the arcs in the alternating cycle is critical for ��connectivity� This example is modi�ed from an
example of Mader Ma ����
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The previous lemma immediately gives an approximation guarantee of ��	�k� for a minimum�
size k�NCSS of a digraph� because the �degree lower bound� implies that a digraph k�NCSS has
� kjV j arcs� The approximation guarantee can be improved to � � ��k� via the lower bound on
the size of a digraph k�NCSS implied by Proposition 
���

Proposition ���� Let G � �V�E� be a digraph of node connectivity � k� The heuristic above
�nds a k�node connected spanning subgraph �V�E�� such that jE �j � �� � 	�k��jEoptj� where jEoptj
denotes the cardinality of an optimal solution�

Theorem ���� Let G � �V�E� be a digraph of node connectivity � k� The heuristic described
above �nds a k�node connected spanning subgraph �V�E�� such that jE�j ��� � ��k��jEoptj� where
Eopt � E denotes a minimum�cardinality arc set such that �V�Eopt� is k�node connected� The
running time is O�kjEj���

Proof� The proof of the approximation guarantee is similar to the proof for undirected graphs
in Theorem 
��� Let Gopt � �V�Eopt� be a k�node connected spanning subgraph of minimum size�
Apply Proposition 
�� to the bipartite graph B�Gopt� of Gopt to deduce that jM�j � jE�B�Gopt��j�
jV �B�Gopt��j�	� where M� � E�B�Gopt�� is a minimum�size edge set such that every node of
B�Gopt� is incident to � k � � edges of M�� Since the arc set M � E�G� found by the heuristic
has jM j � jM�j �since M comes from a supergraph of Eopt�� it follows that jM j � jE�B�Gopt��j �
jV �B�Gopt��j�	 � jEoptj � jV �G�j� Consequently� since jE�j � jM j� jF j and jF j � 	jV �G�j � ��

jE�j
jEoptj �

jEoptj � jV �G�j� �	jV �G�j � ��

jEoptj � � �
�

k
�

where the last inequality uses the �degree lower bound�� jEoptj � kjV �G�j� The running time
analysis is similar to that for the heuristic for graphs� see Section 
��� �

� Approximating minimum�size k�edge connected spanning sub�

graphs

The heuristic can be modi�ed to �nd an approximately minimum�size k�edge connected spanning
subgraph �abbreviated k�ECSS� of a graph or a digraph� First� we focus on graphs� and prove a
��� 	��k������approximation guarantee for �nding a minimum�size k�ECSS� The analysis hinges
on Theorem ��
 which may be regarded as an analogue of Mader�s theorem Ma �	� Theorem ��
for k�edge connected graphs� Then we turn to digraphs� and prove an approximation guarantee of
� � ��

p
k� for the k�ECSS heuristic�

In this section� an edge e �arc e� of a k�edge connected graph �digraph� H is called critical
if Hne is not k�edge connected� Assume that the given graph or digraph G � �V�E� is k�edge
connected� otherwise� the heuristic will detect this and report failure�


�� Undirected graphs

In this subsection� G � �V�E� is a graph� The �rst step of the heuristic �nds an edge setM � E of
minimum cardinality such that every node in V is incident to� k edges ofM � Clearly� jM j � jEoptj�
where Eopt � E denotes a minimum�cardinality edge set such that �V�Eopt� is k�edge connected�
The second step of the heuristic �nds an �inclusionwise� minimal edge set F � EnM such that
M � F is the edge set of a k�edge connected spanning subgraph� In detail� the second step starts

��



with F � � and E� � E� Note that G� � �V�E�� is k�edge connected at the start� We examine the
edges of EnM in an arbitrary order e�� e�� � � �� For each edge ei � viwi �where � � i � jEnM j�� we
determine whether or not viwi is critical for the current graph by �nding the maximum number of
edge�disjoint vi	wi paths in G

��

Proposition �� An edge viwi of a k�edge connected graph is not critical i� there exist at least
k � � edge�disjoint vi	wi paths �including the path viwi��

If viwi is noncritical� then we delete it from E� and G�� otherwise� we retain it in E � and G��
and also� we add it to F � At termination of the heuristic� G� � �V�E��� E� � M � F � is k�edge
connected and every edge vw � F is critical� i�e�� G�nvw is not k�edge connected� Theorem ��

below shows that jF j � kjV j��k� �� for k � �� Since jEoptj � kjV j�	� the minimum�size k�ECSS
heuristic achieves an approximation guarantee of � � 	��k� ��� for k � ��

The next lemma turns out to be quite useful� A straightforward counting argument gives the
proof� see Mader Ma ��� Lemma ��� or Cai Ca �
� Claim 
��

Lemma �� Let G � �V�M� be a simple graph of minimum degree k � ��
�i� Then for every node set S � V with � � jSj � k� the number of edges with exactly one end
node in S� j��S�j� is at least k�
�ii� If a node set S � V with � � jSj � k contains at least one node of degree � �k � ��� then
j��S�j is at least k � ��

The goal of Theorem ��
 is to give an upper bound on the number of critical edges in the
edge�complement of a spanning subgraph of minimum degree k in an arbitrary k�edge connected
graph H � Clearly� every critical edge e � E�H� is in some k�cut ��Ae�� Ae � V �H�� By a tight
node set S of a k�edge connected graph H we mean a set S  V �H� with j�H�S�j � k� i�e�� a node
set S such that �H�S� is a k�cut� As usual� a family of sets fSig is called laminar if for any two sets
in the family� either the two sets are disjoint� or one set is contained in the other� For an arbitrary
subset F � of the critical edges of H � it is well known that there exists a laminar family F of tight
node sets covering F �� i�e�� there exists F � fA�� A�� � � � � A�g� where Ai � V �H� and ��Ai� is a
k�cut� for � � i � �� such that each edge e � F � is in some ��Ai�� � � i � �� �For details� see Fr �
�
Section �� or Ca �
� Lemma 
�� but in the latter reference note that the associated family �of a
collection of k�cuts� should be laminar rather than crossing�free�� It is convenient to de�ne a tree
T corresponding to F �fV �H�g� there is a T �node corresponding to each set Ai � F and to V �H��
and there is a T �edge AiAj �or V �H�Aj� i� Aj  Ai and no other node set in F contains Aj and is
contained in Ai� Note that the T �node corresponding to the node set Ai of the laminar family F
is denoted by Ai� and the T �node corresponding to the node set V �H� is denoted by V �H�� Each
T �edge corresponds to a k�cut of H � Suppose that the tree T is rooted at the T �node V �H�� We
associate another node set 
i � V �H� with each node set Ai of F �


i � Ain
�
fA � F � A  Ai� A �� Aig�

In other words� a T �node Ai � F that is a leaf node of T has 
i � Ai� otherwise� 
i consists of
those H�nodes of Ai that are not in the node sets A�� A��� � � �� where A�� A��� � � � � F correspond to
the children of Ai in the tree T � For distinct T �nodes Ai and Aj � note that 
i and 
j are disjoint�
See Figure � for an illustration of F � fAig� the family of node sets f
ig� and the tree T for a
particular graph�

The proof of Theorem ��
 is long and nontrivial� Readers interested in a detailed study of the
proof may be helped by� �i� an examination of the examples in Figure 	�c� and Figure �� �ii� the
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Tree T � of F �Laminar family F � of tight node sets
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A�

�b�

A�

A�

Figure �� Two laminar families of tight node sets for a 	�edge connected graph H �k � 	��
�a� The laminar family F covers all critical edges of H � F consists of the node sets A�� � � � � A��
where each Ai is tight since j��Ai�j � 	 � k� For a node set Ai� 
i is the node set AinSfAj �
F � Aj  Ai� Aj �� Aig� Note that 
i � Ai for the inclusionwise minimalAi� i�e�� for i � �� �� �� �� ��
Also� the tree T corresponding to F � fV �H�g is illustrated�
�b� The laminar family F � covers all critical edges of E�H�nM � where M  E�H� is such that
every node is incident to at least k � 	 edges of M � M is indicated by dotted lines� All edges
of E�H�nM are critical� F � consists of the tight node sets A�� A�� Also� the node sets 
�� 
� are
indicated �
� � A��� and the tree T � representing F � � fV �H�g is illustrated�
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illustration of the proof in Figure ��a���d�� �iii� a study of the proof of Theorem ���� which is an
analogous but weaker result for k�edge connected digraphs� and �iv� a study of the relevant parts
of the papers by A� Frank Fr �
� and by M� Cai Ca �
��

Theorem �� Let H � �V�E� be a k�edge connected� n�node graph �k � ��� Let M � E be an edge
set such that the spanning subgraph �V�M� has minimum degree � k� Let F be the set consisting
of edges of EnM that are in some k�cut of H� Let F � fA�� � � � � A�g be a laminar family of tight
node sets that covers F � i�e�� for each e � F � there is an Ai � F such that e � ��Ai�� Then

jF j � k

k � �

�����
��

i�

Ai

����� � k

k � �
�n� ��� ���

Some key preliminaries are discussed� before delving into the proof� The upper bound on jF j is
asymptotically tight� Consider the k�edge connected graph G obtained as follows� take ��� copies
of the �k����clique� C	� C�� � � � � C�� and for each i � �� � � � � �� choose an arbitrary node vi in Ci and
add k �nonparallel� edges between vi and C	� Take M �

S�
i	E�Ci�� and F � E�G�nM � Observe

that jF j � k�n� �k � �����k� ���

Fact � For a laminar family of tight node sets F � fA�� � � � � A�g�
��

i�

��Ai� �
��

i�

��
i��

Proof� For each i � �� � � � � �� an edge in ��
i� is either in ��Ai� or in ��A��� ��A���� � � �� where
A�� A��� � � � � F correspond to the children of Ai in the tree T � Hence� the set on the left side
contains the set on the right side�

To see that the set on the left side is contained in the set on the right side� note that for
every edge e in the left side set� there is an �inclusionwise� minimal tight node set Ai�e� such that
e � ��Ai�e��� and the associated node set 
i�e� has e � ��
i�e��� �

Fact �� Let H�M� F and F � fA�� � � � � A�g be as in Theorem 
��� The inequality in the theorem

jF j � k

k � �

�����
��

i�

Ai

�����
is implied by the inequality�����

��
i�

��Ai�

����� � k

k � �

�X
i�

j
ij� �

	

�X
i�

jM � ��
i�j�

Proof� Let Mc �M denote the set of M �edges that are covered by the laminar family F � i�e��

Mc �
��

i�

M � ��Ai�� �M �
�

��
i�

��Ai�

�
�M �

�
��

i�

��
i�

�
�

��
i�

M � ��
i�� �

Consider an arbitrary edge e � vw that is in Mc� If e � ��
i� �i � �� � � � � ��� then either v � 
i� w ��

i or w � 
i� v �� 
i� Since the node sets 
i �i � �� � � � � �� are mutually disjoint� there are at most
two tight node sets Ai � F such that e � ��
i�� �E�g�� if there are tight node sets Ag� Ah � F �

		



g �� h� with v � 
g� w � 
h� then e � ��
g�� e � ��
h�� and e �� ��
i� for i � �� � � � � �� i �� g� i �� h��
Then

jMcj �
�����
��

i�

M � ��
i��
����� � �

	

�X
i�

jM � ��
i�j� �	�

since we are counting the cardinality of a union of sets such that each element occurs in at most
two of these sets�

Now note that
��

i�

��Ai� � F �Mc� hence

�����
��

i�

��Ai�

����� � jF j� jMcj� �
�

Also�
��

i�

Ai �
��

i�


i� hence

k

k � �

�����
��

i�

Ai

����� � k

k � �

�����
��

i�


i

����� � k

k � �

�X
i�

j
ij� ���

Substituting inequalities �	�� �
� and ��� into the second inequality in the fact gives

jF j� jMcj � k

k � �

�����
��

i�

Ai

������ jMcj�

which is the inequality in Theorem ��
� �

Most of the complications in the proof of Theorem ��
 seem to be caused by the presence of
tight node sets Ai � F such that j
ij � �� To illustrate the main ideas in the proof� we �rst prove
�in �� lines� a weaker version of Theorem ��
� In the weaker version� the required upper bound of
k�n� ����k� �� is relaxed to �n� ��� and the laminar family of tight node sets F � fA�� � � � � A�g
is restricted such that every Ai � F has j
ij � 	� �The motivation for putting the restriction on F
is expository� Such restricted laminar families F do not seem to be of mathematical interest��

Proposition �� Let H�M� F and F be as in Theorem 
��� and moreover� suppose that each tight
node set Ai � F has j
ij � 	� Then

jF j �
�����
��

i�

Ai

����� � n � ��

Proof� For an arbitrary i � �� � � � � �� consider Ai� 
i� and let p denote j
ij� By assumption� p � 	�
Suppose that p � k �the other case p � k � � turns out to be easy�� Then

jM � ��
i�j � p�k � �p� ���� ���

since for every node v � 
i� there are at most �p � �� incident edges vw � E�H� with w � 
i�
Adding 	j
ij to both sides of inequality ��� gives

	j
ij� jM � ��
i�j � 	p� p�k � �p� ��� � �p� � �k � 	�p� ���

	




Subtracting 	k from both sides of inequality ��� gives

	j
ij� jM � ��
i�j � 	k � �p� � �k � 	�p� 	k � ��p� k��p� 	� � �� ���

where the last inequality ��p� k��p� 	� � � holds because 	 � p � k� Inequality ��� implies

j
ij� �

	
jM � ��
i�j � k � j��Ai�j� ���

If j
ij � �k � ��� then obviously inequality ��� holds�
Summing up inequality ��� over i � �� � � � � � gives�����

��
i�

��Ai�

����� �
�X

i�

j��Ai�j � k � � �
�X

i�

j
ij� �

	

�X
i�

jM � ��
i�j� ���

The proof of Fact ��� shows that inequality ��� implies the inequality in the proposition� jF j ������
��

i�

Ai

����� � n � �� �

Proof� �Theorem ���

W�l�o�g� assume that F is minimal� i�e�� for every Ai � F there is an edge ei � F such that
ei � ��Ai� and ei �� ��A� for all A � F � A �� Ai� Since F is minimal� every Ai � F has j
ij � ��
Let T be the tree representing F � fV �H�g� The proof examines the node sets Ai � F � 
i� but the
node set V �H�nSfAi � Ai � Fg is not relevant for the proof� Every inclusionwise minimal Ai � F
has jAij � �k � ��� since ��Ai� � F �� � implies that Ai contains a node v with degH�v� � �k � ���
so Lemma ��	 implies this bound on jAij� Hence� every Ai � F with j
ij � � has at least one child
in the tree T �

Two key assumptions are needed to complete the proof�

Assumption �� For � � i � �� every 
i induces a complete subgraph of H � and moreover� every
edge of this complete subgraph is in M � i�e�� for i � �� � � � � �� �v� w � 
i� vw � E�H� and vw �M �

Assumption �� For every Ai � F with j
ij � �� there is an Aj � F such that j
j j � k and Aj is
a child of Ai in the tree T �

Claim �� Assumption � causes no loss of generality�

Here is the proof of Claim �� For an arbitrary i � �� � � � � �� consider 
i and E�
i�� the set of
edges of H with both end nodes in 
i� Clearly� an edge vw � E�
i� is not in F � since vw is in none
of the k�cuts ��Aj� �j � �� � � � � ��� Therefore� all the missing edges vw with v � 
i� w � 
i can be
added to H �say� vw is �rst added to En�M � F �� such that 
i induces a clique� and this will keep
M�F and F unchanged� Moreover� every edge vw � E�
i� can be placed in M � and the minimum
degree requirement on �V�M� will continue to hold� By repeating this for each i � �� � � � � �� we
obtain H ��M �� F � � F and F � � F that satisfy Assumption � and the conditions in the theorem�
Clearly� if the inequality in the theorem holds for H ��M �� F ��F �� then it also holds for H�M� F�F �
Claim �� Assumption 	 causes no loss of generality�

Here is the proof of Claim 	� Consider an Ai � F �i � �� � � � � �� such that j
ij � � and in the
tree T every child Aj � F of Ai has j
j j � �k � ��� Let 
i � fv�g� Let Aj � F be an arbitrary
T �child of Ai with j
j j � �k � ��� Clearly� by Assumption �� the subgraph of H induced by 
j is a
clique� and every edge in the clique is inM � Suppose that H has an edge wv� such that w � Ajn
j �

	�
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Figure �� An illustration of the proof of Theorem ��
�
�a� Every edge in ��Ai� � ��
i� contributes � � to the l�h�s� of inequality ���� and every edge in
��Ai�n��
i� contributes � �

� �
�b� The tight node set Ai is shown� together with two tight node sets Aj � Aq contained in Ai� The
node sets 
i and 
j are also shown� The three kinds of edges arising in the proof are illustrated�
�c� In Claim 	� 
i � fv�g and j
j j � �k � ��� An edge wv� with w � Ajn
j is replaced by a pair
of new edges wx and yv�� where x � 
j � y � 
j �
�d� In Claim 	� 
i � fv�g� If an edge v�x with x �� Ai is in F �so v�x ��M�� then there is an edge
v�w in M with w � 
j � where 
j � Aj  Ai and j
j j � �k � ��� Edges v�x and v�w are swapped
between M and F �

	�



i�e�� wv� � ��Aj�n��
j�� �Figure ��c� illustrates this�� Then we replace wv� by a pair of new edges
wx� yv� with x � 
j � y � 
j �possibly� x � y� such that the resulting graph H � is simple �i�e�� H �

has no multiedges�� this can be done always� since j
j j � �k � �� and both ��Aj� and ��Aq� are
k�cuts� where Aq � F is the T �child of Aj containing node w� The resulting graph H � is k�edge
connected� To see this� note that H is k�edge connected� and H � is obtained from H by replacing
one edge wv� by two edges wx� yv�� where the nodes x and y are contained in the �k � ���clique
induced by 
j � The formal proof of the k�edge connectivity of H

� is easy� and is left to the reader�
If wv� � M � then we take M � � �Mnfwv�g� � fwx� yv�g� F � � F � otherwise� we take M � � M �
F � � �Fnfwv�g� � fwx� yv�g� In either case F covers F �� By repeating this manoeuvre for all
relevant i � �� � � � � �� we obtain H ��M �� F � and F � � F with jF �j � jF j that satisfy the conditions
in the theorem� Clearly� if the inequality in the theorem holds for H ��M �� F ��F �� then it also holds
for H�M� F�F � Moreover� the following condition ��� holds�
for every Ai � F with j
ij � �� for every T �child Aj � F of Ai with j
j j � �k � ��� ���
every edge in ��Aj� � ��
i� is in ��
j��
Now w�l�o�g� suppose that H�M� F and F satisfy condition ���� Call an Ai � F bad if j
ij � �

and every T �child Aj � F of Ai has j
j j � �k � ��� Suppose that there is a bad Ai � F with

i � fv�g such that one of the edges v�x � ��Ai�� ��
i� is not in M � �Figure ��d� illustrates this��
Then since j��Ai�j � k� j��Ai� � F j � �� and jM � ��
i�j � k� there must be an M �edge wv� in
��
i�n��Ai�� Let Aj � F be the T �child of Ai such that w � Aj � Since Ai is bad� j
j j � �k � ���
therefore condition ��� applies and ensures that the node w is in 
j � Moreover� by Assumption ��
w is incident to � k edges of M that have both end nodes in 
j � Take M

� � �Mnfwv�g� � fv�xg�
F � � �Fnfv�xg��fwv�g� and observe that jM j � jM �j� jF j � jF �j� every node v � V �H� is incident
to � k edges of M �� F � consists of critical edges in E�H�nM �� and F covers F �� By repeating this
manoeuvre for all relevant i � �� � � � � �� we obtain H�M �� F � and F that satisfy the conditions in
the theorem such that jF �j � jF j� and for every bad Ai � F � no edge in ��Ai� � ��
i� is in F ��
Then we can start with F � and remove each bad Ai from F to obtain another laminar family F �

covering F � such that j
�

A�F �

Aj � j
�
A�F

Aj� and F � satis�es Assumption 	� Clearly� if the inequality

in the theorem holds for H ��M �� F ��F �� then it also holds for H�M� F�F � This completes the proof
of Claim 	�

Instead of proving that F�F satisfy inequality ���� we prove that under Assumption 	� M � F
and F � fA�� � � � � A�g satisfy the following sharper inequality �see Fact ����������

��
i�

��Ai�

����� � k

k � �

�X
i�

j
ij� �

	

�X
i�

jM � ��
i�j� ����

Clearly� every Ai � F with j
ij � �k � �� satis�es the inequality

j��Ai�j � k

k � �
j
ij� ����

From the proof of Proposition ��� �see inequalities ���� ���� ���� ����� it follows that every Ai � F
with 	 � j
ij � k satis�es the inequality

j��Ai�j� k � �

	�k � ��
j
ij � k

k � �
j
ij� �

	
jM � ��
i�j� ��	�

where the surplus term on the left hand side �l�h�s�� is the di�erence between kj
ij��k � �� and
j
ij�	� Every Ai � F with j
ij � � satis�es the inequality

j��Ai� � ��
i�j� �

	
j��Ai�n��
i�j� k

k � �
� �

	
j��Ai� � ��
i�j � k

k � �
j
ij� �

	
jM � ��
i�j� ��
�

	�



because j��Ai�� ��
i�j� j��Ai�n��
i�j � j��Ai�j � k � jM � ��
i�j�
Claim �� Under Assumption 	� the inequality ��� obtained by summing up over all Ai � F the
appropriate one of inequalities ����� ��	�� ��
� implies inequality ����� i�e�� the l�h�s� of inequality ���
is � the l�h�s� of inequality ����� and the r�h�s� of inequality ��� is � the r�h�s� of inequality �����

Here is the proof of Claim 
� Clearly� inequality ��� will imply inequality ���� if for every
Ai � F � every edge in ��Ai� � ��
i� contributes � � to the l�h�s� of inequality ���� This property
holds for Ai � F with j
ij � 	 by inequalities �������	�� but for Ai � F with j
ij � � the property
fails to hold �see inequality ��
��� Fortunately� there is a way around this di�culty� ForAi � F with
j
ij � �� we allowAi� 
i to contribute a de�cit of

�
� j��Ai����
i�j on the l�h�s� of inequality ���� using

this de�cit� we can ensure that every edge in ��Ai�� ��
i� �in ��Ai�n��
i�� contributes � � �� ��	�
to the l�h�s� of inequality ���� see inequality ��
�� �Figure ��a� illustrates the general scheme�� For
each Ai � F with j
ij � �� let Ac�i� � F be an arbitrary T �child of Ai such that � � j
c�i�j � k�
Ac�i� exists by Assumption 	� Inequality ��� implies inequality ���� because the de�cit contributed
by each Ai � F with j
ij � � is compensated by the surplus contributed by Ac�i�� 
c�i�� To see
this� focus on an arbitrary Ai � F with j
ij � �� and let j � c�i�� First observe that if an edge
vw � ��Aj� with v � Aj is not in ��Ai�� then there are three possibilities� �i� v � 
j � w � 
i� �ii�
v �� 
j � w � 
i� i�e�� v � Ag� where Ag � F corresponds to a child of Aj in the tree T � and �iii�
v � Aj � w � AinAj � 
i�� i�e�� w � Aq� where Aq � F corresponds to a sibling of Aj in the tree T �
�Figure ��b� illustrates the three possibilities�� Second� observe that

j��Ai� � ��
i�j � j��Aj�n��Ai�j � j��Ajn
j� � ��
i�j� j��Aj� � ��AinAj � 
i��j� j��
j� � ��
i�j�

For each of the �rst two terms t on the right hand side� Aj � 
j contributes a surplus of at least t�	
to the l�h�s� of inequality ���� because �i� every edge in two distinct k�cuts ��Ag� and ��Aj�� Ag � F �
Aj � F � Ag  Aj � contributes a surplus of ��	 or more� since Ah � F such that ��
h� � ��Ah�
contains the edge contributes one for the edge� and every other A � F such that ��A� contains the
edge contributes � ��	 for the edge� �ii� every edge in two distinct k�cuts ��Aq� and ��Aj�� Aq � F
disjoint from Aj � F � contributes a surplus of one or more�

Focus on the third term j��
j�� ��
i�j� and note that its value is � j
j j� since j
ij � � and the
graph is simple� If j
j j � �� then the de�cit contributed by Ai� 
i �to the l�h�s� of inequality ���� is
compensated� because the surplus of k

k�� �on the l�h�s� of Ai�s inequality� is � �
� �for k � ��� hence

�

	
j��Ai�� ��
i�j � �

	
j��Ajn
j�� ��
i�j� �

	
j��Aj� � ��AinAj � 
i��j� k

k � �
�

If 	 � j
j j � k� then the de�cit contributed by Ai� 
i �to the l�h�s� of inequality ���� is compensated�
because the surplus of k��

��k��� j
j j� k
k�� �on the l�h�s� of Aj �s and Ai�s inequalities� is � j
j j�	 �for

k � j
j j � ��� hence

�

	
j��Ai� � ��
i�j � �

	
j��Ajn
j� � ��
i�j� �

	
j��Aj� � ��AinAj � 
i��j� k � �

	�k� ��
j
j j� k

k � �
�

This completes the proof of Claim 
 and the proof of the theorem� �

Theorem �
 Let G � �V�E� be a graph of edge connectivity � k � �� The heuristic described
above �nds a k�edge connected spanning subgraph �V�E �� such that jE�j � �� � 	��k� ����jEoptj�
where jEoptj denotes the cardinality of an optimal solution� The running time is O�k�jV j� �
jEj����log jV j����

	�



The next result is not relevant for the analysis of the heuristics in this paper� but may be of
interest in graph theory� Given a k�edge connected graph H � let us call a critical edge of H special if
both end nodes have degree at least �k��� in H � The number of special edges is at most kjV �H�j�
since by Mader�s result Ma �	�� the maximum number of critical edges in a k�edge connected graph
H is at most kjV �H�j� Based on theorems of Cai Ca �
�� we give a bound of �jV �H�j �independent
of k� on the number of special edges in H � see Proposition ����

Proposition �� The number of special edges in a k�edge connected� n�node graph H is at most
�n for odd k � �� and at most �n for even k � 	�

Proof� Let F be a laminar family of tight node sets that covers all the special edges such that
every A � F has at least one special edge in ��A�� Let T be the tree representing F � fV �H�g�
Each special edge of H is in some k�cut that corresponds to a T �edge� Hence� the number of special
edges is at most k � jE�T �j � k � jV �T �j� To estimate jV �T �j� we apply Theorems � and � of Cai
Ca �
�� with slight modi�cations� One point to note is that Theorems ��� of Ca �
� are stated
for minimal k�edge connected graphs� but an examination of the proofs shows that these theorems
apply to all k�edge connected �undirected� graphs� There are two cases�

� if � � k and k is even� then jV �T �j � ��n��k� ���� ��k��k� ��� � �n�k� and

� if � � k and k is odd� then jV �T �j � ��n��k� ���� ��k��k� ��� � �n�k�

Hence� the number of special edges in H is at most �n for odd k� and at most �n for even k� Note
that for k � 	 �or k � �� 
 or ��� the number of special edges is at most kn� which is � �n �or
� �n�� since by results in Ma �	�� the number of critical edges is at most kn� and every special
edge is a critical edge� �


�� Directed graphs

The heuristic for �nding an approximately minimum�size k�edge connected spanning subgraph of
a digraph has two steps� Similarly to Section 
��� the �rst step �nds a minimum�cardinality arc
set M � E such that for every node v� there are � k arcs of M going out of v and � k arcs of
M coming into v� Clearly� jM j � jEoptj� where Eopt � E denotes a minimum�cardinality arc set
such that �V�Eopt� is k�edge connected� The second step of the heuristic �nds an �inclusionwise�
minimal arc set F � EnM such that E� � M � F is the arc set of a k�edge connected spanning
subgraph� To prove the approximation guarantee� we need to estimate jF j� We use the notion of
special arcs to estimate jF j� Call an arc �v� w� of a k�edge connected digraph special if the arc is
critical� and in addition� degout�v� � �k � �� and degin�w� � �k � ��� Clearly� every arc in F is a
special arc of the digraph G� � �V�E��� E� � M � F � returned by the heuristic� We can deduce
a bound of O�

p
kjV j� on the number of special arcs in G� by examining chains of tight node sets

S�  S�  � � �  Sq� where a node set Si is called tight if G
� has exactly k arcs in �out�Si��

Theorem �� Let k � � be an integer� and let H be a k�edge connected� n�node digraph� The
number of special arcs in H is at most �

p
k � n�

Proof� Let V denote V �H� for this proof� Each special arc e is in a k�dicut �out�Ae� � �in�V nAe��
where 	 � jAej � n � 	� As in Section ���� we obtain two laminar families of tight node sets
Fout and Fin that cover all the special arcs� that is� for each Ai � Fout �Ai � Fin�� Ai is a set
of H�nodes� �out�Ai� ��in�Ai�� has k arcs including at least one special arc� and each special arc

	�



is in some �out�Ai�� Ai � Fout� or is in some �in�Ai�� Ai � Fin� Focus on Fout� the analysis is
symmetric for Fin� Let Fout � fA�� A�� � � � � A�g� To estimate the number of special arcs� we need
to examine the tree T corresponding to Fout � fV �H�g� For i � �� � � � � �� recall that the T �node
corresponding to a node set Ai � Fout is also denoted Ai �the T �node corresponding to V �H� is
denoted by V �� and recall that 
i denotes Ain

�
fA � Fout � A  Ai� A �� Aig� Partition the set

fA�� � � � � A�g of T �nodes into two sets R� and R�� where R� consists of the T �nodes incident to
precisely two T �edges� and R� � fA�� � � � � A�gnR�� Note that V �� R� and V �� R��

Claim �� jR�j � 	jV�j��k� ��� where V� denotes the set of H�nodes in
Sf
i � Ai � R�g�

Here is the proof of Claim �� Let T� be the tree obtained from the tree T by �unsubdividing�
all the T �nodes in R�� i�e�� by repeatedly replacing a degree�two T �node in R� and its two incident
edges by an edge between the two neighbours� Then T� is a tree whose nonleaf T �nodes in R� have
T��degree � 
� whereas the T �node V may have T��degree �� 	 or � 
� Let �� be the number of leaf
nodes �degree�� nodes� of T� in R�� Then� jR�j � �� � ��� � �� � 	 � 	��� Now� Claim � follows
because �� � jV�j��k � ��� because for each �inclusionwise� minimal Ai � Fout� the set 
i � Ai of
H�nodes has cardinality at least �k � �� by the digraph version of Lemma ��	�ii�� �Ai contains a
node v with degout�v� � �k � �� since �out�Ai� contains a special arc��

Now focus on a maximal path P � A	� A�� � � � � Aq�� of T such that every T �node Ai with
� � i � q is in R�� In H � the node sets A	� A�� � � � � Aq�� satisfy A	  A�  � � �  Aq��� and for
i � �� � � � � q� if A� � Fout is contained in Ai� then either A� � Ai�� or A�  Ai��� Let VP denote the
set of H�nodes 
� � 
� � � � �� 
q� Also� note that for i � �� 	� � � � � q� Ai � A	 � 
� � 
� � � � �� 
i�
Claim �� The number of arcs �v� w� such that v � VP and �v� w� � Sf�out�Ai� � � � i � qg is at
most k � 	

p
k � jVP j�

Here is the proof of the Claim 	� see Figure � for an illustration� The additional term of k in
the upper bound accounts for the arcs with start nodes in Aq and end nodes in V nAq� there are at
most k such arcs� since each such arc is in �out�Aq�� Now ignore the arcs in �out�Aq�� Linearly order
the H�nodes in VP such that for each i� � � i � q� the H�nodes in 
i precede the H�nodes in 
i���
Let v be an arbitrary node in VP � Let  v � VP denote the set of end nodes wj of the arcs �v� wj�
outgoing from v such that wj � VP and �v� wj� � Sf�out�Ai� � � � i � qg� Let the linear ordering
of the nodes in  v be w�� w�� � � � � wj�vj� Call an arc �v� wj� short if j �

p
k� otherwise� call the arc

long� We �charge� each long arc �v� wj� to the �rst
p
k nodes w�� w�� � � � � wp

k in  v � i�e�� each of

these nodes is charged ��
p
k for each arc �v� wj�� wj �  v and j 	

p
k� Now consider the total

charge on an arbitrary node wa � VP due to all long arcs �x� y� � Sf�out�Ai� � � � i � qg with
x � VP and y � VP � The key fact is this� the total charge on wa is at most

p
k� To see this suppose

that wa � 
i� where � � i � q� Then for every arc �v� wj� charged to wa� �v� wj� � �out�Ai����
because v � Ain
i �if v � V nAi or v � 
i� then clearly  v does not contain a node of 
i such as
wa�� Furthermore� by the linear ordering of  v � wj � 
i � 
i�� � � � �� 
q� i�e�� wj �� Ai��� Since
�out�Ai��� has k arcs� the total charge to wa is at most k � ���

p
k� �

p
k� Finally� consider the total

number�mP � of short arcs �x� y� � Sf�out�Ai� � � � i � qg with x � VP and y � VP � Obviously� mP

is at most
p
kjVP j� Claim 	 is completed by summing up the three terms� k �for arcs in �out�Aq���p

kjVP j �for the total charge on nodes w � VP �� and
p
kjVP j �for mP ��

We account for the special arcs in �out�Aq� by �charging� the additional term of k to the
�unsubdivided edge� A	Aq�� of the tree T� in the proof of Claim �� Thus each edge AiAi�q��� Ai 
Ai�q��� of T� is �charged� for � 	k special arcs �these are the special arcs in �out�Ai�� �out�Ai�q���
Since the number of edges in T� is � jR�j� the number of special arcs contributed by the T �nodes
in R� is � 	kjR�j� We �charge� 	

p
k to each H�node v such that v � 
i for a T �node Ai � R��

Combining the contributions of special arcs from the T �nodes in R� and R� and applying Claim ��
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Figure �� An illustration of Claim 	 in the proof of Theorem ����
�a� A subfamily of the laminar family of tight node sets Fout that covers �some of� the special arcs�
�b� The subtree corresponding to the subfamily of Fout in �a�� Each of the T �nodes A�� A�� � � � � Aq

is incident to exactly two edges of T � where T is the tree corresponding to Fout�
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we see that the number of special arcs is at most

	kjR�j� 	
p
k � n� � �kn�

�k� ��
� 	

p
k � n�

where n� and n� denote the cardinalities of V� �
Sf
i � Ai � R�g and V� �

Sf
i � Ai � R�g�
respectively� For k � �� the number of special arcs is maximized when n� is maximum possible and
n� is minimum possible� Since the tree T has at least two leafs� n� is at most n� �	k� 	�� Hence�
the number of special arcs contributed by Fout is at most �k�	k� 	���k� �� � 	

p
k�n� �	k� 	���

The total number of special arcs in H is at most ��k � �
p
k�n� �	k� 	�� � �

p
kn� �

The heuristic clearly runs in time O�kjEj��� This can be improved by implementing the second
step to run in time O�k�jV j��� We run Gabow�s algorithm Ga ��� as a preprocessing step to
compute a sparse certi�cate eE of G for k�edge connectivity� i�e�� eE � E� j eEj � 	kjV j� and for all
nodes v� w� �V� eE� has k arc�disjoint v
w directed paths i� G has k arc�disjoint v
w directed
paths� In detail� we �x a node a � V �G� and take eE � eEout � eEin� where eEout � eEin� is the union of
k arc�disjoint out�branchings �in�branchings� rooted at a� Gabow�s algorithm Ga ��� runs in time
O�kjV j��� and the second step runs in time O�kj eE �M j�� � O�k�jV j���

Theorem ��� Let G � �V�E� be a digraph of edge connectivity � k� The heuristic described above
�nds a k�edge connected spanning subgraph �V�E�� such that jE�j � �� � ��

p
k��jEoptj� where jEoptj

denotes the cardinality of an optimal solution� The running time is O�k�jV j� � jEj����log jV j����

The upper bound on the number of special arcs in Theorem ��� is not tight� but is within a
factor of �roughly� three of the tight bound for n� k� To see this� take n � 
k�	 and consider the
following k�edge connected� n�node digraph !G with at least �n�	��k����k special arcs� where �
is the maximum integer such that �������	 � k� i�e�� � � bp	k � ��	�� ���c� See Figure � for an
illustration of !G� !G has a �left� �k����directed clique KL and a �right� �k����directed clique KR�
Let v�� v�� � � � � v� be a linear ordering of the remaining nodes� where � � n � 	�k � �� � k� There
is one arc from vi �� � i � �� to each of the next � nodes vi��� � � � � vi�� � hence� each node vi has
one arc coming in from each of the previous � nodes vi��� � � � � vi�� � �Take v	� v��� v�� � � � � v���� to
mean nodes in KL� and take v���� v���� � � � � v��� to mean nodes in KR�� These � left�to�right arcs
starting from vi will turn out to be special arcs� Additionally� there are �k����� arcs fromKR to
each of the nodes v�� v�� � � � � v�� and there are �k � �� �� arcs from each of the nodes v�� v�� � � � � v�
to KL� Finally� there are �k � ��� � ���	� arcs from KL to KR� This completes the construction
of !G� It can be checked that !G is k�edge connected� �Note that besides the �k � ��� � ���	� arcs
from KL to KR� there are ��� � ���	 arc�disjoint directed paths from KL to KR� such that there
is one �one�hop� directed path� two �two�hop� directed paths� � � � � � ���hop� directed paths�� For
each node set A in the laminar family of node sets fKL� �KL � fv�g�� � � � � �KL � fv�� v�� � � � � v�g�g�
the out�directed cut �out�A� has cardinality k� and every arc in �out�A� is a special arc�

� Conclusions

Our analyses of the heuristics exploit results from extremal graph theory� such as Mader�s remark�
able theorem Ma �	� Theorem ��� and raise new problems in the areas of approximation algorithms
and extremal graph theory�

For a graph G and an integer k � �� let �k�G� denote the minimum number of edges in
a spanning subgraph of minimum degree k� For a digraph G and integer k � �� de�ne �k�G�
similarly� For a graph �or digraph� G and integer k � �� let ��k�G� denote the minimum number
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Figure �� The digraph !G described in the last paragraph of Section ��	� !G has n � 
k � 	 nodes�
and has � ��n� 	�k� ��� � k special arcs�

p
k � � �

p
	k� showing that the upper bound on the

number of special arcs in Theorem ��� is within a small constant factor of being tight for n� k�


	



of edges �arcs� in a k�edge connected spanning subgraph �k�ECSS�� and let ���k�G� denote the
minimumnumber of edges �arcs� in a k�node connected spanning subgraph �k�NCSS�� While �k�G�
can be computed e�ciently via b�matchings� computing either ��k�G� or ���k�G� is NP�hard� This
paper shows that �i� by computing �k� �� G�� we can e�ciently approximate ���k�G� to within a
factor of � � ��k� for both graphs and digraphs� and �ii� by computing �k�G�� we can e�ciently
approximate ��k�G� to within a factor of � � 	��k � ��� for graphs� and a factor of � � ��

p
k�

for digraphs� Theorem 
�� shows that for a k�node connected graph G�
���k�G�
��k�G�

� k � �

k
� and

Theorem 
�	� shows that for a k�node connected digraph G�
���k�G�
�k�G�

� k � �

k
� Propositions 
��

and 
�	� show that for a k�node connected graph or digraph G�
���k�G�

�k � �� G�
� k � �

k � �
� Theorem ���

shows that for a k�edge connected graph G�
��k�G�
�k�G�

� k � 


k � �
�

s

Kk�� Kk��

t

Kk��Kk��

Figure �� A k�node connected graph G � �V�E� �with k � 	� such that the minimum size �� of a
k�node connected spanning subgraph decreases by �n� 
k � ����	k� 	� on adding one edge�
G consists of nodes s� t� and � copies of the �k � ���clique� and has k � � openly disjoint s	t
paths such that each path uses exactly one node from each �k � ���clique� also� G has �� � ���	
dashed edges� Every edge in G is critical w�r�t� k�node connectivity� Adding the edge st to G� and
then removing all the dashed edges leaves a k�node connected graph� so �� decreases from jEj to
jEj� �� ��� ���	�
A k�edge connected �and k�node connected� graph eG such that the minimum size � of a k�edge

connected spanning subgraph decreases by
jV � eG�j � �k � 	


k � 

on adding one edge can be obtained

by modifying G as follows� �split� every �k � ���clique incident with a dashed edge into a pair of
�k � ���cliques connected by a matching of size �k � ���

For minimum�size k�ECSS �k�NCSS� problems� there appears to be a di�culty in achieving

approximation guarantees of � �
����

k�
� A graph theoretic function g is said to satisfy the edge

Lipschitz condition if whenever graphs H and H � di�er in only one edge� then jg�H�� g�H ��j � ��
see AS �	� p� ���� Observe that �k�G� satis�es the edge Lipschitz condition� Moreover� the
optimal size of a b�matching satis�es the edge Lipschitz condition� and so do most functions related
to matchings of graphs� In contrast� both ��k�G� and ���k�G� violate this condition� First� focus
on ��k�G� for graphs G and k � 	� Let G be the minimal k�edge connected graph obtained by
�stringing� � copies of the �k� ���clique� i�e�� take � copies of the �k� ���clique� and for each copy
i� � � i � �� designate a pair of distinct nodes as si and ti� and then identify ti and si�� for







i � �� 	� � � � � � � �� Adding the edge s�t� decreases 
� by � � �jV �G�j � ���k� since removing all

the edges siti� � � i � �� leaves a k�edge connected graph� Now consider ���k�G� for graphs G
and k � 	� For each k � 	� there exists a k�node connected graph G such that adding a particular

new edge decreases �� by
jV �G�j � 
k� �

	k � 	
� see Figure � for an illustration� For k � 	 and the

graph G in Figure �� observe that �� decreases from ���jV j � � to jV j � � upon adding the edge
e�� A k�edge connected �and k�node connected� graph eG such that adding a particular new edge

decreases � by
jV � eG�j � �k � 	


k � 

can be obtained by modifying the graph in Figure � as indicated in

the �gure caption� Garg et al GSS �
� discuss similar issues for the minimum�size 	�NCSS problem
on graphs�

Another drawback of the analysis of the k�NCSS heuristic for graphs in Section 
�� is that the
size of the edge set E� �M�F returned by the heuristic is compared against ��k�G�� the minimum
size of a k�ECSS� Given an integer k � 	� for each integer n � 	k�i� k� � k� where i � �� �� 	� � � ��
there exists a k�node connected� n�node graph !G such that

���k� !G�
��k� !G�

� � �
�k � 	�

�	k� � k�
�

In view of this� for large k� a sharper lower bound will have to be employed for proving approxi�
mation guarantees substantially better than �� ��	k� for the minimum�size k�NCSS problem� For
k � 	 or k � 
� larger values of ���k�G����k�G� are given by the graph G in Figure � with the
parameter k �xed at 	 or 
 and with jV �G�j � k� for k � 	� the ratio approaches ���� and for
k � 
� the ratio approaches ����
�

Here is another consequence of R� P� Gupta�s result� see the proof of Proposition 
��� For a
bipartite graph G with minimum degree � k�

�k � �� G�

�k�G�
� �k � ��

k
�

This inequality does not hold for nonbipartite graphs� since for G � K�k���� �k � �� G���k�G�
equals �k� ���k for k odd� and equals k��k� �� for k even� Another result of Gupta� see BM ���
Problem ��	���� shows that �k � 	� G���k�G� � �k � 	���k � �� for all graphs G of minimum
degree � k�
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